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2.1 Commutative Gröbner bases . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.1 One-dimensional case and applications to signals and systems . 47
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Preface

The mathematical roots of system and control theory date back to the paper “On
Governors” by J. C. Maxwell published 1868 in Proceedings of the Royal Society of
London. The seminal work of R. E. Kalman established system theory as a mathemat-
ical discipline in the 1950s. About thirty years later, J. C. Willems proposed a novel
approach to signals and systems, the so-called behavioral approach. This approach
offers a very general definition of a dynamical system, a triple consisting of the math-
ematical model of time, the system-relevant quantities summarized in the so-called
signals, and a system law, that is, equations defining the relations between the signals.
The contribution of U. Oberst, which appeared in 1990, gives fundamental insight for
algebraic system theory. A very important algebraic property of the signal space is
realized to be highly copious for signals and systems there, namely the property of the
signal space to be an injective cogenerator over the underlying operator ring. The al-
gebraic approach to system theory has been developed among others by B. Malgrange,
U. Oberst, J. F. Pommaret, A. Quadrat and E. Zerz.

The goal of algebraic system theory is the structural analysis of dynamical systems us-
ing algebraic tools. These systems may arise from various practical problems settled for
instance in a scientific, technical or economical area. The systems are mainly described
via differential or difference equations. Their solutions are contained in a certain sig-
nal space which possesses a module structure over the ring of differential/difference
operators. In case the signal space is an injective cogenerator, algebraic properties
of the system module are dual to analytic properties of the signals due to Oberst’s
observation. Then control theoretic characterizations like autonomy, controllability
and observability can be translated into algebraic terms.

Classically linear time-invariant systems with field coefficients are studied. In the re-
cent past variations of these systems have proved to be worthy for extended studies.
From the applied point of view, there is obviously the interest to consider correspond-
ing generalizations. From the algebraic point of view, some particular settings are very
interesting for further investigations since ring theory and homological algebra provide
a deep insight. Beyond theoretical studies, the computer algebra machinery allows the
enormous benefit of constructive analyses. This thesis elaborates both aspects, the
theoretical and the computational, in parallel. It is organized as follows.

Chapter 1 and Chapter 2 serve for an extended introduction. System theoretical
aspects are provided in Chapter 1. Basic concepts and definitions are presented and
furthermore the following chapters are motivated from the system theoretical point of
view. Section 1.3 motivates the subject of study of Chapter 3, Section 1.4 points out
the relevance of Chapter 4 and finally Section 1.5 and Section 1.6 give an introduction
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to Chapter 5. Chapter 2 is devoted to Gröbner bases theory. Beside the classical case of
polynomial modules with field coefficients, we discuss ring coefficients and G-algebras.
Connections between G-algebras and Ore algebras are outlined. Furthermore their
relevance for system theory is shown and the algorithmic motivation for the following
Chapters is composed.

Chapter 3 studies systems with coefficients in a finite ring, in contrast to the classical
case. The general motivation for this framework stems mainly from communication
theory. However, the extension leads to problems like zero-divisors and the principal
ideal domain property is lost. Therefore concepts useful for coding fail to generalize
straightforwardly. In the field case the so-called predictable degree property is useful
for many areas of system theory, ranging from controller parameterization to minimal
realizations of linear systems over fields. This property does not carry over directly to
the ring case. The paper “The predictable degree property and row reducedness for
systems over a finite ring” by M. Kuijper, R. Pinto, J. W. Polderman and P. Rocha
[KPP07] establishes a new framework which allows the adoption of that classical result
in a novel setting. Results of that work were presented in the plenary talk of M. Kuijper
at the international symposium “Mathematical Theory of Networks and Systems” in
2008. Thereupon J. Rosenthal proposed the conjecture that the presented results are
closely connected to the topic of Gröbner bases. This has proved to be correct. By the
tool of Gröbner bases the results of [KPP07] are extended to a more general framework
which additionally allows concrete calculations. For this purpose the notion of the so-
called minimal Gröbner p-basis is established and the connection to known results
is pointed out. The application to parametrization of all shortest linear recurrence
relations and to minimal state realization are discussed. The results presented in
Chapter 3 are based on joint work with M. Kuijper.

Chapter 4 is focused on one-dimensional systems with time-varying rational coeffi-
cients. This leads to the non-commutative operator ring called rational Weyl algebra
which is a principal ideal domain. Therefore the non-commutative analogon to the
Smith form, the so-called Jacobson form, exists. This normal form can be used to
obtain a decomposition into a controllable and an autonomous subsystem of the cor-
responding linear abstract system. Furthermore the order of the underlying ordinary
differential equation system is obtained directly. But computational problems known
from the commutative counterpart even increase due to the non-commutative struc-
ture, namely the explosive growth of the coefficients. A novel approach which can
be applied in a completely fraction free framework is presented in this chapter. This
approach shows first how to obtain a decoupled form. It should be stressed that this
decoupled form may even be interesting by itself. Further we show how to obtain a
normal form from the decoupled form. Due to collaboration with V. Levandovskyy
the proposed algorithm can even be applied to an extended operator class of certain
G-algebras. The implementation is realized as a library called jacobson.lib for the
computer algebra system Singular::Plural [GPS05, GLH05], which is freely avail-
able. This implementation is compared with all implementations which are available
to the best of our knowledge.

In [AW93] a behavioral approach to linear exact modeling is formulated for one-
dimensional systems with constant coefficients. This problem of system identification
is extended to a multi-dimensional setting in [Zer05, Zer08]. In co-operation with
V. Levandovskyy and E. Zerz, this modeling concept is developed for polynomial-
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exponential signals in a multi-dimensional time-varying model class in Chapter 5.
These model classes are summarized in the so-called Ore algebras. The idea of this
approach is to derive a model describing the observed data and containing as much
information as possible. It turns out that the particular model classes yield a very
precise description, as pointed out in the case of continuous systems. Two alterna-
tive possibilities to calculate the models will be presented, one of them working in
a purely commutative framework. Both rely on annihilator calculations which are
constructively tackled using Gröbner bases. All constructions can be realized in Sin-
gular::Plural.
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Chapter 1

Introduction to algebraic system
theory

1.1 Motivation

A demonstrative control theoretical example is the balance of a pencil on the fingertip,
see the following left figure. On the right, a simplified but closely related problem is
drafted, a so-called inverted pendulum.

u
M

φ

m

δ

0

`

The right figure shows a cart driven by a motor of force u along the line. The coefficient
of friction on the cart is denoted by F . An inverted pendulum is attached through a
frictionless pivot on the top of the cart. All motions are assumed in a plane. We denote
the angle between the pendulum of length ` and the vertical by φ, the gravitation
constant by g, the position of the cart by δ, the mass of the cart by M and the
mass of the pendulum by m, which is assumed to be concentrated at the tip. The
mathematical description of the inverted pendulum is given by:

(M +m)
d2

dt2
δ +m` cos(φ)

d2

dt2
φ−m` sin(φ) (

d

dt
φ)2 + F

d

dt
δ = u

and

`
d2

dt2
φ− g sin(φ) + cos(φ)

d2

dt2
δ = 0.

This is a non-linear system of ordinary differential equations. The non-linearity is
typical for real life examples. However, it is not convenient for algebraic studies.
Therefore we consider exclusively linearized models. A linearization can be applied in
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10 CHAPTER 1. INTRODUCTION TO ALGEBRAIC SYSTEM THEORY

different ways. If just an equilibrium state is relevant, one linearizes the equations at
this equilibrium of the system. For this purpose the non-linear parts of the equation
are expanded into the first two summands of their Taylor series around the equilibrium.
This linearization leads to equations with constant coefficients. The above system is
interesting for small angles φ, thus we obtain the linearized equations:

(M +m)
d2

dt2
δ +m`

d2

dt2
φ+ F

d

dt
δ = u and `

d2

dt2
φ− gφ+

d2

dt2
δ = 0.

One can easily check that the representation matrix possesses Smith form

[
1 0 0
0 1 0

]
.

As we will see later, this means that the underlying system is controllable.

Another possibility is to linearize the system along a trajectory. Think of a non-linear
system for which a certain motion is relevant, like for instance the motion of a robot
arm. Then the Taylor series needs to be evaluated at the relevant trajectory. This
leads to differential equations with time-varying coefficients.

1.2 Basic properties of linear systems

In order to derive a general and formal setting we need to define precisely the term
“system” first. This has been done by J.C. Willems [Wil88] giving a definition con-
sisting of three components:

• The set T , a mathematical model of time.

• The signal value set W in which the signals take their values. A signal is a map
from T to W .

• The subset B of the signal set W T called behavior, constraining the signals by
relevant conditions. Usually the system law will not be satisfied by all elements
of W T , thus to get an adequate description of the behavior, we have to search
for all trajectories satisfying the system law, i.e.

B =
{
ω ∈ W T | ω satisfies the system law

}
.

According to Willems, a triple Σ = (T,W,B) is called system. In the one-dimensional
setting one can think of the time set T = N for the discrete, and T = R for the
continuous framework. The system law may then be given by ordinary difference or
by differential equations. We suppose W to be a K-vector space for a field K. This
thesis is exclusively devoted to linear systems, i.e. systems satisfying that for all
ω1, ω2 ∈ B and k1, k2 ∈ K it follows that

k1ω1 + k2ω2 ∈ B.

Linearity is an intrinsic system property. Another important and intrinsic system
property is its time-variance or time-invariance. Suppose the time set to be additively
closed. Then a system Σ is called time-invariant if for all ω(·) ∈ B and t ∈ T the
trajectory ω(·+ t) is contained in B.
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In [Obe90] U. Oberst gave a modified definition of a system to permit an extended
class of signals, for instance the class of distributions. Let A denote a set of scalar-
valued signals, let q denote the number of signals occurring in the system and suppose
B ⊆ Aq. Then a system is the triple (A, q,B). Note that the number of signals q is
an intrinsic system property whereas a system law can be formulated in several ways.
The question under which conditions one can find a kernel representation can not be
answered in this thesis. However, in the sequel we will assume the system to possess
a kernel representation. Let D denote a left Noetherian ring with unity acting on the
left D-module A. Note that whenever an element d ∈ D acts on an element ω ∈ A, we
write d • ω to keep the notation accurate. For some positive integer g and R ∈ Dg×q,
we call the behavior

B = {ω ∈ Aq | R • ω = 0} ,
a linear abstract system. The matrix R is called representation of B. Its number
of rows g can obviously vary. The set B is an additive subgroup of Aq. But note that a
linear abstract system does not have a D-module structure in general. This structural
property depends on the choice of D. If D is commutative, then B is a D-module. In
many cases of relevance, system classes boil down to one of those listed below.

Example 1.2.1

1. One-dimensional systems

• Continuous ODE’s with constant coefficients
Describing a dynamical process given by linear ordinary differential equa-
tions with constant coefficients, choose D = C[∂] and A = C∞(R,C), the
space of smooth functions, or A = D′(R,C), the set of distributions. Ap-
parently A becomes a D-module with

∂ • ω =
dω

dt
.

Choosing R ∈ Dg×q, the corresponding linear abstract system becomes a
D-module.

• Discrete ODE’s with constant coefficients
The discrete analogon to the previous item can be modelled by setting
D = F[s], where F denotes a field and A = FT , where T = N. Then s
acts on A as the backward shift, i.e., (s • ω)(t) = ω(t + 1) for all ω ∈ A.
This yields a system representation consisting of linear ordinary difference
equations with constant coefficients.

• ODE’s with polynomial coefficients
Lifting the situation to differential equations with polynomial coefficients
we need to switch to the so-called first Weyl algebra W1 = C[t][∂; idW1 ,

d
dt

],
where

∂t = t∂ + 1

and

∂ • ω =
dω

dt
and t • ω = tω.
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For a precise and more general definition see Example 2.2.5, where addition-
ally the changeover to the multi-dimensional and discrete case are studied
exactly. Let A = R[t]. Then

B = {ω ∈ A | ∂ • ω = 0}

describes the set of constant functions. For a constant function c 6= 0, the
W1-module product tc is obviously not contained in B:

∂ • (tc) = c.

Thus B is not a W1-module.

• Discrete ODE’s with coefficients in finite rings
Another crucial system class consists of signals with values in a finite ring,
for example Zpr , for a prime p, and a system law given by difference equa-
tions with coefficients in Zpr . Thus A = ZN

pr and D = Zpr [s].

2. Multi-dimensional systems

• PDE’s with constant coefficients

• Substituting C[∂] by C[∂1, . . . , ∂n] and suitably A by C∞(Rn,C) gives
a generalization of ordinary differential equations with constant coeffi-
cients.

• Substituting F[s] by F[s1, . . . , sn] and suitably A by FTn
leads to a gen-

eralization of ordinary difference equations with constant coefficients.

Note that the shift operator is mostly denoted by σ instead of s in the literature, but
to match the notation common for Ore-algebras, we reserve this symbol for a ring en-
domorphism, see Definition 2.2.4. Furthermore note that the discussed operator rings
are of polynomial nature, a structure that can be tackled efficiently by the computer
algebra machinery.

Let B = {ω ∈ Aq | R • ω = 0} be an abstract linear system, where R ∈ Dg×q. We
define the system module

M := D1×q/D1×gR.

Due to the Malgrange isomorphism [Mal64], the group isomorphism

B ∼= HomD(M,A)

holds. Recall that a left D-module A is called injective if HomD(·,A) is an exact
functor, i.e. for the left D-modules H, N and P , the exactness of the sequence

H f−→ N g−→ P (1.1)

implies the exactness of

HomD(H,A)
HomD(f,A)←− HomD(N ,A)

HomD(g,A)←− HomD(P ,A), (1.2)
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where
HomD(f,A) : HomD(N ,A) −→ HomD(H,A), φ 7→ φ ◦ f.

Let A be injective and suppose our system is given via an image representation, that
is, v ∈ B if R • ω = v for some ω ∈ Aq. The left kernel ker(·R) is a finitely generated
D-module since D is Noetherian. Thus there exists a matrix Z ∈ Dh×g such that
ker(·R) = im(·Z) and therefore

D1×h ·Z−→ D1×g ·R−→ D1×q

is exact. This implies the exactness of

HomD(D1×h,A)
HomD(·Z,A)←− HomD(D1×g,A)

HomD(·R,A)←− HomD(D1×g,A).

Since further A ∼= HomD(D,A), due to the Malgrange isomorphism we obtain the
exact sequence

Ah Z•←− Ag R•←− Aq

and thus ker(Z•) = im(R•). This yields the so-called fundamental principle.

Theorem 1.2.2 For an injective D-module A, two matrices R ∈ Dg×q and Z ∈ Dh×g
such that ker(·R) = im(·Z) and v ∈ Aq it follows that

∃ω ∈ Aq : R • ω = v ⇔ Z • v = 0.

If exactness of (1.1) and (1.2) are equivalent, then A is called injective cogenerator.
Interesting examples are for instance:

1. D = C[∂1, . . . , ∂n] and A = C∞(Rn,C) or A = D′(Rn,C)

2. D = F[s1, . . . , sn] and A = FNn

3. D = F[s1, . . . , sn, s
−1
1 , . . . , s−1

n ] and A = FZn

In the sequel we discuss the duality between B andM which occurs if A is an injective
cogenerator. Define for a linear abstract system B the left D-module

B⊥ := {x ∈ D1×q | x • ω = 0 ∀ω ∈ B}.

By assumption, D is Noetherian which yields B⊥ = D1×g1R1 for some R1. We claim
that

B⊥ = D1×gR.

Proof: Since every row of R is contained in B⊥, it follows that

D1×gR ⊆ D1×g1R1. (1.3)

To show the other inclusion, let B1 := {ω ∈ Aq | R1 •ω = 0}. Due to (1.3) there exists
a matrix X such that R = XR1 and thus B1 ⊆ B. Further any ω ∈ B is annihilated



14 CHAPTER 1. INTRODUCTION TO ALGEBRAIC SYSTEM THEORY

by every x ∈ B⊥ and thus it is annihilated by R1. This yields B = B1. Therefore the
sequence

0←− B ←− B1

is exact. Then due to the Malgrange isomorphism

0←− HomD(M,A)←− HomD(M1,A), where M1 = D1×q/D1×g1R1,

is exact. Since A is an injective cogenerator, it follows that

0 −→M −→M1

is exact. This yields the claim. �

Furthermore the results lead to the following relation:

Theorem 1.2.3 Let Bi be represented by Ri ∈ Dgi×q for i = 1, 2. Then

B1 ⊆ B2 ⇔ B⊥1 ⊇ B⊥2 ⇔ D1×g1R1 ⊇ D1×g2R2.

We obtain three characteristic properties.

Remark 1.2.4

• Let Bi be represented by Ri ∈ Dgi×q for i = 1, 2. Then B1 = B2 if and only if
D1×g1R1 = D1×g2R2.

• Let d ∈ D. Then d • A = {0} if and only if d = 0.

• B = {0} if and only if there exists a matrix X ∈ Dq×g such that XR = Iq.

In contrast to the already listed cogenerators the Z[s, s−1]-module ZZ is not an injective
cogenerator. Consider the system given by

B := {ω ∈ ZZ | 2 • ω = 0}.

Then B obviously equals

{ω ∈ ZZ | ω = 0},

but

Z[s,s−1]〈2〉 $ B⊥ = Z[s, s−1].

For the rest of this section, let A be an injective cogenerator. In the sequel we will
outline basic system properties and show how these translate into algebraic struc-
ture properties of the associated system module. The presented results are based on
[Zer06c].
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Autonomy

For i contained in {1, . . . , q}, let

πi : B → A, ω 7→ ωi

be the i-th projection of B.

Definition 1.2.5 We call ωi a free variable if πi is surjective.

We call a system autonomous if it admits no free variables. The interpretation is
self-explanatory. If πi is surjective, then an arbitrary f ∈ A can be fixed and there
exist ω1, . . . , ωi−1, ωi+1, . . . , ωq ∈ A such that (ω1, . . . , ωi−1, f, ωi+1, . . . , ωq)

T ∈ B.
Autonomy can be characterized via the system module. In the sequel we assume D to
be a domain. How to deal with the operator ring Zpr [s], which possesses zero-divisors,
will be discussed in the next Section.

Lemma 1.2.6 If the system module M is torsion, then B is autonomous.

Proof: Suppose that B is not autonomous. Then there exists 1 ≤ i ≤ q such that

B πi−→ A −→ 0

is exact, that is,
HomD(M,A) −→ HomD(D,A) −→ 0

is exact and yields the exact sequence

M←− D ←− 0.

That is, there exists an injective homomorphism ι from D to M. Let m denote the
image of 1 under ι. Then 0 = dm = dι(1) = ι(d) implies that d = 0. Thus m is not a
torsion element and thusM is not torsion. �

The implication of the previous lemma turns out to be an equivalence if D possesses
the so-called left Ore property. The ring D has the left Ore property if any non-zero
elements d1, d2 ∈ D have a left common multiple, that is, there exist c1, c2 ∈ D not
both equal to zero such that c1d1 = c2d2. One can show that D possesses the left
Ore property if it is a left Noetherian domain. Since we assume the domain D to be
Noetherian, the following claim holds:

B autonomous ⇒ M torsion.

Assume that M is not torsion. Let ei denote the i-th unit vector. Using the left Ore
property of D, one can show that there exists 1 ≤ i ≤ q such that [ei] is not torsion.
Defining the homomorphism ι : D →M by ι(1) := [ei] yields the exact sequence

0 −→ D ι−→M.

Then
0←− HomD(D,A)←− HomD(M,A)
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is exact. The Malgrange isomorphism yields

0←− A πi←− B,

that is, the surjective projection πi. Thus B is not autonomous.
Finally we obtain the following characterization of autonomy.

Theorem 1.2.7 The following assertions are equivalent:

1. M is torsion.

2. There exists 0 6= d ∈ D and X ∈ Dq×g such that d Iq = XR.

3. B is autonomous.

Proof: Due to the previous observation it is sufficient to show that the first item
yields the second and the second implies the third to prove the claim. So let M be
torsion. For all residue classes [ei] ∈ M there exist non-zero elements di ∈ D such
that di[ei] = 0, that is, di ei = yiR for yi ∈ D1×g. Due to the Ore property {d1, . . . , dq}
possesses a left common multiple 0 6= d = cidi for suitable ci. Thus

d Iq = diag(c1d1, . . . , cqdq) =

 c1y1
...

cqyq


︸ ︷︷ ︸

=:X

R.

Defining X as indicated yields the second item.
Now let d Iq = XR for a non-zero element d ∈ D. Then d • ωi = 0 for any component
of all ω ∈ B. Suppose B is not autonomous. Then there exists 1 ≤ i ≤ q such that the
i-th projection of B is surjective. Then d • πi(B) = d •A = {0}. Due to Remark 1.2.4
d • A = {0} if and only if d = 0, which leads to a contradiction to the assumptions. �

The required assumption on D to be a domain and left Noetherian permits to define
the fraction field K of D as

K := {d−1n | d, n ∈ D, d 6= 0}.

Then the column rank of R is defined as the dimension of V := RKq ⊆ Kg. One can
show that dim(RKq) = dim(K1×gR), that is, the column rank and the row rank of R
coincide and we write

rank(R) := dim(V ).

One can show that R has full column rank if and only if there exists a non-zero d ∈ D
such that XR = d Iq. This yields the following corollary.

Corollary 1.2.8 The linear abstract system B is autonomous if and only if R has full
column rank.



1.2. BASIC PROPERTIES OF LINEAR SYSTEMS 17

Input-output structures

For a linear abstract system, there is no a priori classification of free and dependent
variables. However, such a partition of variables may be desirable. Let us discuss how
to obtain such a representation. The matrices R1, R2 denote two representations of
B. Due to Remark 1.2.4, there exist suitable matrices X, Y such that

R1 = XR2 and R2 = Y R1. (1.4)

This permits to define the so-called output-dimension of B as the rank of the cor-
responding representation matrix. Let p := rank(R). Then R possesses p columns
Rj1 , . . . , Rjp forming a basis of V = RKq. Without loss of generality we may assume

R = [−Q, P ], where P = [Rj1 , . . . , Rjp ].

Writing each signal ω = [uT , yT ]T corresponding the introduced partition of R, the
system B can be written as

{
[
u
y

]
∈ Aq | Q • u = P • y}, (1.5)

called an input-output structure of B. Since Rj1 , . . . , Rjp form a basis of V , there
exists a uniquely determined matrix H ∈ Kp×m such that Q = PH. We call m := q−p
the input-dimension and H the transfer matrix of B. One can easily show that
these definitions are independent of the chosen representation:
Assume R1 = [−Q1, P1] and R2 = [−Q2, P2] to be two representations of B. Then
Q1 = P1H1 and Q2 = P2H2. Using (1.4) we obtain that P1(H1 − H2) = 0 and since
P1 is of full column rank H1 = H2 holds.
It is still left to show that the chosen terminology is justified. We show that the vector
u consists of free variables:
Let the rows of Z generate the left kernel of P , i.e., ker(·P ) = im(·Z). Due to the
fundamental principle,

there exists y ∈ Ap such that P • y = Q • u if and only if (ZQ) • u = 0.

Since Q = PH, we obtain that ZQ = ZPH = 0 and hence (ZQ) •u = 0 holds for any
u ∈ Am. That is, u consists of free variables and therefore, it is called an input.

Choosing u = 0, the associated zero-input system

Bu=0 = {y ∈ Ap | P • y = 0}

is autonomous. Thus y is called an output.

Note that input-output structures are not unique. The transfer matrix does not depend
on the underlying representation, but on the chosen input-output structure.

Controllability

The problem of controllability addresses the question “Can a system be forced to go
from one trajectory to another without violating the system law?” However, in the
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abstract setting of this section, we have to use a more algebraic definition based on the
fact that controllability coincides with parametrizability for many important system
classes. We call a linear abstract system controllable if and only if it admits an
image representation, that is, there exists L ∈ Dq×l such that

B = {ω ∈ Aq | ∃` ∈ Al : ω = L • `}.
In Section 1.3, 1.4 we will point out for particular signal classes how this definition is
linked with the proposed interpretation.
The fundamental principle offers a direct characterization of controllability:

B is controllable if and only if im(·R) = ker(·L) for some L. (1.6)

Then one calls R a left syzygy matrix. Recall that by assumption, D is a domain.
Then controllability implies that the associated system module is torsion-free. This
can be easily checked. Let 0 6= d ∈ D and x ∈ D1×q such that d[x] = 0, that is,
dx ∈ im(·R). Then by (1.6) dxL = 0 and since D is a domain, x ∈ ker(·L) = im(·R),
that is, [x] = 0.

One can show that every finitely generated torsion-free module over a Noetherian
domain can be embedded into a finitely generated free module. This permits the
following characterization.

Theorem 1.2.9 The following claims are equivalent:

1. B is controllable.

2. M is torsion-free.

3. R is a left syzygy matrix.

Proof: Referring to the previous observations, it is sufficient to show that the second
item yields the third. Let M be torsion-free. Then there exists an embedding ι :
M→D1×l. Define π : D1×q →M, x 7→ [x]. Then

D1×g ·R−→ D1×q ι◦π−→ D1×l

is exact. Defining L as the matrix associated to ι ◦ π shows that R is a left syzygy
matrix. �

Relying on certain structure properties of D, it is possible to decompose B into a
controllable and autonomous subsystem. In Section 1.4, we point out how to obtain
such a decomposition for one-dimensional time-varying systems.

Observability

Suppose R = [R1, R2] and ω = [ωT1 , ω
T
2 ]T to be partitioned accordingly, that is,

B = {[ωT1 , ωT2 ]T ∈ Aq1+q2 | R1 • ω1 +R2 • ω2 = 0}.
Then ω1 is called observable from ω2 if and only if ω1 is uniquely determined by ω2

and the fact that [ωT1 , ω
T
2 ]T satisfies the system law. That is, ω1 is observable from

ω2 if and only if B1 := {ω1 ∈ Aq1 | R1 • ω1 = 0} = {0}. Due Theorem 1.2.3, this is
equivalent to D1×g1R1 = B⊥1 = D1×q1 . Summing up, we obtain that ω1 is observable
from ω2 if and only if R1 is left invertible.
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1.3 One-dimensional systems over rings

The behavioral approach to system theory has been successfully applied to some areas
in communication. In this framework problems like the decoding of Reed-Solomon
block codes over fields [BF01, LO08], catastrophicity issues on convolutional codes
over fields, and the construction of minimal trellis [Fit95] are handled effectively
[Kui01, KP04, KvDHO01, KW97, RSY96]. Moreover, interpolation questions can
be tackled with the help of the so-called most powerful unfalsified model, see Section
1.6.
The interest in systems over rings stems mainly from the applications in communica-
tion theory. As outlined in [KPPR06], one relevant topic is convolutional codes over
rings, which are linear, time-invariant behaviors over the underlying ring. Here the
ring structure is better suited for phase modulation than the field structure. Fur-
ther [HKC+94] stresses the importance of codes over Z4. The impact of these lies in
the connection to certain efficient nonlinear binary codes under the Gray map. Be-
side, the communications literature offers many results for sequences over finite rings
[BHK92, US00, KP08b, KWP05]. Thus there are several aspects that motivate to
extend the well established theory of one-dimensional systems over fields to those over
the rings Zm = Z/mZ for a integer m.
In connection to systems over rings we assume the signal set A := {ω : N→ Zpr} for
a prime number p and we consider exclusively linear and s-invariant systems. Recall
that s denotes the backward shift, acting on A as s • ω(t) = ω(t+ 1).
Let D denote Zpr [s]. In [LLO04] it is shown that the D-module A is an injective
cogenerator (in fact [LLO04] even considers the multi-dimensional case). This result
relies on the fact that the rings Zm are Quasi-Frobenius, that is, Noetherian and
self-injective.

Kernel representations

From the algebraic point of view, the main difficulties that arise going from the field
case to the ring case is the existence of zero-divisors and the fact that D is no longer
a PID. The injective cogenerator property permits to relate the kernel representations
of related linear abstract systems. Recall that due to Theorem 1.2.3, we obtain for
two linear abstract systems B1,B2 given via R1 ∈ Dg1×q and R2 ∈ Dg2×q that

B1 ⊆ B2 ⇔ ∃X ∈ Dg2×g1 : R2 = XR1. (1.7)

But in contrast to the case of a coefficient field, the equality of two abstract linear
systems B1,B2 is not equivalent to the requirement that there exists a unimodular
matrixX satisfying the right hand side of equivalence (1.7). This is due to the fact that
behaviors over rings (rather than fields) need not have full row rank representations,
as will be pointed out below. Let us emphasize this effect by [KPPR06, Example 3.1].
Suppose p = 3, r = 2 and B1,B2 to be given via the kernel representation matrices

R1 =

[
s2 + s

3(s− 1)

]
and R2 =

[
s2 + s

3

]
.
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Then one can easily check that B1 = B2 = {(a, b,−b, b,−b, . . . ) | a, b ∈ {0, 3, 6}}.
Further [

1 0
6 s− 1

]
R1 = R2 and

[
1 0
0 s− 1

]
R2 = R1.

Determinant arguments show that the transformation matrices are not invertible. To
prove that these matrices can not be chosen to be unimodular, it would be necessary
to introduce some basic facts on matrices over Zm[x] which will not be needed later,
thus we refer to [KPPR06].

Another effect of the domain or rather PID loss can be observed in the size of repre-
sentations. Consider a linear abstract system given via a kernel representation matrix
R ∈ Dg×q where g > q. In the field case (or even in case R consists of entries in a
PID), we can find due to the Smith form a representation of q rows at most. But here
consider for instance the matrix given in [KPPR06, Example 3.1] where p = 3 and
r = 2: [

s− 1
3

]
• ω = 0. (1.8)

The first equation restricts the solution set to constant sequences, the second equation
determines the corresponding values to 0, 3 or 6. This supports the assertion that
there can not be found a single equation in D possessing the same solution set. By use
of minimal Gröbner bases arguments, the given representation can not be reduced, see
Definition 2.1.12 and Section 2.1. Beside we will see later in Lemma 2.1.25 that there
can always be found a representation of rq rows at most.
For a commutative ring, we define the rank of a matrix by determinantal ideals. More
precisely, let Js(R) be the ideal generated by all s × s subdeterminants of R. Then
the rank of R is given by

rank(R) := max{s ∈ N | Js(R) 6= 0}.

The example (1.8) shows that there does not exist a full row rank representation for
systems over finite rings in general, which is different to the field case.

Predictable Degree property

We define the row degree of a non-zero polynomial row vector as the maximum of the
degrees of its components. Then for univariate polynomial matrices over a field F the
concept of the Predictable Degree property (terminology from [For75]) is defined as
follows.

Definition 1.3.1 Let R be a matrix in Fm×q[x] with full row rank and with row
degrees d1, . . . , dm. Then R is said to have the Predictable Degree property if for
any nonzero polynomial vector

a =
[
a1 a2 · · · am

]
in Fm[x]

we have that
row degree of aR = max

1≤i≤m;ai 6=0
(di + deg(ai)).



1.3. ONE-DIMENSIONAL SYSTEMS OVER RINGS 21

Thus the row degree of aR can be predicted from the degrees in a and the row degrees
of R. Suppose for instance

R =

[
x x3

1 x3

]
.

Then d1 = d2 = 3 and R does not possess the Predictable Degree property, since we
obtain for a = [1 − 1]:

row degree of aR = 1 6= 3 = max
1≤i≤2

{di + deg(ai)}.

For the field case, it is proven in [Wed34, For75] and in [Kai80, Thm6.3-13] that the
Predictable Degree property is equivalent to the property that the leading row coeffi-
cient matrix of R has full row rank, i.e., that R is row reduced. In Section 2.1.1, we
outline how to obtain a row reduced representation with the help of Gröbner bases.
The concept of the Predictable Degree property is useful for many areas of system
theory, ranging from controller parameterization to minimal realizations of linear sys-
tems over fields [Buc01, LXB08, Mor03, Obe90, PR07, WRO98, ZL01].

The adaptation to systems over finite rings is not straightforward at all, however it
is worth to investigate, see [FZ97, KP09, KP08b]. The major approach is given in
[KPP07]. The idea goes like this: Let DR denote the left module generated by the
rows of R. Then the coefficients operating on the rows of R should be restricted to
ensure the row reducedness. Suppose for instance R = 3x + 1 ∈ Z27[x]. The polyno-
mial R has row degree 1 whereas 9R has row degree zero which does not coincide with
1 = 1 + deg(9). Therefore just certain linear combination in the D-span of R should
be permitted. More precisely, exclusively polynomials with coefficients restricted to
A3 := {0, 1, 2} ⊆ Z27 could occur in the linear combination. But evidently not every
element contained in the D-span of R could be represented in this way. Thus we would
just consider certain generating systems. In the discussed example, we would consider
[R, 3R]T instead of R.
These results rely on a specific setting: The concept of the so-called p-generator se-
quences, p-linear combination, p-basis and so on. These notions were introduced in
[VSR96]. Chapter 3 gives a brief introduction to that framework and outlines the
connection to minimal Gröbner bases. Furthermore we give an even more general
answer to the question of the Predictable Degree property based on Gröbner bases.
In Section 2.1.1, the so-called Predictable Leading Monomial property will be intro-
duced for the field case and Chapter 3 gives the suitable adoption to the finite ring case.

In the sequel we will pick up some system theoretical questions already introduced in
the previous section, and adopt those to our underlying framework for which we have
assumed that the underlying operator ring is a domain. All results presented below
are taken from [Zer07b] even though in a more special setting.

Autonomy

Recall that in the previous section we have defined autonomy as the absence of free
variables. In the case of one-dimensional systems over a field, this definition coincides
with the requirement that the system’s future is uniquely determined by its past,
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see [KPPR06]. Considering systems over finite rings, these two interpretations come
apart. This observation is made in [Zer07b] by the investigation of the so-called weak
autonomy and strong autonomy.

Definition 1.3.2 [Zer07b] A linear abstract system B is called weakly autonomous
if it does not possess any free variables in the sense of Definition 1.2.5.

The following characterization holds.

Theorem 1.3.3 [Zer07a, Theorem 4] The linear abstract system B represented by R
is weakly autonomous if and only if there exist an element d ∈ D\{0} and a matrix
X ∈ Dq×g such that XR = d I.

Note that due to the assumption that pr is a prime power, we obtain exactly the result
of the previous section. Else the proof of Theorem 1.2.7 could be adapted using the
fact that any two non-zero elements of D have a non-zero common multiple.
In Corollary 1.2.8, we have seen that a system over a domain is autonomous if
and only if it is represented by a full column rank matrix. The behavior given by
R = diag(3s, 3s) ∈ Z9[s]

2×2 is obviously weakly autonomous, but R has rank one.

By definition

{ω : N→ Z9 | 3 • ω = 0} (1.9)

is weakly autonomous. But the system’s future is not determined by its past. Before
specifying, we need to formulate this sloppy proposition in formal setting first.

Definition 1.3.4 [KPPR06, Definition 15] The linear abstract system B is called
strongly autonomous if there exists T ∈ N such that for all ω and ω′ where ω|[0,T ] =
ω′|[0,T ], it follows that ω = ω′.

Note that since we exclusively consider linear systems, the previous definition can be
reformulated like this: A system B is strongly autonomous if and only if there exists
T ∈ N such that for all ω satisfying ω|[0,T ] = 0, it follows that ω = 0.
Let us return to the behavior given in (1.9). Obviously every sequence such that
ω(k) ∈ {0, 3, 6} for all k ∈ N is contained in B. Let us define

ω(N)(k) :=

{
3 if k ≤ N
0 else.

Then for every T ∈ N the identity ω
(T )
[0,T ] = ω

(T+1)
[0,T ] holds but ω(T ) 6= ω(T+1). Altogether

we have demonstrated that B is weakly autonomous, but not strongly autonomous.

Strong autonomy can be characterized by the so-called reduced rank. According to
[Zer07b] the reduced rang of a matrix R denoted by red-rank(R) is given by

red-rank(R) := max{s ∈ N | ann(Js(R)) = 0},
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where Js(R) denotes the s-th determinantal ideal. Note that the crucial idea behind
the reduced rank is that it generalizes an important property from the field coefficient
case to our setting. Let F be a field and R ∈ F[x]g×q. Clearly there exists 0 6= ω ∈ F[x]q

such that Rω = 0 if and only if R is not of full column rank. Now assume R ∈ Dg×q.
Then there exists 0 6= ω ∈ Dq such that Rω = 0 if and only if R has reduced rank
smaller than q.

Theorem 1.3.5 [Zer07b, Theorem 2] Any representation R of the linear abstract sys-
tem B has reduced rank q if and only if B is strongly autonomous.

Our setting provides the equivalence that R is of reduced rank q if and only if there
exists a matrix X ∈ Dq×g and a non-zero divisor d such that XR = d I, see [Zer07a,
Theorem 1]. This offers a concrete relation between weak and strong autonomy.
Let Rp denote the matrix we obtain by considering each entry of R in Zp[s]. Then
one can show that R has reduced rank q if and only if Rp has full column rank in
Zp[s]. Therefore the characterization given in the theorem above equals the one given
in [KPPR06, Proposition 22].

Input-Output representations

The idea of an input-output representation is based on exactly the same idea as dis-
cussed in the previous section. In this sense we would like to point out those compo-
nents of an element ω ∈ B which are free and those which are not. In other words,
we want to partition the system in a weakly autonomous part and a free part. As we
have seen before, this can not be characterized by the study of the rank alone. Thus
here the so-called input-dimension is defined as the cardinality of a maximal subset
of free components of ω and suitably, the output-dimension as q minus the input-
dimension. Let m denote the input-dimension of B and further let its components be
permuted such that there exists a surjection

π : B → Am, ω 7→ (ω1, . . . , ωm).

This yields the exact sequence
B → Am → 0.

Using the Malgrange isomorphism and the isomorphism Am ∼= HomD(D1×m,A) yields
the exact sequence

HomD(M,A)→ HomD(D1×m,A)→ 0.

Since A is an injective cogenerator, the sequence

M = D1×q/D1×gR← D1×m ← 0

is exact. Adding q −m zeros to D1×m and re-arranging the columns of R, the input-
dimension can be identified as the largest integer such that

D1×gR ∩ (D1×m × {0}) = {0}

holds.
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Theorem 1.3.6 [Zer07b, Theorem 3] Let m denote the input-dimension of B and
p = q − m the output-dimension. Further suppose the components of B to be per-
muted such that π is surjective. Define the input u := (ω1, . . . , ωm)T , the output
y := (ωm+1, . . . , ωq)

T and suppose the columns of R to be permuted corresponding,
written as R = [−Q,P ]. Then for all inputs u ∈ Am there exists an output y such that
P • y = Q • u. Further the linear abstract system given via P is weakly autonomous.

Controllability

Even though we are not working over a domain anymore, the definition given in the
previous section can be adopted. In this sense, we call a behavior controllable if it
admits an image representation. Referring to [Zer07b] we have the following interpre-
tation for T = Z:
A linear abstract system B is controllable if and only if for any ω′, ω

′′ ∈ B, and
any U1, U2 ⊆ Z sufficiently far apart there exists ω ∈ B such that ω|U1 = ω′|U1

and

ω|U2 = ω
′′

|U2
. This can be visualized as follows.

ω2

U1

ω1

U2

ω

In case of T = N, the previous interpretation requires an adoption, see [WZ99]. Sup-
pose that dm = 0 for a non-zero divisor d ∈ D and m ∈M implies that m = 0. Then
M is called torsion-free. This generalizes the classical notion of torsion-freeness as
used in Theorem 1.2.7.

Theorem 1.3.7 [Zer07b, Theorem 4] The following propositions are equivalent:

1. B is controllable.

2. M is torsion-free.

3. Any kernel representation R of B is a left syzygy matrix.

1.4 One-dimensional time-varying systems

As the name suggests, time-varying systems are systems that are not invariant under
time-shifts. Thus systems that are variant under differentiation are time-varying sys-
tems as well. Examples are behaviors given via differential equations with polynomial,
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rational or meromorphic coefficients. In applications, those systems can occur if a
non-linear kinematical model is linearized along a trajectory.
In this section, we focus on the one-dimensional and continuous case with polyno-
mial or rational coefficients. As already suggested in Example 1.2.1, the correspond-
ing operator ring is the so-called one-dimensional Weyl algebra. Let us outline the
difference to the constant coefficients case first. Evidently the operator ring that
corresponds to ODE’s with constant coefficients in the field K ∈ {C,R} is the poly-
nomial ring in one variable K[∂], that operates via differentiation on the signal set
A ∈ {C∞(R, K),D′(R, K)}, the space of smooth functions or the space of distribu-
tions. Note that this signal set is an injective cogenerator. Defining the action

∂ • f =
df

dt
for all f ∈ A,

which extends naturally to

∂ • f = [
df1

dt
, . . . ,

dfq
dt

]T for all f ∈ Aq,

the signal set Aq becomes a K[∂]-module. Further, the abstract linear system given
via R ∈ K[∂]g×q, namely

B = {ω ∈ Aq | R • ω = 0},

becomes a submodule of Aq. This is easily verified since

R • (∂ • ω) = ∂ • (R • ω) = ∂ • 0 = 0

holds for all ω ∈ B. The algebraic reason for this is the commutative structure of
the operator ring. Now let us consider systems given by ODE’s with polynomial
coefficients, that is, coefficients in K[t]. The disparity

(t∂) • ω = t(∂ • ω) = t
dω

dt
6= (∂t) • ω = ∂ • (tω) = ω + t

dω

dt
= (1 + t∂) • ω

points out the need of a non-commutative operator ring to describe the model class
properly. The suitable candidate is the first Weyl algebra W1, a certain Ore algebra,
for a general definition see Section 2.2. The algebra W1 is a C-algebra in t and ∂, such
that ∂t = t∂ + 1, that is, the Leibniz-rule is satisfied. Then A becomes a W1-module
by the action

∂ • ω =
dω

dt
and t • ω = tω for all ω ∈ A.

Note that in this situation B is not a submodule anymore. Consider for instance a
system law given by the equation t∂ − 1. Then t is contained in the behavior but 1 is
not.
The concept of the polynomial Weyl algebra can be generalized to the so-called ratio-
nal Weyl algebra B1. Permitting the function field K(t) instead of K[t], the definition
extends analogously. This leads to behaviors given by ODE’s with rational coefficients.

The above comparison of time-varying and time-invariant systems outlined exclusively
structural differences of the associated operator rings. However, the crucial difference
is based on the signals:
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• Modeling:
Let us anticipate the ideas of Section (1.6) and Chapter 5. The aim of that section
is to set up a model to describe a set of observed trajectories. In that context
a time-varying linear abstract system loses degrees of freedom. More precisely
suppose A to be the space of smooth functions and consider a system law given
via (t∂ − 1) • ω = 0. The function ω : t 7→ t is obviously a solution, whereas its
derivative does not satisfy the system law. Modelling the same trajectory via
differential equations with constant coefficients yields the system law ∂2 • ω = 0
and thus the solution space ω : t 7→ bt + a for a, b ∈ R. Note that this example
gives a slight insight in the effect of the missing D-module structure of B in the
time-varying framework.

• Singularities:
The solution space of autonomous linear ordinary differential equations with
constant coefficients is spanned by linear combinations of polynomial-exponential
functions. Thus there are no problems with singularities in the signal set at all.
However, these difficulties arise for the time-varying case directly. Zeros of the
leading coefficient in the describing equations may produce poles in the solution
space. The system law (t∂+1) •ω = 0 possesses the rational solution 1

t
. Thus a

signal space defined on an interval not containing 0 would lead to a non-trivial
behavior whereas the signal space in C∞(R,R) would be {0}, that is, unlike the
time-invariant situation, local solutions may not be extendable.

According to Section 1.2, we are interested in a D-module A which is an injective
cogenerator. It should be stressed that due to analytic arguments the generalization
from the constant coefficient case is not obvious at all, see [Woo02]. Following [Zer06a]
the space of all functions that are smooth except for a finite number of points is an
injective cogenerator for the rational Weyl algebra. Anyway, since we know injective
cogenerators for both cases, the results of Section 1.2 provide a system theoretical
framework for this time-varying context.

The rational case can be considered as the time-varying counterpart to the well studied
time-invariant linear case. There are several approaches to tackle this framework
[Bou05, CBSW02, DR95, Fli90, FO98, IM05, PQ98, Zer06a, Zer07c]. The following
subsection gives a brief insight into a few of the issues, and stresses mainly the results
of Section 1.2 that can be sharpened with the help of the Jacobson form to give a
convincing motivation for Chapter 4.

Ordinary differential equations with rational coefficients

For the rest of this section, let D be the first rational Weyl algebra B1 and A the space
of all functions that are smooth except for a finite number of points.

For every element in B1 the highest exponent in ∂ is called the degree (see Section 2.2).
Following [WW89, Coh71], the first rational Weyl algebra is simple and furthermore
a left and right Euclidean domain.
Therefore every abstract linear system can be decoupled: There exist invertible ma-
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trices U ∈ Bg×g
1 and V ∈ Bq×q

1 such that

URV =

[
D 0
0 0

]
,

where D = diag(d1, . . . , dr) such that di 6= 0 for all 1 ≤ i ≤ r. In Chapter 4, we focus
on the computational aspect. We remark that

B = B1 ⊕ . . . ⊕ Br ⊕Aq−rank(R), where Bi ∼= {y ∈ A | di • y = 0}.

One should notice that this representation is not unique. But two invariants come up
with the diagonal form.

1. The number of the free subsystems Bi = A is uniquely determined by the rank
of R.

2. The order of underlying ODE system is uniquely given by
∑r

i=1 deg(di). For
details see Remark 4.2.10.

The strong properties of the operator ring B1 leads to the following structure theorem.

Theorem 1.4.1 [Coh71, Ch. 3] [Jac43, Ch. 8.1] Let R ∈ Bg×q
1 . Then there exist

invertible matrices U ∈ Bg×g
1 and V ∈ Bq×q

1 such that

URV =

[
D 0
0 0

]
=: J,

where D = diag(1, . . . , 1,mR) ∈ Dr×r such that r = rank(R). Then J is called the
Jacobson form of R.

Note that the Jacobson form is the non-commutative analogon of the Smith form. One
obvious benefit of the Jacobson form is the existence of a full rank representation for
every linear abstract system B. Suppose B to be given by R and let U, V be suitable
such that these matrices yields to the Jacobson form diag(1, . . . , 1,mR, 0 . . . , 0). For
the purpose of a full row rank representation partition

W := V −1 =

[
W1

W2

]
. (1.10)

Then

{ω ∈ Aq | diag(1, . . . , 1,mR)W1 • ω = 0} = B

provides the desired representation.

Some results of Section (1.2) can be sharpened due to the Jacobson form as we will
see below.
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Autonomy

Since B is autonomous if and only if the representation has full column rank this is
equivalent to the conclusion that there exists a representation of B with a square full
rank matrix.

The chosen signal set A provides an additional interpretation. Referring to [Zer06a,
Theorem 5] B is autonomous if and only if there exists a finite set E ⊆ R such that
for all open intervals I ⊆ R\E and for all ω ∈ B that are smooth on I we have

ω|J = 0 ⇒ ω|I = 0,

for all open intervals J ⊆ I.

Controllability

Let U ∈ Bg×g
1 , V ∈ Bq×q

1 and W be chosen as before. Then

B = {ω ∈ Aq | diag(1, . . . , 1,mR, 0, . . . , 0)W • ω = 0}
∼= {ω ∈ Aq | diag(1, . . . , 1,mR, 0, . . . , 0) • ω = 0}
∼= {ω ∈ Arank(R) | diag(1, . . . , 1,mR) • ω = 0} ⊕ Aq−rank(R)

∼= {ω ∈ A | mR • ω = 0} ⊕ Aq−rank(R),

that is, we obtain a minimal representation, namely a representation given by the single
equation mR. In terms of the system module, this amounts to the group isomorphism

M∼= B1 /B1mR ⊕ B
1×(q−rank(R))
1 .

Then every linear abstract system decomposes into

B = Ba ⊕ Bc, (1.11)

the decoupled controllable subsystem Bc ∼= Aq−rank(R) and the autonomous subsystem
Ba ∼= {ω ∈ A | mR • ω = 0}.

Remark 1.4.2 The abstract linear system B is controllable if and only ifM is free.

Further referring to [Zer06a, Theorem 7], we obtain that B is controllable if and only
if for all ω1, ω2 ∈ B and almost all t0 ∈ R, there exists a connecting trajectory ω ∈ B,
an open interval t0 ∈ I ⊆ R such that ω1, ω2, ω are smooth on I, and τ > 0 with
t0 + τ ∈ I such that

ω(t) =

{
ω1(t) if t < t0
ω2(t) if t > t0 + τ,

for all t ∈ I. This concept can be visualized as follows:
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ω2

ω

ω1

t0 t0 + τ

Specifying (1.11) we claim for W defined as in (1.10) and V = [V1, V2] that

Bc = {ω ∈ Aq|∃` ∈ Aq−rank(R) : ω = V2 • `}
and

Ba = {ω ∈ Aq | diag(1, . . . , 1,mR)W1 • ω = 0 and W2 • ω = 0}.
Note that VW = Iq = WV lead to

V1W1 + V2W2 = Iq and W1V2 = 0. (1.12)

Let us show Ba ⊕ Bc ⊆ B of equality (1.11) first.
Due to the first system law condition of Ba, it is easy to see that Ba ⊆ B, and it is
autonomous.
Evidently Bc is controllable since it is given via an image representation. To see that
it is contained in B we first show that im(·W1) = ker(·V2):
For every y ∈ im(·W1) there exists an element x such that xW1 = y thus yV2 =
xW1V2 = 0 due to (1.12) and we can conclude that y ∈ ker(·V2).
Conversely suppose y ∈ ker(·V2). Then due to (1.12) y = yV1W1 + yV2W2 and thus
y = yV1W1, which concludes the claim. Using that im(·W1) = ker(·V2) and the
fundamental principle, Theorem 1.2.2, it follows that

Bc = {ω ∈ Aq | ∃` ∈ Aq−rank(R) : ω = V2 • `}
= {ω ∈ Aq | W1 • ω = 0}.

From this is follows directly that Bc ⊆ B and furthermore, since W is invertible, that
Ba ∩ Bc = {0}.
Still left to show that B ⊆ Ba ⊕ Bc. Every ω ∈ Aq can be decomposed into ω =
V1W1 • ω + V2W2 • ω due to (1.12). It is easily verified that V1W1 • ω ∈ Ba and
V2W2 • ω ∈ Bc.

Now let us illustrate the results via the following the dynamic system

ẋ1(t) + tx1(t)− x2(t) + u(t) = 0

tẋ2(t) + t2u(t) = 0.

Here u corresponds to the input and x1 and x2 describe the dynamics. This yields the
behavior

B = {[x1, x2, u]
T ∈ A3 |

[
∂ + t −1 1

0 t∂ t2

]
︸ ︷︷ ︸

=:R

•

 x1

x2

u

 = 0}.
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Then R can be transformed to its Jacobson form J , i.e.[
−1 0
t2 −1

]
︸ ︷︷ ︸

=:U

R

 0 0 1
0 1 t
−1 1 −∂


︸ ︷︷ ︸

=:V

=

[
1 0 0
0 −t∂ − t2 0

]
= J.

Since −t∂− t2 does not correspond to a unit in B1, it defines a non-trivial autonomous
subsystem. Hence B is a non-controllable dynamical system. Since

V −1 =

 −t− ∂ 1 −1
−t 1 0
1 0 0

 ,
we obtain the decomposition

Ba = {[x1, x2, u]
T ∈ A3 |

[
−t− ∂ 1 −1
t3 + t2∂ −t2 − t∂ 0

]
•

 x1

x2

u

 = 0 and x1 = 0}

Bc = {[x1, x2, u]
T ∈ A3 | ∃` ∈ A :

 x1

x2

u

 =

 1
t
−∂

 • `}.
In this particular example, which has state space form, there is another convincing
argument to see that the system is not controllable. The equivalence ω ∈ B if and
only if JV −1 • ω = 0 implies that

(−t∂ − t2) • (−tx1 + x2) = 0.

But this condition is evidently completely decoupled from the input u.

To summerize, the Jacobson form reduces every homogeneous system of equations
given by ordinary differential equations with rational coefficients to a single equation.
However, one has to admit that this equation can become quite “ugly”. Apart from
general computational aspects, this difficulty will be specified and studied in Chapter
4. Furthermore note that instead of calculating a Jacobson form, it may be sufficient to
focus on a decoupled system, which corresponds to a diagonal form of the underlying
matrix.

State space representation

The state space representation was not discussed yet, because there is no adequate
interpretation in the general framework of Section 1.2. But the concept is well es-
tablished for the one-dimensional linear time-invariant case. The idea is to introduce
the latent variable x, the so-called state, that can be interpreted as an additional
information to associate an output y to an input u uniquely.

u yx
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This idea is essential for Control Theory, because the state comprises all the informa-
tion about the system’s past to determine its future with respect to a known input.
Thus it can be used to appoint a certain feedback. In [Zer07c] state space representa-
tions for time-varying systems are studied and the work provides the result that any
behavior admits an observable state representation. Beyond that it is shown that the
interpretation given above extends to time-varying systems.

1.5 Multi-dimensional time-varying systems

Multi-dimensional systems

The motivation to consider multi-dimensional systems is very convincing since many
dynamical systems of interest depend on changing of time and space. There are sev-
eral studies about multi-dimensional time-invariant systems like for instance [RW01,
Obe90, PQ99, WRO00, Zer00]. In the most popular cases of partial differential equa-
tions with constant coefficients in C and partial difference equations with constant
coefficients in C, the corresponding injective cogenerators are the space of smooth
functions C∞(Rn,C) and the function space CNn

. LetD ∈ {C[s1, . . . , sn],C[∂1, . . . , ∂n]}
and A denote C∞(Rn,C) or CNn

suitably.
From the algebraic point of view, the main difference to the one-dimensional setting is
the loss of the PID property and thus no tool like the Smith form is available. Proper-
ties which coincide in the one-dimensional case for the operator ring C[s] or C[∂] need
to be refined for systems over D.

For n = 1, the behavior B ⊆ Aq is autonomous if and only if it is a finitely gener-
ated C-vector space. In the continuous case, this is equivalent to B being an over-
determined system, which is defined here as foloows: Each smooth function which
satisfies the system law locally on a neighborhood of infinity can be extended uniquely
to a signal contained in B. For n ∈ N, the three described equivalent conclusions come
apart (for the discrete case consider just the first and the third conclusion):

B is a finitely generated C-vector space.

⇓ (⇑ if n = 1)

B is over-determined.

⇓ (⇑ if n = 1)

B is autonomous, i.e., it has no free variables.

The so-called autonomy degree gives an insight: LetM denote the system module of
B. Then the dimension of B is given by the Krull dimension of D/ ann(M) and B is
said to be of autonomy degree at least r if dim(B) < n − r. One can show that
dim(B) = dim(Jq(R)), where Jq(R) denotes the q-th determinantal ideal of R.
Then B is autonomous (see Section 1.2) if r = 0. Autonomy degree at least one yields
over-determined systems. Furthermore one can show that B is a finitely generated
C-vector space if and only if it is of autonomy degree at least r = n− 1.
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The following examples, see [Zer06c], show how the above conclusion chain comes
apart for n > 1:

• Let n = 2, D = C[∂1, ∂2], A = C∞(R2,R) and R =

[
∂1 −∂2

∂2 ∂1

]
.

Then J2(R) = 〈∂2
1 + ∂2

2〉 and thus the resulting system B is of dimension one.
That is, B is autonomous, but not over-determined.

• Let n = 4, D = C[∂1, ∂2, ∂3, ∂4], A = C∞(R4,R) and

R =


∂1 −∂2

∂2 ∂1

∂3 −∂4

∂4 ∂3

 .
Then J2(R) = 〈∂2

1 + ∂2
2 , ∂

2
3 + ∂2

4 , ∂1∂4 − ∂2∂3, ∂1∂3 + ∂2∂4〉 and thus the resulting
system B is of dimension two. That is, B is over-determined, but not a finitely
generated C-vector space.

A similar situation can be observed for controllability. Section 1.3 and 1.4 already
introduced the interpretation of controllability from the signal perspective, namely
for any two trajectories there exists a connecting one contained in the behavior. The
dual conclusion from the ring perspective is that the system module is torsion-free. A
stronger form of controllability is the so-called complementability. A behavior B is
complementable if there exists a behavior B1 ⊆ Aq such that B ⊕ B1 = Aq. One can
show the following equivalence:

B is complementable

⇔ M is projective

⇔ ∀ B′ ⊆ B ∃K : B ∩ K = B′ and B +K = Aq.

Since M is finitely generated, the second assertion yields that M is free due to the
Quillen-Suslin theorem. One can show that the system module M is free if and
only if B possesses an observable image representation, that is, there exists a kernel
representation matrix which is right invertible. Controllability and complementability
coincidence for n = 1, since over a principal ideal domain, a finitely generated module
is free if and only if it is torsion-free. Thus we obtain:

B is complementable, i.e., it has an observable image representation.

⇓ (⇑ if n = 1)

B is controllable, i.e., it has an image representation.

Computational tests for autonomy or controllability can be done by computing the ex-
tension modules. The Singular library control.lib provides the proper functions.

Delay-differential systems

A system class that is often discussed as a particular case of multi-dimensional sys-
tems is given via the so-called delay-differential equations, that is, equations involv-
ing the shift operator and the differential operator. These equations can be used to
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model time-lags. One might think for instance of systems with reaction delay. Let
A = C∞(R,C) and D = R[∂, s]. Working with this system class leads to fundamental
problems, because objects which are independent in the operator ring can cause cou-
pled results in the signal space: The elements ∂ and s−1 are algebraically independent,
but

∂ • ω = 0 ⇒ (s− 1) • ω = 0

for ω ∈ A. This is due to the fact that A is not an injective D-module. To see this,
consider the matrices

P =

[
s− 1
−∂

]
and Q = [∂, s− 1] .

One can easily check that

D ·Q−→ D1×2 ·P−→ D
is exact, but

A Q•←− A2 P•←− A
is not exact since ker(Q•) 3 [0, 1]T /∈ im(P•). In [GL00] this problem is fixed by the
investigation of the operator ring

{q =
p

φ
∈ R(∂)[σ] | q∗ is an entire function},

where q∗(s) denotes the evaluation p(s,e−s)
φ(s)

for all complex non-singularities s of φ.

In Chapter 5, the so-called Ore algebras are used to tackle many relevant operator
rings in the time-varying framework. From the algebraic point of view, the resulting
operator ring is non-commutative due to the time-variance.
It should be stressed that the system class discussed in Section 1.4 is the only case for
which a concrete injective cogenerator is known in the time-varying setting. However,
due to [Rot79] each module possesses an injective cogenerator:
One can show that each left module can be embedded into an injective left module.
And if A is an injective D-module for a Noetherian ring D, then it is a cogenerator if
and only if

HomD(M,A) = 0 ⇒ M = 0

for every finitely generated D-moduleM = D1×q/D1×gR. Thus due to the Malgrange
isomorphism, A is a cogenerator if and only if

B = {ω ∈ Aq | R • ω = 0} = 0 ⇒ D1×q/D1×gR = 0.

If the system module is non-trivial, that is, if R is not left invertible, then it is sufficient
to choose a signal space such that R • ω = 0 for at least one non-zero signal ω and to
embed this signal space into an injective D-module.

Thus in this setting, one assumes the signal space to be an injective cogenerator even if
no concrete injective cogenerator is known. Then basic properties like (strong) auton-
omy and (strong) controllability are defined exclusively from the module perspective,
see for instance [PQ99, Woo00]. As already outlined in Section 1.2, controllability cor-
responds to a torsion-free system module and autonomy to a torsion system module.
The resulting systems can be computationally analyzed with the help of homological
algebra elegantly, see for instance [CQR05].
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1.6 Most powerful unfalsified model

Linear exact modeling is a problem of system identification. It was formulated for one-
dimensional behaviors in [AW93], see also [KP02, KP04]. Starting with an observed set
of polynomial-exponential signals, the aim is to find a linear differentiation-invariant
model for these. Evidently the whole signal set is a behavior that is not falsified by
observation. But such a model has no significance. Making the behavior larger than
necessary, the accuracy of the explanation decreases. So in addition to the condition
that the desired model should be unfalsified, we are searching for the most powerful
one. This means that the model does not admit more data than necessary. A model
satisfying all conditions is shortly called MPUM (most powerful unfalsified model).
In [Zer05], the modeling was extended to multidimensional behaviors [CQR07, PQ99],
and in [Zer08] to the discrete framework, that is, instead of the requirement that the
model should contain all derivatives of the signals, it is required that all shifts of the
signals are contained. Chapter 5 generalizes the setting to time-varying systems, which
leads to interesting algebraic questions as well.

This section gives an overview of the MPUM approaches for time-invariant systems.
For the field C and T ∈ {N,R} suppose to observe a set of trajectories Ω = {ω1, . . . , ωN}
of the form

ωl : T n → Cq, t 7→ (pl expλl
)(t) =

{
pl(t) exp(λl1t1 + · · ·+ λlntn) if T = R
pl(t)λl

t1
1 · · ·λltnn if T = N,

with pl ∈ C [t1, · · · , tn]q and λl ∈ Cn. The goal is to find BΩ satisfying:

1. BΩ is unfalsified by Ω, i.e. Ω ⊆ BΩ.

2. BΩ is most powerful, i.e. for every behavior B with Ω ⊆ B, it follows that BΩ ⊆ B.

Let D be C[∂1, . . . , ∂n], where ∂i acts as the i-th derivative if T = R, and C[s1, . . . , sn],
where si acts as the i-th shift, else. If BΩ is invariant under the action of D, that is,
if we have for all o ∈ D

ω ∈ BΩ ⇒ o • ω ∈ BΩ,

it is called (time-invariant) most powerful unfalsified model, short MPUM.

Continuous case

Assume D = C [∂1, · · · , ∂n] and let A = C∞(Rn,C) denote the space of complex-valued
smooth functions defined on Rn. Each polynomial vector p ∈ C [t1, · · · , tn]q can be
written as

p(t) =
∑

ν∈Nn, |ν|<d

1

ν!
pνt

ν , pν ∈ Cq, (1.13)

where ν! = ν1! . . . νn! and d is chosen as small as possible. Since p is a polynomial, it
has only finitely many nonzero derivatives. It is easy to see that

∂µ • p = 0 for all µ ∈ Nn with |µ| = d.
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Consider P := C [t1, . . . , tn] / 〈t1, . . . , tn〉d as a vector space over C, generated by the
elements [tν ], where |ν| < d. Define δ := | {ν ∈ Nn | |ν| < d} |, the number of basis
elements in P . Combinatorial arguments yield

δ =

(
n+ d− 1

n

)
.

The multiplication by ti in P defines a C-linear transformation in P ∼= Cδ. So after
fixing a basis of P , one can compute the corresponding matrices. For this purpose
we enumerate the elements of {ν ∈ Nn | |ν| < d} =: {ν1, . . . , νδ} with respect to a
monomial ordering. Then [tνk ] ∈ P can be identified with the k-th element. Let the
matrix Ai represent the multiplication with ti, that is,

(Ai)kl =

{
1, if [tνk ] = ti · [tνl ]
0, else.

Since the multiplication in P is commutative and every element is nilpotent, the ma-
trices Ai commute and are nilpotent as well. Further let C = (pν1 , . . . , pνδ

) be defined
with respect to representation (1.13).

Now let p1, . . . , pN ∈ C[t1, . . . , tn]
q. Using the introduced notation, let Al1, . . . , Aln be

associated to pl. Then we define

Ai = diag(A1i, . . . , ANi)

and
C = diag(C1, . . . , CN).

Theorem 1.6.1 [Zer05] Using the above notation, the MPUM of Ω = {ω1, . . . , ωN}
with ωl = pl expλ(l) is given by

BΩ =
{
ω ∈ Aq | ∃ f ∈ Aδ : ∂i • f = Λif + Aif for all 1 ≤ i ≤ n and ω = Cf

}
with δ := δ1 + · · ·+ δN and Λi := diag

(
λ

(1)
i Iδ1 , . . . , λ

(N)
i IδN

)
, where δl and λ(l) belong

to the MPUM

Bωl
=
{
ω ∈ Aq | ∃ fl ∈ Aδl : ∂i • fl = λ

(l)
i fl + Alifl for all 1 ≤ i ≤ n and ω = Clfl

}
of pl expλ(l). The behavior Bωl

is autonomous for each 1 ≤ l ≤ N , that is, BΩ is
autonomous as well. Moreover, BΩ is a finite-dimensional C-vector space.

The behavior constructed in Theorem 1.6.1 is minimal with respect to the number
of solutions, but it is not necessarily minimal with respect to the size of its so-called
realization. Using the notation of Theorem 1.6.1, we call (Λ1 + A1, . . . ,Λn + An,C)
a realization of BΩ of size δ. Further a realization is called minimal if there ex-
ists no realization of strictly smaller size. In [Zer05] is it shown that a realization
(A1, . . . ,An,C) of BΩ is minimal if and only if it is observable, that is,⋂

µ∈Nn

ker(C(Λ1 + A1)
µ1 · · · (Λn + An)

µn) = {0} .
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An alternative and recursive way to compute the MPUM of continuous polynomial
exponential trajectories is given in [Zer06b]. A recursive computation can obviously
be profitable. One could imagine a situation in which a new observation becomes
relevant. Suppose R ∈ C [∂1, . . . , ∂n]

g×q to be a kernel representation of the MPUM of
{ω1, . . . , ωN}. Note that due to the fundamental principle, a kernel representation can
easily be computed from the one given in Theorem 1.6.1. Let ωN+1 be an additional
observed trajectory. We define the so-called error signal as e = R(∂1, . . . , ∂n)•ωN+1.
Further let Γ ∈ C [∂1, . . . , ∂n]

h×g be a kernel representation of the MPUM of e. Then
Rnew := ΓR represents the MPUM of ω1, . . . , ωN+1.

Discrete case

Let D := C[s1, . . . , sn] and A = CNn
(instead of C one could choose an arbitrary field

of characteristic zero and obtain the same results). The discrete case can be treated
similar to the continuous one. In the continuous case, we have an upper bound for
the number of nonzero derivates of a polynomial trajectory. So by constructing a
matrix representation of the corresponding behavior, it is not difficult to incorporate
the condition that every derivative of the trajectory is contained in the MPUM. In
the previous section, this was realized by the matrices Ai.
In the discrete case, the situation differs since shifting a polynomial trajectory does not
lead to zero. But in the sequel we show that each shift of a polynomial trajectory can
be expressed by taking C-linear combinations of finitely many polynomials, determined
by the trajectory. Therefore a special representation of the polynomial trajectories and
a little modification of the shift operator have to be chosen.

Define ∆i := si − 1 for 1 ≤ i ≤ n and consider the C-algebra isomorphism

C[s1, . . . , sn] ∼= C[∆1, . . . ,∆n], si 7→ ∆i + 1.

Let P ⊆ A denote the set of all polynomial functions from Nn to C. We identify a
polynomial with the corresponding polynomial function. We choose a special repre-
sentation of the polynomials that is adapted to the action of ∆, see [Zer08]. For t ∈ Nn

and ν = (ν1, . . . , νn), we consider the binomial functions

pν : Nn → C, t 7→
(
t1
ν1

)
· · ·
(
tn
νn

)
,

where
(
ti
0

)
= 1 for all i ∈ {1, . . . , n}. Then

ν! pν = t1 · · · (t1 − ν1 + 1) · · · tn · · · (tn − νn + 1)

and moreover, each element p ∈ Pq can be written as

p =
∑

ν∈Nn,ν≤cw%

cνpν (1.14)

for % ∈ Nn, some suitable coefficient vectors cν ∈ Cq and ≤cw denoting the component-
wise order on Nn, that is, νi ≤ %i for all 1 ≤ i ≤ n. Let us describe how to find this
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representation. We restrict to the scalar and one-dimensional case, where m = n = 1.
The general case can be treated similarly. For p ∈ P = C[t] we show how to find the
introduced representation. Usually, a polynomial p is given in the form

p(t) = dvt
v + dv−1t

v−1 + · · ·+ d1t+ d0, where di ∈ C.

To write p in the form (1.14), the occurring coefficients cν have to be determined. We
will show how this can be done for a monomial dvt

v. Since ν!pν = t·(t−1) · · · (t−ν+1),
we define

g(ν) := t · (t− 1) · · · (t− ν + 1) = tν + g
(ν)
ν−1t

ν−1 + · · ·+ g
(ν)
1 t.

First, the coefficients g
(ν)
v will be determined for 1 ≤ v ≤ ν by using the fact that

g(ν) = g(ν−1) · (t− ν + 1).

1. Determine g
(ν)
1 :

The polynomial g(ν) is a multiple of t. Recursively, one gets that

g
(ν)
1 =

{
1 for ν = 1

(−1)ν−1
∏ν−1

k=1 k for ν > 1.

2. Determine g
(ν)
2 :

Using g(ν) = g(ν−1) · (t− ν + 1), we get

g
(ν)
2 = g

(ν−1)
1 − (ν − 1) · g(ν−1)

2

= (−1)ν−2

ν−2∏
k=1

k − (ν − 1)g
(ν−1)
2

Since g
(2)
2 = 1, we get a recursive formula.

3. Determine g
(ν)
j for j ≤ ν:

A similar consideration as in the previous point yields

g
(ν)
j = g

(ν−1)
j−1 − (ν − 1) · g(ν−1)

j .

Finally, we observe

dvt
v = dv

(
g(v)− g(v)

v−1 · g(v − 1)− (g
(v)
v−2 − g

(v)
v−1 · g

(v−1)
v−2 )g(v − 2)− · · ·

)
= dv

(
g(v) +

v−1∑
i=1

kv(i) · g(v − i)

)

= dv

(
v!pv +

v−1∑
i=1

kv(i) · (v − i)! · pv−i

)
,

where

kv(1) := −g(v)
v−1, and kv(l) =

{
−g(v)

v−l +
∑l−1

i=1 kv(i) · g
(v−i)
v−l , if l < v

0, if l ≥ v.

Consider for example p(t) = t3 + t2 + 1. The bounding value % equals three, so by
using
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j p
(j)
1 p

(j)
2 p

(j)
3 k3(j) k2(j)

1 1 0 0 3 1
2 -1 1 0 1 0
3 2 -3 1 0 0

we finally get

t3 = 6 · p3 + 3 · 2 · p2 + 1 · p1

t2 = 2 · p2 + 1 · p1

1 = p0,

that is,

p(t) = 6 · p3 + 8 · p2 + 2 · p1 + p0. (1.15)

In the following we show the advantage of this notation. Since

(∆i • pνi
)(ti) =

(
ti + 1

νi

)
−
(
ti
νi

)
=

{
((ti+1)−(ti−νi+1)) (ti ··· (ti−νi+2))

νi!
if νi ≥ 1

0 if νi = 0

=

{ ( ti
νi−1

)
if νi ≥ 1

0 if νi = 0,

one gets, by using the fact that ∆µ • pν = ∆µ1

1 • pν1 · · ·∆µn
n • pνn , the equality

∆µ • pν =

{
pν−µ if µ ≤cw ν

0 otherwise.
(1.16)

Remark 1.6.2 Let p = [p1, . . . , pm]T ∈ Pm with pi(t) = adiit
µdii + · · ·+ a1it

µ1i , using
multi-index notation. Define

%i = max
cw
{(v1, . . . , vn) ∈ Nn | vj = (µki)j for 1 ≤ k ≤ di} .

Then the bounding multi-index % belonging to the binomial representation (1.14) is
given by

% = max
cw
{(v1, . . . , vn) | vi = (%j)i for 1 ≤ j ≤ m} .

From now on suppose that

p =
∑

ν∈Nn, ν≤cw%

cνpν .

Due to (1.16) the identity

∆µ • p = 0 for all µ ∈ Nn with ∃ i : µi > %i

holds. That is, after choosing representation (1.14) and fixing %, we can determine the
matrices Ai similarly to the continuous case. These matrices are responsible for the
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condition that for every trajectory belonging to the behavior, its shift is contained as
well. The operation of ∆ on p can be considered analog to the continuous case as a
multiplication in the corresponding module, since we have the upper bound %.

For the ideal I :=
〈
∆%1+1

1 , . . . ,∆%n+1
n

〉
in C[∆1, . . . ,∆n], consider the free C-module

M := C[∆1, . . . ,∆n]/I. ThenM is generated by the elements {[∆µ] | µ ≤cw %}. The
basis of M has r =

∏n
i=1(%i + 1) elements, i.e., at most r possible operations of ∆

on p have to be discussed. Again we have to choose an enumeration of the basis of
M. Let {µ1, . . . , µr} be an ordering of the exponents such that {∆µ1 , . . . ,∆µr} is the
corresponding ordered basis. Define

(Ãi)k,l =

{
1 if µk = µl + ei
0 otherwise

and set Ai := Ir +Ãi to make it compatible with the operation of si.
Since the matrices Ãi commute, the matrices Ai commute too. According to the
coefficients in representation (1.14), define the q × r matrix C whose j-th column
equals cµj

.
Let {p1, . . . , pN} ⊆ Pm. Using the introduced notation, let Al1, . . . , Aln belong to pl.
Then we define

Ai = diag(A1i, . . . , ANi)

and

C = diag(C1, . . . , CN).

Theorem 1.6.3 [Zer08] Let Ω = {p1 expλ(1) , . . . , pN expλ(N)} be a set of trajectories.
Using the above notation, Ω possesses the MPUM

BΩ = {ω ∈ Aq | ∃f ∈ Ar : si • f = Λif for 1 ≤ i ≤ n, ω = Cf} ,

where Λi = diag(λ
(1)
i A1i, . . . , λ

(N)
i ANi). Moreover, BΩ is a finite-dimensional C-vector

space.

Example 1.6.4 Let p(t) = t3 + t2 + 1. Due to (1.15), we obtain that r = 4 and

B{p} = {ω ∈ CN | ∃f ∈ (CN)4 : s • f = Af and ω = Cf},

where

C = [1, 2, 8, 6] and A =


1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

 .
Then B{p} is equivalent to

{ω ∈ CN | ∃x0 ∈ C4∀t ∈ N : ω(t) = CAtx0}.
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Since

At =


1 0 0 0
t 1 0 0

t2−t
2

t 1 0
t3−3t2+2t

6
t2−t

2
t 1

 ,
it follows that

B{p} = {x01(t
3 + t2 + 1) + x02(3t

2 + 5t+ 2) + x03(6t+ 8) + x046 | x0i ∈ C}
= {x01p(t) + x02(∆p)(t) + x03(∆

2p)(t) + x04(∆
3p)(t) | x0i ∈ C}.

Remark 1.6.5 In [Zer08] the previous theorem is elaborated for polynomial expo-
nential trajectories over finite rings as well (exclusive of the vector space property).

The result differs slightly in case λ
(j)
i is not a unit. Then an additional requirement

needs to be satisfied by the latent variable f .

Remark 1.6.6 Minimality questions can be answered like in the continuous case. But
note that this can not be done straightforwardly for systems over finite rings.



Chapter 2

Gröbner bases

Gröbner bases are a powerful and copious instrument of modern computer algebra.
The breakthrough for the computational aspect is the PhD thesis of Bruno Buchberger
published 1965, in which Buchberger set up a constructive method to calculate these
bases. Gröbner bases can be considered as a generalization of the Gaussian elimina-
tion and the Euclidean algorithm. The goal is to find a specific generating system of a
polynomial ideal or more generally, of a polynomial module. In the case of a univariate
polynomial ring with field coefficients, an ideal can always be generated by a single
element. The degree of this element is obviously minimal.
Gröbner bases carry this feature over to the multivariate case in a generalized meaning.
The specific generating set satisfies the property of containing the smallest degree ele-
ments with respect to a monomial ordering. Consider for instance the ideal generated
by the elements of

F = {y3 + x2y, xy2, x2y2 + x2y} ⊆ K[x, y]

for a field K. One can show that {y3, xy2, x2y} is a Gröbner basis of 〈F 〉K[x,y] with
respect to the lexicographical ordering.

y3

xy2

x2y

We will see later that there does not exist an element in 〈F 〉K[x,y] with leading mono-
mial in the uncolored area. Note that the membership question can then be answered
as follows: One reduces the leading term of the potential candidate as long as possible
via the Gröbner basis elements. If the procedure terminates with zero, the element is
contained in the ideal. Else we obtain an element with leading term in the uncolored
area and thus the candidate is not contained in the ideal. This outlined observation is

41
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just one advantage of the Gröbner bases approach. The crucial idea behind the theory
is the observation that the so-called leading ideal or rather, the leading submodule
may contain a lot of information.
The groundbreaking advantage of Gröbner bases lies in the algorithmical aspect. They
provide the theoretical fundament to work constructively with polynomial ideals and
modules. Beyond that, there exist various computer algebra systems with a respectable
implementation for commutative Gröbner bases with field coefficients. Well known ex-
amples are Maple, Magma, Cocoa and Singular::Plural. Further we want to
stress that the freely available software Singular::Plural provides the framework
of ring coefficients as well as the non-commutative features.

Gröbner bases are a keystone in this thesis. In Chapter 3, Gröbner bases over uni-
variate polynomial rings with coefficients in a finite ring serve to extend the idea of
the predictable degree property from the field case to the ring case. Non-commutative
Gröbner bases allow to set up a new algorithm to compute the Jacobson form in
Chapter 4. And finally, the exact linear modeling approach proposed in Chapter 5 can
explicitly be obtained by using multivariate non-commutative Gröbner bases.
There exist several textbooks giving an extensive introduction to the subject. In this
thesis, we will work close to [AL94] when we discuss commutative structures and close
to [Lev05a] in connection to the non-commutative ones. In the sequel we will set up the
formal framework and point out thesis-relevant applications. We want to stress that
[LXB08] gives a comprehensive overview and references of Gröbner bases applications
in signal and system theory.

2.1 Commutative Gröbner bases

Let D denote the polynomial ring R [x1, . . . , xn] for a commutative Noetherian ring
R. Then due to Hilbert’s Basis Theorem, the ring D is Noetherian as well. We denote
the set of all monomials by

Mon(D) := {xα1
1 · · ·xαn

n | αi ∈ N}.

In order to keep the notation short we denote xα1
1 · · ·xαn

n by xα, where α = (α1, . . . , αn).
In the motivating example we have already indicated the interest to order the mono-
mials. In the univariate case, this is can be handled by the degree. There are several
possibilities to order the monomials of a multivariate polynomial ring. We are exclu-
sively interested in monomial orderings. A monomial order on Mon(D) is a relation
< satisfying:

1. < is a total ordering, that is, transitive and for all xα, xβ ∈ Mon(D) precisely
one of the following relations must hold:

xα < xβ, xα = xβ or xβ < xα.

2. 1 < xα for all xα ∈ Mon(D)\{1}.

3. If xα < xβ, then xαxγ < xβxγ, for all xγ ∈ Mon(D).
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One can show that a monomial order extends the divisibility relation, that is, if xα di-
vides xβ then xα ≤ xβ, see [AL94, Proposition 1.4.5]. And furthermore every monomial
ordering is a well-ordering, that is, every non-empty set of monomials has a minimal
element with respect to <, see [AL94, Theorem 1.4.6].
Let deg(xα) = α1 + · · ·+ αn denote the total degree of xα ∈ D, α ∈ Nn.

Example 2.1.1 Let xα, xβ ∈ D with α, β ∈ Nn.

1. We define the lexicographical order as follows:

xα <lex x
β

if and only if there exists 1 ≤ i ≤ n such that α1 = β1, . . . , αi−1 = βi−1, αi < βi.

2. We define the reverse lexicographical order as follows:

xα <revlex x
β

if and only if there exists 1 ≤ i ≤ n such that αn = βn, . . . , αi+1 = βi+1, αi < βi.

3. We define the degree reverse lexicographical order as follows:

xα <degrevlex x
β

if and only if deg(xα) < deg(xβ), or deg(xα) = deg(xβ) and xα <revlex x
β.

4. We define the degree lexicographical ordering as follows:

xα <deglex x
β

if and only if deg(xα) < deg(xβ), or deg(xα) = deg(xβ) and xα <lex x
β.

In the sequel let < denote a monomial ordering. Clearly, whatever ordering is chosen,
every nonzero element f ∈ D can be written as

f =
L∑
i=1

ciXi,

where L ∈ N, the ci’s are nonzero elements of R for i = 1, . . . , L, and X1, . . . , XL are
monomials, ordered as X1 > · · · > XL. Using the terminology of [AL94], we define

• lm(f) := X1 as the leading monomial of f

• lt(f) := c1X1 as the leading term of f

• lc(f) := c1 as the leading coefficient of f .

There are several ways to define Gröbner bases, here we adopt the definition of [AL94]
which requires us to first define the concept of “leading ideal”.
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Definition 2.1.2 Let G be a non-empty subset of D. Then the submodule L(G) ⊆ D,
defined as

L(G) := 〈lt(g) | g ∈ G\{0}〉

is called the leading ideal of G.

For example, let G = {x1x2 +x1, x
2
1 +x2

2} ⊆ R[x1, x2]. Using the lexicographical order-
ing, we obtain L(G) = 〈x2

1, x1x2〉, whereas using the reverse lexicographical ordering,
we get L(G) = 〈x1x2, x

2
2〉.

Definition 2.1.3 Let I ⊆ D be a nonzero ideal and G a non-empty finite subset of I
consisting of nonzero elements. Then G is called a Gröbner basis of I if

L(G) = L(I).

Referring to [AL94, Corollary 4.1.17], a Gröbner basis does always exist. It is obvious
that a Gröbner basis is not unique at all. Further we want to stress that a Gröbner
basis may vary with respect to the chosen ordering.

Example 2.1.4 Consider the previous example. Then one can show that correspond-
ing to the lexicographical ordering, we obtain {x3

2+x2
2, x

2
1+x2

2, x1x2+x1} as a Gröbner
basis, whereas corresponding to the reverse lexicographical ordering, a Gröbner basis
is given by {x3

1 + x1, x
2
2 + x2

1, x1x2 + x1}.

Remark 2.1.5 A Gröbner basis is not a basis in the sense of linear algebra, that is,
it does not provide a unique representation of each element in general. This can be
easily seen from the simple example M := 〈x, y〉 ⊆ R[x, y]. The ideal M possesses the
Gröbner basis {x, y} and the element xy contained in M can be written as a product
of x and as a product of y as well. Under certain conditions on the underlying ring and
suitable requirements on the Gröbner basis, a unique representation can be achieved.
We will pick up this idea later.

The whole introduced notation can be extended easily to the multivariable case. Con-
sider the free module

Dq := D e1⊕ · · · ⊕ D eq,

where ei denotes the i-th unit vector, a vector of length q possessing one in the i-th
position and zeros else. The elements of Dq are considered to be row vectors in this
and the next chapter. Then

Mon(Dq) := {X ei | X ∈ Mon(D) and 1 ≤ i ≤ q}.

According to [AL94], we call a total order < on Mon(Dq) satisfying:

1. X < ZX, for every X ∈ Mon(Dq) and Z ∈ Mon(D)\{1}

2. If X < Y , then ZX < ZY for all X, Y ∈ Mon(Dq) and every Z ∈ Mon(D)
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a monomial ordering on the monomials of Dq.

The notations leading monomial, leading term and leading coefficient given for the
skalar case carry over. The leading term of any element 0 6= f ∈ Dq can be written
as Xf ei with Xf ∈ Mon(D) and we define lpos(f) := i as the leading position of f .
Possible orderings here in the multivariable case are listed below. Let < be a monomial
ordering on Mon(D) and X, Y ∈ Mon(D).

Definition 2.1.6

• The Term Over Position (TOP) ordering is characterized by

X ei <TOP Y ej if and only if X < Y or (X = Y and i > j).

• The Position Over Term (POT) ordering is given by

X ei <POT Y ej if and only if i > j or (i = j and X < Y ).

Throughout the thesis, a module ordering will be POT or TOP. In Example 2.1.4 we
have already seen for the ideal case that a Gröbner basis depends on the chosen or-
dering. Evidently this extends to the module case. We will show in Chapter 4 how to
apply the POT ordering to obtain certain matrix forms. Beyond that, Chapter 3 and
the following section demonstrate the benefit of TOP for row-reduced representations.

It is easily verified that the next observation holds irrespective of whether TOP or
POT ordering is used.

Observation 2.1.7 Let f1, f2, . . . , fm be nonzero vectors in Dq with distinct leading
monomials, ordered accordingly as lm(f1) > lm(f2) > · · · > lm(fm). Then

lt(f1 + f2 + · · ·+ fm) = lt(f1).

As before, for a subset G of Dq, we define the leading submodule L(G) to be the
module generated by the leading terms of all nonzero elements contained in G. And
we define further for a nonzero module M ⊆ Dq, a non-empty finite subset G ⊆ M
consisting of nonzero elements and satisfying L(G) = L(M) to be a Gröbner basis of
M . Again referring to [AL94, Corollary 4.1.17, Exercise 4.1.14], a Gröbner basis does
always exist. The definition provides the next lemma.

Observation 2.1.8 Let M be a submodule of Dq with Gröbner basis {g1, . . . , gm}
and let 0 6= f ∈M . Then there exist a subset {gj1 , . . . , gjs} of G, α1, . . . , αs ∈ Nn and
c1, . . . , cs ∈ R, such that

• lm(f) = xαi lm(gji) for i = 1, . . . , s and

• lt(f) = c1x
α1 lt(gj1) + · · ·+ csx

αs lt(gjs).
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Note that the gji ’s of the above observation all satisfy lpos(gji) = lpos(f) and lm(gji) ≤
lm(f). The above observation inspires the next definition.

Definition 2.1.9 ([AL94]) Let 0 6= f ∈ Dq and let F = {f1, . . . , fs} ⊆ Dq be a set of
nonzero elements. Let α1, . . . , αs ∈ Nn and let c1, . . . , cs be elements of R such that

1. lm(f) = xαi lm(fi) for i = 1, . . . , s and

2. lt(f) = c1x
α1 lt(f1) + · · ·+ csx

αs lt(fs).

Define
h := f − (c1x

α1f1 + · · ·+ csx
αsfs).

Then we say that f reduces to h modulo F and we write

f
F−→ h.

If f cannot be reduced modulo F , we say that f is minimal with respect to F .

Lemma 2.1.10 Let f , h and F be as in the above definition. If f
F−→ h, then lm(h) <

lm(f).

Proof: From property 1. of Definition 2.1.9, it follows that property 2. of Defini-
tion 2.1.9 translates into

lt(f) = c1x
α1 lt(f1) + · · ·+ csx

αs lt(fs)

= lt(c1x
α1f1 + · · ·+ csx

αsfs).

From this, it immediately follows that

lm(h) = lm(f − (c1x
α1f1 + · · ·+ csx

αsfs)) < lm(f).

�

The next observation follows by definition and will prove useful in the sequel.

Observation 2.1.11 Let M be a submodule of Dq with Gröbner basis G and let
0 6= f ∈M . Then

f ∈ 〈g ∈ G | lm(g) ≤ lm(f)〉.

Definition 2.1.12 [AL94] A Gröbner basis G is called minimal if all its elements g
are minimal with respect to G\{g}.

Referring to [AL94, Exercise 4.1.9, Exercise 4.1.14], a minimal Gröbner basis does
always exist. In certain cases like for instance field coefficients, the so-called reduced
Gröbner bases can be introduced, which even provides a canonical form. Later these
observations will be analyzed more in detail.
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2.1.1 One-dimensional case and applications to signals and
systems

We give an extended introduction to the preliminaries outlined in [KSb] to motivate
the results introduced in Chapter 3.

Coefficients over fields

In this subsection, we limit our attention to the case that R is a field and n = 1.
It is well-known that Gröbner bases are useful for various applications over fields,
including univariate applications. In this section, we attribute this usefulness to a
particular property of minimal Gröbner bases that we label the “Predictable Leading
Monomial (PLM)” property. We consider two particular applications and show how
the PLM property is useful for these applications.
As we will see below, the elements of a minimal Gröbner basis G in Dq can be ordered
according to their respective leading monomials. Since R is a field, this yields even
more information.

Remark 2.1.13 Let M be a submodule of Dq with minimal Gröbner basis G. Then
all leading positions of elements of G are distinct. Further G has at most q elements.

Proof: The second claim of the proposition follows directly from the first claim. To
see the first claim, assume g1, g2 ∈ G to be such that lpos(g1) = lpos(g2). Further
assume xα1 =: lm(g1) ≤ lm(g2) := xα2 . Then g2 can be reduced to g2 − c2

c1
xα2−α1g1,

where c1 := lc(g1) and c2 := lc(g2), modulo G\{g2}. This yields a contradiction to the
minimality of G. �

Corollary 2.1.14 A minimal Gröbner basis G = {g1, . . . , gm} has the convenient
property that its elements can be ordered as lm(g1) > · · · > lm(gm).

Focusing on the case that R is a field, in the next theorem we identify an important
property of a minimal Gröbner basis. We first introduce the following terminologies.
Note that the degree of a nonzero polynomial vector f ∈ Dq is defined as degree of
lm(f).

Definition 2.1.15 Let R be a field. Further let F = {f1, . . . , fs} ⊆ Dq be a set of
nonzero elements. Then F has the Predictable Degree (PD) property if for any
0 6= f ∈ D〈F 〉, written as

f = a1f1 + · · ·+ asfs, (2.1)

where a1, . . . , as ∈ D, we have

deg(f) = max
1≤i≤s;ai 6=0

(deg(ai) + deg(fi)).

Next, F is said to have the Predictable Leading Position (PLP) property if

lpos(f) = min
1≤i≤s;ai 6=0

lpos(fi).
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Finally, F is said to have the Predictable Leading Monomial (PLM) property
if

lm(f) = max
1≤i≤s;ai 6=0

(lm(ai) lm(fi)). (2.2)

Note that the PD property is well established in the literature, see [For75] where it
was first introduced. Above we defined the PLM property as a more general and
stronger concept that is natural for minimal Gröbner bases. It can be easily veri-
fied that the PLM property holds if and only if both the PD property and the PLP
property hold. As we shall see below, in applications such as minimal state space
realization, the PD property suffices, whereas an application such as minimal partial
realization/interpolation requires the PLM property.

Remark 2.1.16 Suppose F ⊆ D〈F 〉 ⊆ Dq to possess the PLM property. Then F is a
basis of D〈F 〉.

Proof: Let F = {f1, . . . , fs}. Evidently F generates D〈F 〉. Thus it is left to show that
the elements of F are linearly independent. For this purpose note first that fi 6= fj
implies aifi 6= ajfj for arbitrary nonzero elements ai, aj ∈ D. To see this suppose the
claim does not hold, thus let aifi = ajfj for i 6= j. Without loss of generality we may
additionally assume that ai ∈ D\R, because else one could replace ai, aj by xai, xaj.
Then we can write

fi = aifi − ajfj + fi = (ai + 1)fi − ajfj,

which introduces a contradiction to the PLM property. Further

fi 6= fj yields lt(aifi) 6= lt(ajfj) (2.3)

for arbitrary nonzero elements ai, aj ∈ D, because otherwise

lm(aifi − ajfj︸ ︷︷ ︸
6=0

) < max
k∈{i,j}

(lm(ak) lm(fk)).

Choosing ai = lc(fi)
−1 and aj = lc(fj)

−1, we obtain by using (2.3) that

fi 6= fj yields lm(aifi) 6= lm(ajfj). (2.4)

Finally, suppose that
∑
aifi = 0 for some ai ∈ D. We need to show that ai = 0 for all

i. Assume the converse and let k be the first integer such that ak 6= 0. This leads to
akfk = −

∑
j=k+1 ajfj and since the PLM property holds, there would exist an element

k 6= j∗ ∈ {k + 1, . . . , s} such that lm(akfk) = lm(aj∗fj∗). This is a contradiction to
(2.4) and completes the proof. �

Theorem 2.1.17 Let R be a field. Let M be a submodule of Dq with minimal Gröbner
basis G. Then G has the Predictable Leading Monomial (PLM) property.



2.1. COMMUTATIVE GRÖBNER BASES 49

Proof: Write G = {g1, . . . , gm}. Since G is minimal, we may assume that lm(g1) >
lm(g2) > · · · > lm(gm). Let f = a1g1 + · · · + amgm. For simplicity of notation,
we assume that ai is nonzero for 1 ≤ i ≤ m. Since R is a field, we have that
lpos(aigi) = lpos(gi) for 1 ≤ i ≤ m. Also, all leading positions of the gi’s are distinct
due to Remark 2.1.13. As a result, all leading monomials of the aigi’s are distinct.
Thus there exists an ordering

lm(aj1gj1) > lm(aj2gj2) > · · · > lm(ajmgjm).

It now follows from Observation 2.1.7 that

lm(f) = lm(aj1gj1) = lm(aj1) lm(gj1) = max
1≤i≤m

(lm(ai) lm(gi)),

which proves the PLM property. �

Corollary 2.1.18 Due to Remark 2.1.16 and Theorem 2.1.17, a minimal Gröbner
basis is a basis.

The previous results rely on the fact that the considered ring is univariate and pos-
sesses field coefficients. But as already outlined in Remark 2.1.5, a Gröbner basis is
not a basis in the sense of linear algebra in general. In this sense, minimal Gröbner
bases are not bases for multivariate rings with field coefficients. This difficulty can be
solved via the notion of “Janet bases” [GY05, PR05]. In the sequel, we show some
applications of the previous results.

We call a matrix R ∈ Dm×q upper triangular if Rij = 0 for j < i.

Remark 2.1.19 Suppose G = {g1, . . . , gm} to be a minimal Gröbner basis of a mod-
ule M ⊆ Dq corresponding the POT ordering. Further let lm(g1) > · · · > lm(gm).
Then [gT1 , . . . , g

T
m]T corresponds to a full row rank upper triangular matrix whose rows

generate M .

Proof: It is sufficient to show the triangularity of [gT1 , . . . , g
T
m]T , since the rank property

can be deduced easily. Suppose the claim does not hold. Due to the use of POT, this
implies that there exist two elements with equal leading positions. But this introduces
a contradiction to Remark 2.1.16. �

Remark 2.1.20 SupposeG = {g1, . . . , gm} to be a minimal Gröbner basis of a module
M ⊆ Dq corresponding the TOP ordering. Further let lm(g1) > · · · > lm(gm). Then g1

...
gm

 = diag (xdeg(g1), . . . , xdeg(gm))B(x),

where B(x) is a proper rational matrix such that B(∞) is of full row rank. Further
the rows of B(∞) can be permuted to a upper triangular matrix.
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Proof: By the choice of the ordering, it is evident that B(x) is proper. Further it is
easy to see that B(∞)ij ∈ R\{0} if and only if deg(Bij) = deg(gi) and zero else. Thus
B(∞)i is a vector with constant coefficient entries and by the choice of the ordering

B(∞)ij = 0 for all j < lpos(gi). (2.5)

Due to Remark 2.1.13, there exists a permutation π of (g1, . . . , gm) =: Gseq such that

lpos(π(Gseq)m) > · · · > lpos(π(Gseq)1).

Using (2.5) yields that [π(Gseq)
T
1 , . . . , π(Gseq)

T
m]T is a upper triangular matrix. Since

the row rank is invariant under permutation of rows, B(∞) is obviously of full rank.�

It should be noted that the upper triangularity in the previous remark is crucial. With-
out this requirement, the matrix is called row reduced in the literature. Clearly, the
row vectors of a row reduced matrix do not necessarily constitute a minimal Gröbner
basis. For example, for q = 2 and R = Z2 consider

G(x) =

[
x2 0
x x

]
.

This matrix is clearly row reduced since G(x) = diag (x2, x)B(x) with

B(∞) =

[
1 0
1 1

]
.

However, the row vectors of G(x) do not constitute a minimal Gröbner basis for their
span, since the first row vector can be reduced modulo the second row vector, yielding[

x2 0
]
− x [x x] =

[
0 −x2

]
.

The next two examples show two applications over fields where the PD property and
the PLM property are useful.

Example 2.1.21 : Using minimal Gröbner bases for parameterization of all
shortest linear recurrence relations
Consider the sequence S0, S1, S2, S3, S4 = 1, 4, 3, 3, 2 over the field Z5. A polynomial
d(x), written as d(x) = xL + dL−1x

L−1 + · · ·+ d1x+ d0, is called a linear recurrence
relation of length L for S0, S1, S2, S3, S4 if

SL+j +
L∑
i=1

dL−iSL+j−i = 0 for j = 0, . . . , 5− L− 1. (2.6)

Defining the partial impulse response trajectory b on the time-axis N as

b =

([
S0

0

]
,

[
S1

0

]
,

[
S2

0

]
,

[
S3

0

]
,

[
S4

0

]
,

[
0
1

]
,

[
0
0

]
, . . .

)
, (2.7)

we can reformulate (2.6) as [d(s) − h(s)] • b = 0, where h(x) is a polynomial of
degree ≤ L and s is the backward shift operator, acting on trajectories w on N as
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(sw)(k) = w(k+1). A linear recurrence relation for S0, S1, S2, S3, S4 thus corresponds
to a kernel representation

[d(s) − h(s)] •w = 0

whose behavior includes the so-called partial impulse response behavior

B := span{b, sb, s2b, , . . . , s5b}, (2.8)

where b is defined by (2.7). The search for shortest linear recurrence relations now
translates into a search for an annihilator [d(s) − h(s)] • w = 0 for B that has
minimal row degree and satisfies deg(h) ≤ deg(d). Next, define the polynomial S(x)
as

S(x) := S0x
5 + S1x

4 + S2x
3 + S3x

2 + S4x, (2.9)

and consider the module M spanned by
[

1 −S(x)
]

and
[

0 x6
]
. Clearly,

these two polynomial vectors are linearly independent annihilators of B, and thus M
essentially consists of all annihilators of B. It is not difficult to see that any minimal
Gröbner basis for M must consist of 2 vectors. Exactly one of these vectors has leading
position 1. Because of the PLM property, this vector yields a shortest linear recurrence
relation. In this example, a minimal Gröbner basis for M is given by G = {g1, g2},
where

g1(x) =
[

2x+ 2 x4 − 2x3 + x
]

and g2(x) =
[
x2 − 3x− 1 4x2 − 3x

]
.

It follows that x2 − 3x − 1 is a shortest linear recurrence relation for the sequence
S0, S1, S2, S3, S4 = 1, 4, 3, 3, 2 over Z5. More precisely, we obtain

S2+j + 2S1+j + 4Sj = 0, where j = 0 . . . 2.

Example 2.1.22 : Using minimal Gröbner bases for minimal state space
realization—convolutional coding application
According to [RSY96, RS99, GLS07], a finite support binary convolutional code of
length n is defined as a submodule of Z2[x]

n. Consider the finite support binary
convolutional code C of length 3 given by the encoder

E(x) =

[
x2 + 1 1 0
x 0 1

]
.

A Viterbi decoder for C = imE(x) is based on a so-called “trellis representation”
of C, which is essentially a state space realization E(x) = B(x−1I − A)

−1
C + D,

see [JW93, JZ99, GLS07]. The need for low complexity decoding motivates the use
of a trellis representation, where the matrix A is of minimal size. In this example, a
minimal Gröbner basis for the module C is given by G = {g1, g2}, where

g1(x) =
[
x 0 1

]
and g2(x) =

[
1 1 x

]
.

Thus

Ẽ(x) =

[
x 0 1
1 1 x

]
.
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is also an encoder for C; its controller canonical realization (A,B,C,D) is given by
inspection as

A =

[
0 0
0 0

]
, B =

[
1 0
0 1

]
, C =

[
1 0 0
0 0 1

]
, D =

[
0 0 1
1 1 0

]
.

Note that the size of A equals the sum of the row degrees of Ẽ. Because of the PLM
property of G (or actually the PD property), there exists no encoder of C whose sum
of row degrees is smaller than 2. For this reason, (A,B,C,D) is a minimal state space
realization and the corresponding trellis representation is also minimal.

Coefficients over a finite ring

In our univariate context, Theorem 2.1.17 fails when R is not a field. Indeed, consider
the module M := 〈x + 1, 2〉 in Z4[x]. The set {x + 1, 2} is a minimal Gröbner basis
for M . However, the element 2 ∈ M can be generated in two different ways, namely
2 = 0 ·(x+1)+1 ·2, but also 2 = 2 ·(x+1)+x ·2. Thus, a minimal Gröbner basis is not
necessarily a basis in the ring case and does not necessarily have the PLM property.
The result given in Remark 2.1.13 fails.
Assuming R = Zpr for p prime, we can formulate another relation according to the
number of generators. Before we can give the result, some preliminaries on Zpr are
required. A set that plays a fundamental role in connection to these rings is the set
of “digits”, denoted by Ap = {0, 1, . . . , p− 1} ⊂ Zpr . Recall that any element a ∈ Zpr

can be written uniquely as

a = θ0 + pθ1 + · · ·+ pr−1θr−1,

where θ` ∈ Ap for ` = 0, . . . , r − 1 (p-adic expansion).
Next, an element a in Zpr is said to have order k if the additive subgroup generated
by a has pk elements. Elements of order r are called units. Further, two elements a1

and a2 are called associates if a1 = θa2, for some unit θ ∈ Zpr . One can easily see
that each a ∈ Zpr of order k can be written as a = θpr−k, where θ is a unit. Therefore,
a1 and a2 are associates if and only if they have the same order. Thus the elements
1, p, p2, . . . , pr−1 have orders r, r − 1, r − 2, . . . , 1, respectively. We extend the notion
of order to polynomial vectors as follows.

Definition 2.1.23 The order of a nonzero polynomial vector f ∈ R[x]q is defined as
the order of lc(f), and is denoted by ord(f).

Unlike the field case, a minimal Gröbner basis of a module in Zpr [x]q is not a basis. In
fact, the leading positions of its elements are not necessarily distinct. This is shown,
for instance, by the minimal Gröbner basis G := {[3x 0] , [x2 0]} ∈ Z9[x]

2.

Remark 2.1.24 Let M be a submodule of Zpr [x]q with minimal Gröbner basis G.
Then the elements of G can be ordered as lm(g1) > · · · > lm(gm).
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Proof: Suppose the claim does not hold. Then one can find unequal indices i, j such
that lm(gi) = lm(gj) = xα ek for 1 ≤ k ≤ m and α ∈ N. Thus the leading term of gi
and gj can we written as

lt(gi) = uip
βixα ek and lt(gj) = ujp

βjxα ek,

where ui, uj are units and 0 ≤ βi, βj ≤ r − 1. Assume without loss of generality that
βi ≤ βj. Then lt(gj) =

uj

ui
pβj−βi lt(gi) and thus gj is not minimal with respect to

G\{gj}. But this introduces a contradiction to the minimality of G. �

Lemma 2.1.25 Let M be a submodule of Zpr [x]q with minimal Gröbner basis G =
{g1, . . . , gm}, ordered as lm(g1) > · · · > lm(gm). Let j < i be such that lpos(gj) =
lpos(gi). Then deg(gj) > deg(gi) and ord(gj) > ord(gi). In particular, m ≤ qr.

Proof: Since lpos(gj) = lpos(gi) and lm(gj) > lm(gi), we must have that deg(gj) >
deg(gi), regardless of whether the TOP ordering or the POT ordering of monomials
is used. It then follows that ord(gj) > ord(gi), otherwise gj could be reduced by gi
and this would contradict the fact that G is a minimal Gröbner basis. This proves the
main result of the lemma. Since only r values of ord(gi) are possible, it also follows
that m ≤ qr. �

As a result of the previous lemma, we can define a sequence of order differences as
follows.

Definition 2.1.26 Let M be a submodule of Zpr [x]q with minimal Gröbner basis
G = {g1, . . . , gm} ordered as lm(g1) > · · · > lm(gm). For 1 ≤ j ≤ m define

βj := ord(gj)− ord(gi),

where i is the smallest integer > j with lpos(gi) = lpos(gj). If i does not exist, we
define βj := ord(gj). The sequence (β1, . . . , βm) ∈ Nm is called the sequence of order
differences of G.

Generalizations of Definition 2.1.15 and Theorem 2.1.17 will be discussed in Chapter
3.

2.2 Non-commutative Gröbner bases

Let us give an introduction to non-commutative Gröbner basis theory, which has been
studied by [Chy98, Kre93, Lev05a]. We refer to [Lev05a] to give a brief overview.
Let K be a field. In describing K-algebras via finite sets of generators G and relations
R, we write D = K〈G | R〉. This means that D is a factor algebra of the free
associative algebra generated by G, modulo the two-sided ideal generated by R. Hence,
yet another notation is D = K〈G〉/〈R〉.
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Definition 2.2.1 [LS03] Let D denote a quotient of the free associative K-algebra
K〈x1, . . . , xn〉 by the two-sided ideal I, generated by the finite set {xjxi − xixj − dij}
for all 1 ≤ i < j ≤ n, where dij is a polynomial in standard monomials. Then D is
called a G-algebra, if the following conditions hold.

1. For all 1 ≤ i < j < k ≤ n the expression dijxk−xkdij+xjdik−dikxj+djkxi−xidjk
is contained in I.

2. There exists a monomial ordering ≺ on K[x1, . . . , xn], such that lm(dij) ≺ xixj
for each i < j. Here, lm stands for the classical notion of leading monomial of a
polynomial from K[x1, . . . , xn].

We call an ordering on a G-algebra admissible, if it satisfies the second condition of
the definition.

Example 2.2.2 Let K be a field of characteristic 0.

• Then

W1(K) := K〈x, ∂ | ∂x = x∂ + 1〉

is called the first polynomial Weyl algebra.

• The first polynomial difference algebra is defined by

S1 := K〈x,∆ | ∆x = x∆ + ∆ + 1〉.

• Let q 6= 0 be a unit (a parameter) in the ground field. Then

Wq
1 (K) := K〈x, ∂ | ∂x = q · x∂ + 1〉

is called the first polynomial q-Weyl algebra.

• The first polynomial q-difference algebra is defined by

Q := K〈x, ∂ | q · x∂ + (q− 1)x〉,

where σ(p) = p(qx) and δ(p) = p(qx)− p(x).

All the algebras discussed in the previous example can be extended from the first to
the n-th case, see Example 2.2.5.
In the sequel let D = K〈x1, . . . , xn | {xjxi = cijxixj +dij}1≤i<j≤n〉 denote a G-algebra.
The monomials of Dq are given via

Mon(Dq) := {xα ei | α ∈ Nn, 1 ≤ i ≤ q}.

We say that xα ei divides xβ ej if and only if i = j and αk ≤ βk for all k = 1, . . . , n. We
define a module ordering and all corresponding terms as usual, see the commutative
case.
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Definition 2.2.3 [Lev05a, Definition 1.6] Let M be a left submodule of Dq. Then a
finite subset G ⊆ M\{0} is called a left Gröbner basis of M if and only if for all
m ∈M\{0}, there exists an element g ∈ G such that lm(g) divides lm(m).

In other words, G is a Gröbner basis of M if and only if L(G) = L(M) holds. We call
a subset G ⊆ Dq minimal if lm(g) /∈ L(G\{g}) for all g ∈ G. Further we say g ∈ Dq
is reduced with respect to G ⊆ Dq if no monomial of g is contained in L(G). And
finally, a subset G ⊆ Dq is called reduced if each g ∈ G is reduced with respect to
G\{g} and g − lc(g) lm(g) is reduced with respect to G.
The computer algebra system singular::plural can compute Gröbner bases for G-
algebras. It is well known that Gröbner bases have proved to be very useful to compute
objects of interest like for instance syzygies or kernels. In Subsection 2.2.1, we will
elaborate this in more detail.

Preliminaries on Ore extensions

Ore extensions build the framework for most of the problems studied in this thesis.
A first indication is pointed out in Section 1.4, where one-dimensional time-varying
systems are introduced. Further motivation to consider these rings in the context of
system and control theory is given for instance in [Zer06a, IM05, INS84, Rob06, CQ05].
Ore extensions are noncommutative rings possessing a σ-derivation and a certain endo-
morphism to define the commutation of two elements, thus giving the extension from
commutative to non-commutative polynomial rings. This kind of rings are used in an-
alyzing the structure of analytic equations, like linear ordinary or partial differential
equations or partial shift or difference equations with rational or polynomial coeffi-
cients, see Example 2.2.5. Many of the relevant operator algebras have the structure
of an Ore algebra, as studied e.g. in [CQR07, CQR05, CS98]. The name is inspired
by Øystein Ore, who introduced and studied this kind of rings. Further studies are
given for instance in [CS98] and [MR01]. We give a definition that is motivated by
[Chy98, CS98]. Moreover, this simplifies the more general setup of [Kre93].

Definition and Remark 2.2.4 [MR01] Let K be a field and A a K-algebra.

1. Further let σ : A → A be a ring endomorphism. Then the map δ : A → A is
called σ-derivation, if δ is K-linear and satisfies the skew Leibniz rule

δ(ab) = σ(a)δ(b) + δ(a)b for all a, b ∈ A.

For a σ-derivation δ, the ring A[∂;σ, δ] consisting of all polynomials in ∂ with co-
efficients in A with the usual addition and a product defined by the commutation
rule

∂a = σ(a)∂ + δ(a) for all a ∈ A

is called a skew polynomial ring, or an Ore extension of A with ∂ subject
to σ, δ.

2. Let A = K[x1, . . . , xn]. An iterated skew polynomial ring

O = K[x1, . . . , xn][∂1;σ1, δ1] . . . [∂s;σs, δs]
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is called a (polynomial) Ore algebra if the σi’s and δj’s commute for 1 ≤ i, j ≤ s,
the ∂i’s commute with ∂j’s, and further for all 1 ≤ i ≤ s, the map σi : O → O is
an injectiveK-algebra endomorphism and δi : O → O is a σi-derivation satisfying

σi(∂j) = ∂j and δi(∂j) = 0.

Using multi-index notation, every element of an Ore algebra can be expressed in the
normal form ∑

α∈Ns

pα∂
α =

∑
α∈Ns

pα∂1
α1 · · · ∂sαs where pα ∈ A. (2.10)

It is easy to see that any nonzero element a ∈ A[∂;σ, δ] can be written as a = ad∂
d +

· · · + a1∂ + a0, where d ∈ N and ai ∈ A with ad 6= 0. We call d the degree of a,
sometimes it is also called the order of a.
If A is a domain and σ is injective, the Ore extension A [∂;σ, δ] is a domain by degree
arguments. Then the definition can be iterated and the resulting ring is called Ore
algebra.
In the next example, we enlist some interesting Ore algebras. These rings are of great
interest in applications.

Example 2.2.5

• Let A = K[x1, . . . , xn] for a field K. Further let σi := idA and δi := ∂
∂xi

for all
1 ≤ i ≤ n. Then

Wn(K) := K[x1, . . . , xn][∂1;σ1, δ1] . . . [∂n;σn, δn]

is called the n-th polynomial Weyl algebra. We get commutation rule

∂ixj =

{
xj∂i if i 6= j

xi∂i + 1 else.

• Let A = K[x1, . . . , xn] for a field K. Further let (σip)(x) = p(x1, . . . , xi−1, xi +
1, xi+1, . . . , xn) and δi(p) = σi(p)− p for all p ∈ A. Then

Sn := A[∆1;σ1, δ1] . . . [∆n;σn, δn]

is called the n-th polynomial difference algebra. We get the commutation
rule

∆ixj =

{
xj∆i if i 6= j

xi∆i + ∆i + 1 else.

• Let A = K[x1, . . . , xn] for a field K. The following Ore algebra is a combination
of the first and second one. Define

SWn := A [∆; s1,d1] [∂;σ1, δ1] . . . [∆; sn,dn] [∂;σn, δn] ,

where σi := idSWn , δi := ∂
∂ti

and (s1p)(x) = p(x + 1), di(p) = si(p) − p for all
p ∈ SW i. We get the commutation rules

∂ixj =

{
xj∂i if i 6= j

xi∂i + 1 else
and ∆ixj =

{
xj∆i if i 6= j

xi∆i + ∆i + 1 else.
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• Let A = K(x) and let q 6= 0 be a unit (a parameter) in the ground field. Set
σ(p(x)) = p(qx) and δ := ∂

∂x
. Then

W q
1 (K) := A[∂;σ,

∂

∂x
]

is called the first rational q-Weyl algebra. We get the commutation rule

∂x = qx∂ + 1.

• Let A = K(x) and let q 6= 0 be a unit (a parameter) in the ground field. The
first continuous q-difference algebra is defined by

Q := A[∂;σ, δ],

where σ(p) = p(qx) and δ(p) = p(qx)− p(x). We get the commutation rule

∂x = qx∂ + qx− x.

All these algebras are G-algebras. Thus the proposed theory of Gröbner bases can
be applied. Here, it should be stressed that the theory of Gröbner bases over cer-
tain polynomial Ore extensions is studied in [CS98]. More precisely, Ore extensions
K[x1, . . . , xn][∂1;σ1, δ1] . . . [∂n;σn, δn] which satisfy the commutation rule

∂ixj = aijxj∂i + cij(x),

where aij ∈ K\{0} and cij(x) ∈ K[x1, . . . , xn], are tackled in that publication.

Let O be an Ore algebra. We call a ∈ O a left divisor (or just a divisor, if no
confusion arises) of b ∈ O if and only if there exists f ∈ O such that af = b and write
a|b shortly. Analogously we define a to be a right divisor (or just a divisor, if no
confusion arises) of b if and only if there exists an element f ∈ O such that fa = b.
Again we write a|b.

Theorem 2.2.6 [BGTV03] Let A be a division ring, σ : A → A an endomorphism
and D = A[∂;σ, δ] an Ore extension with a σ-derivation δ.

• (PID) D is a left principal ideal domain. If σ is an automorphism, then D is
also a right principal ideal domain.

• (Bezout’s Theorem) For any nonzero a, b ∈ D there exists a right greatest com-
mon divisor gr of a, b and there exist s, t ∈ D, such that gr = sa + tb. If σ is
an automorphism, then for any nonzero a, b ∈ D there exists the left greatest
common divisor g` of a, b and there exist s′, t′ ∈ D, such that g` = as′ + bt′.

• (ED) D is a right Euclidean domain. If σ is an automorphism, then D is also a
left Euclidean domain.

Hence, when σ is bijective, there are left and right Euclidean division algorithms. All
Ore extensions discussed in Example 2.2.5 possess a bijective σ.
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Remark 2.2.7 [Coh71, Chapter 5, Proposition 1.2] If K is of characteristic zero, the
first polynomial Weyl algebra is simple, that is, every two-sided ideal equals 0 or W1.

Note that the previous remark yields, in case K is of characteristic zero, that the
first rational Weyl algebra is simple as well. We want to stress that the characteristic
restriction on K is crucial for the result. Consider for instance the ideal 〈x2〉 ⊆
F2[x][∂; idF2[x],

d
dx

]. Since then
x2∂ = ∂x2,

it is easy to see that 1 is not contained in the ideal generated by x2.

Ore localizations of G-algebras

This subsection addresses the question how to construct a certain Ore extension from
a G-algebra. This enables us to extend the framework of Chapter 4 to a larger class
of algebras in which the proposed Algorithms 2 and 3 can be implemented.

We propose a new class of univariate skew polynomial rings, which are obtained as Ore
localizations of G-algebras. For this purpose, we need to show how localization in the
non-commutative framework works. Note that the crossover from the commutative to
the non-commutative world can cause complications. However, we choose a suitable
setting to avoid these.

Definition 2.2.8 [MR01] Let S be a multiplicatively closed set in a Noetherian do-
main D, such that 0 6∈ S.

• The set S is called an Ore set in D, if for all s1 ∈ S, a1 ∈ D there exist
s2 ∈ S, a2 ∈ D, such that s2a1 = a2s1.

• One defines a ring of fractions or an Ore localization ofD with respect to S to
be a ring DS (often denoted as S−1D) together with an injective homomorphism
φ : D → DS, such that

(i) for all s ∈ S, φ(s) is a unit in DS,
(ii) for all f ∈ DS, f = φ(s)−1φ(a) for some a ∈ D, s ∈ S.

Remark 2.2.9 Let Wn be the n-th polynomial Weyl algebra. Then defining S :=
K[x1, . . . , xn]\{0} and φ as the natural embedding yields the rational n-th Weyl alge-
bra. Note that all rational counterparts of the algebras given in Example 2.2.5 can be
constructed like this.

The Ore property of S in D guarantees that any left-sided fraction can be written as
a right-sided fraction. However, this manipulation is not unique.

Due to [LS03] a G-algebra D is a Noetherian domain. Hence, there exists its total
two-sided ring of fractions Quot(D) = DD\{0}, which is a division ring. Assume that D
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is generated by the variables x1, . . . , xn+1. Let λ = {1, . . . , n}, Iλ = {xjxi−xixj−dij |
i, j ∈ λ, i < j} and suppose B = K〈x1, . . . , xn | Iλ〉 to be a G-algebra. Moreover,
define xn+1 =: ∂ and B∗ := B \ {0}.

Theorem 2.2.10 Suppose there exists an admissible monomial ordering ≺ on D, sat-
isfying xk ≺ ∂ for all 1 ≤ k ≤ n. Using the introduced notation, B∗ is a multiplicatively
closed Ore set in D. Hence, there exists a Ore localization of D with respect to B∗.
Moreover, it can be presented as an Ore extension of Quot(B) by the variable ∂.

Proof: Since B is a G-algebra, it is a domain. Hence, B∗ is multiplicatively closed and
does not contain zero. Since D and B are G-algebras and ≺ is an admissible ordering,
the relation ∂xj = cjxj∂ + dj where cj ∈ K∗ and dj ∈ D satisfies lm(dj) ≺ xj∂.
Further xj ≺ ∂ yields xj∂ ≺ ∂2 and hence dj is at most linear in ∂. Therefore we can
write dj = aj · ∂ + bj for aj, bj ∈ B. Thus we obtain a relation ∂xj = c′j∂ + bj, where
c′j = cjxj + aj and xj, c

′
j, bj ∈ B.

By defining σ(xj) = cjxj + aj and δ(xj) = bj for all 1 ≤ j ≤ n, we see that σ
is an automorphism of Quot(B). Thus an Ore extension Quot(B)[∂;σ, δ] is indeed
another presentation of DB∗ as soon as B∗ is an Ore set in D. Thus let us finally
show that B∗ is an Ore set in D. Using lm(dj) = lm(aj∂ + bj) ≺ xj∂ yields on the
one hand lm(aj) ≺ xj and on the other hand lm(bj) ≺ xj∂. The latter implies that
there exist positive weights ω and w1, . . . , wn for the variables {∂, x1, . . . , xn}, such
that for lm(aj)x

α and lm(bj) = xα one has
∑

iwiαi ≤ xj and
∑

iwiβi ≤ wj + ω.
In particular, this can be achieved by setting ω large enough. Then we follow the
recipe from [BGTV03] and construct a block ordering from this setting. Consider an
ordering ≺∂ on D, which is a block ordering for blocks of variables {∂}, {x1, . . . , xn}.
This means that ∂ � xj for all j, that is, the variable ∂ is greater than any power of xj.
The second block is an ordering ≺B on B, for which lm(aj) ≺B xj holds. For instance,
one can take ≺B to be the restriction of ≺ to B. Then lm(dj) = max≺∂

(aj∂, bj) ≺∂ xj∂
holds, hence ≺∂ is an admissible ordering on D. From Proposition 28 of [GML] (which
holds for a much more general situation), the existence of such a block ordering as ≺∂
implies that the set B∗ is an Ore set in D. �

Remark 2.2.11 Note that by construction DB∗ is a Euclidean (principal ideal) do-
main by Theorem 2.2.6. In particular, all but one variables are invertible.

Example 2.2.12 To illustrate Theorem 2.2.10, we consider the difference algebra
S1 := K〈x,∆ | ∆x = x∆ + ∆ + 1〉. Since ∆ ≺ x∆ is a consequence of 1 ≺ x (we
assume we are dealing with well-orderings only), S1 can be localized at both K[x]∗

and K[∆]∗. On the other hand, the algebra associated with the operator of partial
integration I1 := K〈x, I | Ix = xI − I2〉 can be localized only at K[I]∗ but not at
K[x]∗, since I2 ≺ xI is a consequence of I ≺ x, and any ordering satisfying x ≺ I is
not admissible for I1.
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2.2.1 Algorithmic computations

For the concrete calculations needed in Chapter 5, we need algorithms for the following
computational tasks over (polynomial) Ore algebras:

1. syzygy module of a tuple of vectors

2. elimination of module components from a submodule of a free module

3. annihilator ideal of an element in a finitely presented module

4. kernel of a homomorphism of modules

5. intersection of a finite number of submodules of a free module.

In the sequel let O be a Noetherian Ore algebra. Note that we have the following
sufficient condition:

Remark 2.2.13 [MR01, Theorem 1.2.9.] Let A be a Noetherian K-algebra for a field
K. Then D is Noetherian if σi is an automorphism for all 1 ≤ i ≤ s on A. (Thus all
Ore algebras considered in Example 2.2.5 are Noetherian.)

Let M be a finitely presented left O-module, that is, there exists a matrix P ∈ Om×n

such that there is the following exact sequence of left O-modules:

O1×m P→ O1×n →M → 0.

Recall that for a tuple F = (f1, . . . , fs), fi ∈ O1×n, the set Syz(F ) := {[a1, . . . , as] ∈
O1×s |

∑
i aifi = 0} carries the structure of a left O-module and is called the left

syzygy module of F . Since O is Noetherian, Syz(F ) is finitely generated. Com-
putation of syzygies over Noetherian Ore algebras can be accomplished with several
algorithms and requires Gröbner basis techniques; see [Kre93] for Ore algebras and
[GPS05] for the commutative case.

Let {ei} be the canonical basis of the free module O1×` =
⊕̀
i=1

O ei.

Theorem 2.2.14

1. “Elimination of module components”:
Let S ⊂ O1×` be a submodule and G be a Gröbner basis of S with respect to the

POT ordering. Then the intersection G∩
`
⊕
i=k
O ei is a Gröbner basis of S∩

`
⊕
i=k
O ei

for all 1 ≤ k < `.

2. “Kernel of a module homomorphism of modules”:

Consider an O-module homomorphism O1×s ψ→ O1×n/O1×mP , ei 7→ [Ψi], where
Ψi ∈ O1×n. Let Pi be the i-th row of the matrix P . Then

kerψ = Syz( (Ψ1, . . . ,Ψs, P1, . . . , Pm) ) ∩
s⊕
i=1

O ei .
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Proof:

1. Define W =
⊕̀
i=k

O ei. Since G is a Gröbner basis of S, for any 0 6= s ∈ S there

exists g ∈ G such that lm(g) divides lm(s). If s ∈ S ∩W , then lm(g) ∈ W and
hence, by definition of the underlying ordering, we have g ∈ W and g ∈ G ∩W .
So, G ∩W is a Gröbner basis of S ∩W .

2. We have

[b1, . . . , bs] ∈ kerψ ⇔ ∃ak ∈ O :
s∑
i=1

biΨi +
m∑
k=1

akPk = 0

⇔ [b1, . . . , bs] ∈ Syz( (Ψ1, . . . ,Ψs, P1, . . . , Pm) ) ∩
s⊕
i=1

O ei .
�

Corollary 2.2.15

1. “Annihilator of a module element”:
Let M = O1×n/O1×mP and let P1, . . . , Pm denote the rows of P . Moreover, let
v ∈ O1×n. Then the left ideal annOM(v) := {a ∈ O | a[v] = 0 ∈ M} ⊆ O can be
computed as

annOM(v) = ker(O
·[v]→M) = Syz( (v, P1, . . . , Pm) ) ∩O e1 .

2. “Intersection of finitely many submodules”:
Let N1, . . . , Nm ⊂ O1×r be submodules. Then

m⋂
i=1

Ni = ker
(
O1×r → (O1×r/N1)⊕ · · · ⊕ (O1×r/Nm), ei 7→ ([ei], . . . , [ei])

)
.

Remark 2.2.16 For an O-module homomorphism O1×s/O1×rQ
ψ′→O1×n/O1×mP , its

kernel is the image of kerψ (as in Theorem 2.2.14) under the natural projection
O1×s → O1×s/O1×rQ. A left Gröbner basis can be obtained by reducing a left Gröbner
basis of kerψ +O1×rQ with a left Gröbner basis of O1×rQ, see [Lev05b].
The algorithms we have discussed are implemented in computer algebra systems
like e.g. Singular::Plural [GLH05] or Maple [CQR07, CS98] with the package
OreModules. More background on these algorithms can be found in e.g. [Kre93],
[Lev05b].
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Chapter 3

One-dimensional systems over
finite rings

In this Chapter, we address the question how to extend the definition of the so-called
Predictable Leading Monomial (PLM) property given in Definition 2.1.15 to the finite
ring case. Note that the question of the Predictable Degree (PD) property was studied
in [KPP07] in a completely Gröbner bases free context. The results presented here
rely on minimal Gröbner bases and are more general, because the PLM property
implies the PD property. We use the framework of Gröbner bases, because it is a
natural extension of Definition 2.1.15 and further, we can revert to computer algebra
packages. An explicit motivation to analyze the PLM property for the ring case is
given in Section 1.3. Note that the results of this Chapter can be found in [KSa, KSb].
Let us recall the crucial point about the predictable degree property given in the field
case. A set of vectors is said to possess the predictable degree property if there is
no cancellation of leading monomials in every possible linear combination of these
elements. Since there exist zero-divisors in Zpr , such a result does not hold there in
general.

Example 3.0.17 Consider the submodule M = 〈g1, g2〉 = 〈x3, 9x〉 of Z27[x]. Then
the generators of M are already a minimal Gröbner basis, and it is easy to see that
12x4 ∈ M . We have the identity 12x4 = 12xg1 = 3xg1 + x3g2 = 12xg1 + 3x5g2. But
then

x4 = lm(12x4) 6= max{lm(12x) lm(g1), lm(3x5) lm(g2)} = x6.

So we have seen that the PLM property does not hold.

We will see in the sequel how to restrict the coefficients of the linear combination to
obtain unique representations. Let D denote the ring Zpr [x] throughout this chapter.
Further the set of digits will be denoted by Ap = {0, 1, . . . , p− 1} ⊂ Zpr as introduced
in Section 2.1.1. Recall that according to Remark 2.1.24, the leading monomials of a
minimal Gröbner basis G = {g1, . . . , gm} can always be ordered so that lm(g1) > · · · >
lm(gm). The next lemma shows how to restrict the coefficients of D to get a unique
representation of the leading term of any element contained in the span of a minimal
Gröbner basis.
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Lemma 3.0.18 Let M be a submodule of Dq with the minimal Gröbner basis G =
{g1, . . . , gm}, ordered so that lm(g1) > · · · > lm(gm). Let (β1, . . . , βm) be the sequence
of order differences of G as per Definition 2.1.26. Assume that G is normalized so that
lc(gi) = pr−ord(gi) for i = 1, . . . ,m. Let 0 6= f ∈ M and j1 be the largest integer such
that ord(gj1) ≥ ord(f), lpos(gj1) = lpos(f) and deg(gj1) ≤ deg(f). Let gj2 , . . . , gjs be
all successors of gj1 for which lpos(gji) = lpos(f) for i = 2, . . . , s. Then lt(f) can be
uniquely written as

lt(f) = cj1x
αj1 lt(gj1) + · · ·+ cjsx

αjs lt(gjs), (3.1)

where
lm(f) = xαji lm(gji),

with αji ∈ N and cji ∈ Ap + · · ·+ pβji
−1 Ap for i = 1, . . . , s.

Proof: Write
lc(f) = p`θ` + p`+1θ`+1 + · · ·+ pr−1θr−1, (3.2)

where ` = r − ord(f), θj ∈ Ap for j = `, . . . , r − 1 and θ` 6= 0. Note that the θj’s
are unique. It follows from Observation 2.1.8 that a largest integer j1 exists such
that ord(gj1) ≥ ord(f), lpos(gj1) = lpos(f) and deg(gj1) ≤ deg(f). Let gj2 , . . . , gjs
be all successors of gj1 for which lpos(gji) = lpos(f) for i = 2, . . . , s. Then for i =
1, . . . , s, αji := deg(f)− deg(gji) is well-defined by Lemma 2.1.25. Evidently lm(f) =
xαji lm(gji) for i = 1, . . . , s. Next, let us define

d := ord(gj1)− ord(f).

Note that, by definition of j1 and Lemma 2.1.25, we have d < βj1 . Further define

cj1 := pdθ` + pd+1θ`+1 + · · ·+ pβj1
−1θ`+βj1

−1−d,

and, for i = 2, . . . , s,

cji = θ`+
Pi−1

k=1 βjk
−d + pθ`+Pi−1

k=1 βjk
−d+1

+ · · ·+ pβji
−1θ`+

Pi−1
k=1 βjk

−d+βji
−1.

Then cj1 6= 0 since θ` 6= 0. Clearly cji ∈ Ap + · · · + pβji
−1 Ap and (3.1) holds. The

uniqueness of the representation follows from the uniqueness of the θj’s in (3.2) and
the fact that, by definition

βji − 1 + r − ord(gji) ≤ r − 1

for i = 1, . . . , s. �

Example 3.0.19 Let us return to Example 3.0.17. By definition, the sequence of or-
der differences (β1, β2) equals (2, 1). Thus we restrict the coefficients of x3 to Ap +pAp

and the coefficients of 9x to Ap. Then 12x4 = 3x · x3 + x3 · 9x is the desired unique
representation.
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The next theorem will extend the idea proposed by the previous lemma and show
that a minimal Gröbner basis of a module in Dq has a particular type of Predictable
Leading Monomial property (compare Definition 3.1.11 and Theorem 3.2.3).

Theorem 3.0.20 Let M be a submodule of Dq with minimal Gröbner basis G =
{g1, . . . , gm}, ordered so that lm(g1) > · · · > lm(gm). Let (β1, . . . , βm) be the sequence
of order differences of G as per Definition 2.1.26. Then any f ∈ M is uniquely
represented as

f = h1g1 + · · ·+ hmgm, (3.3)

with hj restricted to the subset Ap[x]+pAp[x]+· · ·+pβj−1 Ap[x] of Zpr [x]. Furthermore,
for f 6= 0 we have

lm(f) = max
1≤i≤m;hi 6=0

(lm(hi) lm(gi)). (3.4)

Proof: Let

r1 := f −
s1∑
l=1

c1j1l
x
α1

j1
l gj1l ,

where j1
i , c

1
j1i

and α1
j1i

are as in the above lemma for i = 1, . . . , s1. Note that c1
j11
6= 0.

Then, by Lemma 3.0.18, f
G−→ r1, so that, by Lemma 2.1.10, lm(r1) < lm(f). Now

repeat this step, defining at each step k

fkjk
`

:= ckjk
`
x
αk

jk
` for ` = 1, . . . , sk and

rk := rk−1 −
sk∑
l=1

fkjk
l
gjk

l
.

Since lm(rk) < lm(rk−1), this reduction procedure must stop at rt = 0 for some t ∈ N.
Next, for i = 1, . . . ,m list all steps at which gi is used as k1, . . . , kNi

, where Ni ∈ N.
Now define

hi :=

Ni∑
j=1

f
kj

i .

Then evidently f = h1g1+· · ·+hmgm. In order to show that hi ∈ Ap[x]+· · ·+pβi−1 Ap[x]

it is clearly sufficient to prove that deg(f
kj+1

i ) < deg(f
kj

i ). For this, it follows from
lm(rkj−1) > lm(rkj

) that deg(rkj−1) > deg(rkj
), so that

deg(f
kj+1

i ) = deg(rkj+1−1)− deg(gi)

< deg(rkj−1)− deg(gi)

= deg(f
kj

i ).

This shows the existence of the representation. Its uniqueness follows from the unique-
ness of the jk` ’s, the cki ’s and the αki ’s by Lemma 3.0.18. Finally, from lm(rk) < lm(rk−1)
and c1j1 6= 0 it follows that

lm(f) = lm(

s1∑
l=1

f 1
j1l
gj1l ) > lm(fkjk

l
gjk

l
) for all jkl with 2 ≤ k.

As a result, lm(f) = lm(f 1
j11

) lm(gj11 ), so that (3.4) holds. �
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Example 3.0.21 Let M be a submodule of Z2
9[x] generated by the rows of the fol-

lowing matrix

R =


1 8x5 + 5x4 + 5x3 + 2x2 + 2x
0 x6

3 6x5 + 6x4 + 6x3 + 6x2 + 6x
0 3x6

 .
Denote the rows of R by R1, R2, R3 and R4. Note that R3 = 3R1 and R4 = 3R2.

• Using the TOP ordering:
a minimal Gröbner basis G = {g1, . . . , g4} of M is given by the rows of

8 x5 + 4x4 + 4x3 + 7x2 + 7x
x+ 5 3x4 + 3x2 + x

x2 + 3x+ 2 x2 + 4x
3x+ 6 3x

 .
The sequence of order differences (β1, β2, β3, β4) equals (1, 1, 1, 1). Thus each
f ∈M can be written uniquely as h1g1 + h2g2 + h3g3 + h4g4, where hi ∈ Ap[x].

• Using the POT ordering:
in this case, the vectors R1 and R2 form a minimal Gröbner basis. The sequence
of order differences (β1, β2) equals (2, 2). Thus f ∈ M can be written uniquely
as h1R1 + h2R2, where hi ∈ Ap[x] + pAp[x].

As the previous theorem shows, the restriction of the coefficients depends on the
minimal Gröbner basis or more precisely, on the sequence of order differences of the
minimal Gröbner basis. In order to derive a more general notion which is compatible
to the results of [KPP07], we introduce the so-called minimal Gröbner p-basis. But
this requires some preparation.

3.1 Preliminaries on p-generator sequences

The concepts presented below are extensions of [VSR96], first presented in [KPP07].
The crucial idea behind the whole framework is to get rid of zero-divisors. Thus first
the multiplicative variables are restricted to Ap. The resulting structure varies from
the original one. But to deal with equal sets, certain conditions will be required from
the module generators.

Definition 3.1.1 [KPP07] Let {v1, . . . , vN} ⊂ Dq. A p-linear combination of

v1, . . . , vN is a vector
N∑
j=1

ajvj, where aj ∈ D is a polynomial with coefficients in

Ap for j = 1, . . . , N . Furthermore, the set of all p-linear combinations of v1, . . . , vN is
denoted by p-span(v1, . . . , vN), whereas the set of all linear combinations of v1, . . . , vN
with coefficients in D is denoted by span(v1, . . . , vN).
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Remark 3.1.2 Note that the p-span and span do not coincide. This is obvious:
Suppose r ≥ 2. Since px /∈ p-span(x), it follows that span(x) 6= p-span(x). But there
exist specific requirements on the generators such that their span and p-span coincide.
The subset needs to be a so-called p-generator sequence.

Definition 3.1.3 [KPP07] An ordered sequence (v1, . . . , vN) of vectors in Dq is said
to be a p-generator sequence if p vN = 0 and p vi is a p-linear combination of
vi+1, . . . , vN for i = 1, . . . , N − 1.

Theorem 3.1.4 [KPP07] Let v1, . . . , vN ∈ Dq. If (v1, . . . , vN) is a p-generator se-
quence, then

p-span(v1, . . . , vN) = span(v1, . . . , vN).

In particular, p-span(v1, . . . , vN) is a submodule of Dq.

All submodules of Dq can be written as the p-span of a p-generator sequence. In
fact, if M = span(g1, . . . , gm), then M is the p-span of the p-generator sequence
(g1, pg1, . . . , p

r−1g1, . . . , gm, pgm, . . . , p
r−1gm).

But the restriction to Ap even allows to set up the notion of a specific basis.

Definition 3.1.5 [KPP07] The vectors v1, . . . , vN ∈ Dq are said to be p-linearly
independent if the only p-linear combination of v1, . . . , vN that equals zero is the
trivial one.

Definition 3.1.6 LetM be a submodule ofDq, written as a p-span of a p-generator se-
quence (v1, . . . , vN). Then (v1, . . . , vN) is called a p-basis ofM if the vectors v1, . . . , vN
are p-linearly independent in Dq.

Lemma 3.1.7 [KPP07] Let M be a submodule of Dq and let (v1, v2, . . . , vN) be a p-
basis of M . Then each vector of M is written in a unique way as a p-linear combination
of v1, . . . , vN .

Suppose M to be a submodule of Zq
pr with a p-basis (v1, . . . , vN). Then in [VSR96],

the so-called p-dimension of M is defined as p-dim(M) = N . The adaption to Dq
requires an additional constraint.

Definition 3.1.8 [KPP07] The row degree of a nonzero polynomial vector v ∈ Dq
is defined as the highest degree of its nonzero components in Dq. It is denoted by
rowdeg(v). The coefficient vector in Zq

pr of the term xrowdeg(v) in v is called the leading
row coefficient vector of v and denoted by vlrc, that is,

v = vlrcxrowdeg(v) + lower order terms.
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Definition 3.1.9 Let M be a submodule of Zpr [x]q with p-basis (v1, . . . , vN). Then
the sequence (v1, . . . , vN) is called a reduced p-basis of M if the leading coefficient
vectors vlrc

1 , . . . , vlrc
N are p-linearly independent in Zq

pr .

By [KPP07, Theorem 3.12], the following Algorithm terminates with the desired result.

Input : Module M spanned by (v1, . . . , vN)
Output: A reduced p-basis (w1, . . . , wk) of M

W ← (v1, pv1, . . . , p
r−1v1, . . . , vN , . . . , p

r−1vN)

Step 1: Remove zero vectors in W , resulting in

W ← (w1, . . . , wk).

Step 2: Re-order W according to nonincreasing degree such that

W ← (w1, . . . , wk),

making sure that vectors of equal degree are not swapped.
Step 3: Determine the smallest ` such that

1. (wlrc
`+1, . . . , w

lrc
k ) is a p-generator sequence

2. p-dim(span(wlrc
`+1, . . . , w

lrc
k ))) = k − `

If ` = 0 return (w1, . . . , wk) else go to Step 4.
Step 4: For i = 1, . . . , k − `, let αi ∈ Zpr be such that

lc(w`) + α1 lc(w`+1) + · · ·+ αk−` lc(wk) = 0.

Replace w` by

w` + α1x
deg(w`)−deg(w`+1)w`+1 + · · ·+ αk−`x

deg(w`)−deg(wk)wk.

Go to Step 1.

Algorithm 1: Reduced p-basis Algorithm [KPP07, Algorithm 3.11]

According to [KPP07, Theorem 3.13], the number of elements in a reduced p-basis is
uniquely determined, which yields the next definition.

Definition 3.1.10 LetM be a submodule of Zpr [x]q with reduced p-basis (v1, . . . , vN).
Then the p-dimension of M is defined as

p-dim(M) := N.

The following definition adjusts the PLM property, introduced for the field case in
Definition 2.1.15, to the specific structure of Zpr . It extends the p-predictable degree
property introduced in [KPP07] to a stronger property that will prove useful in the
sequel.
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Definition 3.1.11 Let F = {f1, . . . , fs} ⊆ Dq be a set of nonzero elements. Then F
has the p-Predictable Degree (p-PD) property if for any 0 6= f ∈ p-span(f1, . . . , fs),
written as

f = a1f1 + · · ·+ asfs, (3.5)

where a1, . . . , as ∈ Ap[x], we have

deg(f) = max
1≤i≤s;ai 6=0

(deg(ai) + deg(fi)).

Next, F is said to have the p-Predictable Leading Position (p-PLP) property
if

lpos(f) = min
1≤i≤s;ai 6=0

lpos(fi).

Finally, F is said to have the p-Predictable Leading Monomial (p-PLM) prop-
erty if

lm(f) = max
1≤i≤s;ai 6=0

(lm(ai) lm(fi)).

Note that in the above definition, ai ∈ Ap[x] rather than ai ∈ R[x] as in Defini-
tion 2.1.15. In analogy with the field case, it is easily seen that the p-PLM property
holds if and only if both the p-PD property and the p-PLP property hold.

3.2 Minimal Gröbner p-basis and the p-predictable

degree property

A minimal Gröbner basis is not a p-generator sequence, because due to the minimality,
no multiples of a generator are contained in the Gröbner basis. The next theorem shows
how to obtain a p-generator sequence from a minimal Gröbner basis.

Theorem 3.2.1 [KSb] Let M be a submodule of Dq with minimal Gröbner basis G =
{g1, . . . , gm}, ordered so that lm(g1) > · · · > lm(gm). Let (β1, . . . , βm) be the sequence
of order differences of G as per Definition 2.1.26. Then

(g1, pg1, . . . , p
β1−1g1, g2, pg2, . . . , p

β2−1g2, . . . , gm, pgm, . . . , p
βm−1gm) (3.6)

is a p-generator sequence whose p-span equals M .

Proof: We first prove that (3.6) satisfies Definition 3.1.3. By definition βm = ord(gm),
so that

lm(pβmgm) < lm(gm). (3.7)

Suppose pβmgm 6= 0, then according to Observation 2.1.8, there exists gi ∈ G such that
lm(gi) ≤ lm(pβmgm). But then (3.7) implies that lm(gi) < lm(gm), which contradicts
lm(g1) > · · · > lm(gm). We conclude that

pβmgm = 0. (3.8)
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To prove that (3.6) satisfies Definition 3.1.3, it now obviously remains to prove that
pβjgj is a p-linear combination of

gj+1, pgj+1, . . . , p
βj+1−1gj+1, gj+2, pgj+2, . . . , p

βj+2−1gj+2, . . . , gm, . . . , p
βm−1gm (3.9)

for 1 ≤ j ≤ m − 1. For this, we first prove that pβjgj is a linear combination of
gj+1, gj+2, . . . , gm. We distinguish two cases:
case I

βj = ord(gj). Then lm(pβjgj) < lm(gj), so that, by Observation 2.1.11,
pβjgj is a linear combination of gj+1, gj+2, . . . , gm.

case II

βj < ord(gj), so that lm(pβjgj) = lm(gj). By definition, there exists a
smallest integer i > j with lpos(gi) = lpos(gj) and βj = ord(gj)− ord(gi).
Observe that then ord(pβjgj) = ord(gi) and deg(pβjgj) = deg(gj) > deg(gi)
(use Lemma 2.1.25), whereas lpos(pβjgj) = lpos(gj) = lpos(gi). Thus we
can find a ∈ Zpr [x] such that lt(pβjgj) = lt(agi). As a result, lm(pβjgj −
agi) < lm(pβjgj) = lm(gj). Consequently, by Observation 2.1.11, pβjgj−agi
is a linear combination of gj+1, gj+2, . . . , gm. Since i > j, it follows that
pβjgj is also a linear combination of gj+1, gj+2, . . . , gm.

Thus for 1 ≤ j ≤ m− 1

pβjgj is a linear combination of gj+1, . . . , gm. (3.10)

Finally, we prove by induction that (3.9) holds for 1 ≤ j ≤ m− 1. For j = m− 1, this
follows from (3.8) and the fact that pβm−1gm−1 is a multiple of gm because of (3.10).
Now suppose that (3.9) holds for j = j0 ∈ {1, . . . ,m − 1}. Consider the vector
pβj0−1gj0−1. By (3.10), there exist aj0 , . . . , am ∈ Zpr [x] such that

pβj0−1gj0−1 = aj0gj0 + · · ·+ amgm.

Now use the p-adic decomposition to write

aj0 = a0
j0

+ pa1
j0

+ · · ·+ pr−1ar−1
j0

,

where aij0 ∈ Ap[x] for 0 ≤ i ≤ r − 1. Repeatedly using the induction hypothesis, it
follows that

pβj0−1gj0−1 = a0
j0
gj0 +· · ·+pβj0

−1a
βj0

−1

j0
gj0 +p-linear combination of gj0+1, . . . , p

βm−1gm.

This proves that (3.9) holds for j = j0−1, so that, by induction, (3.6) is a p-generator
sequence.
To prove that its p-span equals M , we first note that, by Observation 2.1.11, any
element of M can be written as a linear combination of g1, g2, . . . , gm. Using a similar
reasoning as above, this can be alternatively be written as a p-linear combination of
the vectors in (3.9). �

The next lemma follows immediately from Definition 2.1.26.
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Lemma 3.2.2 Let M be a submodule of Dq possessing a minimal Gröbner basis G =
{g1, . . . , gm}, ordered so that lm(g1) > · · · > lm(gm). Let (β1, . . . , βm) be the sequence
of order differences of G as per Definition 2.1.26 and let N = β1 + β2 + · · ·+ βm. Let
(v1, . . . , vN) be the p-generator sequence given by (3.6). Then for any i, j ∈ {1, . . . , N}
with i 6= j we have

lpos(vi) = lpos(vj)⇒ ord(vi) 6= ord(vj).

The next theorem is the ring analogon of Theorem 2.1.17 and presents the main result
of this chapter.

Theorem 3.2.3 Let M , (β1, . . . , βm) and {v1, . . . , vN} be defined as in the previous
lemma. Then {v1, . . . , vN} has the p-PLM property. In particular, (v1, . . . , vN) is a
p-basis of M .

Proof: Let
f = a1v1 + · · ·+ aNvN (3.11)

with a1, . . . , aN ∈ Ap[x]. For simplicity of notation, we assume that ai is nonzero for
1 ≤ i ≤ N . Let us first examine two special cases:
Special case I

All gi’s have distinct leading positions. Then the proof is analogous to the
field case, i.e., the proof of Theorem 2.1.17.

Special case II

All gi’s have the same leading position. Then all vi’s also have the same
leading position. By Lemma 3.2.2, their orders are all different. Now
observe that ord(aivi) = ord(vi) for 1 ≤ i ≤ N , since ai ∈ Ap[x]. Thus
all aivi’s have different orders. In particular, all aivi’s of largest degree
have different orders, so that their leading coefficients add up to a nonzero
element of Zpr (use the p-adic decomposition). This implies that the p-
PLM property holds.

Let us now consider the general case. By grouping together all vectors aivi of the same
leading position, we write

f = f1 + f2 + · · ·+ fq,

where fi = 0 if position i is not used in (3.11). As in Special case II above, it can be
shown that lpos(fi) = i whenever fi 6= 0. As a result, the nonzero fi’s can be ordered
and Observation 2.1.7 yields

lt(f) = lt(fj) (3.12)

for some nonzero fj with j ∈ {1, . . . , q}. Recall that fj is defined as the sum of all
vectors in the right hand side of (3.11) that have leading position j. It now follows from
Special case II above that there exists ` ∈ {1, . . . , N} such that lm(fj) = lm(a`) lm(v`).
As a result, by equation (3.12),

lm(f) = lm(a`) lm(v`). (3.13)
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Evidently lm(f) ≤ max1≤i≤N ;ai 6=0(lm(ai) lm(vi)), so that (3.13) implies that equality
holds. This proves the p-PLM property.
Finally, to prove that (v1, . . . , vN) is a p-basis for M , first observe that p-span of
(v1, . . . , vN) equals M by Theorem 3.2.1. Also, it follows immediately from the p-PLM
property that any nontrivial p-linear combination of vectors in {v1, . . . , vN} has to be
nonzero. We conclude that (v1, . . . , vN) is a p-basis of M , so that N = p-dim(M) =
β1 + β2 + · · ·+ βm. �

Definition 3.2.4 [KSb] Let M be a submodule of Dq with minimal Gröbner basis
G = {g1, . . . , gm}, ordered so that lm(g1) > · · · > lm(gm). Let (β1, . . . , βm) be the
sequence of order differences of G as per Definition 2.1.26. Let (v1, v2, . . . , vN) be
the p-generator sequence given by (3.6). Then (v1, v2, . . . , vN) is called a minimal
Gröbner p-basis for M .

Let us denote

LC(v) := lc(v) elpos(v) ∈ Zq
pr

for a nonzero v ∈ Dq.

Remark 3.2.5 Let (v1, v2, . . . , vN) be a minimal Gröbner p-basis of M . Then

(LC(v1), . . . ,LC(vN))

is a p-generator sequence in Zq
pr .

Proof: By definition, the sequence (LC(v1), . . . ,LC(vN)) coincides to

(LC(g1),LC(pg1), . . . ,LC(pβ1−1g1), . . . ,LC(gm), . . . ,LC(pβm−1gm)).

Note that LC(pαgi) = pα LC(gi) for all 1 ≤ α ≤ βi − 1. Therefore to prove the claim,
it is sufficient to show that pLC(pβj−1gj) is contained in the p-span of the sequence
(LC(gj+1), . . . ,LC(pβm−1gm)). Note that LC(gj) can be written as ujp

r−ord(gj) elpos(gj)

for a unit uj, which yields

pLC(pβj−1gj) = pr−ord(gj)+βj elpos(gj) .

Case I: βj = ord(gj)

Then r − ord(gj) + βj = r and thus pLC(pβj−1gj) = 0.

Case II: βj 6= ord(gj)

Then there exists a smallest integer i > j such that lpos(gi) = lpos(gj) and
βj = ord(gj) − ord(gi). Further note that LC(gi) = uip

r−ord(gi) elpos(gj) for
a unit ui. Since

r − ord(gj) + βj = r − ord(gj) + ord(gj)− ord(gi) = r − ord(gi),
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we obtain

pLC(pβj−1gj) = ujp
r−ord(gi) elpos(gj) = uju

−1
i LC(gi).

Writing uju
−1
i = θ0 + θ1p+ · · ·+ θr−1p

r−1 yields

uju
−1
i LC(gi) =

∈ p-span(LC(g1),...,LC(pβi−1gi))︷ ︸︸ ︷
θ0 LC(gi) + θ1pLC(gi) + · · ·+ θβi−1p

βi−1 LC(gi)

+ pβi(θβi
+ · · ·+ θr−1p

r−1−βi) LC(gi).

Let u denote the unit θβi
+ · · · + θr−1p

r−1−β1 . It is still left to show that
upβi LC(gi) is contained in the p-span of (LC(gi), . . . ,LC(pβm−1gm)). In
case βi = ord(gi), it follows that upβi LC(gi) = 0. Else there exists a
smallest integer k > i such that lpos(gk) = lpos(gi) and βi = ord(gi) −
ord(gk). And furthermore LC(gk) = ukp

r−ord(gk)elpos gj
for a unit uk. Then

upβi LC(gi) = uuip
βi+r−ord(gi) elpos gj

= uuiu
−1
k LC(gk).

The claim follows by induction. �

Remark 3.2.6 Let (v1, v2, . . . , vN) be a minimal Gröbner p-basis of M . Then

(LC(v1), . . . ,LC(vN))

is p-linearly independent in Zq
pr .

Proof: Suppose the claim does not hold, that is, there exist ai ∈ Ap, not all equal to
zero, such that

N∑
i=1

ai LC(vi) = 0. (3.14)

Since LC(vi) is of the form d ej for d ∈ Zpr and 1 ≤ j ≤ q, we can without loss of
generality suppose that q equals 1. Let k be the smallest integer such that ak in (3.14)
is nonzero. Then ak lc(vk) = −

∑N
i=k+1 ai lc(vi). Recall that ord(vk) > · · · > ord(vN)

by definition, and obviously ord(vi) = ord(−vi). Then

ak lc(vk) = pr−ord(vk+1)(−
N∑

i=k+1

aiuip
(− ord vi+ord vk+1)),

where lc(vi) = uip
r−ord vi for a unit ui. But this leads to a contradiction, since

ord(ak lc(vk)) = ord(lc(vk)) = ord(vk) > ord(vk+1) = ord(pr−ord(vk+1))

and

ord(pr−ord(vk+1)) > ord(pr−ord(vk+1)(−
N∑

i=k+1

aiuip
(− ord vi+ord vk+1)))

hold. �
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Theorem 3.2.7 Let M be a submodule of Dq with a minimal Gröbner basis corre-
sponding the TOP ordering. Then the associated minimal Gröbner p-basis (v1, . . . , vN)
is a reduced p-basis of M .

Proof: To prove the claim, we need to show that (vlrc
1 , . . . , vlrc

N ) is p-linearly indepen-
dent. For this purpose note:

1. Due to Remark 3.2.6, we already know that (LC(v1), . . . ,LC(vN)) is p-linearly
independent.

2. By the definition of TOP, see Definition 2.1.6, each vlrc
i can be written as

vlrc
i = LC(vi) +

q∑
j=lpos(vi)+1

u
(i)
j ej

for suitable u
(i)
j and all 1 ≤ i ≤ N .

These two items yield the claim. �

One can easily see that the requirement in the previous remark on the minimal Gröbner
basis to be calculated with respect to the TOP ordering is crucial for the result.
Suppose we would work with respect to POT and consider for instance the module
〈(1 , x), (0 , x)〉 = M ⊆ D2. Then the generators of M already give a minimal Gröbner
basis ofM corresponding to POT. But the leading row coefficient vectors both coincide
to (0 , 1). Algorithm 1 shows how to obtain a reduced p-basis from a minimal Gröbner
p-basis in general. Suppose the input of the Algorithm to beM generated by a minimal
Gröbner p-basis (v1, . . . , vN) and suppose the output to be (w1, . . . , wk). Then

p-span(v1, . . . , vN) = p-span(w1, . . . , wk). (3.15)

This is easy to see. Since (w1, . . . , wk) is a p-basis of M , vi is contained in the p-span
of (w1, . . . , wk) for all 1 ≤ i ≤ N . Conversely let us recall the operations acting on
the input vectors during the algorithm: First, the sequence (v1, . . . , vN) is expanded
by power of p multiples to

W := (v1, pv1, . . . , p
r−1v1, . . . , vN , . . . , p

r−1vN).

Since (v1, . . . , vN) is a p-generator sequence, the sequence W is contained in the p-span
of (v1, . . . , vN) due to Theorem 3.1.4. Apart from re-ordering and the deletion of zero
vectors, the algorithm changes W in the following way. Elements w` of W are suitably
replaced by

w̃` := w` + α1x
deg(w`)−deg(w`+1)w`+1 + · · ·+ αk−`x

deg(w`)−deg(wk)wk,

where αi ∈ Zpr and wi ∈ W . Since each wi is contained in the span of (v1, . . . , vN)
and (v1, . . . , vN) is a p-basis, the element w̃` is contained in the p-span of (v1, . . . , vN)
as well. Altogether we have shown that equality (3.15) holds.
We can further conclude that k = N , since both sequences are p-linearly independent.
Thus the number of elements in a minimal Gröbner p-basis equals the p-dimension of
the associated module M . This allows to give the following characterization.
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Lemma 3.2.8 Let M be a submodule of Dq with minimal Gröbner p-basis (v1, . . . , vN).
Then the p-dimension of M is given by

p-dim(M) = N.

Remark 3.2.9 Let M be a submodule of Dq with minimal Gröbner basis G =
{g1, . . . , gm}, ordered so that lm(g1) > · · · > lm(gm). Let (β1, . . . , βm) be the sequence
of order differences of G as per Definition 2.1.26. Then

p-dim(M) =
m∑
i=1

βi.

Proof: The claim follows by the definition of a minimal Gröbner p-basis. �

Corollary 3.2.10 Let M be a submodule of Dq. Then the p-dimension of M is
bounded by rq, that is,

p-dim(M) ≤ rq.

Proof: By the definition of the sequence of ordered differences, each βi takes exclusively
vectors of equal leading positions into account. In order to prove the claim, we can
therefore assume q = 1 without loss of generality and show that p-dim(M) ≤ r. Let
{g1, . . . , gm} be a minimal Gröbner basis of M , ordered so that lm(g1) > · · · > lm(gm).
Then by the previous remark,

p-dim(M) =
m∑
i=1

βi = (
m−1∑
i=1

ord(gi)− ord(gi+1) ) + ord(gm) = ord(g1)

holds. Since additionally ord(m) ≤ r for all m ∈ D, the claim follows. �

Corollary 3.2.10 leads to the following remark.

Remark 3.2.11 Let M be a submodule of Dq with minimal Gröbner basis G =
{g1, . . . , gm}, ordered so that lm(g1) > · · · > lm(gm). Let (β1, . . . , βm) be the sequence
of order differences of G. Further let g(j) denote the element gi of smallest index in G
such that lpos(gi) = j. Then

m∑
i=1;lpos(gi)=j

βi = ord(g(j)) ≤ r.

Example 3.2.12 Recall Example 3.0.21.

• Using the TOP ordering:
By Theorem 3.2.3, the sequence (g1, g2, g3, g4) is a minimal Gröbner p-basis for
M . Further due to Remark 3.2.7, the p-generator sequence (g1, g2, g3, g4) is a
reduced p-basis; it has the p-PLM property. Furthermore, p-dim(M) = β1 +
β2 + β3 + β4 = 4.

• Using the POT ordering:
According to Theorem 3.2.3, the sequence (R1, 3R1, R2, 3R2) is a minimal Gröbner
p-basis for M ; it has the p-PLM property. Note that β1 + β2 indeed equals
4 = p-dim(M).
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3.3 Application to signals and systems

In the publications [KP08b, KP08a], one can find applications for minimal Gröbner
p-bases. In [KSb], these applications are studied in detail.

Parametrization of all shortest linear recurrence relations

In Example 2.1.21, we have already discussed the field case. The results that will be
presented are given in [KP08b] without the use of minimal Gröbner p-bases. Suppose
given a sequence S0, . . . , Sn−1 over Zpr . We call a polynomial f ∈ D, written as
f(x) = fLx

L + fL−1x
L−1 + · · ·+ f1x+ f0, a linear recurrence relation of length L

for S0, . . . , Sn−1 if fL is a unit and

fLSL+j +
L∑
i=1

fL−iSL+j−i = 0 for j = 0, . . . , n− L− 1. (3.16)

As usual, we call the polynomial f monic if fL = 1. As in Example 2.1.21, defining
the partial impulse response trajectory b on the time-axis N as

b =

([
S0

0

]
,

[
S1

0

]
, · · · ,

[
Sn−1

0

]
,

[
0
1

]
,

[
0
0

]
, · · ·

)
, (3.17)

we can reformulate (3.16) as [d(s) − h(s)] b = 0, where h(x) is a polynomial of
degree ≤ L and s is the backward shift operator, acting on trajectories w on N as
(sw)(k) = w(k+ 1). A linear recurrence relation for S0, . . . , Sn−1 thus corresponds to
a kernel representation

[d(s) − h(s)] w = 0

whose behavior includes the so-called partial impulse response behavior

B := span{b, sb, s2b, , . . . , snb}, (3.18)

where b is defined by (3.17). The search for shortest linear recurrence relations now
translates into a search for an annihilator [d(s) − h(s)] w = 0 for B that has minimal
row degree and satisfies deg(h) ≤ deg(d). As in Example 2.1.21, define the polynomial
S(x) as

S(x) := S0x
n + S1x

n−1 + · · ·+ Sn−1x (3.19)

and consider the moduleM spanned by the vectors
[

1 −S(x)
]
and

[
0 xn+1

]
.

It is easily verified that M consists of all annihilators of B.
The vectors

[
1 −S(x)

]
and

[
0 xn+1

]
are a minimal Gröbner basis of M

with respect to the POT ordering and the corresponding sequence of order differences
is (r, r). Thus it is clear that

p-dim(M) = 2r.

Let {g1, . . . , gm} be a minimal Gröbner basis of M corresponding the TOP ordering,
so that lm(g1) > · · · > lm(gm). Further let (v1, v2, . . . , v2r) be the associated minimal
Gröbner p-basis, with vi written as vi = [di − hi] ∈ D2 for i = 1, . . . , 2r. Then due
to Remark 3.2.11, there exists an index h ∈ {1, . . . ,m} such that lpos(gh) = 1 and
ord(gh) = r. Let ` ∈ {1, . . . , 2r} be such that v` = gh. By the definition of TOP, we
obtain that deg(h`) ≤ deg(d`). Thus it follows that d` is a linear recurrence relation
for the sequence S0, . . . , Sn−1.
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Theorem 3.3.1 Using the previous notation, we claim that:

1. The polynomial d` is a shortest linear recurrence relation and furthermore, a
parametrization of all shortest linear recurrence relations for S0, . . . , Sn−1 is given
by

q`d` +
∑
i>`

qidi, (3.20)

with 0 6= q` ∈ Ap and qi ∈ Ap[x] with deg(qi) ≤ deg(v`) − deg(vi) for i =
`+ 1, . . . , 2r.

2. The shortest linear recurrence relation d` is unique up to units if and only if
v` = gm, that is, if and only if lpos(gm) = 1 and ord(gm) = r.

Proof:

1. Suppose that a polynomial d? ∈ D is a shortest linear recurrence relation for
S0, . . . , Sn−1. Then there exists a polynomial h? ∈ D of smaller or equal degree
such that [d? − h?] ∈ M . Since (v1, v2, . . . , v2r) is a minimal Gröbner p-basis
of M , we can write [d? − h?] as a p-linear combination of v1, v2 . . . , v2r. Since
v` is the unique vector in this Gröbner p-basis of leading position 1 and order
r, this p-linear combination must use v`. Because of the p-PLM property of
{v1, . . . , vN}, it follows that deg(d?) ≥ deg(v`). This implies that v` is a shortest
linear recurrence relation for S0, . . . , Sn−1. Moreover, it also follows from the
p-PLM property of {v1, . . . , vN} that the above p-linear combination can not use
vi for i < `. This proves the parametrization (3.20).

2. If v` equals gm, then d` is obviously unique up to units. Now let d` be unique up
to units and suppose v` is not equal to the element of smallest leading monomial
of G. Then by definition of a minimal Gröbner p-basis and the choice of v`,
there exists an element gh with 1 ≤ h < m such that v` = gh. But then
gm = vi ∈ (v1, . . . , v2r) for a suitable i > ` and since lm(gh) > lm(gm), it follows
that deg(di) < deg(d`). This would yield the shortest linear recurrence relation
d` + di and introduce a contradiction. �

Example 3.3.2 Consider the sequence S0, S1, S2, S3, S4 = 1, 4, 4, 7, 7 over the ring
Z9. Let M be the submodule of Z9[x]

2, defined by M = span{s1, s2}, where s1(x) =
[1 8x5 + 5x4 + 5x3 + 2x2 + 2x] and s2(x) = [0 x6]. Using the TOP ordering, as
shown in Example 3.0.21, the Singular computer algebra system [GPS05] computes
the minimal Gröbner basis G = {g1, . . . , g4} of M corresponding to the rows of

8 x5 + 4x4 + 4x3 + 7x2 + 7x
x+ 5 3x4 + 3x2 + x

x2 + 3x+ 2 x2 + 4x
3x+ 6 3x

 .
According to Theorem 3.3.1, g3 gives a shortest linear recurrence relation x2 + 3x+ 2
that is not unique. A parametrization of all shortest linear recurrence relations is given
by Θ1(x

2 + 3x+ 2) + (Θ2x+ Θ3)(3x+ 6), where Θi ∈ {0, 1, 2} for i = 1, 2, 3; Θ1 6= 0.
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It is easily seen that a parametrization of all monic shortest linear recurrence relations
is given by (x2 + 3x+ 2) + Θ(3x+ 6), where Θ ∈ {0, 1, 2}. That is, we obtain

S2+j + (3 + 3Θ)S1+j + (2 + 6Θ)Sj = 0, where j = 0 . . . 2.

Minimal state realization

In Example 2.1.22, we have already discussed minimal state realization for the field
case. Consider a finite support convolutional code C of length n over Zpr , that is,
a submodule of Zn

pr [x]. Denote the p-dimension of C by κ. Let (v1, v2, · · · , vκ) be a
minimal Gröbner p-basis for C (under TOP ordering). Denote the κ × n polynomial
matrix (vT1 , v

T
2 , · · · , vTκ )T by V . We call V a minimal Gröbner p-encoder for C.

The matrix V is realized in controller canonical form as

V (x) = B(x−1I − A)
−1
C +D,

see [Kai80] and [KP08a]. Here (A,B,C,D) ∈ Zγ×γ
pr ×Zκ×γ

pr ×Zγ×n
pr ×Zκ×n

pr , where γ =∑κ
i=1 deg(vi). In the terminology of [KP08a], the corresponding controller canonical

trellis representation is denoted as XV := {Xt}t∈Z+ , where Xt = (Zn
pr , St, S

′
t, Kt) with

S0 = {0} and S ′t = {sA+ uB : s ∈ St and u ∈ Aκ
p}, t ∈ Z+ and

Kt = {(s(t), s(t)C + u(t)D, s(t)A+ u(t)B | s(t) ∈ St and u(t) ∈ Aκ
p}.

The next theorem follows immediately from [KP08a, Thm. 2].

Theorem 3.3.3 Let C be a finite support convolutional code over Zpr of length n
and p-dimension κ, and let V ∈ Zκ×n

pr [x] be a minimal Gröbner p-encoder of C; write
V = (vT1 , v

T
2 , · · · , vTκ )T and denote γ :=

∑κ
i=1 deg(vi) and γmax := max 1≤i≤κ{deg(vi)}.

Then the controller canonical trellis representation XV is a minimal trellis representa-
tion for C. In particular, the number of trellis states of XV equals pγ, for t ≥ γmax.

Example 3.3.4 Consider the finite support convolutional code

C = span{
[
x2 + 1 1 0

]
,
[

2x 1 2
]
}

of length 3 over Z4. Using the TOP ordering, Singular computes the minimal
Gröbner basisG = {g1, g2, g3, g4} ofM , where g1 =

[
x2 + 1 1 0

]
, g2 =

[
2x 1 2

]
,

g3 =
[

2 x 2x
]

and g4 =
[

0 2 0
]
. A minimal Gröbner p-encoder is then given

by

V (x) =


x2 + 1 1 0

2x 1 2
2 x 2x
0 2 0

 .
Its controller canonical trellis XV is given by

A =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , B =


1 0 0 0
0 0 0 1
0 0 1 0
0 0 0 0

 , C =


0 0 0
1 0 0
0 1 2
2 0 0

 , D =


1 1 0
0 1 2
2 0 0
0 2 0

 .
According to the above theorem, this trellis is minimal with 24 = 16 trellis states for
t ≥ 2.



Chapter 4

One-dimensional time-varying
systems

As already outlined in Section 1.4, the system and control theoretical interpretations
of a diagonal form and a normal form are of great interest. The proof for the existence
of a normal form is usually constructive and therefore, it offers an algorithm directly.
However, such a direct algorithm is not very efficient, in general. Naturally, the pro-
posed approaches getting a grip on the occurring difficulties benefit from the structure
of the underlying ring, see for instance [Lüb02].

Here, we choose the framework of skew polynomial rings, see Section 2.2. Skew poly-
nomial rings, among others, offer the possibility to describe time-varying systems.
A system and control theoretical motivation to consider these rings is established in
[Zer06a, Zer07c, IM05, INS84]. In [CQ05], applications to systems of partial differen-
tial equations are shown and several concrete examples are studied.
Beyond that, many known operator algebras can be realized as skew polynomial rings
or solvable polynomial rings [Kre93], some of them can be even realized as Ore alge-
bras [CS98, CQR04]. However, general solvable polynomial rings are hard to tackle
constructively (say, in a computer algebra system), while the class of Ore algebras is
restrictive. Based on PBW algebras [BGTV03] or G-algebras [Lev05a, GLH05], we
have proposed a new class of univariate skew polynomial rings, which are obtained as
Ore localizations of G-algebras, in Section 2.2. Thus altogether, the chosen framework
permits a large variety of relevant algebras, i.e., one improvement given here is the
universality of the proposed method.
Certainly, we need to fix some requirements on the ring to ensure the existence of a
decoupled form or rather, a normal form. More precisely, we assume the skew poly-
nomial ring to be an Euclidean domain. The corresponding assumptions on the rings
are given in Theorem 2.2.6. For more theoretical background on normal forms for
matrices over those rings, we refer to [Coh71].

Apart of the goal to introduce an algorithm permitting a variety of interesting rings,
we want to get a grip on the swell of the entries in the transformation matrices. This
problem, known from the Smith form, becomes even worse with the non-commutative
analog, the Jacobson form, see Remark 4.1.12.

We present an approach to calculate a decoupled form or rather, a normal form, which
is based on Gröbner bases. To the best of our knowledge, this idea was originally

79
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introduced for the commutative ring K[x] in [Her05]. There, an algorithm for the
computation of the Smith normal form was presented. We generalize this idea to our
framework and develop a polynomial strategy. We stress that this approach is com-
pletely constructive. It is important that it can be realized in any computer algebra
system which can handle G-algebras or polynomial Ore algebras.
Note that the crucial improvement of the proposed method is introduced in Subsection
4.1.1, where we show in detail how to handle the problem in a completely fraction-free
polynomial framework. We point out advantages of the polynomial strategy and illus-
trate some of them with interesting examples in Subsection 4.2.1. At the same time,
we compare our results with the output of the implementation of an algorithm which
uses fractions directly. In many examples, our approach delivers much more compact
results with small coefficients. We want to stress that these examples have not been
specially selected for this purpose; instead, we picked a couple from a bigger family of
examples. In our opinion, this phenomenon is quite ubiquitous.

The implementation is realized as a library called jacobson.lib for the computer
algebra system Singular::Plural [GPS05, GLH05], and it has been incorporated
into the official distribution of Singular (version 3-1-0).
There are other implementations, which are realized in Maple. The implementation
[CQ05] works for Ore algebras, while the implementation [Mid08] is done for the first
Weyl algebra with coefficients in a differential field. Middeke [Mid08] has reported
that the classical algorithm for computing the Jacobson form of a matrix over the
Weyl algebra over a differential field is polynomial-time. The complexity of our imple-
mentation is left open. But it seems to us (due to the polynomial strategy approach),
that the subalgebra of invertible elements must be involved in the complexity analysis.
Perhaps one should consider different models for studying complexity, since experience
with practical applications suggests that the important role played by the coefficient
arithmetics (which is not the arithmetics over a number field anymore) must be appro-
priately reflected in the overall complexity. Otherwise, the complexity of operations
over the skew field of invertible elements remains hidden.

The results of this chapter are accepted for publication in the Journal of Symbolic
Computation [SL].

Within this chapter, let A be a division ring and suppose D = A[∂;σ, δ] to be a skew
polynomial ring that is Euclidean, see Theorem 2.2.6. Recall that the degree of s ∈ D
is defined as the highest exponent of ∂ appearing in s.

4.1 Decoupling systems over Ore extensions

The proposed algorithm will require to work with left and right modules over D.
Operations from the left corresponds to manipulations on the rows, and operations
from the right to manipulations on the columns. Thus one has to use both D and its
opposite algebra Dop. Recall that Dop is the same set as D, endowed with the opposite
multiplication, that is, for all a, b ∈ Dop, the equality a ?Dop b = b ?D a holds, where
?D stands for the multiplication in the algebra D. A natural map turns a right (resp.
left) D-module into a left (resp. right) Dop-module. There is an algorithmic procedure
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to set up an opposite algebra for a given G-algebra, see [Lev05a]. Alternatively, for
“swapping sides” one can employ an involution on Dg×q. For this purpose, we define
an involution on a ring first.

Definition 4.1.1 An automorphism θ of the additive group of D which satisfies

θ(ab) = θ(b)θ(a) for all a, b ∈ D

is called an anti-automorphism of D. If moreover, θ satisfies θ ◦ θ = id, then θ is called
an involution of D.

Note that since D is a domain an anti-automorphism maps 1 to 1.

Remark 4.1.2 Note that for every left ideal D〈f1, . . . , fk〉 = I ⊆ D, its image θ(I)
under the involution becomes a right ideal. This follows since the equality

k∑
j=1

θ(fj)aj = θ2(
k∑
j=1

θ(fj)aj) = θ(
k∑
j=1

θ(aj)︸ ︷︷ ︸
∈D

fj) ∈ θ(I)

holds for all aj ∈ D. One can show that involutions preserve the degree.

In classical operator algebras, particularly simple involutions are known [CQR04]. A
constructive advantage of using involutions versus using opposite algebras lies in the
fact that one does not need to create the opposite algebra and associate to any object
its opposite. Instead, we apply an involution to an object and remain in the same
ring.
Now we still need to extend the introduced map to Dg×g. An involution can be defined
on matrices as follows. Let θ : D → D be an involution as above. We define

θ̃ : Dg×g → Dg×g, R 7→ (θ(R))T ,

where RT is the transposed matrix of R, and θ(R) = [θ(Rij)], 1 ≤ i, j ≤ g. Then one
can easily show that

θ̃(B · C) = θ̃(C) · θ̃(B) for all B, C ∈ Dg×g

and, moreover, (θ̃)2 = idg×g.
Let DR denote the left D-module generated by the rows of a matrix R, and RD the
right D-module generated by the columns of a matrix R.

Remark 4.1.3 Extending Remark 4.1.2 to the module case, we obtain

DR = Dθ̃(θ̃(DR)D) and RD = θ̃(Dθ̃(RD))D.

Thus all feasible left operations executed in DR, that is, on the rows of R, correspond
to suitable ones in θ̃(DR)D, that is, right operations on the columns of R under θ̃.
Analogously, this holds for RD.
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Note that in case of D being commutative, θ can be chosen to be the identity and θ̃
becomes simply the transposition.

In the sequel, let θ denote an involution on D and θ̃ an involution on Dg×g, respec-
tively. Indeed, the map θ̃ can easily be extended to the set of non-square matrices by
setting θ̃(A·C) = θ̃(C)·θ̃(A) for A ∈ Dg×q, C ∈ Dq×k. Applied twice, we get back A·C.

Let R ∈ Dg×q. In the spirit of system-theoretical applications, we assume, without
loss of generality, that g ≤ q. Then there exist unimodular matrices U ∈ Dg×g and
V ∈ Dq×q such that

URV = [D, 0] , where D = diag(r1, . . . , rg).

Recall that a matrix U ∈ Dg×g is called unimodular if and only if there exists
U−1 ∈ Dg×g such that UU−1 = U−1U = Ig. There are several ways to prove the
claim, all based on the Euclidean (and thus PID) property of the underlying ring. We
present an algorithm to obtain the unimodular matrices via Gröbner bases. The proof
that the algorithm terminates with the desired result will give an additional way to
verify the claim. The main idea about the computation is an alternation between the
computation of a reduced Gröbner basis of the submodule generated by, say, the rows
of a matrix, and the application of the involution θ̃. As already mentioned, this idea
was applied to K[x] in order to compute the Smith normal form in the PhD thesis

[Her05]. However, in the commutative case, θ becomes the identity map and thus θ̃
yields the matrix transposition.

Recall that by DR we denote the left D-module generated by the rows of a matrix
R. Further on, by G(DR) we denote the reduced left Gröbner basis of the submodule

DR with respect to a module ordering < giving priority to the last component. More
precisely, for r, s ∈ Mon(D) and ei := (0, · · · , 0, 1︸︷︷︸

i

, 0, · · · , 0)

r ei < s ej :⇔ i < j or if i = j then deg(r) < deg(s).

Note that this is different from the choice in Definition 2.1.6, where the priority was
given to the first component. For the i-th row of a matrix R, we write Ri and Rij

stands, as usual, for the entry in the i-th row and j-th column. Recall that lpos(g)
denotes the leading position for all g ∈ D1×q. Define the degree of an element
0 6= a ∈ D1×q to be the degree of the corresponding leading monomial, that is,
deg(a) := deg(lm(a)). This notion differs from the notion of “row degree” used in
previous chapters.
Note that the elements of G(DR) have pairwise distinct leading monomials, since they
form a reduced Gröbner basis.

Due to the definition of a reduced Gröbner basis lm(G(DR)i) divides lm(G(DR)j) for
G(DR)i,G(DR)j ∈ G(DR) if and only if G(DR)i = G(DR)j. Thus we can suppose
without loss of generality that

lm(G(DR)1) < · · · < lm(G(DR)m).
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Moreover, we can formulate an even more precise lemma.

From now on, let us assume that g = q and R is of full rank, that is, row and column
ranks of R are equal to g first.

Lemma 4.1.4 As before, assume that lm(G(DR)1) < · · · < lm(G(DR)m). Then

 G(DR)1
...

G(DR)m


is a lower triangular matrix.

Proof: Suppose the claim does not hold. Then there exists G(DR)i and G(DR)j with
lpos(G(DR)i) = lpos(G(DR)j) for i < j. Thus lm(G(DR)i) = ∂αi ek and lm(G(DR)j) =
∂αj ek such that αi < αj. But then evidently lm(G(DR)i) divides lm(G(DR)j), which
is a contradiction to G(DR) being reduced. �

Due to the previous lemma, we may assume the matrix induced by G(DR) to be lower
triangular without loss of generality. We need some further preparation to introduce
the algorithm and to prove its correctness.

Lemma 4.1.5 Let I denote the left ideal generated by the elements in the last column
of θ̃(G(DR)), that is, by θ(G(DR)g1), . . . , θ(G(DR)gg). Then

I = D〈 G(Dθ̃(G(DR) ) )gg 〉.

Proof: Note, that due to Lemma 4.1.4

 ∗
...

. . .
G(DR)g1 · · · G(DR)gg


︸ ︷︷ ︸

G(DR)

eθ
 

 θ(G(DR)g1)

. . . ...
∗ · · · θ(G(DR)gg)

 G
 

 ∗... . . .
∗ · · · G(Dθ̃(G(DR) ) )gg

 .

According to the definition of G the left ideal generated by G(Dθ̃(G(DR) ) )gg coincides
with D〈θ(G(DR)g1), . . . , θ(G(DR)gg)〉. �
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Now we can formulate the algorithm that yields the desired diagonal form.

Input : R ∈ Dg×g of full rank, θ̃ involution as above
Output: Matrices U, V,D ∈ Dg×g, such that

U ·R · V = diag(r1, . . . , rg) = D, where U, V are unimodular

R(0) ← R, U ← Ig, V ← Ig
i← 0
while (R(i) is not a diagonal matrix or i ≡2 1) do

i← i+ 1
Compute U (i) such that U (i) ·R(i−1) = G(DR(i−1))

R(i) ← θ̃(G(DR(i−1)))
if (i ≡2 0) then

V ← V · θ̃(U (i))
end
else

U ← U (i) · U
end

end

return (U, V,R(i))

Algorithm 2: Diagonalization with Gröbner Bases

Theorem 4.1.6 The Algorithm 2 terminates and it is correct.
That is, for R ∈ Dg×g, let R(i) denote the matrix we get after the i-th execution of the
while loop. Then there exists an element k ∈ N such that R(k) is a diagonal matrix. If
k is odd, then the while loop is repeated just one more time (define l := k+(k mod 2)
in this case). In both cases, the while loop is terminated by its condition. The matrices
U, V obtained in the last loop are unimodular and satisfy URV = diag(r1, . . . , rg).

Proof: We prove the claim by induction on g, the size of the square matrix R. For
g = 1, there is nothing to show.
Using Lemma 4.1.5, the equality D〈θ((R(i+1))gg)〉 = D〈(R(i))1g, (R

(i))2g, . . . , (R
(i))gg〉

holds. Hence we get

D
〈
(R(i))gg

〉
⊆ D

〈
θ((R(i+1))gg)

〉
for all i.

By degree arguments, this implies that D〈(R(r))gg〉 = D〈θ((R(r+1))gg)〉 for some r.
Using Lemma 4.1.5 and (R(r))gg 6= 0 (since R is of full rank), we obtain that (R(r))gg
is a right divisor of (R(r))ig for each 1 ≤ i ≤ g−1. Then the definition of G yields that

R(r+1) =


0

R′ ...
0

0 . . . 0 (R(r+1))gg

 .

The (g−1)×(g−1) matrix R′ can be transformed to a diagonal matrix via unimodular
operations by induction. It remains to consider the transformation matrices U and V .
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For each i ∈ N, after executing the while loop i times, we obtain{
R(i) = U (i−1) · U (i−3) · · ·U (1) · R · θ̃(U (2)) · θ̃(U (4)) · · · θ̃(U (i)), if i is even

R(i) = U (i−1) · U (i−3) · · ·U (1) · θ̃(R) · θ̃(U (2)) · θ̃(U (4)) · · · θ̃(U (i)), if i is odd,

which completes the proof. �

Remark 4.1.7 Note that the algorithm requires only Gröbner basis computations
for row modules, and not for column modules. This is an advantage in practice, since
most non-commutative computer algebra systems provide either implementations, not
both.

Let us illustrate the algorithm with the following example. At first, we consider
a matrix over a commutative ring. Non-commutative examples appear in Example
4.1.22 and in Subsection 4.2.1.

Example 4.1.8 Let D = K[x] and let θ̃ be the transposition on D2×2. Consider

R =

[
x2 − 1 x+ 1

x3 + x2 + 1 −x

]
∈ D2×2.

Then R(0) := R, U = V = I2 and i = 0.

1: Since R(0) is not diagonal, we enter the while loop

• i← 1

• Since
[

x x + 1
1 1

]
R(0) = G(DR(0)) and i ≡2 1

R(1) ←
[

x4 + 3x3 + x2 + 1 x3 + 2x2

0 1

]
U ←

[
x x + 1
1 1

]
2: Since R(1) is not diagonal, we enter the while loop

• i← 2

• Since
[

1 −x3 − 2x2

0 1

]
R(1) = G(DR(1)) and i ≡2 0

R(2) ←
[

x4 + 3x3 + x2 + 1 0
0 1

]
V ←

[
1 0

−x3 − 2x2 1

]
3: Since i is even and R(2) is diagonal, the while loop terminates. The algorithm

returns U, V and R(2).

A routine check ensures that URV = R(2).
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Remark 4.1.9 In order to extend Theorem 4.1.6 and Algorithm 2 to non-square and
non-full rank matrices, we need to add suitable syzygies to U and V , and zero rows
and columns to the diagonal matrix, in order to maintain the initial size of R. For
a computational solution, it is sufficient to extend Algorithm 2 in the following way.
Let R(i) ∈ Ds×t, where either s = g, t = q or s = q, t = g in the i-th while loop.
Instead of computing U (i), satisfying U (i) · R(i−1) = G(DR(i−1)), we compute G(DR̃)
for the extended matrix R̃ := [Is, R

(i−1)]. Then R̃ is obviously a full row rank matrix.
Defining

U (i) := [G(DR̃)T1 , . . . ,G(DR̃)Ts ]T , and R(i) := [G(DR̃)Ts+1, . . . ,G(DR̃)Tt ]T

it is easy to see that
U (i)R(i−1) = R(i).

The matrix R(i) consists of the rows of G(DR(i−1)) and additional zero rows, such that
R(i) ∈ Ds×t.

4.1.1 Polynomial decoupling

We are given a matrix R over a non-commutative Euclidean domain D. In this section,
we show our main result of this chapter. We introduce a method that allows to execute
Algorithm 2 in a completely polynomial (that is, fraction-free) framework. The idea
comes from the commutative case and was elaborated e.g. in [GTZ98].
To specify this, let A∗ denote a G-algebra and A = Quot(A∗). Moreover, let D =
A[∂;σ, δ] and letD∗ denoteA∗[∂;σ, δ], which is aG-algebra. For a detailed introduction
to G-algebras and the connection to Ore localizations, we refer to Subsection 2.2.
Evidently D∗ ⊆ D, since A∗ ⊆ A. Without loss of generality, we suppose that R does
not contain a zero row.
We define the degree of an element in D∗ or D1×q

∗ analogously to D or D1×q, that is,
by assigning degree 0 to the nonzero elements of A∗ and degree 1 to ∂. In particular,
the degree is invariant under the multiplication by elements in A∗.

Lemma 4.1.10 Let R ∈ Dg×q. Then there exists a D-unimodular matrix T ∈ Dg×g∗
such that TR ∈ D∗g×q.

Proof: If R ∈ D∗g×q, there is nothing to do, so assume R contains elements with
fractions. At first, we show how to bring two fractional elements a−1b, c−1d for a, c ∈
A∗, b, d ∈ D∗ to a common left denominator, cf. [Ape88]. For any h1, h2 ∈ A∗ such
that h1a = h2c, it is easy to see that

(h1a)
−1(h1b) = a−1h−1

1 h1b = a−1b and (h1a)
−1(h2d) = (h2c)

−1(h2d) = c−1d,

hence h1a = (a−1h−1
1 )−1 = h2c is a common left denominator. Analogously, we can

compute a common left denominator for any finite set of fractions, hence we can do
it for any element in D as well as for any row vector in D1×q. Let Tii be the common
left denominator of non-zero elements from the i-th row of R, then TR contains no
fractions. Moreover, T is a diagonal matrix with non-zero polynomial entries, so it is
D-unimodular. �
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Remark 4.1.11 Note that the computation of compatible factors hi for a1, a2 ∈ A∗
can be achieved by computing syzygies, since {(h1, h2) ∈ A2

∗ | h1a1 = h2a2} is exactly
the module Syz(a1,−a2) ⊂ A2

∗. The factors hi for more than two ai’s can be obtained
by iterating this procedure.

Define R∗ := TR ∈ Dg×q∗ using the notation of Lemma 4.1.10. Then the relations

D∗R∗ ⊆ DR and DR∗ = DR hold obviously. Thus whenever we speak about a finitely
generated submodule DR ⊂ D1×q, then DR∗ will denote a presentation of DR with
generators contained in D∗. In what follows, we will show how to find D-unimodular
matrices U ∈ Dg×g∗ and V ∈ Dq×q∗ such that

U(TR)V =


r1

. . .

rq
0

 ∈ Dg×q∗ .

Since the equality U(TR)V = (UT )RV holds and UT is a D-unimodular matrix, our
initial aim follows.
As in the previous subsection, by G(D∗R∗) we denote the reduced left Gröbner basis
of the submodule D∗R∗ with respect to the module ordering <∗, giving priority to the
last component and a lexicographical ordering on D∗, that is, satisfying

∂ > xn > · · · > x1.

For r, s ∈ Mon(D∗), this extends to

r ei < s ej :⇔ i < j or if i = j then r < s.

Unlike the rational case, the leading monomials of elements in D1×g
∗ are of the form

xα1
1 · · ·xαn

n ∂β for αi, β ∈ N.

Remark 4.1.12 Using the polynomial strategy, two improvements can be observed.
On the one hand, the quotient field has not to be used at all, once we have mapped the
matrix we work with from Dg×q to Dg×q∗ . The other improvement lies in the nature of
generation of normal forms for matrices and the corresponding transformation matri-
ces. The naive approach would be to apply elementary operations including division
by invertibles on the rows and columns, that is, operations from the left and from the
right. Indeed, there are methods using different techniques like for instance p-adic ar-
guments to calculate the invariant factors of the Smith form over the integers [Lüb02].
However, this method does not help with the generation of transformation matrices.
Obviously, the swap from left to right has no influence in the commutative framework.
But suppose for instance D to be the rational Weyl algebra B1, see Example 2.2.5.
Then 1

x
is an unit in B1 and

∂
1

x
=

1

x
∂ − 1

x2
.

Comparing the multiplication with the inverse element, that is, with x, we see that
∂x = x∂ + 1 holds. Thus a multiplication of any polynomial containing ∂ with the
element 1

x
in the field of fractions causes an immediate coefficient swell. Since a normal
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form of a matrix is given modulo unimodular operations, the previous example illus-
trates the variations of possible representations. In Section 4.2.1, we will give examples
where the polynomial method dams up the coefficient increase in a very impressive way.

But note that on the other hand, the changeover to the polynomial framework brings
a problem. The underlying ring D∗ is not a PID anymore, as we can already see from
the form of the leading monomials. However, this is the essential property for the
existence of a diagonal form. In the sequel, we show how this problem can be resolved
by fixing the chosen module ordering and a suitable sorting condition. Referring to
the argumentation of Remark 4.1.4 yields the block-diagonal form

G(D∗R∗) =



0 . . . . . . 0
...

...
0 . . . . . . 0

*
... 0
∗

*
... 0
∗

. . .

*

∗ ...
∗



, (4.1)

where the rows with the boxed element have the smallest leading term with respect
to the chosen ordering in the corresponding block. A block denotes all elements of
the same leading position in G(D∗R∗). In Theorem 4.1.17, we show that exactly these
elements generate DR. Further in Lemma 4.1.15, we will see that these elements
provide us with additional information. However, this result demands some more
preparation.

Lemma 4.1.13 Let P be D or D∗. For R ∈ P g×q of full row rank and every 1 ≤ i ≤ g,
define αi := min{deg(a) | a ∈ PR\{0} and lpos(a) = i}. Then for all 1 ≤ i ≤ g, there
exists hi ∈ G(PR) of degree αi with lpos(hi) = i.

Proof: Recall that ∂ > xj for all j. Let f ∈ PR with lpos(f) = i and deg(f) = αi.
Suppose that for all g ∈ G(PR) with leading position i, deg(g) > αi holds. Since
G(PR) is a Gröbner basis, there exists g ∈ G(PR) such that lm(g) divides lm(f). This
happens if and only if deg(g) ≤ deg(f), because D∗ is a G-algebra and D is an Ore
PID. This yields a contradiction. �

The full rank assumption in the previous lemma guaranties the existence of αi for each
component 1 ≤ i ≤ g. Note that over D∗, there can exist more than one element in
{deg(a) | a ∈ PR\{0} and lpos(a) = i}. We propose the selection strategy described
in Theorem 4.1.17.
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Corollary 4.1.14 Lemma 4.1.13 and Lemma 4.1.4 yield

deg(G(DR)i) = min{deg(a) | a ∈ DR and lpos(a) = i}.

Lemma 4.1.15 Let αi be the degree of the boxed entry with leading position in the
i-th column, that is

αi := deg( min
<∗
{b | b ∈ G(D∗R∗) and lpos(b) = i} ).

Then deg(lm(h)) ≥ αi for all h ∈ DR with lpos(h) = i.

Proof: Now suppose the claim does not hold and there is h ∈ DR with lpos(h) = i of
degree smaller than αi. Using Lemma 4.1.10, there exists a ∈ A∗ such that ah ∈ D∗R∗.
Then deg(ah) = deg(h) and lpos(ah) = i. Due to Lemma 4.1.13, deg(f) ≥ αi for all
f ∈ D∗R∗ with leading position i, hence we obtain a contradiction. �

Corollary 4.1.16 Lemma 4.1.15 and Corollary 4.1.14 provide for all 1 ≤ i ≤ g the
equality

min{deg(a) | a ∈ DR and lpos(a) = i} = min{deg(a) | a ∈ D∗R∗ and lpos(a) = i}.

Theorem 4.1.17 Let R ∈ Dg×g be of full rank. For each 1 ≤ i ≤ g, let us define

bi := min
<∗
{b | b ∈ G(D∗R∗) and lpos(b) = i}.

Note that the set {b1, . . . , bg} corresponds to the subset of all rows with a boxed entry
in the block triangular form (4.1). Moreover D〈b1, . . . , bg〉 = DR.

Remark 4.1.18 Note that the minimum bi, defined in the previous theorem, exists
for each 1 ≤ i ≤ g, since R is of full rank.

Proof: Let f ∈ DR. Due to Corollary 4.1.16, there exists 1 ≤ k ≤ g such that
lpos(bk) = lpos(f) and deg(bk) ≤ deg(f). Thus there exists an element sk ∈ D
providing that deg(f − skbk) < deg(bk). Since f − skbk ∈ DR, Corollary 4.1.16 implies
that we have lpos(f − skbk) < lpos(f). Iterating this reduction leads to the remainder
zero and thus f =

∑k
i=1 sibi. �

Using the notation of the previous theorem, let

G∗(DR) :=

 b1
...
bg

 ,
which is by definition a lower triangular matrix. In the sequel, let R ∈ Dg×g be of full
row rank. Note that then obviously G∗(DR) is a square matrix.
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Proposition 4.1.19 Suppose R ∈ Dg×g is a full row rank matrix and there is U∗ ∈
Dl×g∗ such that U∗R∗ = G(D∗R∗). Let us select the indices

{t1, . . . , tg} ⊆ {1, . . . , l} such that {(U∗R∗)t1 , . . . , (U∗R∗)tg} = G∗(DR) (4.2)

(see notation of Theorem 4.1.17). Then U := [(U∗)t1 , . . . , (U∗)tg ]
T is D-unimodular in

Dg×g and UR∗ = G∗(DR).

Proof: The equality UR∗ = G∗(DR) follows by the definition of U . Still left to show
is that U is D-unimodular. Note that D(UR∗) = DG

∗(DR) = DR = DR∗ holds and
UR∗ ∈ Dg×g 3 R∗. Thus there exists V ∈ Dg×g such that R∗ = V (UR∗). Then
V U = Ig and so one can easily show that UV = Ig, since R has full row rank. �

Lemma 4.1.20 The equality of the following left ideals holds:

D〈θ(G∗(DR)g1), . . . , θ(G
∗(DR)gg)〉 = D〈G∗(θ̃(G∗(DR))gg〉.

Proof: Using the argumentation given in the proof of Lemma 4.1.5 we obtain

D〈θ(G∗(DR)g1), . . . , θ(G
∗(DR)gg)〉 = D〈G(θ̃(G∗(DR))gg〉.

Note the module identities DG
∗(DR) = DG(DR)

⇒ θ̃(G∗(DR))D = θ̃(G(DR))D ⇒ DG
∗(θ̃(G∗(DR))) = DG(θ̃(G(DR))).

According to the latter identity and since G(θ̃(G(DR)) and G∗(θ̃(G∗(DR))) are lower

triangular matrices, we obtain D〈G(θ̃(G(DR))gg〉 = D〈G∗(θ̃(G∗(DR))gg〉. �

Now we are ready to formulate the polynomial version of Algorithm 2.

Input : R ∈ Dg×g of full rank, θ an involution on D∗ and θ̃ the extension
of θ to Dg×g∗

Output: D-unimodular matrices U, V ∈ Dg×g∗ such that
U ·R · V = diag(r1, . . . , rg)

Find T ∈ Dg×g unimodular such that TR ∈ Dg×g∗
R(0) ← TR, U ← T , V ← Ig
i← 0
while R(i) is not a diagonal matrix or i ≡2 1 do

i← i+ 1
Compute U (i) so that U (i) ·R(i−1) = G(D∗R(i−1)) ∈ Dl×g∗
Select {t1, . . . , tg} ⊆ {1, . . . , l} as in (4.2)
U (i) ← [(U (i))t1 , . . . , (U

(i))tg ]
T

R(i) ← θ̃(G∗(DR))
if i ≡2 0 then

V ← V · θ̃(U (i))
end
else

U ← U (i) · U
end

end

return (U, V,R(i))

Algorithm 3: Polynomial diagonalization with Gröbner Bases
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Theorem 4.1.21 Algorithm 3 terminates with the claimed result.

Proof: Using Proposition 4.1.19 and replacing Lemma 4.1.5 by Lemma 4.1.20 in the
proof of Theorem 4.1.6 provides the claim. �

Let us again illustrate the algorithm via an example.

Example 4.1.22 Suppose D = K(x)[∂; id, d
dx

] and D∗ = K[x][∂; id, d
dx

]. Let us define
a K-linear map

θ : D∗ → D∗,
{
∂ 7→ −∂
x 7→ x.

Indeed, θ gives rise to an involution (anti-automorphism), which obeys
θ(ab) = θ(b)θ(a) for all a, b ∈ D∗. Let

R =

[
∂2 − 1 ∂ + 1
∂2 + 1 ∂ − x

]
∈ D2×2.

Evidently T = I2 and thus R(0) := R, U = V = I2 and i = 0.

1: Since R(0) is not diagonal, go into the while loop

• i← 1

• Since

 −x∂ − ∂ + x2 + x + 1 x∂ + ∂ + x
−∂2 + x∂ − ∂ + x + 2 ∂2 + 2∂ + 1

∂ − x −∂ − 1

 R(0) = G(D∗R(0))

where G(D∗R(0)) =

 x2∂2 + 2x∂2 + ∂2 + 2x∂ + 2∂ − x2 − 1 0
x∂3 + ∂3 + x∂2 + 5∂2 − x∂ + 3∂ − x− 1 0

−x∂2 − ∂2 − 2∂ + x− 1 1


and i ≡2 1

R(1) ←
[

x2∂2 + 2x∂2 + ∂2 + 2x∂ + 2∂ − x2 − 1 −x∂2 − ∂2 + x− 1
0 1

]
U ←

[
−x∂ − ∂ + x2 + x + 1 x∂ + ∂ + x

∂ − x −∂ − 1

]
2: Since R(1) is not diagonal, go into the while loop

• i← 2

• Since
[

1 x∂2 + ∂2 − x + 1
0 1

]
R(1) = G(D∗R(1)) and i ≡2 0

R(2) ←
[

x2∂2 + 2x∂2 + ∂2 + 2x∂ + 2∂ − x2 − 1 0
0 1

]
V ←

[
1 0

t∂2 + ∂2 + 2∂ − x + 1 1

]
3: Since i is even and R(2) is diagonal, the algorithm returns U and V .

And indeed, the algorithm outputs the claimed result, since

URV =
[

x2∂2 + 2x∂2 + ∂2 + 2x∂ + 2∂ − x2 − 1 0
0 1

]
.

Algorithm 3 can be extended to R ∈ Dg×q along the lines already presented in Remark
4.1.9.
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4.2 Normal forms for time-varying systems

As in the previous section, suppose D to be a left and right Euclidean domain. Inspired
by the Smith form, we will focus on how to sharpen the result of the already discussed
diagonal form. Following [Coh71, Jac43], we obtain the following theorem.

Theorem 4.2.1 Every matrix R ∈ Dg×q is equivalent to a certain diagonal matrix,
namely diag(r1, . . . , r`, 0, . . . , 0), such that additionally

Dri+1D ⊆ riD ∩Dri (4.3)

holds for all i = 1, . . . ,min{g, q} − 1.

Remark 4.2.2 [Jac43, Theorem 31] The elements ri are unique up to an equivalence
relation called similarity, which will be defined in Definition 4.2.7.

Definition 4.2.3 If the relation (4.3) is satisfied, then ri is called a total divisor of
ri+1, short ri || ri+1.

Note that if ri is a total divisor of ri+1, then ri is a left and a right divisor of ri+1, but
not necesserily vice versa. A counterexample is given by every non-invertible non-zero
element of a simple ring D.

Remark 4.2.4

1. If D is simple, then ri || ri+1 implies that ri is a unit or ri+1 equals zero.

2. If D is commutative, then ri || ri+1 if and only if ri+1D ⊆ riD, that is, ri | ri+1.

3. If Dri+1D ⊆ riD, then ri || ri+1.

Proof: The first and second item are easy to see. To prove the third item, we need
to show that Dri+1D ⊆ Dri. Without loss of generality, let Dri+1D 6= {0}. We show
first that there exists an element ` ∈ D such that

Dri+1D = `D = D`. (4.4)

Since D is a left and right Euclidean domain, there exist `, r ∈ D satisfying

Dri+1D = Dr = D`.

We claim that ` is associated to r: There exist a, b ∈ D such that ` = ar and r = `b.
Thus ` = a`b, where a` ∈ Dri+1D. This implies that a` = `b′ for b′ ∈ D, and thus
`(1− b′b) = 0. Since Dri+1D 6= {0}, we have that ` 6= 0. This implies that b is a unit
and the claim follows.
Finally, we claim that `D ⊆ riD implies D` ⊆ Dri, which implies that

Dri+1D ⊆ Dri,
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using (4.4). Due to the structure of D, there exists an element f ∈ D such that
Dri + D` = Df . Thus there exist suitable a, b ∈ D such that f = ari + b`. Since
` = rih for a non-zero element h ∈ D, the equality

fh = arih+ b`h =(4.4) arih+ bh′` = arih+ bh′rih = (a+ bh′)rih

holds. This yields Df ⊆ Dri and hence D` ⊆ Dri. �

Note that (4.3) is hard to tackle constructively in general, since there is no grip on
the intersection of a left and a right ideal. This difficulty is overcome if D is simple.
Theorem 4.2.1 and Remark 4.2.4 then yields the existence of unimodular matrices
U ∈ Dg×g and V ∈ Dq×q such that

URV =

[
D 0
0 0

]
=: J,

where D = diag(1, . . . , 1,mR) ∈ Dr×r such that r = rank(R). Then J is called the
Jacobson form of R, see Theorem 1.4.1.

In order derive a normal form, the uniqueness of the element mR needs to be discussed.
For this purpose, suppose R,S ∈ Dg×q to be equivalent, that is,

URV = S

for unimodular matrices U, V . Then RD ∼= SD and furthermore, we have the following
isomorphism between the corresponding modules

D/mRD ⊕Dq−rank(R) ∼= Dg/RDq ∼=MR
∼=MS

∼= Dg/SDq ∼= D/mSD ⊕Dq−rank(S).

Since S and R are of equal rank and D is a Euclidean domain, the isomorphism yields

D/mRD ∼= D/mSD.

Thus there exists a right module isomorphism φ : D/mRD → D/mSD. Since φ is
linear, we have

[x] 7→ a[x] = [ax]

for a suitable a ∈ D. The map φ is well-defined, which implies that amRD ⊆ mSD,
that is,

mRD ⊆ {x ∈ D | ax ∈ mSD}. (4.5)

The injectivity of φ implies conversely that

mRD ⊇ {x ∈ D | ax ∈ mSD}. (4.6)

Furthermore since φ is surjective, we obtain that

∀ c ∈ D ∃r ∈ D : c− ar ∈ mSD,

which yields

D = aD +mSD. (4.7)

Consideration of (4.5), (4.6) and (4.7) motivates the following claim:
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Theorem 4.2.5 Let mR,mS ∈ D. Then

D/mRD ∼= D/mSD

if and only if there exists an element a ∈ D such that

(i) D = aD +mSD,

(ii) mRD = {x ∈ D | ax ∈ mSD}.

Proof: If D/mRD and D/mSD are isomorphic, then (4.5) and (4.6) imply (ii) and
(4.7) yields (i). Conversely, (i) leads to

D/mSD ∼= (aD +mSD) /mSD ∼= aD / (aD ∩mSD).

Using the epimorphism

D → aD / (aD ∩mSD), x 7→ [ax]

and (ii), we obtain
D/mRD ∼= aD / (aD ∩mSD),

which completes the proof. �

The characterization introduced in the previous theorem can be specified and leads to
the next corollary.

Corollary 4.2.6 Let a,mS,mR ∈ D and D = aD +mSD. Then

mRD = {x ∈ D | ax ∈ mSD} (4.8)

holds if and only if there exists an element b ∈ D such that

amR = mSb and D = Db+DmR (4.9)

hold.

Proof: First suppose mS to be zero. Then the assumption D = aD + mSD implies
that a is a unit. Since D is a domain, (4.8) coincides with mR = 0 and (4.9) coincides
with mR = 0 too. Now suppose mS 6= 0.
It is easy to see that mRD ⊆ {x ∈ D | ax ∈ mSD} holds if and only if there exists an
element b ∈ D such that amR and mSb coincide.
Now suppose (4.8) holds, that is, amR = mSb and for all x ∈ D, the relation ax ∈ mSD
implies that x ∈ mRD. Further, we have the ideal identity

Db+DmR = Dy, (4.10)

where 0 6= y ∈ D. Else mR = 0, which would contradict Theorem 4.2.5. Let x, c, z ∈ D
be suitable such that ax = mSc and x = mRz. Then mSc = ax = amRz = mSbz and
therefore bz = c, since mS 6= 0. Thus

ker([a,−mS]·) ⊆ im(

[
mR

b

]
·). (4.11)
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Due to (4.10), there exist m′, b′ ∈ D such that mR = m′y and b = b′y. Since 0 =
amR −mSb = am′y −mSb

′y, we obtain that

im(

[
m′

b′

]
·) ⊆ ker([a,−mS]·). (4.12)

Combining the two inclusions (4.11) and (4.12) leads to

ker([a,−mS]·) ⊆ im(

[
mR

b

]
·) = im(

[
m′

b′

]
y ·) ⊆ im(

[
m′

b′

]
·) ⊆ ker([a,−mS]·).

Thus we obtain the equality

im(

[
mR

b

]
·) = im(

[
m′

b′

]
·).

Therefore y is a unit and thus (4.9) follows.
Conversely suppose that (4.9) holds. Then there exist m′

R,m
′
S, a

′, b′ ∈ D such that

b′b+m′
RmR = 1, aa′ +mSm

′
S = 1 and amR = mSb.

Using this, one can easily verify that the matrix

[
m′
R b′

a −mS

]
is invertible. To prove

the theorem we still need to show that ax = mSc implies x ∈ mRD. The equivalence[
x
c

]
∈ ker([a,−mS]·)

⇔
[
z
0

]
=

[
m′
R b′

a −mS

] [
x
c

]
⇔

[
m′
R b′

a −mS

] [
mR

b

]
z =

[
m′
R b′

a −mS

] [
x
c

]
⇔

[
mR

b

]
z =

[
x
c

]
⇔

[
x
c

]
∈ im(

[
mR

b

]
·)

completes the proof. �

Definition 4.2.7 In the situation of Corollary 4.2.6, we call mR and mS similar.

Remark 4.2.8 Up to similarity, the Jacobson form is a normal form.

Now let D = A[∂;σ, δ] for the fraction algebra A of a G-algebra. Recall that the degree
of s ∈ D is defined as the highest exponent of ∂ appearing in s.
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Remark 4.2.9 According to [Ore33], the degrees of two similar polynomials are equal,
that is, the degree of mR is an invariant.

However, it is not necessary to compute the Jacobson form to determine the degree of
mR. As the next remark will show, it is sufficient to have a diagonal form.

Remark 4.2.10 Let U, V be unimodular and a, b, c ∈ D \ {0} such that

U diag(a, b)V = diag(1, c). (4.13)

Then deg(a) + deg(b) = deg(c).

Proof: Due to (4.13) there exists a D-module isomorphism

φ : D/aD ⊕D/bD → D/cD.

Recall that A denotes the fraction algebra Quot(A∗) of a G-algebra A∗. Then A
is a skew field and φ is a A-vector space isomorphism. Thus the A-dimensions of
D/aD ⊕ D/bD and D/cD coincide. But since the A-dimension of D/aD ⊕ D/bD is
deg(a) + deg(b) and the A-dimension of D/cD is deg(c), the claim follows. �

In what follows, we focus on the rational Weyl algebra over a field of characteristic
zero, see Remark 2.2.7. Thus let D denote the rational Weyl algebra K(x)[∂; id, ∂

∂x
]

for a field of characteristic zero for the remaining section. Note that the restriction
of the field to be of characteristic zero is indeed essential as already pointed out in
Remark 2.2.7.

Lemma 4.2.11 Consider a, b ∈ D with deg(a) > 0, b 6= 0 and deg(b) ≥ deg(a). Then
there exists i ∈ {0, . . . , deg(b)− deg(a) + 1} such that a is not a right divisor of bxi.

Proof: Suppose that for every i ∈ {0, . . . , deg(b)− deg(a) + 1} there exists a qi ∈ D
such that bxi = qia. Let b = bn(x)∂

n + · · · + b1(x)∂ + b0(x), where bn 6= 0. Note that
for any k ∈ N the equality ∂kx = x∂k + k∂k−1 holds. Thus

bx = bn(x)∂
nx+ · · ·+ b1(x)∂x+ b0(x)x

= bn(x)(x∂
n + n∂n−1) + · · ·+ b1(x)(x∂ + 1) + xb0(x)

= xb+
n∑
i=1

bi(x)i∂
i−1

︸ ︷︷ ︸
=:r1

with deg(r1) = n − 1 < deg(b) and r1 6= 0 since deg(b) ≥ 1. Since b = q0a and
bx = q1a, it follows that r1 = bx− xb = (q1 − xq0)a, that is, a is a right divisor of r1.
By proceeding with bx2 and so on, we obtain a sequence of non-zero polynomials ri,
such that deg(b) > deg(r1) > . . . and a | ri. Since the degree of ri decreases exactly by
1 at each step, after at most deg(b)− deg(a) + 1 iterations, we obtain a polynomial of
degree deg(a) − 1, which is non-zero. Such a polynomial must contain a right factor
of degree deg(a), which is a contradiction. �
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Due to Lemma 4.2.11, we can describe constructively how to compute the Jacobson
form from a diagonal matrix. Suppose R ∈ Rg×q, where g = q = 2. The extension
to g, q ∈ N is evident. Algorithm 3 returns unimodular matrices U, V such that
URV = diag(r1, r2). Without loss of generality, let us assume that deg(r2) ≤ deg(r1).

1) If r2 is a unit, we get the Jacobson form just by replacing U by

[
0 r−1

2

1 0

]
U

and V by V

[
0 1
1 0

]
.

Otherwise, choose according to Lemma 4.2.11 an exponent i ∈ N such that
r1x

i = ar2 + b with deg(b) < deg(r2) and b 6= 0. Then[
1 −a
0 1

]
·
[
r1 0
0 r2

]
·
[

1 xi

0 1

]
=

[
r1 b
0 r2

]
.

Replace U by

[
1 −a
0 1

]
U and V by V

[
1 xi

0 1

]
.

2) Now we apply Algorithm 3 to the matrix

[
r1 b
0 r2

]
. The result is then the

diagonal matrix diag(r′1, r
′
2), where deg(r′2) < deg(r2).

Thus, by iterating 1) and 2), we compute U and V such that URV = diag(mR, 1).

Remark 4.2.12 We claim (without proof) that the Jacobson form can be calculated
once having a diagonal form in the following way:
Due to Remark 4.2.10, the sum Σdeg of the degrees of all diagonal entries is an in-
variant of the module. Following the ideas of [Mid08], we can use this information to
compute the cyclic generator of D1×q/DR. The algorithmic idea is to compute random
annihilators ai of each diagonal entry ri. Let 〈c〉 =

⋂
〈ai〉. Then [c, 1, . . . , 1] is a cyclic

generator of D1×q/DR if c is of degree Σdeg. In that case diag(1, . . . , 1, c, 0, . . . , 0) is a
Jacobson form of R.

4.2.1 Examples, Applications and Comparison

To the best of our knowledge, the Jacobson normal form algorithm has been im-
plemented in Maple by Culianez and Quadrat [CQ05], by Robertz et.al. [BCG+03,
CQR04] and by Middeke [Mid08]. However, we could not locate the download ver-
sion of the implementation of [CQ05]. The implementation of Middeke [Mid08] was,
according to its author, merely a check of ideas and was not supposed to become a
freely distributed package for Maple. Robertz informed us that his implementation
[BCG+03] directly follows the classical algorithm and it has not been specially opti-
mized. Nevertheless, in what follows, we compare our implementation with the one in
the Maple package Janet [BCG+03] on some nontrivial examples.

As we already pointed out in the introduction, behind normal forms there are various
application-driven motivations. See e. g. [CQ05] for several interesting examples.
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Example 4.2.13 Consider a bar on which two pendula of length `1 and `2 are fixed,
a so-called bipendulum. The bar can be moved horizontally and u denotes its posi-
tion. Furthermore let x1 denote the angle between the left pendulum and the vertical
position and x2 analogously the angle between the rigth pendulum and the vertical
position.

u

`2

x2

`1

x1

The linearization of this problem leads to the system of linear ordinary differential
equations

`1
d2

dt2
x1(t) + gx1(t)− gu(t) = 0

`2
d2

dt2
x2(t) + gx2(t)− gu(t) = 0,

where g is the gravitational constant. Using our notation this coincides with the linear
system R • [x1, x2, u]

T = 0, where

R =

[
`1∂

2 + g 0 −g
0 `2∂

2 + g −g

]
.

Since the variable t does not appear in R, the ground ring can be thought of as
R(`1, `2, g)[∂]. Thus, indeed one can compute the Smith normal form.
We run our implementation of the Jacobson form of R on this example and obtain

U =

[
−1/g 0
−1/g 1/g

]
and V =

 0 g`2 −g`2∂2 − g2

0 g`1 −g`1∂2 − g2

1 `1`2∂
2 + g`2 −`1`2∂4 − g`1 − g`2∂2 − g2


such that

U RV =

[
1 0 0
0 g`1 − g`2 0

]
.

This result agrees with results obtained in [CQ05]. Note that a purely fractional
method would return 1 instead of g(`1 − `2). With our polynomial approach, we
obtain a polynomial matrix, which is useful for further investigations. In particular,
in the current example we see, that setting `1 = `2 implies a drop of the rank of the
Smith form from 2 to one, thus the properties of the corresponding system will change.
More precisely, in case `1 6= `2 the underlying system module is isomorphic to the free
module R(`1, `2, g)[∂], that is, the linear abstract system given by R is controllable
due to Theorem 1.2.9. In case `1 = `2 we obtain[

−1/g 0
1 −1

]
︸ ︷︷ ︸

=:U

R

 0 0 −g
0 1 −g
1 0 −`1∂2 − g


︸ ︷︷ ︸

=:V

=

[
1 0 0
0 −`1∂2 − g 0

]
.
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Since

V −1 =

 − `1
g
∂2 − 1 0 1

−1 1 0
−1
g

0 0

 ,
the decomposition introduced in Section 1.4 implies that

B = {

 x1

x2

u

 ∈ A3 | R •

 x1

x2

u

 = 0},

where A = C∞(R,R), can be written as Ba ⊕ Bc with the autonomous subsystem

Ba = {ω ∈ A3 |
[
− `1

g
∂2 − 1 0 1

`1∂
2 + g −`1∂2 − g 0

]
• ω = 0 and

[
−1
g

0 0
]
• ω = 0}

= {

 x1

x2

u

 ∈ A3 | x1 = u = 0 and (−`1∂2 − g) • x2 = 0}

and the controllable subsystem

Bc = {ω ∈ A3 | ∃v ∈ A : ω =

 −g
−g

−`1∂2 − g

 • v}
= {

 x1

x2

u

 ∈ A3 | x1 = x2 and u = −`1
g
∂2 • x1 − x1}.

Remark 4.2.14 In [LZ07], an algorithm for finding so-called “obstructions to gener-
icity” was derived and discussed. A lesson learned from that paper can be applied for
an implementation of the Jacobson form as follows. It is recommended to split the
algorithm (resp. the implementation) into two parts. In the first part, one computes a
diagonal matrix, where cancellation of invertible elements of the ground field is artifi-
cially avoided. The second part applies the normalization on the invertible elements;
this part is trivial to achieve. Note that our polynomial algorithm allows one to keep
track of these invertible elements due to this scheme.

Let us start with a non-commutative example of a small matrix with entries of low de-
gree. The results of both implementations (namely, the Janet one and the Singular
one) are quite similar.

Example 4.2.15 Consider the Example 3.1.2. of [CQ05], where there is a module
presented by the matrix

R =

[
−x∂ + 1 x2∂
−∂ x∂ + 1

]
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over the first Weyl algebra in x and ∂ = ∂
∂x

over Q. Our implementation computes[
−∂ x∂
−1 x

]
R

[
x −1
1 0

]
=

[
0 0
0 1

]
,

while Janet returns [
1 −x

x2∂ −x3∂

]
R

[
1 x

0 1

]
=

[
1 0

0 0

]
.

Hence, the difference is only in the degree of the x terms in the left transformation
matrix.

Example 4.2.16 Over the first rational Weyl algebra in x, ∂, let us consider the 3×3
matrix

R =

 ∂2 ∂ + 1 0
∂ + 1 0 ∂3 − x2∂
2∂ + 1 ∂3 + ∂2 ∂2

 .
The implementation of Algorithm 3 in Singular returns the matrix diag(g, 1, 1) to-
gether with transformation matrices U, V ∈ Q[x][∂; id, d

dx
]3×3, that is,

URV = diag =: J.

Below, we write down just the leading term of each matrix entry and moreover, we
write ”l.o.t.” for ”lower order terms” corresponding the degree lexicographical ordering
on Q[x][∂; id, d

dx
], that is: Recall that the total degree is given by deg(xα∂β) = α+ β,

then for unequal monomials we have

xα1∂β1 < xα2∂β2 ⇔ deg(xα1∂β1) < deg(xα2∂β2)

or if
deg(xα1∂β1) = deg(xα2∂β2) then β1 < β2.

Then the diagonal matrix can be written as

J =

 2x2∂8 + 33 l.o.t. 0 0
0 1 0
0 0 1


and the transformation matrices are

U =

 1
2x∂13 + 24 l.o.t. 1

2x∂10 + 19 l.o.t. 1
2x∂11 + 44 l.o.t.

1
2 0 0

− 1
4∂5 + 2 l.o.t. − 1

4∂2 1
4 + 2 l.o.t.


and

V =

 2x∂2 + 3 l.o.t. 2∂2 2∂2 + 1 l.o.t.
−2x∂3 + 2 l.o.t. −2∂3 + 3 l.o.t. −2∂3

x∂8 + 28 l.o.t. ∂8 + 11 l.o.t. ∂8 + 16 l.o.t.

.

With the help of Janet, we obtain the diagonal matrix
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 1 0 0
0 1 0
0 0 (279936x14 + 14 l.o.t. )−1(279936x14∂8 + 145 l.o.t. )



U =

 1 0 0
(6x2 + 2 l.o.t.)−1(∂2 + 1 l.o.t. ) (6x2 + 2 l.o.t.)−1(∂3 + 3 l.o.t. ) (6x2 + 2 l.o.t.)−1

u31 u32 u33

,

where

u31 = (559872x14 + 14 l.o.t.)−1(−279936x14∂9 + 158 l.o.t.)

u32 = (559872x14 + 14 l.o.t.)−1(279936x14∂10 + 182 l.o.t.)

u33 = (559872x14 + 14 l.o.t.)−1(279936x14∂7 + 127 l.o.t.)

The right transformation matrix is

V =

 1 1
2∂6 + 15 l.o.t. (279936x14 + 14 l.o.t. )−1(46656x12∂7 + 110 l.o.t. )

∂ + 1l.o.t. − 1
2∂7 + 15 l.o.t. (−1679614x16 + 16 l.o.t. )−1(279936x14∂8 + 138 l.o.t. )

0 1 (6x2 + 2 l.o.t. )−1(2∂2 + 1 l.o.t

,

What we observe in this example is quite a typical behavior of any implementation
which directly uses arithmetics over a skew field. Namely, one gets big polynomials
with long coefficients, which, as we can see, are of approximately the same size. This
stays in distinct contrast with the output of our algorithm, where polynomials are of
moderate size and the coefficients are rather small.

Example 4.2.17 Suppose D = Q(y, x)[∂; id, d
dx

], D∗ = Q[y, x][∂; id, d
dx

] and consider
the following matrix coming from the system of differential equations

R =

[
y2 0
0 x2

]
∂2 +

[
1 0
x 1

]
∂ +

[
1 1
0 y

]
.

Our implementation returns the matrix diag(g, 1) , where

g = −y2x2∂4 − x2∂3 − x2∂2 − y2∂3 + x∂ + (−y3 − 1)∂2 + (−y − 1)∂ − y

and the corresponding transformation matrices, such that[
−x2∂2 − ∂ − y 1

1 0

]
M

[
1 0

−y2∂2 − ∂ − 1 1

]
=

[
g 0
0 1

]
.

The diagonal element g can be easily represented in the rational form as

g̃ = ∂4 +
x2 + y2

x2y2
∂3 +

x2 + y3 + 1

x2y2
∂2 +

−x+ y + 1

x2y2
∂ +

1

x2y
.

If we suppose R ∈ Z2(y, x)[∂; id, d
dx

]2×2, we obtain the single example from [Mid08].
Then the rational form of our result is exactly the result obtained in [Mid08], namely
diag(1, g′), where

g′ = ∂4 +
x2 + y2

x2y2
∂3 +

x2 + y3 + 1

x2y2
∂2 +

x+ y + 1

x2y2
∂ +

1

x2y
.

Note that in our method, no computations with 4×4 matrices as in [Mid08] are needed.
As demonstrated, selecting the characteristic 2 is not crucial for this example.
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Chapter 5

Multi-dimensional time-varying
systems

Section 1.6 motivates the impact of exact linear modeling for time-invariant systems.
The most powerful unfalsified model was introduced and its properties were discussed
for the model classes

• D = C[∂1, . . . , ∂n] and polynomial-exponential signals in C∞(Rn,C), that is,
trajectories of the form p(x) exp(λ1x1 + · · · + λnxn), where p ∈ C [x1, · · · , xn]q
and λ ∈ Cn

• D = C[s1, . . . , sn] and polynomial-exponential signals in CNn
, that is, trajectories

of the form p(x)λx1
1 · · ·λxn

n , where p ∈ C [x1, · · · , xn]q and λ ∈ Cn.

In this chapter, we extend the discussed model classes. The results of this chapter are
accepted for publication in the Journal of Symbolic Computation [SLZ].
In the sequel let K be a field and D be an operator algebra over K. Further let AD be
a function space over K possessing a D-module structure. In most cases of interest,
we have K ⊆ D and ok = ko for all k ∈ K, o ∈ D. Then the corresponding linear
abstract system is a K-vector space, and thus the introduced model class is linear.
Within such a model class, we want to perform modeling now.
Let us recall the idea of linear exact modeling. Suppose to observe a set of signals
Ω ⊆ AmD . The aim is to find a model BΩ in the model class such that

1. BΩ is unfalsified by Ω, i.e. Ω ⊆ BΩ.

2. BΩ is most powerful, i.e. for every model B with Ω ⊆ B, it follows that BΩ ⊆ B.

If BΩ is invariant under the action of D, that is, if we have for all o ∈ D:

ω ∈ BΩ ⇒ o • ω ∈ BΩ,

it is called most powerful unfalsified model, short MPUM of Ω. Else, if BΩ varies
under D, it is called variant most powerful unfalsified model, short VMPUM of
Ω. We denote the VMPUM of Ω by BVΩ .
The following example shows how the choice of the model class affects the model.

103



104 CHAPTER 5. MULTI-DIMENSIONAL TIME-VARYING SYSTEMS

Example 5.0.18 Consider the signal set consisting of a single polynomial signal

Ω = {ω}, where ω(x) = x for all x ∈ R.

1. Let D = C[∂] and AD = C∞(R,C), where ∂ • f := df
dx

. Using the commu-
tative structure of the operator ring, the underlying system is invariant under
differentiation:

R • w = 0 ⇒ R(∂ • w) = (R∂) • w = (∂R) • w = ∂(R • w) = 0.

Since we are searching for a differentiation-invariant model, we obtain that be-
sides ω, also its derivative, the constant function 1, belongs to BΩ. Using that
the model is C-linear, we get that

BΩ = {w | ∃a, b ∈ C : ∀x ∈ R : w(x) = ax+ b}.

An element w ∈ C∞(R,C) is contained in BΩ if and only if

∂2 • w = 0,

i.e. the MPUM is specified by a single ordinary differential equation with con-
stant coefficients.

2. Now let D = C[x]〈∂〉, where ∂ • f := df
dx

and AD is defined as above. We want
to describe ω as a solution of homogeneous ordinary differential equations with
polynomial coefficients. The equations

∂2 • w = 0 and x∂ • w − w = 0

are satisfied by ω. We will see later that these two generate a kernel representa-
tion of the VMPUM of Ω. The corresponding solution space equals

BVΩ = {w | ∃a ∈ C : ∀x ∈ R : w(x) = ax}.

Notice that this example demonstrates the variance under ∂, since we have ∂•ω /∈
BVΩ . Another property that should be pointed out is that the VMPUM yields a
more precise description of Ω than the MPUM.

5.1 Preliminaries

Example 5.0.18 deals with continuous signals. But in applications, there are also
discrete phenomena or combinations of discrete and continuous signals that are of
great interest too. As already motivated in Example 2.2.5, many of the relevant
operator algebras have the structure of an Ore algebra, see Section 2.2.
Let A be a ring and D := A[∂1;σ1, δ1] · · · [∂m;σm, δm] be an Ore algebra. With the
action

∂i • p := δi(p) and a • p := a · p for all p ∈ A and a ∈ A, (5.1)

the ring A becomes a D-module. For this, we have to show that
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1. (o1 · o2) • p = o1 • (o2 • p) for all o1, o2 ∈ D and p ∈ A

2. (o1 + o2) • p = o1 • p+ o2 • p for all o1, o2 ∈ D and p ∈ A

3. o • (p+ q) = o • p+ o • q for all o ∈ D and p, q ∈ A.

To show 1. it suffices to consider o1 = a∂i and o2 = b∂j with a, b ∈ A. Then

(o1 · o2) • p = ( a(σi(b)∂i + δi(b) )∂j ) • p
= ( aσi(b)∂i∂j + aδi(b)∂j ) • p
= aσi(b)δi(δj(p)) + aδi(b)δj(p)

= a δi(bδj(p))

= a∂i • ( b∂j • p )

= o1 • ( o2 • p ).

The equality in 2. and 3. holds by similar arguments.

Using this action, we can define the kernel of a linear operator f from the Ore algebra
D over the ring A to be kerA f := {a ∈ A | f •a = 0}. The proposed module structure
(5.1) is not interesting in case ∂i operates trivially on A for all i, because then kerA f
would equal A for all

∑
α∈Nn fα∂

α = f ∈ D with f0 = 0. Our approach would
then model exclusively inner relations of A, or rather Aq. Therefore we will consider
operator algebras which act nontrivially on the function space. But this requirement
is not a restriction, as the following results will show.

Lemma 5.1.1 Let A be a ring, and A[∂;σ, δ] be an Ore extension of A. For any
α ∈ A, there exists an Ore extension A[∆α;σ, δ

′] with δ′(a) = σ(a)α−αa+ δ(a), such
that A[∂;σ, δ] ∼= A[∆α;σ, δ

′] as rings.

Proof: For all a ∈ A, the equality ∂a = σ(a)∂ + δ(a) holds. For α ∈ A, define
∆α := ∂ − α. Then it obeys the relation ∆αa = σ(a)∆α + σ(a)α − αa+ δ(a). Let us
define δ′(a) := σ(a)α− αa+ δ(a), which is clearly linear. It is easy to see that δ′ is a
σ-derivation. Namely, by expanding σ(a)δ′(b) + δ′(a)b, we get

σ(a)δ′(b) + δ′(a)b = σ(a)σ(b)α− σ(a)αb+ σ(a)δ(b) + σ(a)αb− αab+ δ(a)b =

σ(a)σ(b)α− αab+ σ(a)δ(b) + δ(a)b = δ′(ab).

This shows that A[∆α;σ, δ
′] is a subring of A[∂;σ, δ] by construction. Hence the ring

homomorphism ϕα : A[∂;σ, δ] → A[∆α;σ, δ
′], being the identity on A, which sends ∂

to ∆α is surjective. Since ∆α was defined to be ∂ − α, the injectivity follows. �

Lemma 5.1.2 Let K be a field, A be a K-algebra, δ be a K-linear operator, acting
on A and B = A[∂;σ, δ] be the corresponding operator algebra (that is, for all a ∈ A
we have ∂a = σ(a)∂ + δ(a)). Then the following holds:

(i) kerA ∂ = A⇔ δ = 0⇔ B = A[∂;σ, 0].
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(ii) If kerA ∂ = A, then we have for ∆ := ∂ − 1: A[∂;σ, 0] is isomorphic as a
K-algebra to the operator algebra A[∆;σ, δ′] with δ′ := σ − 1.

Proof:

(i) We have kerA ∂ = {a ∈ A | ∂ • a = 0} = {a ∈ A | δ(a) = 0}, thus the claim
follows by definition.

(ii) Referring to Lemma 5.1.1, we define α := 1. Then ∆α = ∂ − 1 = ∆. Since
further due to the previous item δ = 0, we obtain the equality

σ(a)α− αa+ δ(a) = σ(a)− a = δ′(a).

Thus the claim follows by Lemma 5.1.1. �

Remark 5.1.3 Using Lemmas 5.1.1 and 5.1.2, we pass to the new setting of operators
∂i which act nontrivially on A. From now on, we will work only with such operators.

The following example shows how to pass to the feasible setting in case δ equals the
zero-map.

Example 5.1.4

1. The first forward shift algebra is defined by K[x] [s;σ, 0] with (σf)(x) =
f(x+1) for all f ∈ K[x]. The commutation rule is sx = xs+s. There is a natural
operator associated to s, namely the difference operator ∆ = s − 1, already
defined in Example 2.2.5, obeying the relation ∆x = x∆ + ∆ + 1. Applying
Lemma 5.1.2, we see by degree arguments that ker ∆ = K, and the two algebras
are isomorphic both as Ore extensions and as K-algebras.

2. Let q be transcendental over K. Then the first q-commutative algebra (or
Manin’s quantum plane) is defined as Kq[x, y] := K(q)[x][∂;σ, 0] with (σf)(x) =
f(qx) for f ∈ K[x]. Again, there is a natural q-difference operator ∆q := ∂ −
1 and the corresponding operator algebra. It has been already described in
Example 2.2.5 as the first continuous q-difference algebra. Its commutation rule
reads as ∂x = qx∂ + (q − 1)x.

For o1, . . . , ok ∈ Dn, we denote by D〈o1, . . . , ok〉 the left submodule of Dn generated by
o1, . . . , ok.

Theorem 5.1.5 Let D be an Ore A-algebra built from operators ∂1, . . . , ∂s. Then
there is an isomorphism of left D-modules

D /D〈∂1, . . . , ∂s〉 ∼= A.
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Proof: There is a left D-module homomorphism

ϕ : D → A, a =
∑
α∈Ns

aα∂
α 7→ a • 1,

since ϕ(b · a) = (b · a) • 1 = b • ϕ(a). Due to Definition 2.2.4, we have δ(1) = 0 and
thus a • 1 = a0. The kernel of ϕ is given by the left ideal D〈∂1, . . . , ∂s〉. Further, ϕ is
clearly surjective. So the claim follows from the homomorphism theorem. �

Following Theorem 5.1.5, every p ∈ A can be viewed as an element of the left D-
module D /D〈∂1, . . . , ∂s〉 by identifying p with p+D〈∂1, . . . , ∂s〉 =: [p]. Then the action
of ∂i is exactly the σi-derivation δi, since

∂i[p] = [∂ip] = [σi(p)∂i + δi(p)] = [δi(p)] = [∂i • p].

Remark 5.1.6 Let p ∈ A and o ∈ D. Then the equivalence

o • p = 0 if and only if o · p ∈ D〈∂1, . . . , ∂s〉

holds.

Proof: By Theorem 5.1.5, we have a D-module isomorphism A∼=D /D〈∂1, . . . , ∂s〉 given
by

A
∼=−→ D /D〈∂1, . . . , ∂s〉, p 7→ [p].

Since the D-module structure is respected, o • p maps to [o · p] and hence the claim
follows. �

Remark 5.1.6 gives the possibility to describe and to compute the annihilator of an
element p ∈ A. Consider the map

κp : D → D /D〈∂1, . . . , ∂s〉, o 7→ o · [p], (5.2)

which is clearly a left D-module homomorphism with the kernel

ker(κp) = annD(p) := {o ∈ D | o • p = 0},

which is a left ideal in D. See Corollary 2.2.15 for its algorithmic computation. This
construction lifts to the non-scalar case. Suppose p = [p1, . . . , pm]T ∈ Am. An element
of o ∈ D1×m acts on p by

o • p :=
m∑
i=1

oi • pi.

A subset B ⊆ Am is called invariant under G ⊆ D1×m if and only if o • p = 0 for
all o ∈ G and p ∈ B. The set of elements under which p is invariant has a D-module
structure and equals the kernel of

κp : D1×m → D /D〈∂1, . . . , ∂s〉, o = [o1, . . . , om] 7→
m∑
i=1

oi · [pi].
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Moreover the following isomorphism holds

D1×m / ker(κp) ∼= D〈p1, . . . , pm〉/D〈p1, . . . , pm〉 ∩ D〈∂1, . . . , ∂s〉.

The image of κp equals (D〈p1, . . . , pm〉 + D〈∂1, . . . , ∂s〉)/D〈∂1, . . . , ∂s〉. This is isomor-
phic to D〈p1, . . . , pm〉/D〈p1, . . . , pm〉 ∩ D〈∂1, . . . , ∂s〉. So the claim follows, since κp is a
homomorphism.

Remark 5.1.7 If D is Noetherian (see [MR01]), then the left submodule ker(κp) ⊆
D1×m is finitely generated.

For an m-tuple p ∈ Am, we consider

annD(p) = {o ∈ D | o • p = 0} = {o ∈ D | o • pi = 0 ∀ i} =
⋂

annD(pi),

which is a left ideal in D. As we see immediately, annD(p)1×m is a (usually strict)
submodule of ker(κp) and hence, the latter typically has a richer and more interesting
structure.

5.2 Application to linear exact modeling

We will now use the results from above to define an unfalsified and most powerful
model over an Ore algebra.

Assumptions and notations: Suppose D = A[∂1;σ1, δ1] . . . [∂n;σn, δn] to be a
Noetherian Ore algebra (see Remark 2.2.13). Recall that AD denotes a function space
over K possessing a D-module structure. Suppose further that A ⊆ AD.

Starting with a single signal p ∈ Am, we want to find the VMPUM of p, that is a
behavior, invariant under some finitely generated submodule of D1×m.

Theorem 5.2.1 Let p ∈ Am be given. Consider the map κp from (5.2). Let ker(κp) =

D〈k1, . . . , kr〉 and let R ∈ Dr×m be a matrix whose i-th row equals ki. Then the
VMPUM of {p} is given by

BV{p} = {g ∈ AmD | R • g = 0} .

Proof: By the definition of R and Remark 5.1.6, it is clear that {p} ⊆ BV{p}.
It remains to show that BV{p} is most powerful. Suppose there exists another behavior

B′ unfalsified by p. The behavior B′ possesses a kernel representation R′ ∈ Dr′×m. By
the definition of R, there exists a matrix X ∈ Dr′×r such that R′ = XR. But since
(X ·R) • p = X • (R • p), it follows that BV{p} ⊆ B′. �
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Example 5.2.2 Let us consider a more interesting example than Example 5.0.18 with
respect to the algebras from Example 2.2.5. Let Ω = {ω} consist of the cusp

ω(x1, x2) = x3
1 − x2

2.

Let us denote by AD = C[[x1, x2]] the ring of formal power series and consider the
VMPUM BV{ω} = {f ∈ AD | RVMPUM • f = 0} of Ω with respect to the following
operator algebras D.

1. Suppose D to be the second Weyl algebra. Then by using Singular we obtain:

RVMPUM =


∂3

2

∂1∂2

∂3
1 + 3∂2

2

x2∂
2
2 − ∂2

x2∂
2
1 + 3x1∂2

2x1∂1 + 3x2∂2 − 6

 .

Now let us determine BV{ω} to see how precise the description given by the
VMPUM is. Let f ∈ AD.

(a) ∂3
2 • f = 0 ⇒ f = c0 + c1x2 + c2x

2
2, where ci ∈ C[[x1]].

(b) ∂1∂2 • f = 0 ⇒ ∂1 • c1 + 2x2∂1 • c2 = 0 ⇒ ∂1 • c1 = 0 ∧ ∂1 • c2 = 0
⇒ c1, c2 ∈ C.

(c) (∂3
1 +3∂2

2)•f = 0 ⇒ ∂3
1 •c0 +6c2 = 0 ⇒ c0 = −c2x3

1 +d2x
2
1 +d1x1 +d0,

where di ∈ C.

(d) (x2∂
2
2 − ∂2) • f = 0 ⇒ c1 = 0.

(e) (3x1∂2 + x2∂
2
1) • f = 0 ⇒ d2 = 0.

(f) (2x1∂1 + 3x2∂2 − 6) • f = 0 ⇒ −4d1x1 − 6d0 = 0 ⇒ d1 = 0 = d0.

Hence, we obtain that f = −c2(x3
1 − x2

2), thus

BV{ω} = {c(x3
1 − x2

2) | c ∈ C}.

With respect to the requirement of being most powerful and linear, the VMPUM
is as significant as possible. We observe that the VMPUM of a single non-zero
signal has C-dimension one. Actually, this holds in general, as will be shown in
Theorem 5.2.7.

2. Suppose D to be the second difference algebra. Then by using Singular we
obtain:

RVMPUM =


∆3

2

∆1∆2

∆3
1 + 3∆2

2

2x2∆
2
2 + ∆2

2 − 2∆2

2x2∆
2
1 + ∆2

1 + 6x1∆2 + 6∆2

8∆2
1 + 21∆2

2 + 24x1∆1 + 36x2∆2 − 24∆1 − 18∆2 − 72

 .

Similar arguments as above lead to

BV{ω} = {c(x3
1 − x2

2) | c ∈ C}.
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3. Suppose D to be the second SW algebra. Then by using Singular we obtain:

RVMPUM =



∆3
2

∆1∆2

∆3
1 + 3∆2

2

2∂2 + ∆2
2 − 2∆2

2∂1 + ∆2
1 − 2∆1 + 2∆2

2

2x2∆
2
2 + ∆2

2 − 2∆2

2x2∆
2
1 + ∆2

1 + 6x1∆2 + 6∆2

8∆2
1 + 21∆2

2 + 24x1∆1 + 36x2∆2 − 24∆1 − 18∆2 − 72


.

Note that the output depends on the monomial ordering of the operators. In
this example ∆1,2 were chosen to be greater than ∂1,2. Taking a reverse ordering
produces different (but equivalent) answers.

Comparing this matrix with the matrix above, we see that the rows of the matrix
belonging to the difference case appear also here. We conclude that

BV{ω} = {c(x3
1 − x2

2) | c ∈ C}.

Thus, taking SW as the operator algebra, we have got more equations than with
the difference algebra. However, we have obtained interesting mixed differential-
difference equations, which show the interplay of two different operator settings.

4. The second q-difference algebra:

RVMPUM =

 ∂2
2 + (−q2 + 1)∂2

(−q − 1)∂1 + (−q2 − q − 1)∂2 + (q4 + q3 − q − 1)
x3

1∂2 − x2
2∂2 + (q2 − 1)x2

2


Let f ∈ AD. Then f =

∑
i,j ci,jx

i
1x

j
2.

(a) The first equation yields:∑
i,j

ci,j(q
j − 1)2xi1x

j
2 + (−q2 + 1)

∑
i,j

ci,j(q
j − 1)xi1x

j
2 = 0

⇔ (qj − 1)2 + (−q2 + 1)(qj − 1) = 0

⇔ j = 0 ∨ j = 2.

(b) Now consider the second equation.

i. Suppose j = 2, then

(−q − 1)
∑
i,j

cij(q
i − 1)xi1x

2
2 + (−q2 − q − 1)

∑
i,j

cij(q
2 − 1)xi1x

2
2

+ (q4 + q3 − q − 1)
∑
i,j

cijx
i
1x

2
2 = 0

⇔ (−q − 1)(qi − 1) + (−q2 − q − 1)(q2 − 1) + (q4 + q3 − q − 1) = 0

⇔ i = 0.
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ii. Suppose j = 0, then

(−q − 1)
∑
i,j

ci0(q
i − 1)xi1 + (q4 + q3 − q − 1)

∑
i

ci0x
i
1 = 0

⇔ i = 3.

Thus f = c30x
3
1 + c02x

2
2.

(c) Applying the last equation, we get

x3
1c02(q

2 − 1)x2
2 − x2

2c02(q
1 − 1)x2

2 + (q2 − 1)x2
2(c30x

3
1 + c02x

2
2) = 0

⇔ x3
1t

2
2(q

2 − 1)(c30 + c02) = 0 ⇔ c30 = −c02.

Thus we obtain once more

BV{ω} = {c(x3
1 − x2

2) | c ∈ C}.

Remark 5.2.3 As we have seen in the previous example, the number of equations
giving the VMPUM depends strongly on the underlying Ore algebra. In all cases, with
Gröbner bases we get more equations than might be actually necessary. However, it
is often possible to find a smaller generating set, which is usually not a Gröbner basis.
Namely, one computes a left syzygy module of a given system and almost directly
deduces a smaller generating set from it. For instance, only 3 of the 6 equations from
the first example of 5.2.2 generate the whole ideal, namely ∂1∂2, ∂

3
1 + 3∂2

2 , 2x1∂1 +
3x2∂2 − 6. Analogous smaller generating sets can be obtained for the other examples.

Theorem 5.2.1 can be generalized to a set of several signals directly. A kernel rep-
resentation of the VMPUM of Ω = {ω1, . . . , ωN} is determined by stacking a set of
generators of

N⋂
i=1

ker(κωi
)

row-wise into a matrix R.

Theorem 5.2.4 Using the notation from above, the VMPUM of Ω equals

BVΩ = {g ∈ AmD | R • g = 0} .

Proof: By the definition of R, it is clear that Ω ⊆ BVΩ . Also the property of being most
powerful follows by the same arguments as used in the proof of Theorem 5.2.1. �

Example 5.2.5 Suppose D = W1 to be the first Weyl algebra and AD = C∞(R,C).
Consider the signal set Ω = {x, v0x − v1x

2}, where v0, v1 ∈ C \ {0}. The second
trajectory will appear in Example 5.2.9 again. Since

ker(κx) ∩ ker(κv0x−v1x2)
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= W1〈x∂ − 1, ∂2〉 ∩ W1〈−v2
0∂

2 + (4v2
1x− 2v0v1)∂ − 8v2

1, ∂
3〉

= W1〈x2∂2 − 2x∂ + 2, ∂3〉,

the VMPUM of Ω is given by

BVΩ = {c1x+ c2x
2 | c1, c2 ∈ C}.

The intersection of submodules of a free module over a Noetherian Ore algebra can
be computed as in Corollary 2.2.15, for instance with the system Singular::Plural
[GLH05].

5.2.1 VMPUM using the Weyl algebra

In this section, we suppose D to be the n-th Weyl algebra

D = Wn := C[x1, . . . , xn][∂1; idWn ,
∂
∂x1

] · · · [∂n; idWn ,
∂
∂xn

].

Thus for p ∈ C[x1, . . . , xn], we obtain

∂i • p :=
∂p

∂xi
.

Further suppose AD to be C∞(Rn,C), the space of smooth functions. Identifying a
polynomial with the corresponding polynomial function, we obtain C[x1, . . . , xn] =
A ⊆ AD.
In this context, the VMPUM was already introduced in [SLZ08]. Here, we will recall
some results and additionally point out a new interesting property.

C-dimension

Since all partial differential equations with constant coefficients are contained in the set
of partial differential equations with polynomial coefficients, the VMPUM of a certain
signal set is contained in the corresponding MPUM. Thus due to Theorem 1.6.1, the
VMPUM is a finitely generated C-vector space. In some cases, we can determine the
dimension more precisely. We claim that the VMPUM of a single non-zero signal has
C-dimension one.
Suppose p ∈ Am. Every polynomial pi can be written as

∑hi

k=1 cikx
βik , where cik ∈ C

for all i, k. Let Ei := {βi1, . . . , βihi
} ⊂ Nn denote the set of all exponent multi-indices

occurring in pi and let

dij := max
1≤k≤hi

{(βik)j | βik ∈ Ei} (5.3)

be the highest degree in xj of pi. Recall that by ei we denote the i-th canonical
generator of the free module Am. The set

Epi
= {α ∈ Nn |αj ≤ dij + 1 for 1 ≤ j ≤ n}

is finite, that is, Epi
= {αi1, . . . , αili}. Define for p ∈ Am:

Derp =

(
p1,

∂|α11|p1

∂α11
, . . . ,

∂|α1l1
|p1

∂α1l1
, . . . , pm,

∂|αm1|pm
∂αm1

, . . . ,
∂|αmlm |pm
∂αmlm

)
.
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Let Syz(Derp) denote the module of polynomial syzygies. Define the A-module homo-
morphism

Φp : Syz(Derp)→ ker(κp), (q1, . . . , ql) 7→ (q1, . . . , ql) ·



1
∂α11

...
∂α1l1

. . .

1
∂αm1

...
∂αmlm


,

which is clearly injective.

Lemma 5.2.6 The equality Wn〈im(Φp)〉 = ker(κp) holds.

Proof: Evidently Wn〈im(Φp)〉 ⊆ ker(κp). Now suppose that a ∈ ker(κp). Since every
element in Wn can be written in normal form, we obtain

a • p =
∑
k

ak • pk =
∑
k

(
∑
j

ckjx
βkj∂γkj) • pk

=
∑
k

(
∑
j

ckjx
βkj)(∂γkj • pk).

Let us split the element a in az and anz such that a = az + anz and (az)k consists of
the parts of ak where ∂γkj • pk is zero.

By the choice of dij, the set {∂(dij+1)
j | 1 ≤ j ≤ n, 1 ≤ i ≤ m} generates the set of

∂γ with the property that there exists 1 ≤ i ≤ m such that ∂γ • pi = 0. Then az
is contained Wn〈∂(dij+1) ej | 1 ≤ j ≤ n, 1 ≤ i ≤ m〉. But by the choice of Derp, the
element az is in the image of Φp. Suppose ∂γkj • pk 6= 0, then γkj is equal or smaller
than (dk1, . . . , dkn) in each component and again by the choice of Derp, the element
anz is contained in the image of Φp. Thus it follows that a ∈ im(Φp). �

Theorem 5.2.7 The VMPUM of p 6= 0 is a one-dimensional vector space over C.

Proof: We use the notation of the Lemma 5.2.6, which reduces the problem to com-
mutative calculations. It is easy to see that the equivalence

s • (f1, ∂
α11 • f1, . . . , fm, . . . , ∂

αmlm • fm)T = 0 ⇔ Φp(s) • f = 0 (5.4)

holds for every s ∈ Syz(Derp) and each f ∈ Am. Now let us discuss the left hand side.
Consider the solution space Sol(Syz(Derp)) := {ω ∈ AlD | S • ω = 0}, where the rows
of S generate the module Syz(Derp). Since Derp contains all non-zero derivatives of
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pi for all i, there exists a component of Derp which is a non-zero constant k ∈ C. We
can suppose k = 1 and without loss of generality let ∂αmlm • pm = 1. Then

(−1, 0, . . . , 0, p1), . . . , (0, . . . , 0,−1,
∂|αm(lm−1)|pm
∂αm(lm−1)

) ∈ Syz(Derp)

and thus

Sol(Syz(Derp)) = {c · (p1,
∂|α11|p1

∂α11
, . . . ,

∂|αm(lm−1)|pm
∂αm(lm−1)

) | c ∈ C}. (5.5)

Now suppose that f is contained in the VMPUM of p. From Lemma 5.2.6 together
with (5.4) and (5.5), we deduce the claim. �

Remark 5.2.8 In the case of a single non-zero signal, the VMPUM gives the most
precise description one can get with a linear system.

Example 5.2.9 Consider the trajectory ω(x) = v0x − v1x
2, where v0, v1 ∈ C \ {0}.

Then the MPUM of ω is given by

Figure 5.1: ω(x) = 5x− 0.5 g x2

B{ω} = {α(v0x− v1x
2) + β(v0 − 2v1x) + γ(−2v1) | α, β, γ ∈ C}

= {ax2 + bx+ c | a, b, c ∈ C}
= {w ∈ AD | ∂3 • w = 0}.

Thus there are three free parameters to choose. The VMPUM of ω is given by

BV{ω} = {w ∈ AD |
[
−v2

0∂
2 + (4v2

1x− 2v0v1)∂ − 8v2
1

∂3

]
• w = 0}

= {c (v0x− v1x
2) | c ∈ C},

that is, two degrees of freedom vanish when we consider the time-variant model.
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Structural properties

Let us discuss some structural properties of the Wn-module ker(κp). Since every
element of Wn can be transformed into normal form, the degree of a non-zero element
a =

∑
α,β∈Nn aα,βx

α∂β ∈Wn, where aα,β ∈ C, can be introduced as

deg(a) := max{|(α, β)| | aα,β 6= 0}.

Then F i(Wn) := {a ∈Wn | deg(a) ≤ i} induces a filtration on Wn. The correspond-
ing associated graded ring Gr(Wn) is isomorphic to C[x1, . . . , xn,∂1, . . . , ∂n] as a C-
algebra. For every finitely generated Wn-module M , we define the Hilbert polynomial
HPWn

M := HP
Gr(Wn)
Gr(M) . The dimension of M is defined as dimWn(M) := deg(HPM) + 1.

Furthermore M is called holonomic if it has dimension n. A holonomic module is
of minimal dimension, since the dimension of Wn-modules is bounded below by n
and bounded above by 2n. Holonomic Wn-modules are additionally cyclic and torsion
modules. For details see [Cou95].

We write A = C[x1, . . . , xn] ⊂Wn.

Theorem 5.2.10 Let p be unequal to zero. There is an isomorphism of Wn-modules

W1×m
n / ker(κp) ∼= A.

Proof: Since κp is a homomorphism of Wn-modules, we get

W1×m
n / ker(κp) ∼= im(κp) ⊆Wn /Wn〈∂1, . . . , ∂n〉 ∼= A.

Thus W1×m
n / ker(κp) is isomorphic to a submodule of A. Due to the fact that A is a

simple Wn-module and W1×m
n / ker(κp) 6= 0, the claim follows. �

Corollary 5.2.11 Let p be unequal to zero. The Wn-module W1×m
n / ker(κp) is holo-

nomic.

Proof: This follows from Theorem 5.2.10 and the property of A being a simple Wn-
module (see [Cou95], Chapter 5, Proposition 1.2). �

Corollary 5.2.12 Since W1×m
n / ker(κp) is holonomic, there exists a left ideal Lp, de-

pending on p, such that W1×m
n / ker(κp) is isomorphic to the cyclic left Wn-module

Wn /Lp.

An algorithm, using Gröbner bases, to compute a generator of W1×m
n / ker(κp) is given

in [Ley04]. On the other hand, [Cou95] shows that a generic element of W1×m
n / ker(κp)

can be taken as a generator for the cyclic module.
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Example 5.2.13 Suppose ω =

 c1
c2
c3

 for c1, c2, c3 ∈ C \ {0}. Then

ker(κω) =W1 〈[0, c3,−c2], [c3, 0,−c1], [0, 0, ∂]〉.

Since  0 c3 −c2
c3 0 −c1
0 0 ∂

 ·
 0 1/c3 c1/c3

1/c3 0 c2/c3
0 0 1


︸ ︷︷ ︸

=:C

=

 1 0 0
0 1 0
0 0 ∂

 ,
we obtain

W1×3
1 / ker(κω) ∼= W1×3

1 / ker(κω)C ∼= W1 /W1〈∂〉 ∼= C[x].

VMPUM of polynomial-exponential signals

In this section, we extend the signal space that should be modeled. The goal is to
compute the VMPUM of

p =

 p1 expλ1

...
pm expλm

 , (5.6)

where for all 1 ≤ i ≤ m, we have pi ∈ A, λi ∈ Cn and

expλ(x) := exp(λ1x1 + · · ·+ λnxn) for λ ∈ Cn.

By the action ∂j•expλ = λj expλ for all 1 ≤ j ≤ n, the space of polynomial-exponential
functions becomes a Wn-module.
Consider the scalar setting first, that is, m = 1. Define for λ ∈ Cn the Wn-
homomorphism

σλ : Wn →Wn, ∂i 7→ (∂i − λi), xi 7→ xi.

It is easy to see that σλ is a Wn-automorphism. We claim that for a ∈Wn and g ∈ A

a • p = 0 if and only if σλ(a) • (p expλ) = 0. (5.7)

For the proof suppose a =
∑

i cix
αi∂βi .

Using the identity (∂i − λi) • (p expλ) = (∂i • p) expλ, the claim follows by

σλ(a) • (p expλ) = (
∑
i

cix
αiσλ(∂

βi) ) • (p expλ)

=
∑
i

cix
αi( (∂1 − λ1)

βi1 · · · (∂n − λn)βin ) • (p expλ)

=
∑
i

cix
αi( (∂

βi1
1 · · · ∂βin

n ) • p) expλ

=

(∑
i

cix
αi( (∂

βi1
1 · · · ∂βin

n ) • p)

)
expλ = (a • p) expλ .
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Extending the dimension, there are two special cases requiring attention. First suppose
λ1, . . . , λm to be equal, that is, p = [p1, . . . , pm]T expλ, where λ := λ1. Then claim (5.7)
can be generalized directly and it follows that

m∑
i=1

ai • (pi expλ) = 0 if and only if [a1, . . . , am] ∈ σλ(ker(κp)). (5.8)

Assume now that λ1, . . . , λm are pairwise different. Then

m∑
j=1

aj • (pj expλj) = 0 if and only if [a1, . . . , am] ∈
m⊕
j=1

σλj( ker(κpj
) ). (5.9)

Since expλ1 , . . . , expλm are algebraically independent over A, the claim follows from

m∑
j=1

aj • (pj expλj) = 0

⇔
m∑
j=1

 hj∑
i=1

cjix
αji∂βji • (pj expλj)

 = 0

⇔
m∑
j=1

 hj∑
i=1

cjix
αji(∂1 + λj1)

(βji)1 . . . (∂n + λjn)
(βji)n • pj

 expλj = 0

⇔
m∑
j=1

(σ−1
λj (aj) • pj) expλj = 0

⇔ σ−1
λj (aj) ∈ ker(κpj

) for all 1 ≤ j ≤ m.

Recapitulating we get:

Theorem 5.2.14 Let f be of the form (5.6). Further let

Ki :=
{
j | λj = λi

}
= {ki1, . . . , kili}

and let l be chosen minimal such that we have a disjoint union

K1∪̇ . . . ∪̇Kl = {k11, . . . , k1h1 , . . . , kl1, . . . , klhl
} = {1, . . . ,m} .

Further define the vector hi := [fki1
, . . . , fkili

]T and Hi := σλi(ker(κhi
)). Let ekij

denote

the kij-th canonical generator of W1×m
n for 1 ≤ i ≤ l and 1 ≤ l ≤ hi. Defining for

1 ≤ i ≤ l,

φi : Hi →Wn, [a1, . . . , ahi
] 7→

hi∑
j=1

aj ekij
,

the VMPUM of f is given by
l⊕

i=1

φi(Hi).

Proof: After choosing a suitable projection, the claim follows by (5.7) and (5.8). �
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5.2.2 VMPUM using the difference algebra

Suppose K to be of characteristic zero. Recall the definition of the n-th difference
algebra:

Sn := K[x1, . . . , xn][∆1;σ1, δ1] · · · [∆n;σn, δn].

For p ∈ K[x1, . . . , xn], we have

∆i • p = δi(p) = σi(p)− p and thus (∆i • p)(x) = p(x+ ei)− p(x).

Further suppose that AD = KNn
. Identifying a polynomial with the corresponding

polynomial function, we obtain A = K[x1, . . . , xn] ⊆ AD.
Similarly to the continuous case, the kernel of κp can be computed in a completely
commutative framework. For this purpose, we assume p to be represented as in (1.14),
namely

p =
∑

ν∈Nn,ν≤cw%

cνpν ,

where cν are suitable chosen and

pν : Nn → K, x 7→
(
x1

ν1

)
· · ·
(
xn
νn

)
.

Remark 5.2.15 Connecting Remark 1.6.2 and (1.16), we get that δµp = 0 for all µ
with µi > %i for at least one 1 ≤ i ≤ n. Now consider the sequence

Diffp = (δµ1p, δµ2p, . . . , δµ`p)

for pairwise different µi satisfying µi ≤cw % for all i. Since A is a Noetherian ring,
the corresponding syzygy module Syz(Diffp) is finitely generated by s1, . . . , sd. Analo-
gously to the continuous case, we can give anA-module homomorphism from Syz(Diffp)
to ker(κp), such that the image of s1, . . . , sd under this map generates ker(κp), that
is, ker(κp) is finitely generated as an A-module. This implies that ker(κp) is finitely
generated as an Sn-module.

Example 5.2.16 Let p = [x3, x]T . Then the continuous VMPUM is the same as the
discrete VMPUM, that is, equal to {c[x3, x]T | c ∈ K}. Direct computation over
S1 = K[x][∆;σ, δ] yields

kerS1(κp) = S1〈[0,∆2], [0, x∆− 1], [1,−x2]〉

and this means that  0 ∆2

0 x∆− 1
1 −x2


is a kernel representation of the VMPUM of p. Note that over the first polynomial
Weyl algebra W1, we have

kerW1(κp) = W1〈[0, ∂2], [0, x∂ − 1], [1,−x2]〉.
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Alternatively, we can compute kerS1(κp) in the commutative framework, using the
analogon of the “difference algebra” approach. At first, we observe that

Diff [x3,x]T = K[x]〈x3, 3x2 + 3x+ 1, 6x+ 6, 6, x, 1〉

so

Syz(Diff [x3,x]T ) = K[x]〈


0
0
0
0
1
−x

 ,


0
0
0
1
0
−6

 ,


0
0
1
0
0

−6x− 6

 ,


0
1
0
0
0

−3x2 − 3x− 1

 ,


1
0
0
0
0
−x3

〉.

Finally we get that

ker(κp)

=S1〈[0,−x∆ + 1], [∆3,−6∆], [∆2, (−6x− 6)∆],

[∆, (−3x2 − 3x− 1)∆], [1,−x3∆], [∆4, 0], [0,∆2]〉
=S1〈[0,∆2], [0, x∆− 1], [1,−x2]〉.

VMPUM of polynomial-exponential signals

For λ = (λ1, . . . , λn) ∈ Kn, the discrete exponential function is given by

expλ : Nn → K, x 7→ λx = λx1
1 · · ·λxn

n .

First suppose that m = 1, that is, we want to construct the VMPUM of a scalar
polynomial exponential trajectory of the form p expλ, where p ∈ A. Without loss of
generality, we can assume λi 6= 0 for all 1 ≤ i ≤ n, because in case λi = 0 for one
1 ≤ i ≤ n, we have

p(x) expλ(x) =

{
0 if xi 6= 0
g(x1, . . . , xi−1, xi+1, . . . , xn) if xi = 0,

where g is a polynomial-exponential function on Nn−1. Consider the Sn-algebra-
automorphism

χλ : Sn → Sn,
{

xi 7→ xi
∆i 7→ 1

λi
(∆i − λi + 1).

Since the equality

χλ(∆i) • (p expλ) =
1

λi
(∆i − λi + 1) • (p expλ)

=
1

λi
(∆i • (p expλ)− λip expλ +p expλ)

=
1

λi
(λi expλ σi(p)− p expλ−λip expλ +p expλ)

=
1

λi
(λi expλ(σi(p)− p))

= expλ ∆i • p
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holds, we obtain the identity

χλ(∆
k
i ) • (p expλ) = expλ ∆k

i • p

that finally extends to

χλ(∆
µ) • (p expλ) = χµλ(∆) • (p expλ) = expλ ∆µ • p. (5.10)

Now using (5.10), we can deduce for a =
∑h

i=1 ai∆
αi ∈ Sn the equivalence

a • p = 0 ⇔ χλ(a) • (expλ p) = 0, (5.11)

since

χλ(a) • (expλ p) =
h∑
i=1

aiχλ(∆
αi) • (expλ p)

=
h∑
i=1

ai(∆
αi • p) expλ

= expλ

h∑
i=1

ai(∆
αi • p)

= expλ a • p.

For m = 1, that is, p ∈ A, we obtain the following result.

Theorem 5.2.17 Let us denote by R ∈ S l×1
n a kernel representation matrix of the

VMPUM of p. Then the kernel representation matrix of p expλ is given by (χλ(Ri))i.

Proof: The proof is given by (5.11). �

Now consider p ∈ Am, where

p =

 p1 expλ(1)

...
pm expλ(m)

 , λ(i) ∈ (K\{0})n, pi ∈ A (5.12)

and λ(1), . . . , λ(m) are pairwise different. Then

m∑
j=1

aj • (pj expλ(j)) = 0 if and only if [a1, . . . , am] ∈
m⊕
j=1

χλ(j)( ker(κpj
) ), (5.13)

which follows from

m∑
j=1

aj • (pj expλ(j)) = 0

⇔
m∑
j=1

 hj∑
i=1

cjix
αji∆βji • (pj expλ(j))

 = 0
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⇔Pm
j=1

„Phj
i=1 cjix

αji (λ
(j)
1 ∆1+λ

(j)
1 −1)(βji)1 ...(λ

(j)
n ∆n+λ

(j)
n −1)(βji)n•pj

«
exp

λ(j)=0

⇔
m∑
j=1

(χ−1
λ(j)(aj) • pj) expλ(j) = 0

⇔χ−1
λ(j)(aj) ∈ ker(κpj

) for all 1 ≤ j ≤ m.

Additionally we get

Theorem 5.2.18 Let p be of the form (5.12). Further let Ki := {j | λj = λi} =
{ki1, . . . , kili} and l chosen minimal such that the disjoint union

K1∪̇ . . . ∪̇Kl = {k11, . . . , k1h1 , . . . , kl1, . . . , klhl
} = {1, . . . ,m} .

Further define the vector hi := [fki1
, . . . , fkili

]T and Hi := χλ(i)(ker(κhi
)). Let ekij

denote the kij-th standard generator of S1×m
n for 1 ≤ i ≤ l and 1 ≤ l ≤ hi. Defining

for 1 ≤ i ≤ l

φi : Hi → Sn, [a1, . . . , ahi
] 7→

hi∑
j=1

aj ekij

the VMPUM of p is given by
l⊕

i=1

φi(Hi).

Proof: Choosing a suitable projection, the claim follows by (5.11) and (5.13). �
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Conclusion and future work

The main result of Chapter 3 is Theorem 3.2.3, which leads to the novel concept of
“Gröbner p-basis“ (Definition 3.2.4). In fact, Theorem 3.2.3 shows that a Gröbner
p-basis has a particular type of PLM property which can be applied to yield straight-
forward solutions to several problems involving systems over Zpr . A topic of future
research is to investigate the use of the POT ordering to derive novel results on a
Smith-McMillan like form for polynomial matrices over Zpr . Further it remains open
to elaborate connections with Janet bases [GY05, PR05] for multivariate Gröbner
bases over fields, where restrictions on coefficients are also used.

In Chapter 4, novel methods to obtain a diagonalization, that is, a decoupled form, are
investigated. Algorithm 2 and Algorithm 3 can be applied to a very general setting
which is one of the major achievements of this chapter. Another issue that should
be stressed is the purely fraction-free setting in which Algorithm 3 works. Topic of
future studies is an implementation of the ideas proposed in Remark 4.2.12, namely
the application of a random vector to generate a Jacobson form from a decoupled form.

Generalizing ideas from systems theory, we have defined a “varying most powerful
unfalsified model” (VMPUM) over polynomial Ore algebras such as the Weyl algebra
or the difference algebra in Chapter 5. Structural properties of the resulting models
were presented, and we have seen, in terms of examples, that models with polynomial
coefficients provide a more precise description of the data than models with constant
coefficients. It remains to be investigated how rational coefficients perform in that
respect. Another topic of future concerns may be a characterization of the vector space
dimension of the VMPUM of several trajectories, thus generalizing Theorem 5.2.7.
Moreover, it seems possible to develop VMPUMs with polynomial coefficients for data
represented by rational and by rational-exponential functions.

123
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[BHK92] S. Boztaş, R. Hammons, and P.V. Kumar. 4-Phase sequences with near-
opimum correlation properties. IEEE Transactions on Information The-
ory, 38:1101–1113, 1992.

[Bou05] H. Bourlès. Structural properties of discrete and continuous linear time-
varying systems. In Advanced Topics in Control Systems Theory, 2005.
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Anspruch genommenen Hilfen in der Dissertation angegeben habe.

Kristina Schindelar

133



134 BIBLIOGRAPHY



Lebenslauf

Kristina Schindelar

03.09.1981 geboren in Bratislava
Staatsangehörigkeit: deutsch

1988 - 1982 Katholische Grundschule Düsseldorf

1992 - 1994 Geschwister Scholl Gymnasium Düsseldorf

1994 - 2001 Nelly Sachs Gymnasium Neuss

Okt. 2001 - Sep. 2003 Grundstudium der Mathematik
an der Heinrich-Heine-Universität Düsseldorf

Okt. 2003 - Aug. 2006 Hauptstudium der Mathematik an der RWTH Aachen

Aug. 2006 Diplom in Mathematik an der RWTH Aachen

Aug. 2006 - Mai 2010 Doktorandin an der RWTH Aachen

135


	Preface
	Introduction to algebraic system theory
	Motivation
	Basic properties of linear systems
	One-dimensional systems over rings
	One-dimensional time-varying systems
	Multi-dimensional time-varying systems
	Most powerful unfalsified model

	Gröbner bases
	Commutative Gröbner bases
	One-dimensional case and applications to signals and systems

	Non-commutative Gröbner bases
	Algorithmic computations


	One-dimensional systems over finite rings
	Preliminaries on p-generator sequences
	Minimal Gröbner p-basis and the p-PLM property
	Application to signals and systems

	One-dimensional time-varying systems
	Decoupling systems over Ore extensions
	Polynomial decoupling

	Normal forms for time-varying systems
	Examples, Applications and Comparison


	Multi-dimensional time-varying systems
	Preliminaries
	Application to linear exact modeling
	VMPUM using the Weyl algebra
	VMPUM using the difference algebra


	Conclusion and future work
	Bibliography

