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ZUSAMMENFASSUNG 
In dieser Studie wird die Expression spezifischer scFv-Fragmente in pflanzlichen Zellen für 

die Unterdrückung der Krankheitssymptome durch TYLCV-Infektion genutzt.  

Die für Rep, CP und MP kodierenden Gene C1, V1 und V2 wurden mit spezifischen Primern 

mit dem kompletten klonierten TYLCV Genom als Template amplifiziert. Die PCR-Produkte 

wurden zunächst in den TOPO Vektor und später in die Expressionsvektoren pGEX-5x3-und 

pMALc2x kloniert. Die rekombinanten Proteine wurden in E. coli als C-terminale Fusion mit 

GST oder MBP exprimiert und durch Affinitätschromatographie aufgereinigt. Darüber hinaus 

wurde auch der aminoterminale Teil des CP und des Rep Proteins als Fusionsprotein mit GST 

und MBP exprimiert. 

Mit Hilfe der Phagen-Display-Technologie wurde ein scFv-Fragment gegen Rep (scFv-

ScRep1) aus der naiven Tomlinson Phagen-Bibliothek isoliert. Darüber hinaus wurde eine 

Rep-Phagen-Display-Bibliothek aus Gesamt-RNA der Milz einer präimmunisierten Maus 

hergestellt und ein weiteres scFv-Fragment (scFv-ScRep2) identifiziert und charakterisiert. 

Die scFv-Fragmente wurden in den bakteriellen pHEN-HI Expressionsvektor kloniert und 

mittels Immobilisiertes-Metall-Affinitätschromatographie aufgereinigt. ELISA-und Western-

Blot-Analysen wurden genutzt, um die Bindungsaktivitäten der bakteriell exprimierten scFv 

zu analysieren. Die beobachteten hohen Bindungaktivitäten von scFv-ScRep1 sowohl mit 

dem Volllängen- als auch dem C-terminalen verkürzten Rep-Protein weisen auf eine 

spezifische Bindung hin. ScFv-ScRep2 interagiert dagegen ausschließlich mit dem intakten 

Rep-Protein. Vier weitere scFv-Fragmente wurden aus Gesamt-RNA von Hybridomazellen, 

welche spezifische MAbs gegen TYLCV-Virionen produzieren, gewonnen.  

Der Pflanzenexpressionsvektor pTRAkt wurde zur Klonierung der generierten scFv-

Fragmente einzeln und als amino-terminale Fusion mit GFP verwendet. Darüber hinaus 

wurde die nukleare Lokalisationssignalsequenz von Simian Virus 40 für den Kerntransport 

der scFv-ScRep1 und scFv-ScRep1-GFP eingesetzt. Alle Konstrukte wurden in einer 

transienten Expression durch Agrobakterien-vermittelter Infiltration von Tabakpflanzen 

getestet und auf  Funktionalität überprüft. Blotting-Analysen zeigten nachweisbare Mengen 

von scFv-ScRep1, scFv-ScRep2 und NLS-scFv-ScRep1 in rohem Blattextrakt aus 

agroinfiltrierten Pflanzen. Weitere Analysen bewiesen auch die Bindungsfähigkeit der aus den 

Blättern extrahierten scFvs gegen rekombinantes Rep-Protein. Die Ergebnisse der 

Fluoreszenz-Mikroskopie bestätigten die Lokalisierung von scFv-ScRep1-GFP-, scFv-

ScRep2 GFP- und scFv-NLS-ScRep1-GFP-Fusionprotein im Zellkern bzw. dem Zytoplasma.  

 



  
 

Ausgesuchte Konstrukte wurden für die stabile Transformation von N. benthamiana Pflanzen 

durch die Blattscheibenmethode verwendet. Nachfolgende Resistenzuntersuchungen wurden 

mit einem infektiösen Volllängenklon (pBIN19-2TYLCV Ir) und Agrobakterien-vermittelter 

Infektion im 5-8 Blattstadium durchgeführt. Frühe Symptome wie Blattrollen und  

Wachstumsreduktion der Blätter wurden auf nicht transgenen und sensitiven transgenen 

Pflanzen 3-4 Wochen nach der Inokulation beobachtet. Die Akkumulation der viralen DNA-

und die Anwesenheit des Virushüllproteins in den Pflanzen wurden durch PCR-Analyse, 

Southern Blotting und TAS-ELISA-Test nachgewiesen. Die Ergebnisse der PCR-Analyse 

bestätigten die Anwendbarkeit dieser Technik für die Erkennung von Virus-DNA im rohen 

Blattextrakt von inokulierten Tabakpflanzen. Die TAS-ELISA-Ergebnisse zeigen, dass dieser 

Test nur nützlich für die Erkennung von infizierten Pflanzen mit schweren Symptomen und 

gleichzeitiger hoher Viruskonzentration ist. Man ist mit diesem ELISA nicht in der Lage 

zwischen gesunden Pflanzen und denen mit milden Symptomen und niedrigem Virustiter zu 

unterscheiden.  

Zusätzliche Hybridisierungsanalysen wurden für die Erkennung der verschiedenen 

replikativen viralen DNA-Konformationen wie z.B. offener Kreis, linearisiert und supercoiled 

dsDNA sowie ssDNA herangezogen. Southern-Blotanalysen bestätigten die Reduktion bzw. 

vollständige Unterdrückung der viralen DNA-Replikation in symptomlosen Pflanzen. Die 

Bewertung des Resistenzgrads bei den T0 Pflanzen wurde 5 Wochen nach der Inokulation 

durchgeführt. Resistenztests mit den T0 Nachkommen zeigten, dass alle NSR-, HSC2-, 

HSC3- und HSC4-Linien sowie Wildtyp-Pflanzen anfällig für TYLCV sind. Die SRG-, SR- 

und RW-Linien zeigten ein unterschiedliches Ausmaß der Resistenz im Bereich von 8-28 

Prozent.  

Unabhängige T1-transgene Pflanzen wurden zur Resistenztestung  im 5-8 Blattstadium 

agroinfiziert. Inokulierte Pflanzen wurden bezüglich der Entwicklung von 

Krankheitssymptomen als auch mit Hilfe von DNA-Hybridisierung analysiert. Frühe 

Symptome erschienen bei nicht transgenen und sensitiven Pflanzen bereits 2-3 wpi und 

entwickelten sich in den darauf folgenden Wochen weiter, Resistenzausprägung wurde bei 4-

5 wpi beobachtet. Diese Ergebnisse zeigen, dass alle T1 Nachkommen der RW14, RW22 und 

SR27 Pflanzen typische TYLCV-Symptome ausbilden, während bei SRG T1-Pflanzen, die 

das ScRep1-GFP rekombinante Fusionsprotein exprimieren, ein Spektrum von Symptomen 

von schweren zu milden und auch das vollständige Fehlen jeglicher Symptome zu beobachten 

war. Der Resistenzphänotyp zeichnet sich durch Abwesenheit oder eindeutige Verringerung 

der Krankheitssymptome und eine gleichzeitige deutliche Reduktion bzw. vollständige 



  
 

Unterdrückung der viralen DNA-Replikation aus. Die T1 Pflanzen aus den SRG28 und 

SRG18 Linien zeigten die höchsten Resistenzwerte. Vergleichende Q-PCR- und GFP-

Fluoreszenz-Intensitätsanalysen wiesen darauf hin, dass Pflanzen mit höheren 

Transkriptkonzentrationen auch ein höheres Maß an Virusresistenz besitzen.  

Durch die hohe Ähnlichkeit der Rep-Proteine unter den Begomoviren, ist eine breitere 

Resistenzausprägung auch gegenüber verwandten Viren, wie z.B. ACMV möglich. Aufgrund 

der hohen Empfindlichkeit von N. benthamiana gegen TYLCV und dem hohen 

Inokulumsdruck bei der Agroinfektion von Pflanzen kann die schützende Fähigkeit der 

rekombinanten scFvs eventuell leichter überwunden werden. Daher sollten die 

Infektiösitätsassays als Kontrolle mit entsprechenden transgenen Tomatenpflanzen und mit 

Hilfe des natürlichen Übertragungsvektors B. tabaci überprüft werden. Da die viralen 

Hüllproteine von entscheidender Bedeutung für die Übertragung durch Insekten sind, ist die 

Expression der in dieser Arbeit beschriebenen Viruspartikel-spezifischen scFvs in transgenen 

Tomatenpflanzen besonders vielversprechend. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
 

Summary 
In this study, we exploited the expression of specific scFv fragment in plant cells for 

suppression of disease symptoms caused by TYLCV infection.  

The C1, V1 and V2 genes encoding Rep, CP and MP, respectively, were amplified with  

specific primers using the full length TYLCV genome construct pBIN19-2TYLCV-Ir as 

template. The PCR products were first cloned into the TOPO vector and subsequently into 

pGEX-5x3 and pMALc2x expression vectors. Recombinant proteins were expressed in E. coli 

as C-terminal fusion with GST or MBP and purified proteins obtained by affinity 

chromatography method. In addition, the amino terminal part of CP and Rep proteins were 

also cloned and expressed as fusion proteins with GST and MBP.   

Using phage display technology one scFv fragments against Rep (scFv-ScRep1) was isolated 

through panning of naïve Tomlinson I scFv phage library. In addition, an ARep phage display 

library constructed from total spleen RNA of a mouse immunized with MBP-Rep was 

analyzed by panning and another scFv fragment (scFv-ScRep2) was selected and 

characterized. The scFv fragments were expressed in pHENHI bacterial expression vector and 

purified by immobilized metal affinity chromatography. ELISA and Western blot analyses 

were used to analyze binding activities of bacterially expressed scFv. The observed high 

binding activity of bacterially expressed scFv-ScRep1 to both full length and C- terminal 

truncated of Rep protein indicated specific binding to the amino terminal end of Rep while 

scFv-ScRep2 interacted exclusively to intact Rep protein. Four more scFv fragments were 

developed from total RNA of murine hybridoma cells secreting specific MAbs against 

TYLCV virions. 

The pTRAkt plant expression vector was used to clone the generated scFv fragment genes 

individually and/or as an amino terminal fusion to GFP. In addition, the nuclear localization 

signal of Simian virus 40 was used for nuclear targeting of scFv-ScRep1 and scFv-ScRep1-

GFP inside the cells. All constructs were used for transient transformation of tobacco plants 

via agrobacterium infiltration. Expression of scFv fragment constructs and their functionality 

within transiently transformed plant cells were analyzed. Blotting analyses showed detectable 

amounts of scFv-ScRep1, scFv-ScRep2, and NLS-scFv-ScRep1 presented in crude leaf 

extract of transformed plants. Further analyses proved binding ability of these scFv extracted 

from leaves against recombinant Rep. Fluorescence microscopy results confirmed expression 

and localization of scFv-ScRep1-GFP, scFv-ScRep2-GFP and scFv-NLS-ScRep1-GFP fusion 

protein within the cytoplasm and nucleus. 

 



  
 

Selected constructs were also used to generate stable transformations in entire N. benthamiana 

plants through leaf disc transformation. To determine the protection ability of transgenically 

expressed proteins, independent T0 progenies expressing different scFvs were challenged 

with the agroinfectious clone harbouring the pBIN19-2TYLCV-Ir construct. Early symptoms 

including leaf curling and size reduction of newly emerged leaves were observed on non-

transgenic and sensitive transgenic plants 3-4 weeks after inoculation. The accumulation of 

viral DNA and presence of virus particles in the inoculated plants were analyzed by PCR, 

Southern blotting and TAS-ELISA. The PCR results confirmed its feasibility for detection of 

viral DNA within inoculated tobacco plants using either crude leaf extract or purified total 

DNA. The TAS-ELISA results showed that this assay is only useful for detection of infected 

plants with severe symptoms and concomitant high virus concentration, it failed to 

discriminate healthy plants from those with mild symptoms and low virus titres. The 

hybridization analyses showed its great potential for detection of different viral replicative 

DNA conformations including open circular, linearized and supercoiled dsDNA as well as 

ssDNA structure within the infected plants. Southern hybridization analyses confirmed 

reduction or complete suppression of viral DNA replication in the symptomless plants. 

Assessment of the resistance status within T0 inoculated plants was evaluated 5 weeks after 

inoculation. Infectivity assays of T0 progenies revealed that all inoculated NSR, HSC2, HSC3 

and HSC4 lines as well as wild type plants are susceptible for the TYLCV challenge 

inoculation. However, SRG, SR and RW lines presented varying degrees of resistance from 8-

28 percent.  

Independent T1 transgenic plants were screened based on Kanamycin resistance. To assay 

virus resistance phenotype of T1 progenies, transgenic plants were agro-inoculated in 5-8 leaf 

stage. Inoculated plants were observed for disease symptoms development and assayed for 

presence of TYLCV DNA through molecular hybridization methods. Early symptoms in non-

transgenic and sensitive plants appeared 2-3 wpi and developed further during the next weeks. 

Resistance response was evaluated at 4-5 wpi bases of symptom observation and DNA 

hybridization assays. A heterogeneous response was obtained within inoculated T1 progenies. 

These results indicated that all T1 progenies raised from RW14, RW22 and SR27 reveal 

typical TYLCV symptoms whereas SRG T1 plants expressing ScRep1-GFP recombinant 

protein showed a spectrum of symptoms ranging from a severely diseased to mild ones and 

the complete absence of any symptoms. The resistance phenotype was characterised by 

absence or remarkable reducing of disease symptoms and a concomitant substantial reduction 

or complete suppression of viral DNA replication. T1 plants developed from SRG28 and 



  
 

SRG18 lines revealed highest resistance. Further analyses indicated that individual SRG 

transgenic plants emit varying intensity of fluorescence under excitation by UV light. Usually, 

elevated amounts of ScRep1-GFP transcripts are directly correlated with higher fluorescence 

intensity emitted from transgenic lines. Together comparative Q-PCR and fluorescence 

intensity analyses with data obtained from virus resistant assays indicated that mostly plants 

with higher transcripts level consistently exhibited a higher degree of virus resistance. 

 Because of high similarity of Rep protein among the begomoviruses, challenging of SRG 

resistant tobacco lines with other viruses such as ACMV is a promising idea. Due to high 

susceptibility of N. benthamiana against TYLCV and high inoculum pressure using for 

agroinoculation of transgenic plant, virus could easily overcome protective ability of 

recombinant scFv. Therefore, infectivity assays with transgenic tomato plants expressing scFv 

fragments which are naturally infected with B. tabaci could give more reliable results. Since 

the viral CP is critical for insect transmission, expression of those scFvs binding to virions in 

transgenic tomato plants may confer a resistance phenotype against TYLCV infections as 

well.  
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I Introduction 
Plant viruses are obligatory intracellular parasites entirely dependent on host machinery for all 

aspects of their life cycle. They were discovered in the last century when the science of 

virology was born. Out of 1200 known plant viruses less than 250 cause significant losses in 

crop yields and challenge plant breeders around the world (Nelson and Citovsky, 2005). 

Viral infections can result in anything from mild or even symptomless infections to severe 

diseases resulting in complete loss of marketable crops. Geminiviruses cause severe diseases 

in important crop plants and have been spread worldwide in the past four decades. Several 

factors; recombination between co-infecting viruses, diversification of insect vector 

population and transportation of plant material, have caused the geminiviruses epidemics in 

last decades (Sung and Coutts, 1995; Moffat, 1999). As in the past, plant viruses remain a 

major problem for the cultivation of many vegetable and ornamental crops throughout the 

world. 

 
I.1 Development of resistance against plant viral diseases  

Protection against viral disease requires an understanding of the virus, its replication strategy, 

modes of infection, transmission vectors and identification of useful genes to make highly 

resistant cultivars. In contrast to the control of fungal diseases no chemical pesticides are 

available for use as direct antiviral agents, and alternative control strategies are required. For a 

long time, cultivation techniques like crop rotation, early detection and destruction of infected 

source plants, cross-protection, breeding for resistance, and chemical control of transmission 

vectors have been attempted. However, these strategies do not provide an effective defence 

against plant viruses and are usually time-consuming. Increasing knowledge of hosts natural 

defence systems and the molecular genetics of plant viruses have resulted in the development 

of a number of novel ways to control virus diseases in plants. 

 
I.2 Natural resistance to plant viruses  

Natural resistance against plant viruses are separated into two main categories: passive and 

active defence. In a passive defence system, existing natural barriers like the rigid cell wall 

prevent entrance of viruses into the plant cells, while active defence mechanisms are based on 

specific recognition of pathogens by the plant. Hypersensitive response (HR) is the most 

common mechanism associated with active defence. In HR, cells surrounding primary 

infection sites die rapidly and prevent development of infection. This reaction is usually 
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accompanied by formation of necrotic local lesions in infected parts of leaves. The induction 

of this response is preceded by a specific recognition of the virus based on dominant gene 

products of the plant produced by resistance genes (R genes) corresponding to avirulence 

genes of virus. A single dominant R resistance gene may recognize different categories of 

plant pathogens. Interestingly, independent of pathogen  type (including viruses, bacteria, 

fungi and nematodes) all identified R genes encode proteins which can be categorized into on 

five classes ( LZ-NB-LRR, NB-LRR, CC-NB-LRR, TIR-NB-LRR and LRR-TM) in a range 

of different crop species (Dangl and Jones, 2001). All R genes pertaining to plant virus 

resistance belong to the LZ-NB-LRR class, the largest class of R genes, and encode NB-LRR 

protein (nucleotide-binding site plus leucine-rich repeat) (Goldbach et al., 2003). Natural 

plant disease resistance genes can be used to generate resistant plants against pathogens, for 

example, transgenic tomato plants carrying the tobacco N gene are resistant to TMV 

(Whitham et al., 1996). 

 

I.3 Engineered resistance to plant viruses   

 

I.3.1 Pathogen-derived resistance (PDR) 

 Plant viruses have small genomes containing only a limited number of genes corresponding 

to crucial functions during the viral replication cycle. As such, these pathogens could be 

suitable targets for engineering resistance based on the principle of pathogen-derived 

resistance (PDR). In PDR, pathogen genomic sequences are deliberately engineered into the 

host plant’s genome on the non-specific basis that the sequence may be expressed at an 

inappropriate time, in inappropriate amounts or in an inappropriate form during the infection 

cycle resulting in some form of resistance in the plant. The presence of the pathogen sequence 

may directly interfere with the replication of the pathogen or may induce some host defence 

mechanism.   

The concept of creating virus resistant crops by incorporating part of a viral genome in the 

host plant genome was first presented by Hamilton (Hamilton, 1980). The principle involves 

the use of virus-derived genes or genome fragments to interfere virus replication in the plant. 

Approaches to PDR may require either the production of proteins or only the accumulation of 

viral nucleic acid sequences. The former is non-specific and may confer resistance to a 

broader range of virus strains, whereas the latter is quit specific and would provide very high 

levels of resistance to a specific virus strain. All virus genes and non genomic fragment of 

viruses could be used to confer resistance in PDR including those for coat proteins, replicases, 
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movement proteins, defective interfering RNAs and DNAs, and non-translated RNAs 

(Beachy, 1997). 

The first use of PDR was coat protein mediated resistance (CPMR) against Tobacco mosaic 

virus (TMV) (Powell et al., 1986). Viral coat proteins have been widely applied and exploited 

successfully to confer resistance in several plants against a number of RNA viruses, including 

TMV, PVX, AlMV, CMV and TRV. Transgenic plants expressing their CP lead to high levels 

of operational resistance (Wilson, 1993; Baulcombe, 1996), which can only be overcome at 

extremely high inoculation pressure or infection with unencapsidated viral RNA. In CPMR, 

produced recombinant and native CP must be able to interact with each other but not 

necessarily to form virus particles (Clark et al., 1995). The role of transgene CP is not clear 

but it may interfere with the disassembly process of TMV and prevent release of infectious 

RNA (Register and Beachy, 1988). Furthermore, there is a direct correlation between the 

amounts of expressed CP and the level of resistance (Powell et al., 1990). Employment of 

certain mutants of the TMV CP may confer much greater levels of resistance than wild-type 

CP (Beachy, 1997). CPMR can provide different level of protection against related strains or 

viruses, as was demonstrated by the use of the CP of TMV as an effective agent to induce 

resistance against closely related strains, but providing decreasing levels of resistance to other 

tobamoviruses with greater variation from the TMV CP (Nejidat and Beachy, 1990). 

Transgenic potato expressing the CP gene of Potato virus Y (PVY) strain N605 provided 

resistance against original strain N605 and related strain 0803 (Malnoe et al., 1994), but the 

CP gene of Papaya ring spot virus (PRSV) strain HA provided resistance in papaya only to 

strain HA (Tennant et al., 1994). In contrast, transgenic tobacco plants producing the CP of 

Soybean mosaic virus (SMV), which is not able to infect tobacco, conferred resistance against 

two unrelated potyviruses, PVY and Tobacco etch virus (TEV) (Stark and Beachy, 1989). It is 

not clear that why some CP provides broad or strong degrees of CPMR while others provide 

only narrow or weak resistance. Sometimes combining CP genes from different strains confer 

resistance to those strains, for instance, to obtain broad resistance against three different 

strains of Tomato spotted wilt virus (TSWV), all nucleoprotein genes of these strains were 

combined in a single construct (Prins et al., 1995). 

Movement proteins (MPs) are encoded by plant viruses and enable viruses to spread through 

the plant systemically by cell to cell. Plasmodesmata are involved in local spread of viruses in 

plants so they provide symplastic continuity between cells and tissues. Transgenic plants 

producing defective mutant of MP (dMP) from TMV confer resistance to several 

tobamoviruses (Cooper et al., 1995).  
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Expression of complete or partial sequence of viral replicase can confer some level of 

immunity to infection in transgenic plants. This type of resistance is generally limited to the 

virus strain that the gene was obtained. The mechanisms involved in Rep-mediated resistance 

are not completely known, but it is proposed that transgene protein produced by plant 

interfere with native replicase (Palukaitis and Zaitlin, 1997). Transgenic plants expressing 

replicase  protein of Potato leaf roll virus (PLRV) are resistant to this virus, but it seems that 

the induced resistance is independent of the expression of transgene protein and it may be 

RNA-mediated  rather than protein-mediated (Vazquez Rovere et al., 2001). Expression of a 

truncated replicase obtained from CMV sub-group I virus conferred high level of specific 

resistance in tobacco (Zaitlin et al., 1994). 

One of the most important types of PDR is post-transcriptional gene silencing (PTGS). PTGS 

is based on processes of post-transcriptional control of gene expression found in plants, fungi 

and some animal species. It causes suppression of foreign genetic elements such as viruses 

and transposons through a specific RNA breaking down mechanism known as RNA silencing. 

PTGS in plants could act as an adaptive, antiviral defence system (Goldbach et al., 2003). The 

PTGS was first discovered in transgenic petunia plants carrying copies of the chalcon 

synthetase gene together with one endogenous gene that were co-suppressed (van der Krol et 

al., 1990). It was then proposed that PTGS could explain previous unexpected outcomes of 

virus resistance based on PDR (Lindbo et al., 1993). In some PDR experiments, untranslatable 

versions of viral genes imagined as a negative controls presented levels of resistance similar 

to translatable versions. It was revealed that in the resistant plant lines the transgenic RNA 

was rapidly broken down in a sequence-specific manner. Accordingly, foreign RNA sequence 

with no homology to the host's genome, with great efficiency, can trigger RNA silencing. To 

date transgenic resistance against virtually all major plant DNA and RNA viruses has been 

reported. It is suggested that  PTGS acts as a natural antiviral defence system by surveying 

and destructing of aberrant foreign RNAs (Goldbach et al., 2003). It has been shown that 

some regions of viral genomes are more vulnerable to antisense RNA and resulted different 

level of resistance. Transgenic tobacco producing antisense RNA complementary to the 5’ 

leader region of viral genome proved resistant against TMV infection (Nelson et al., 1993) 

while using the 3’ end of TMV RNA as complementary antisense RNA resulted in lower level 

of resistance (Powell et al., 1989). 

Although PDR has been successfully implemented against a number of plant viruses, it is not 

always an effective way and can be dependent on the mechanism of pathogenesis or host–

virus interactions and may have undesirable consequences (Schuler et al., 1999). It is 
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generally accepted that RNA viruses can do recombination and, together with the high 

frequency of mutations in their replication, result in great viral genetic variability. New 

viruses with altered virulence, host range, or vector specificity may be occur by 

recombination with virus transgenes expressed in plants (Nagy and Simon, 1997). 

Furthermore, recombination events could restore some defects in viral protein functions of 

avirulent strains and lead to creation of  virulent strains (Rubio et al., 1999). Nonhomologous 

recombination between invading viruses and transgenes from an unrelated virus could result 

in new hybrid viruses with expanded host ranges and new disease phenotypes (Masuta et al., 

1998).  

 

I.3.2  Antiviral agents and resistance genes 

Another strategy is the use of specific and natural inhibitors of virus replication that could 

confer resistance when expressed in transgenic plants.  

Potential antiviral proteins include ribonucleases 2´, 5´ oligoadenylate synthase, and 

ribosome-inactivating proteins (RIBs). Expression of a specific double-stranded RNA 

ribonuclease in transgenic plants inhibited TMV, CMV and PVY infections (Watanabe et al., 

1995). A specific ribonuclease enzyme named as ribozeymes could be used against invading 

viruses to cleave and destroy their RNA. They contain a catalytic domain flanked by 

hybridising arms that are complementary to target RNA. Transgenic tobacco plants 

expressing a specific ribozyme showed resistance against TMV infection (de Feyter et al., 

1996). Transgenic expression of 2´, 5´ oligoadenylate synthetase was proved as an effective 

approach to protect plants against CMV and PVY infection (Ogawa et al., 1996). Tobacco and 

potato plants expressing a ribosomal inhibiting protein were resistant to PVX, PVY and 

PLRV (Ogawa et al., 1996).  

 

I.3.3 Antibody-mediated resistance 

The expression of viral genes or using of viral nucleic acid as PTGS in transgenic plants could 

be a very effective tool to attenuate plant viral infection. The PDR strategies may lead 

recombination and transcapsidation between transgenes and incoming viruses. Nevertheless, 

risk issues concerned with their application in plants may limit the exploitation of this 

strategy.  

An alternative approach to create plants resistant against pathogens that lack these drawbacks 

would be the expression of antibodies or antibody fragments that could bind to functional 

components of pathogens and inactivate pathogens and pathogen proteins in plants. The 
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effectiveness of this strategy is related to the antibody affinity and specificity to the target 

protein. This strategy has been developed with progress in understanding of plant diseases 

mechanism and by identification of many proteins critical to pathogen infection, development, 

replication and spread. The first successful use of antibodies to make plant virus resistant was 

the using of specific single-chain variable fragments (scFv) against Artichoke mottled crinkle 

virus (AMCV). This scFv was constructed from a monoclonal antibody against the AMCV 

virion. Before plant transformation, the single chain was expressed in bacteria to show that it 

retained the general characteristics of its parental antibody. The constitutive cytosolic 

expression of this scFv in transgenic tobacco caused a reduction in viral infection and a delay 

in symptom development (Tavladoraki et al., 1993). 

Clearly, the choice of plant compartment for recombinant antibody expression is critical for 

engineering of viral resistance. Because most processes involving in viral replication and 

spread take place within the cytoplasm, cytosolic expression of the recombinant antibody 

fragments is desirable (Baulcombe, 1994). The main problem accompanying this issue is that 

recombinant antibodies or even their fragments (scFv) might not fold properly in the cytosol 

and have low stability (Fecker et al., 1996). Expression of antibody fragments in cell 

components other than the cytoplasm could provide better conditions for their folding and an 

associated increase in protein stability. Full-length antibody expression targeted to the 

apoplast conferred protection against TMV (Voss et al., 1995). When full size recombinant 

antibody obtained from TMV was expressed in cytosolic and apoplastic regions, expression 

level of functional full size antibody in apoplast remained high while cytosolic expression was 

barely detectable (Schillberg et al., 1999). Accumulation of scFv obtained against TMV CP 

expressed in apoplasm is 50000-fold higher than its cytosolic expression. However, even very 

low levels of  cytosolic scFv expression (0.00002% of total soluble protein) led to remarkable 

enhancement in systemic viral resistance over that conferred by apoplastic targeting of scFv 

or  full-size antibodies (Zimmermann et al., 1998). It has been shown that TMV neutralizing 

scFv targeted to endoplasmic reticulum and integrated into the tobacco cells plasma 

membrane (facing the apoplast) retained scFv antigen binding affinity and specificity. 

Transgenic plants expressing membrane targeted scFv were resistant to TMV infection, 

demonstrating that anti-viral antibody targeting to plasma membrane is functional in vivo and 

offer an effective method to create resistance against pathogens (Schillberg et al., 2000). 

Expression of coat protein-specific scFv of Beet necrotic yellow vein virus (BNYVV) in the 

ER or an ER-associated compartment partially protected N. benthamiana against the 

pathogenic effects of BNYVV (Fecker et al., 1997). 
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Transgenic plants expressing functional scFv fragments were typically protected only against 

the specific  viruses which the antibody was raised, but some scFv that could experimentally 

detect several viruses, normally within same virus family, might be used to protect plants 

from distinct viruses (Xiao et al., 2000).  

Most of recombinant antibodies have been raised against the coat proteins. High variability of 

CP in plant viruses might prevent broad-range resistance and moreover, the amount of coat 

protein accumulated in plant cells is high and may not be completely neutralized by limited 

amount of scFvs expressed in plants cytosol. An alternative; Virus resistance based on 

antibodies to RNA-dependent RNA polymerase (RdRps), could be a beneficial approach. The 

replicases contain several conserved motifs and are multifunctional proteins occurring in low 

concentration in infected cells. Boonrod et al. used scFvs against a conserved domain of a 

Tomato bushy stunt virus (TBSV) RdRp. Transgenic N. benthamiana plants expressing 

different scFv either in the cytosol or in the endoplasmic reticulum showed varying degrees of 

resistance against four plant viruses from different genera, three of which belonged to the 

Tobamoviridae family (Boonrod et al., 2004). 

 

I.4 Geminiviridae family:  

The family Geminiviridae is one of the only two known plant virus families that have DNA 

genomes and replicate through DNA intermediates. The Geminiviruses, a fast growing viruses 

group, are pathogens of a large and diverse group of angiosperm viruses. The group is 

characterized by twin icosahedral capsids approximately 20X30 nm in size encapsidating a 

single molecule of covalently closed circular DNA (ssDNA) genomes of 2500 to 3000 bp that 

replicate in the nuclei of the infected cells via a double stranded DNA (dsDNA) intermediate 

(Lazarowitz, 1992). 

The members of the family Geminiviridae are currently divided into four genera (summarized 

in Table I-1) on the basis of their insect vector, host range and genome organization (Fauquet 

et al., 2003). 
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Mastrevirus Curtovirus Begomovirus Topocuvirus 

Genome 

organization 

Monopartite Monopartite Mono- or 

Bipartite 

Monopartite 

Host range Monocotyledonous Dicotyledonous Dicotyledonous Dicotyledonous 

Insect vector Leafhoppers Leafhoppers 

 

Whiteflies Treehoppers 

Virus type 

member 

MSV BCTV BGMV TPCTV 

Other 

members 

WDV, SSV HCTV ACMV, SqLCV, 

TYLCV, ToLCV 

     _______ 

 

 

Table I-1: Classification of the Family Geminiviridae 

MSV= Maize streak virus, BCTV= Beet curly top virus, TPCTV= Tomato pseudo curly top 

virus, BGMV= Bean golden mosaic virus, WDV= Wheat dwarf virus, SSV= Sugarcane 

streak virus, HCTV= Horseradish curly top virus, ACMV= African cassava mosaic virus, 

SqLCV= Squash leaf curl virus, TYLCV= Tomato yellow leaf curl virus, ToLCV= Tomato 

leaf curl virus  

 
Members of the Mastrevirus genus are limited to monocotyledon hosts and have not been 

reported in America. The Curtovirus genus has arisen from a recombination event between a 

Mastrevirus and Begomovirus, the latter being the most diverse and widely distributed 

Geminiviridae lineage. Phylogenetic analysis of the begomoviruses has demonstrated distinct 

geographic lineages and two major clusters have emerged. The New World cluster for 

American viruses and the Old World cluster for viruses from Europe, Africa and Asia, but 

there is the third growing cluster including American SqLCV and Texas pepper virus 

(Arguello-Astorga et al., 1994). 

Begomoviruses infections occurring in different continents have considerable serological 

relationship to each other.  It has been demonstrated that begomoviruses isolated from one 

geographical region have more similar epitope profiles than those from different regions 

irrespective of the source host and type of diseases (Harrison and Robinson, 1999). 
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I.4.1  Tomato yellow leaf curl virus (TYLCV) 

The TYLCV is the most devastating and fast spreading virus disease agent of tomato crops in 

tropical and warm temperate regions of the world including the Mediterranean, Middle east 

and tropical regions of Africa and Central America and causes up to total yield loss (Nakhla 

and Maxwell, 1998). The first reports of damage caused by this virus were in the late of 1930s 

and it was recorded as a whitefly-transmitted virus in tomato crops in the Middle east (Cohen 

and Harpaz, 1964) and later shown to be a Geminivirus member (Czosnek et al., 1988). It 

remained of minor importance and limited geographical distribution, until a severe outbreak 

of B biotype of Bemisia tabaci in tropical and subtropical regions occurred during the late 

1980s. This biotype had a wider host rang than others, which apparently resulted  in the 

spread of the viruses, which had originally infected only endemic plants and weeds, into 

adjacent and previously unaffected species (Rybicki and Pietersen, 1999). TYLCV is 

considered a phloem-limited virus and is not sap transmissible. It is confined to cells of 

phloem in the shoot apical, developing leaf, stem and floral tissues of tomato plants. The 

relatively inefficient interaction between TYLCV proteins (such as MP) to epidermal and 

mesophyl plasmodesmata (PD) may explain the phloem-limited nature of this virus in tomato. 

It seems that CP and C4 interact more efficiently with PD of phloem cells to mediate spread 

of virus (Rojas et al., 2001) and they can not suppress host defence responses in non-vascular 

tissue (Voinnet et al., 1999). Some immunolocalization studies suggest it may not be phloem-

limited in all tissue type (Michelson et al., 1997). The virus can not be transmitted through 

seeds. 

The symptoms of disease become visible in tomato 2-3 weeks after infection and consist of 

upward curling of leaflet margins, yellowing of young leaves, and abortion in flowers. Those 

leaflets that appear soon after inoculation are cupped down and inwards. Infected plants are 

severely stunted and resulting decrease of plant growth reduces total yield. Seedlings infected 

during the first month after planting are arrested in their growth and do not set fruits (Cohen 

and Harpaz, 1964). TYLCV-Is also can cause natural infection in 13 plant species throughout 

six botanical families. In addition to tomato, among cultivated crops, it was detected in 

common bean (Phaseolus vulgaris) (Navas-Castillo et al., 1999), pepper (Capsicum annum) 

(Reina et al., 1999) and lisianthus (Eustoma grandiflora) (Cohen et al., 1995). TYLCV is not 

wide-spread in weed hosts, although TYLCV-Sar, cause of severe epidemics in tomato plants 

since the late 1980s and early 1990s, has been found in some annual weed species including 

D. stramonium, Solanum nigrum, S. luteum and Euphorbia sp. (Bosco et al., 1993). 
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The name TYLCV is a generic name based off sequence comparison, and is given to a 

growing number of varyingly related viruses belonging to Begomovirus group of 

Geminiviridae and infecting tomato plants, causing similar diseases in widely separated 

geographical area in many tropical and subtropical regions (Czosnek and Laterrot, 1997; 

Nakhla and Maxwell, 1998; Moriones and Navas-Castillo, 2000). Epitope profiles of isolates 

from different geographical regions are different (Macintosh et al., 1992). Tomato 

geminiviruses are classified into three main clusters representing 1) the Mediterranean, 

Middle East, African region, 2) India, the Far East and Australia and 3) the Americas. In 

contrast to other members of the begomoviruses, all TYLCV isolates contain a single DNA-

A-like genomic component, except for the isolate from Thailand which has a genome 

comprising two molecules, DNA-A and DNA-B (Rochester et al., 1994).  

The TYLCV is transmitted by B. tabaci in a circulative manner. The adults and crawlers (first 

instar) are the most susceptible stages to transmit virus. The minimum effective acquisition 

and inoculation access periods are approximately 10-20 min. At least 8 hours are required that 

insect can transmit virus after acquisition (latent period). Female insects are sufficiently more 

efficient vector (Caciagli et al., 1995). Virus could be associated with the insect for its whole 

life and transmitted through the eggs for at least two generations and between individuals 

through copulation. Thus, TYLCV seems to be a pathogen of B. tabaci that suffers deleterious 

effects on life expectancy and fertility (Ghanim and Czosnek, 2000). 

The TYLCV genome is transcribed to result in 2 virion and 4 complementary-sense 

transcripts, designed V1, V2 and C1 to C4.  The V1 encodes the 30 kDa coat protein (CP) 

covering the viral genome and V2 encodes a 13.3 kDa  movement protein (MP) that together 

with the 11 kDa protein product of C4 involve in cell-to-cell movement of viral DNA (Rojas 

et al., 2001). The C1 gene on the complementary strand encodes for a 41 kDa replication 

initiator protein (Rep). The C2 gene produces a 15.7 kDa transcription activator protein 

(TrAP) contributed in viral pathogenicity and localized into the nucleus (van Wezel et al., 

2001) and it could be a suppressor of post-transcriptional gene silencing (PTGS) (van Wezel 

et al., 2002). The C3 gene product (REn) act as a replication enhancer (Hanley-Bowdoin et 

al., 2000). Generally, geminivirus genes encoded on the complementary strand are involving 

in virion replication, regulation of viral transcription and shifting of cellular processes to 

favour the viral replication cycle, but, the genes encoded on virion sense participate in the 

intra and intercellular movement of viral genomes and in encapsidation of genome. 

Because TYLCV particles occur in low concentration in infected plants, traditional methods 

are severely limited for detection in crude extract. Methods like immunosorbent electron 
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microscopy (ISEM) (Stanley et al., 1997), double antibody-sandwich form of ELISA 

(Sequeira and Harrison, 1982) based on polyclonal antibodies, and triple antibody-sandwich 

ELISA (TAS-ELISA) (Thomas et al., 1986) using monoclonal antibodyies are viable tools for 

detection of viral particles. In some cases it is essential to include reducing agents such as 

sodium sulphite or 2-mercaptoethanol in tissue extraction medium to solubilize proteins and 

preventing re-formation of disulfide bonds (Macintosh et al., 1992).  

 

I.4.2 Geminiviruses genome structure 

Monopartite geminiviruses including mastreviruses, curtoviruses and some old world 

begomoviruses, like TYLCV, contain four to six overlapping genes encoding all viral proteins 

necessary for replication, transcription, virus movements and encapsidation. These genes are 

arranged in two divergent clusters separated by a large intergenic region (LIR) that contains 

the promoters for both transcription units. 

The genes on the right side are called virion sense (v-sense) because they are transcribed from 

a DNA strand with the same polarity as the encapsidated viral DNA that also called plus 

strand. Similarly, genes on the left side (opposite orientation) are called complementary sense 

(c-sense) because they are transcribed from a DNA strand that is complementary to the 

encapsidated DNA and present only in the dsDNA intermediate. In general genes encoded on 

the c-sense portion of the genome, like rep, TrAp and REn, are involved in virus replication 

and transcription, whereas genes encoded in the virion sense have a function in encapsidation 

(CP) and virus movement (MP) (Lazarowitz, 1992; Arguello-Astorga et al., 1994; Hanley-

Bowdoin et al., 1999; Hanley-Bowdoin et al., 2000). 

Bipartite begomoviruses have a genome composed of two ssDNAs, designated as components 

A and B, both of which are required for successful infection. They also display two divergent 

sets of genes separated by an intergenic region (IR) that includes segment of about 180 to 200 

nucleotides (nt), called the common region (CR), which is the only highly conserved region 

between both components. All elements required for viral replication reside within the CR, 

which varies from virus to virus, with the exception of a highly conserved 30 nucleotides-

element with the potential to form stem-loop (hairpin) structure. Component A contains four 

or five genes. The coat protein gene (AV1) is the only gene found in the virion-sense 

orientation, whereas genes such as rep (AC1) (replication initiation protein), REn (AC3) 

(replication enhancer protein), and TrAP (AC2) (transcriptional activator protein) are found in 

the complementary sense. A fourth gene (AC4) has been described in some geminiviruses, 

although its function is still not well understood. Component B, on the other hand, contains 
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two genes, one of the complementary sense (BC1) and another in the virion sense (BV1). 

Both genes encode proteins involved in the movement of the viral DNA and necessary for 

systemic movement and symptom development. The BC1 gene product [movement protein 

(MP)] seems to be involved in cell-to-cell transport of the virus, probably by increasing the 

plasmodesmata size exclusion limit. The BV1 gene product, nuclear shuttle protein (NSP), 

accumulates in the nucleus and mediates nuclear import and export of DNA (Lazarowitz, 

1992; Hanley-Bowdoin et al., 2000; Rojas et al., 2001). 

It seems that geminiviruses move in between plant cells as virions or nucleoprotein complexes 

(Gafni and Epel, 2002) but the form of viral DNA (ss or ds) involved in this movement is 

unknown. In BDMV, a bipartite begomovirus mesophyll-invassive, both ss- and ds-DNA are 

involving in movement (Rojas et al., 1998), while in SqLCV, a phloem-limited bipartite 

begomovirus, NSP and MP bind strongly to ss-DNA (Pascal et al., 1994). In contrary to other 

geminiviruses, ss-DNA of ToLCV accumulates in the cytoplasm of infected phloem cells 

(Rasheed et al., 2006). It is likely that different tissue tropisms in bipartite geminiviruses is 

result of different movement mechanisms (Morra and Petty, 2000). 

In addition to genomic DNA, many begomoviruses contain defective or nanovirus-like 

circular ssDNA encapsidated  by CP (Saunders et al., 2000). Unlike other plant viruses 

begomoviruses predominantly rely on protein-protein and protein-DNA interactions for the 

stability of their particles (Harrison et al., 2002) 

 

I.4.3 Geminiviruses replication 

Most plant viruses replicate in the cytoplasm of infected cells, while geminiviruses replicate 

in the nucleus, a feature that makes them an excellent model for studying of plant genome 

replication. The replication of the geminivirus genome occurs entirely through DNA 

intermediates and within the nucleus of the infected cell. It is largely dependent on cellular 

factors, and it can be divided into two steps: 1) the conversion of ssDNA (virion DNA) into a 

dsDNA form and 2) the production of virion-sense ssDNA from dsDNA intermediate. 

Little is known about the first process in begomoviruses and curtoviruses. However, in the 

case of the mastreovirus, a small oligoribonucleotide complementary to a sequence located in 

the SIR is found associated with the virions. This oligoribonucleotide may prime the synthesis 

of the complementary strand (Donson et al., 1987). 

The process of generation of new viral ssDNA molecules from dsDNA intermediate is better 

known. Geminiviruses use a rolling circle (RC) replication mechanism, similar to the one 

used by ssDNA bacteriophages such as φX174 (Stenger et al., 1991), in which the viral 
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protein Rep, considered a replication initiator protein, play a leading role and is 

multifunctional protein, but does not display DNA polymerase activity. The intergenic region 

in all geminiviruses contains cis-acting signals required for transcription and initiation of 

rolling-circle DNA replication. To initiate RC replication, Rep cleaves the viral plus-strand 

DNA between position 7 and 8 of the nonameric motif (5’-TAATATT AC-3’) universally 

conserved in all geminiviruses. This invariable sequence is found in the loop of the conserved 

30 bp hairpin (stem loop) element located in the virus intergenic region. The structure of the 

stem-like loop sequence is also important. Point mutation analysis revealed that base pairing, 

which contributes to the maintenance of the stem-loop, is crucial for viral DNA replication 

(Orozco and Hanley-Bowdoin, 1996). A set of directly repeated sequences are found in the 

genome of most dicot-infecting geminiviruses (Arguello-Astorga et al., 1994). In ToLCV, 

these sequences are involved in virus specific Rep-binding (Behjatnia et al., 1998). This motif 

in the TGMV IR is required for recognition of the virion sense origin and negative regulation 

of the overlapping promoter for leftward transcription that is located on the left side of 

common region. This includes the hairpin element and five additional cis-acting elements 

contributing to replication origin function (Fontes et al., 1992). The key elements in the origin 

are the specific Rep-binding sites with a directly repeated motifs, whose nucleotide sequence 

varies greatly among geminiviruses, but are positioned similarly in all the known 

begomoviruses and curtoviruses (Arguello-Astorga et al., 1994). The TGMV Rep binding site 

is located between the c-sense genes TATA box (including Rep) and their transcription start 

site (Fontes et al., 1992). Other elements in the TGMV intergenic origin which are necessary 

for origin function but have little or no effect on AL1 promoter activity include a hairpin 

structure, AG-motif locating between AL1 binding site and hairpin, and CA-motif is located 

outside of minimal origin leading to increase replication efficiency to 20-fold (Orozco et al., 

1998). The role of AG and CA motifs in the TGMV origin is not clear, but they might bind to 

host factors to facilitate initiation of plus strand replication. Rep binding site of geminiviruses 

are related but they have distinct DNA sequence and bind to their cognate Rep protein, 

specifically, showing that these sites act as origin of recognition elements (Fontes et al., 

1994). The TATA-box and G-box transcription factor binding sites in the AL1 promoter act 

as replication enhancer elements (Eagle and Hanley-Bowdoin, 1997). 

After nicking of the origin, Rep becomes covalently linked to the 5’-end (-PO4) of the nicked 

strand, via a phosphor-tyrosine linkage. The 3’-end (-OH) of nicked DNA primes the plus-

strand synthesis by host DNA polymerases, which uses the minus strand as a template, and 

displaces the parental plus strand linked to the Rep protein. After reconstitution of the origin 
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of replication, produced full-length linear ssDNA (plus strand) is displaced from the dsDNA 

intermediate. Rep performs both a second cleavage in the new nonanucleotide sequence and a 

ligation of two ends of the linear ssDNA. This ligation of Rep-linked 5’-PO4 and 3’-OH 

releases Rep and generates a circular ssDNA molecule (Heyraud-Nitschke et al., 1995).  

Molecular details of elongation and termination steps in viral DNA replication are largely 

unknown. Host cellular replication factors may interact with viral protein and DNA motifs to 

achieve complete synthesis of viral DNA. 

Completion of geminivirus DNA replication requires the cellular DNA replication machinery 

which is frequently absent or inactive in non-proliferating cells. Therefore, replication of 

geminiviruses must be limited to dividing cells containing all factors needed for DNA 

replication. Alternatively, they have evolved a strategy to replicate in some cells and activate 

specific sets of cellular genes required for DNA replication. In this way geminiviruses act like 

human oncogenic viruses like SV40 or adenoviruses. Geminiviruses activate differentiated 

cells by interacting with a host protein, the retinoblastoma related protein (pRBR) and induce 

transcription of genes encoding host replicative enzymes (Arguello-Astorga et al., 2004). It 

has been shown that TGMV Rep can induce accumulation of proliferating cell nuclear antigen 

(PCNA), the processivity factor of DNA polymerase δ, in terminally differentiated cells 

(Nagar et al., 2002). 

 

 I.4.4  Geminiviruses infection cycle 

Most geminiviruses are able to infect a variety of differentiated cells (Nagar et al., 1995; 

Michelson et al., 1997; Sudarshana et al., 1998) while others, including SLCV and abutilon 

mosaic virus, are confined to vascular tissue and may be restricted to pro-vascular and 

cambial cells that can support DNA replication (Sanderfoot and Lazarowitz, 1996). The first 

stage in the infection cycle involves the injection of viral ssDNA into plant cell by an insect 

vector, B. tabaci, that deliver virus into the phloem sieve tubes, from where virus start to 

spread.  

Since the geminiviruses replicate in the nucleus of plant cells, they must have a mechanism 

that enables them to deliver their genome into the nucleus. As only viral CP is available, 

movement of the genome into the nucleus must be entirely CP and/or host-machinery 

dependent. It is not clear that genomic material of virus moves to the nucleus as an 

encapsidated virion or as a nucleoprotein complex (Gafni and Epel, 2002). Once in the 

nucleus, the viral ssDNA is converted into dsDNA, the form that serves as a template for both 

transcription and replication. Synthesis of complementary DNA is exclusively accomplished 
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by host proteins, since dsDNA is a transcriptionally active template. Host histones then 

associate with viral dsDNA and are packaged into so-called minichromosomes structures 

(Pilartz and Jeske, 1992). Similar to other viral systems, the expression of geminiviral genes 

seems to follow a finely tuned temporal sequence. It is believed that the genes encoding 

proteins involved in replication and transcription, like AC1, AC2, and AC3, are expressed 

earlier than the virion-sense genes (CP and BV1). After the expression of the early viral genes 

transcribed from the complementary sense (DNA), the multiplication of the virus genome by 

a rolling-circle mechanism generates new viral ssDNA molecules from the dsDNA 

intermediate. An ssDNA molecule produced in this process has one of two fates, depending 

upon the stage of infection. In an early stage, viral ssDNA can be converted, by host 

machinery, to dsDNA forms. These molecules will then be directed to the transcription and/or 

replication processes, amplifying the viral genome within the cells (a necessary condition to 

initiate a systemic infection) (Timmermans et al., 1994). The second alternative occurs in a 

later stage; late gene products CP and NSP (BV1) are able to bind viral ssDNA and either 

encapsidate or simply transport it out of the nucleus, permitting the virus genome to cross 

from nucleus to cytoplasm. In the bipartite geminiviruses, BV1 gene product serves as a 

shuttle protein involved in the transport of  viral genome into and out of the cell nucleus 

(Noueiry et al., 1994; Pascal et al., 1994; Sanderfoot and Lazarowitz, 1995; Sanderfoot et al., 

1996; Sanderfoot and Lazarowitz, 1996). The monopartite geminiviruses such as TYLCV do 

not code for a BV1 homologue, and other viral proteins like CP must act in the shuttling of 

DNA between nucleus and cytoplasm (Kunik et al., 1998; Rojas et al., 2001). 

For long-distance transport, geminiviruses move from cell to cell and enter the phloem 

tissues. It is not clear if virus transported as ss- or ds-DNA, or whether it moves encapsidated 

or as nucleoprotein. Considering the long intracellular distance, there is probably a transport 

mechanism by which both plant and virus protein interact together to allow the viruses 

genome to reach the plasmodesmata. BV1 and BC1 genes of bipartite geminiviruses encode 

two protein involved  in transporting the viral genome from the nucleus to the cell wall and 

through it to adjacent cells (Sanderfoot and Lazarowitz, 1995). In TYLCV infected cells, it 

seems that CP export viral ds-DNA from nucleus to cytoplasm for cell-to-cell and long 

distance movement of virus within the plant whereas it encapsidates ss-DNA within the 

nucleus to form the virions required for insect transmission (Rojas et al., 2001) 

In the case of the monopartite geminivirus TYLCV, the movement protein and protein 

encoded by C4 may act as BC1 homologues to deliver viral genome to the cell periphery and 

PD. It has been shown that some viruses require the CP for systemic spread in some hosts, 
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whereas in other hosts the CP is dispensable. In addition MP, C2 and C4 gene products may 

be directly or indirectly involved in movement of monopartite geminiviruses (Rojas et al., 

2001). Pepper huasteco virus (PHV) mutants that cannot produce CP can systemically infect 

pepper and Nicotiana benthamiana plants. However, when the mutants are inoculated onto N. 

tabacum plants, the virus replicates only in the inoculated cells; it does not spread throughout 

the plant (Guevara-González and Rivera-Bustamante, 1999). 

The last stage of the cycle corresponds to the uptake of the virions by the insect vector. In this 

case, it has been shown that the CP and virus particles are indispensable for insect 

transmission (Noris et al., 1998; Morin et al., 2000). 

 

I.4.5  Replication initiator protein (Rep) 

All geminiviruses encode a replication initiator protein (Rep) also named C1:C2 in 

mastreviruses, C1 or L1 in curtoviruses and AC1 or AL1 in begomoviruses. This is a 40 kDa 

protein that is necessary for replication of viral DNA (Hanley-Bowdoin et al., 1990). The 

geminivirus replication initiator protein has no similarity to known polymerases but it 

contains conserved sequences of the Rep protein of bacterial plasmids involved in initiation 

and termination of RC replication (Koonin and Ilyina, 1992). Because of these functional 

similarities it was designated a Rep protein. Rep is a multifunctional protein with the capacity 

for sequence specific DNA-binding  (Fontes et al., 1992), site-specific endonucleolytic and 

joining activity (Heyraud-Nitschke et al., 1995), regulation of viral gene expression (Hanley-

Bowdoin et al., 2000), self-oligomerization (Orozco et al., 1997), Ren protein (A13) binding 

(Settlage et al., 1996), interaction with host retinoblastoma related protein and induction of 

the expression of the host DNA synthesis protein (Nagar et al., 1995). The C-terminal part of 

Rep also contain a NTP-binding domain (Gorbalenya and Koonin, 1989) and ATPase activity 

(Desbiez et al., 1995). 

Comparison of geminivirus Rep to initiator proteins in prokaryotic rolling-circle replication, 

parvoviruses, circoviruses and plant nanoviruses revealed high similarity within their N-

terminal amino acids containing three highly conserved motifs (RCR-I to III). The function of 

RCR-I (FLTYPxC) is not known, but RCR-II motif (HLHxxxQ) through an invariant His 

residue involves in the coordination of a bivalent cation. A Tyrosine residue located in the 

RCR-III (VxDYxxK) motif is crucial for Rep nicking activity. The Hydroxyl group (-OH) of 

this tyrosine attack to phosphodiester bond between the last T and A in the invariant loop 

structure producing a dsDNA circle with a nick that provide 3’-OH needed for making new 

virion sense (DNA) by host DNA polymerase in the viral replication process, whereas Rep 
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seems to remain covalently attached to the 5’ ends via an energy-conserving ester bond. After 

one round of replication, the newly synthesized origin is cleaved again by Rep, the new 3’ 

hydroxyl group is linked to 5’ phosphate group of the strand linked to Rep, and one ssDNA 

molecule is released. In this sense, the Rep behaves as topoisomerase I-like site specific 

cleavage/ligation enzymes (Laufs et al., 1995). 
The C-terminal part of TYLCV Rep contains a fourth conserved motif GxxxxGKT/S, 

specifying the phosphate binding fold (P-loop) that is found in many NTP binding proteins 

and contributing to its ATPase activity. Point mutations in these conserved motifs cause a 

substantial decrease or loss of its ATP and GTP hydrolysis activity resulting in reduced viral 

DNA accumulation (Desbiez et al., 1995). The Exact role of ATPase activity has not yet been 

identified but was hypothesized that Rep acts as helicase to displace the viral-strand DNA or 

to unwind the origin, like the Rep68 protein of adeno-associated viruses (Hofer et al., 1992). 

The oligomerization domain located in the middle region of Rep is also essential for origin 

recognition and DNA binding. This region displays strong sequence and structural homology 

between geminiviruses (Orozco et al., 2000). Rep oligomer containing eight monomers is 

involved in nucleoprotein complex of REP-DNA. It appears Rep oligomerization is not 

required for its cleavage and joining activities (Orozco et al., 1998; Sanz-Burgos and 

Gutierrez, 1998).  
The DNA binding domain of Rep has been mapped to its amino terminal moiety  (Choi and 

Stenger, 1995; Jupin et al., 1995). Despite a high sequence homology and functional 

conservation between geminiviruses of Rep, it shows high specificity for replication of their 

cognate genome. This specificity is particularly determined by the high-affinity binding site of 

DNA locating in IR and replication specificity domain of Rep localized in the N-terminal 

region (Choi and Stenger, 1995; Jupin et al., 1995; Chatterji et al., 1999). In TGMV, this 

domain maps to the N-terminal 181 amino acids and overlaps the DNA cleavage (amino acids 

1-120) and oligomerization (amino acids 134-181) domains. Almost identical amino acids 

contribute to DNA binding and cleavage activities. However, DNA binding is distinguished 

from cleavage and ligation domains by its dependence on Rep-Rep interactions (Orozco and 

Hanley-Bowdoin, 1998). TGMV AL1-AL1 interaction might be prerequisite for DNA 

binding, because the DNA binding domain includes the oligomerization domain (Orozco et 

al., 1997). In TYLCV, the catalytic domain of REP is composed of a central five-stranded anti 

parallel β-sheets which is flanked by a small two-stranded β-sheets, a β-hairpin and two α-

helices and is related to a large group of RNA or DNA binding proteins (Arguello-Astorga 

and Ruiz-Medrano, 2001; Campos-Olivas et al., 2002). 



Introduction…............................................................................................................................... 

                    24 
 
 

Rep can induce expression of some host genes required for DNA synthesis and accumulation 

of proliferating cell nuclear antigen (PCNA), the processivity factor of DNA polymerase δ, in 

non-dividing cells (Nagar et al., 1995). The biochemical role of PCNA in RCR of 

geminiviruses has not been examined in detail.  Mastrevirus RepA contains a LxCxE motif 

that can interact with human retinoblastoma proteins (cell cycle regulators) (Collin et al., 

1996). Begomoviruses Rep lack this binding motif but can interact with maize protein related 

to human retinoblastoma (Ach et al., 1997). They interact with plant retinoblastoma-related 

protein (pRBR) through a novel amino acid sequence mapped between amino acids 101 and  

180 including two α-helices (Arguello-Astorga et al., 2004). PCNA is also expressed in 

differentiated cells of transgenic plants expressing Rep, demonstrating that Rep is sufficient 

for host induction (Kong et al., 2000). In animals pRb  family members can negatively 

regulate cell cycle progression and facilitate their differentiation (Sidle et al., 1996). 

In begomoviruses, it has been shown that Rep can interact with other viral proteins like REn. 

This interaction has not been seen In vivo, although in Replication of TGMV DNA molecules 

containing point mutations in the Rep binding site, Rep can act only in the presence of REn 

protein provided in trans. This suggests that Rep-REn interaction is required in DNA 

replication (Settlage et al., 1996).   

Rep down-regulates the expression of c-sense genes. Since the presence of the Rep binding 

site is necessary for its down-regulating activity, it is possible that Rep interferes in 

transcription machinery (Eagle et al., 1994). In some geminiviruses, Rep could enhance 

transcription of late genes (Hofer et al., 1992). 

 

I.4.6  Coat protein (CP) 

Coat protein, with a mass of 30 kDa, is the second largest viral protein and contains 260 

amino acids rich in arginine, valine, serine and lysine resulting in a net positive charge at 

neutral pH. There are probably 110 CP molecules per geminate particle (Azzam et al., 1994). 

The CP of geminiviruses is a multifunctional protein, as its primary function is encapsidation 

of ssDNA and formation of viral capsule to protect viral genome during transmission. Unlike 

many viruses, the CP of bipartite geminiviruses is not required for cell-to-cell and long-

distance movement leading to systemic infection (Pooma et al., 1996) whereas in monopartite 

geminiviruses, it is crucial for systemic infection as well as insect transmission and capsid 

formation  (Lazarowitz, 1992; Noris et al., 1998). TYLCV CP, like BV1 encoded protein of 

bipartite geminiviruses, acts in the shuttling of viral genome between nucleus and cytoplasm 

(Rojas et al., 2001) and this may protect viral genome from intracellular nucleases 
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(Palanichelvam et al., 1998). Disruption of the TYLCV CP gene prevented accumulation of 

viral DNA and symptom development in N. benthamiana and tomato (Wartig et al., 1997). 

Geminiviruses CP determines vector specificity (Hofer et al., 1997) and protect viral genome 

during transmission by insect vector (Azzam et al., 1994) or mechanical transmission 

(Frischmuth and Stanley, 1998). Other properties of CP include self-binding and binding to a 

GroEL homologue, a protein that is secreted into whitefly haemolymph by endosymbiotic 

bacteria that seems to be crucial for insect transmission and may stabilize virus particles in 

insect haemocoele during transmission by insect (Harrison et al., 2002). 

CP expression is regulated by viral TrAP  which is encoded by AC2 (Sunter and Bisaro, 

1991). CP can allow virus to pass through the whitefly gut wall as well as from white fly 

haemocoele to salivary gland (Harrison et al., 2002). 

CP in both mono- and bi-partite of geminiviruses can import viral genome into the nucleus 

(Kunik et al., 1998; Unseld et al., 2001). Microinjection and transient expression experiments 

have shown that TYLCV CP can be localized to nucleus of plant and insect cells (Kunik et al., 

1998; Rojas et al., 2001). Nuclear import in karyophilic proteins is generally mediated by a 

nuclear localization signal (NLS) sequence which typically belong to one of three groups, 1) 

monopartite motif like SV40 large T antigen PKKKRKV (Kalderon et al., 1984), 2) bipartite 

motif including two basic motifs separated by some spacer amino acids (but not less than 

four) such as nucleoplasmin NLS with KR-X10-KKKL residues (Robbins et al., 1991), most 

NLS found in plant proteins belong to bipartite type (Raikhel, 1992), 3) tripartite motif that is 

suggested for l-periaxin (Sherman and Brophy, 2000). The NLS of TYLCV CP belongs to the 

bipartite motif group and is mapped in N-terminal amino acids 3-20 containing KR-X11-

KvRRR residues (Gafni, 2003) while ACMV CP contains tripartite NLS whereby the third 

basic region alternatively facilitate nuclear import with domain one or two (Unseld et al., 

2001). The most likely means of nuclear import of TYLCV CP is mediated by karyopherinα 

(Kunik et al., 1999). Experiments show that another supplementary NLS lies between residues 

36 and 61 that facilitates nuclear import (Kunik et al., 1998). 
In vitro experiments show that TYLCV CP, like BV1 product of bigeminiviruses, could act as 

a nuclear shuttle to export DNA from the nucleus to the cytoplasm (Rojas et al., 2001). 
Nuclear export signal (NES) is normally mediated by a common motif rich of leucine residues 

such as LPPLERLTL in the HIV-1 Rev molecule (Fischer et al., 1995). Unlike some bipartite 

geminiviruses in which a leucine-rich sequence was found on the BV1 protein (Ward and 

Lazarowitz, 1999), no corresponding sequence to serve as an NES  have been identified in the 

CP of monopartite geminiviruses like TYLCV. ACMV CP, as a bipartite geminivirus, 
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mediates both nuclear import and export of viral genome, its NLS mapped in the both end and 

middle part of CP, while one NES motif was detected in the central part of CP (Unseld et al., 

2001). 

The primary function of CP is protection of genomic DNA during transmission. It is possible 

that the ssDNA binding ability of CP facilitate the coating of virion sense viral DNA as well 

as its nuclear shuttling functions into and out of nucleus (Gafni, 2003). In vitro analysis has 

shown that TYLCV CP could bind to ssDNA, but not dsDNA, in a highly co-operative and 

sequence non-specific manner (Palanichelvam et al., 1998). After translation of CP in the 

cytoplasm, it enters into the nucleus to encapsiadate viral ssDNA. The DNA binding domain 

of CP is located in N-terminal half of the protein (Liu et al., 1997). 

Coat protein is the only known protein constructing the viral particles. Several experiments 

have shown that full-length CP could interact with itself. N- and C-terminal sequences as well 

as amino acids concerned in insect transmission are involved in multimerization (Noris et al., 

1998; Hallan and Gafni, 2001; Unseld et al., 2004). It seems that for virus assembly, N-

terminal amino acids of CP interact with C-terminal amino acids (Hallan and Gafni, 2001). 

The N-terminal part of CP is located on the surface of the virion, is particularly immunogenic 

and varies considerably among begomoviruses while the C-terminal of the sequence is 

strongly conserved and predicted to be mostly buried (Harrison et al., 2002). 

CP has a crucial role in insect transmission and in determining insect specificity. Exchange of 

ACMV CP gene with that of BCTV altered the insect specificity of ACMV from whitefly to 

leafhopper (Briddon et al., 1990), and it seems that whiteflies do not transmit geminiviruses 

containing CP mutants unable to form capsid (Azzam et al., 1994). Replacing CP genes of 

non-transmissible AbMV with that of the relatively closely related whitefly transmissible Sida 

golden mosaic virus (SGMV) resulted in transmission of AbMV (Hofer et al., 1997). As in 

luteoviruses, the CP may interacts with receptors in the salivary glands of  B. tabaci (Gildow, 

1987). Sequences important for insect transmission are in the central regions of CP (Noris et 

al., 1998). 
Begomovirus CP and virus particles accumulate in the nucleus and it seems virus assembly 

occurs in the nucleus (Harrison et al., 2002).  

 
I.5 Antibody structure 

Antibodies are the host proteins produced in response to foreign molecules in the mammalian 

body. They may exist as membrane-bound (on B-cell surface) or as soluble antigen receptors, 

and assist in the process of detection and subsequent elimination of foreign antigens. 
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Antibodies belong to the immunoglobulin supergene family and constitute the humoral 

immune response, accounting for approximately 20% of the plasma proteins of blood. The 

immunoglobulin supergene family are transmemberane glycolproteins specified by a common 

structural motif with functional domains mediating antigen recognition (Calame, 1986).  

The basic structure of all immunoglobulin, independent of their specificity, are similar and 

consist of two identical light (L) and two identical glycosylated heavy (H) chains. L chains 

are composed of 220 amino acid residues (25 kDa) while H chains are composed 440-450 

amino acid residues (50 kDa). A disulfide bond covalently joins a heavy and a light chain 

together. The two H chains forming antibody molecule also joined together by a disulphide 

bond located in a flexible region of the heavy chain known as “hinge”. Other disulphide 

bonds occur in the folding of whole polypeptide H and L chains of antibody leading to form 

globular regions termed “domain”. Both H and L chains contain constant (C) and variable (V) 

regions which are found at their carboxyl and amino terminals, respectively.  

The carboxyl half of light chain and three-quarters of the heavy chain show relatively limited 

variability and make up the constant regions. Each light chain has one constant region while 

heavy chain has three constant regions named CH1-CH3. The first 110 amino acids of the 

amino terminal in both heavy and light chains are considered variable regions (VH and VL) 

and are responsible for the antigen-binding specificity of antibodies. The V region of both H 

and L chains combine each other to form two identical antigen binding sites. Hypervariable 

regions or complementary determining regions (CDRs) are found in the variable regions of 

both H and L chains that recognize and bind specifically to antigens (Kabat et al., 1977). The 

region of variable domains outside the CDR are called the framework, and do not directly 

interact with antigen. They are highly conserved and required for correct folding of V 

domains and maintaining the integrity of  the binding site (Morea et al., 1997; Morea et al., 

2000). 

Partial digestion of immunoglobulin generates antibody fragments that are still biologically 

active and can be used to elucidate antibody structure or as specific reagents. Digestion of 

immunoglobulin by papain creates two Fab and one Fc fragment. Pepsin digestion creates a 

fragment F(ab’)2 containing two antigen binding sites comprised of two Fabs and the hinge. 

Other antibodies fragments include Fv fragment, an unstable fragment comprising VL and VH 

that could bind to antigen, Fd fragments which contain the N-terminal half of H chain, and 

single chain Fv fragment (scFv) that is a stable form of Fv produced by recombinant antibody 

technology, in which a peptide linker connects the two V regions. scFv is the most commonly 

used in research and therapy (Bird et al., 1988) 
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Immunoglobulin molecules are divided into 5 distinct classes (isotypes) according to their H 

chain type, known as IgG (γ), IgA (α), IgM (μ), IgD (δ) and IgE (ε). These classes are 

different in size, charge, amino acid composition and carbohydrate components. The human 

IgG group possess four subclasses, namely IgG1, IgG2, IgG3 and IgG4. There are also known 

to be two subclasses of human IgA, but none have described for IgM, IgD, and IgE. The light 

chains, base on their C region, are divided within two subgroups, κ and λ. 

IgG is the most important class of immunoglobulin in the secondary immune responses and 

dominant (70-75%) immunoglobulin in human serum. It is a monomer, containing two γ 

heavy chains and two κ or λ light chains and is the only immunoglobulin transported across 

placenta. IgM is predominant antibody in primary immune responses, accounts for 

approximately 10% of the immunoglobulin pool and is the first immunoglobulin expressed by 

B-lymphocytes. Monomeric IgM is the principal antigen receptor on B cells. IgA represents 

15-20% of the human serum immunoglobulin pool. It occurs in monomer and dimmer forms, 

which more than 80% of IgA are as a monomer. IgA monomer is produced by plasma cells in 

the bone marrow while the dimmer is the most common immunoglobulin in adult serum. IgD 

is similar to IgG and accounts for less than 1% of the total plasma immunoglobulin but is a 

major component of the surface membrane of many B-lymphocytes. IgE has a four chain 

polypeptide structure and is scarce in serum and found on the surface membrane of basophiles 

and mast cells. 

The primary function of an antibody is binding to antigen, which can lead to important 

consequences depending upon the nature of antigen. In a few cases these binding have a direct 

effect and may lead to neutralizing of bacterial toxin or prevention of viral attachment to host 

cells, abilities independent of immunoglobulin isotype which reflect antigen binding capacity 

of variable regions. In contrast, other antibody functions, which are dependent upon the 

immunoglobulin isotype, lead to activation of the classical pathway of the complement 

system. 

Particular residues of the hypervariable region of antibodies specifically interact with 

antigens. Multiple non-covalent bonds involve in the interaction between antigen and amino 

acids of the binding site. The strength of a non-covalent bond is dependent to the distance of 

interacting groups. Situations occur when antibody and antigen contain suitable atomic groups 

on opposing parts of the epitope and paratope and the shape of combining sit must fit the 

epitope, so that several non-covalent bonds can form simultaneously. In this way, antigen and 

combining site of antibody are complementary and they have sufficient binding energy to 

resist thermodynamic disruption of the bond. The strength of binding between a single 
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antigenic determinant and an individual combining site of antibody is known as antibody 

affinity while the strength with which a multivalent antibody binds a multivalent antigen is 

termed antibody avidity. Antibodies clearly recognize the overall shape of an epitope rather 

than particular residues. Antibodies are able to distinguish between small differences in the 

primary amino acid sequence of antigens as well as differences in charge, optical 

configuration and steric conformation. Many antibodies will bind only to native antigens or 

other fragment folded sufficiently to form multiple interactions between antigen and antibody. 

Antibodies which bind to these discontinues epitopes often do not bind to denatured antigen 

(Sakurabayashi, 1995). 

Antibodies are remarkably diverse and have the capacity to recognize and respond to millions 

of antigenic shapes in the environment. In fact, produced types of antibodies are more than 

our total genes. This huge diversity in antibodies is formed by gene rearrangement process, 

i.e. recombination between different gene sequences. Separate sets of V genes encode the 

variable domain of L and H chains that are produced separately. Mammalian DNA germline 

contain three different segments corresponding to light chain. The first segment, V, encode 

first part of L chain. There are up to 200 different V sequence linked in tandem to DNA 

germline. The second segment, J, consist 5 different DNA sequences and the third segment is 

the constant region (C) of the light chain. During B cell differentiation in bone marrow, one of 

200 V segments joins to one of 5 J segments and constitute variable region of light chain 

(Melchers, 1995). The heavy chain genes contain more segments than light chain genes 

including V, D and J segments containing 200, 12 and 4 different sequences, respectively.  

The variable H chain forms by recombination and adjoining of one segment from each V, D 

and J  sequences (Early et al., 1980). Thus, a functional immunoglobulin is constituted from 

two gene created during the development of B-lymphocyte that is antigen-independent stage. 

Through these rearrangements, about 103 different light chain genes and 104 heavy chain 

genes can be formed individually leading to create 107 different types of antibodies.  

 

I.6  Phage display technology 

Phage display is a powerful technique applied for selection of peptides with specific binding 

properties from a vast number of variants. Foreign peptides are presented on the surface of a 

bacteriophage and are isolated by an affinity selection known as panning (Smith, 1985). The 

advantage over the synthetic libraries is the physical coupling of phenotype and genotype. 

This enables the identification of a single binding molecule, displayed as protein or peptide 

fused to the surface of a bacteriophage by sequencing the encoding genome after 
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amplification. Up to 1014 M13-like bacteriophage can be contained in one ml, but, library size 

is primarily limited by the efficiency of transformation of E. coli enabling realistic library size 

up to 1011 different variants.  

Filamentous bacteriophage (M13, fd, f1, IKe) of E. coli possess a circular, covalently closed 

ssDNA, surrounded by a cylinder of coat proteins. The genome consists of 9 genome 

encoding 11 proteins (pI-pXI). The minor coat protein pIII of filamentous bacteriophage is 

essential for infectivity. The C-terminal domain of pIII is known to be required for its 

incorporation into phage particle and mediating its release from the inner membrane 

(Rakonjac et al., 1999). Plaques formed by these phages on an E. coli lawn layer appear 

turbid, because the infected bacteria are not lysed, their growth is simply impaired. This 

distinguishes the filamentous phages from the most other bacterial viruses which are 

icosahedral in shape, accumulated in the cell cytoplasm and release from the host cell by 

lysing it.  

For phage display, peptides are usually fused to the N-terminus of either minor coat protein 

pIII or major coat protein pVIII. Additionally, cDNA libraries can be displayed by a fusion to 

the C-terminus of pVI (Jespers et al., 1995). Phage particles can either contain a phage 

genome, or transduce a phagemid which consists of a plasmid carrying the phage origin of 

replication and one gene encoding a coat protein fusion. A resistance marker gene allows for 

the selection of library-containing E. coli cells for propagation. Phagemids have to be 

propagated with the aid of a super-infecting helper-phage providing all the necessary genes 

needed for particle formation but itself defective in replication. A phage, depending on the 

length of encapsidated genome, usually possesses 3-5 copies of the pIII and 3000 copies of 

the pVIII coat protein. With a phagemid, the number of fusion protein copies per phage 

particle can be adjusted by the promoter preceding the gene. There are several advantages for 

the use of phagemids, especially if the protein to be displayed is large and reduces the 

infectivity of the phage particles. Such an impediment from the fusion protein could lead to an 

accumulation of non-displaying (deletion) phage, elevating the non-specific background in the 

selection process. Depending on the coat protein used as fusion partner and the choice of the 

system, different proteins can be effectively displayed. The minor coat protein pIII tolerate N-

terminal fusions with proteins as large as scFv (McCafferty et al., 1990). Larger peptides and 

proteins like Fab were efficiently introduced by the use of hybrid phage producing wild type 

and fused protein pVIII (Kang et al., 1991).  

The scFv libraries have been developed base on scFv fused to pIII minor coat protein. These 

scFv have been derived by amplification of VL and VH region of different animal species such 
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as mice (Hoogenboom et al., 1991) human donors (Sheets et al., 1998) rabbits (Ridder et al., 

1995) and camels (Hamers-Casterman et al., 1993) followed by cloning in plasmid vectors. 

Sources of immunoglobulin genes include the spleens and peripheral blood lymphocytes of 

immunized animals (Clackson et al., 1991) or the bone marrow, tonsils and peripheral blood 

lymphocytes from non-immunized human donors (Vaughan et al., 1996; Sheets et al., 1998). 

Phage display libraries can be derived from V-gene repertoires of immunized or naïve human 

and animal donors (Clackson et al., 1991; Marks et al., 1991). The phage display libraries 

from immunized donors contain representatives of antibody genes after their rearrangement 

and after somatic mutation of the germline sequences in vivo. These repertoires are biased 

towards antibodies specific to the immunized antigen. Moreover the antibody selected by 

affinity maturation also has high affinity for the antigen. This advantage is offset by the need 

for making a specific phage display library for each antigen. On the other hand, the naïve 

library, constructed from non-immunized donors, contains population of antibody sequences 

that correspond to those of primary repertoire as well as memory B-cells of the individual 

from which the samples were taken. The naïve libraries offer the possibility to select 

antibodies to a large panel of antigens, including self, non-immunogenic and relatively toxic 

antigens without the need for immunization (Marks et al., 1991; Griffiths et al., 1993; 

Vaughan et al., 1996). Alternatively, synthetic or semi-synthetic human antibody V-gene 

repertoires have been made by in vitro assembly of V gene segments (Griffiths et al., 1994; 

De Kruif et al., 1995).  

Selection of specific scFv from a phage library is done by their presentation to target protein 

in a process known as bio panning. In bio panning, the target molecule is often immobilized 

on a solid support. Phage population is incubated with immobilized target protein to capture 

specific phages. Non-specific immobilisation can mask the antigen of interest or alter the 

structure of the immobilised target and lead to false positives in the course of selection. 

Previous blocking of the solid support with BSA or skimmed milk reduces the background 

binding of phages which do not recognise the target. After incubation, several washing steps 

are performed to select for the correct binding variants. Elution of these variants is often 

performed unspecifically by the addition of an acidic buffer. For enrichment of the target 

binding variants, the eluted phage are allowed to infect E. coli cells which are grown under 

antibiotic selection either separately on a petri dish, or subjected directly to an erlenmeyer 

flask. In the case of phagemid system, E. coli has to be super-infected by the helper phage to 

initiate the phage particle production. The produced phage are then harvested by PEG/salt 

precipitation and re-suspended in the incubation buffer to start the next cycle of panning. 
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Usually, three to five cycles of panning are necessary to enrich specific clones which can then 

be isolated and sequenced. 

I.7  Research objectives 

In this study the generation of resistant transgenic plants against TYLCV through 

recombinant antibody-mediated resistance approach was anticipated. The main objectives of 

this research were generation of specific scFv fragments binding to viral proteins and 

sebsequent cytosolic and/or nuclear expression of these scFvs within the plant cells to ideally 

block viral functions involved in coating/uncoating, transmission, replication, and nuclear 

import and export. A schematic overview of this Ph.D thesis is presented in below figure. 
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II Materials and Methods 
 

II.1 Materials 

 

II.1.1 Chemicals and consumables 

All chemicals were supplied from the following companies: BioRad (München), Boehringer 

(Mannheim), Duchefa (Haarlem, Netherlands), GibcoBRL (Eggenstein), Gerbu (Gaiberg), 

ICN (Eschwege), Merck (Darmstadt), Lehle, Net Fluid Contents (Lehle, USA), Pharmacia 

(Uppsala), Pierce (Illonois, USA), Amersham Pharmacia Biotech (Freiburg), Roth 

(Karlsruhe), Roche (Mannheim), Serva (Heidelberg), Sigma (Deisenhofen) and Fluka (Neu-

Ulm). 

The consumables were purchased from the following companies: Becton Dickenson (Fraga, 

Spanien), BioSepra (München), Biozym (Hessisch Oldendorf), Dianova (Hamburg), DIFCO 

(Detroit, USA), Eppendorf (Hamburg), Greiner (Solingen), Hewlett Packard (München), 

Kodak (Stuttgart), Millipore (Eschborn), Novagen (Darmstadt), Nunc (Bieberich), Pharmacia 

(New Jersey, USA), Premier Brands (Moreton, UK), Schott (Mainz), Stratagene (Amsterdam, 

Niederlande) and Whatman (Maidstone, England). 

 

II.1.2  Buffers, media and solutions 

Buffers, standard media and stock solutions were prepared according to standard procedures 

(Ausubel et al., 1995; Coligan et al., 1995; Sambrook et al., 1996) using deionized water. All 

media and some solutions were prepared and sterilised by autoclaving (25min/121°C/2bar). 

Heat-sensitive components, such as antibiotics, were prepared as stock solutions, filter-

sterilised (0.2 µm) and added to the medium after cooling to 50°C. 

 

II.1.3  Matrices and membranes 

Glutathione sepharose 4B from Amersham Pharmacia Biotech was used for purification of 

GST fusion proteins (II.2.2.1). 

Amylose resin (New England BioLabs) is a composite amylase/agarose beads and was used 

for isolation of protein fused to maltose-binding protein (MBP) (II.2.2.2).  

Ni-NTA agarose matrix (BioRAD) was used for purification of scFv fragments from large 

scale cultures by immobilized metal ion affinity chromatography (IMAC) (II.2.2.3.2). 

ImmobilonTM-P transfer membrane (PVDF) (0.45µm) from Millipore, HybondTM-C 

nitrocellulose membrane (0.45µm) from Amersham Life Science and Whatman no.1 paper 
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from Whatman (Maidstone, England) were used in immunoblot analysis (II.2.3.3.1).  

Hybound-N+ membrane (Amershame pharmacia biotech) was used for southern blot analysis 

(II.8.8). 

 

II.1.4 Enzymes and kits 

Restriction enzymes were used from either the company New England Biolabs (NEB, 

Schwalbach) or the Fermentas (St. Leon-Rot). Taq DNA polymerase produced by the Institute 

of Molecular biotechnology, RWTH-Aachen was used for common amplification and clony-

check PCR amplification. The Taq DNA polymerase from Fermentas (St. Leon-Rot) was used 

for amplification of mouse heavy and light chain fragments. All enzymes were used according 

to the instructions of the company. 

The following kits were used: 

QIAprep Spin Miniprep Kit (Qiagen) 

QIAquick Gel Extraction Kit (Qiagen) 

QIAquick PCR Purification Kit (Qiagen) 

RNeasy® Mini-Isolation Kit (Qiagen) 

RNeasy® plant mini kit (Qiagen) 

DNeasy plant mini kit (Qiagen) 

SuperScript™ II Reverse Transcriptase (RT) (Invitogen) 

SuperScript™ III Reverse Transcriptase (RT) (Invitogen) 

GeneTailor™ Site-Directed Mutagenesis Kit (Invitrogen) 

Genaxxon Bioscience T/A Cloning Kit (Genaxxon) 

TOPO TA Cloning® Kit (Invitrogen) 

Omniscript Reverse Transcription Kit (Qiagen) 

 

II.1.5 Primary antibodies, enzyme conjugated secondary antibodies and substrates 

Rabbit anti-GST polyclonal antibody prepared by Dr. Michael Monecke (Institut of Molecular 

Biotechnology, RWTH-Aachen, Germany) was used for analysis of GST and GST fusion 

protein expression. Rabbit anti-MBP polyclonal antibody (New England Biolabs) was used to 

detect MBP fusion proteins. Mouse anti-c-myc tag monoclonal antibody (9E10) (prepared by 

Gottfried Himmler, Institute of Apllied Microbiology, Vienna, Austria) and the mouse-anti-

penta-His tag (Qiagen and Sigma) were used for detection of scFv-fragments by dot blot 

(II.2.3.3.1.2), Western blot (II.2.3.3.1.1) and ELISA (II.2.3.3.2) experiments. Polyclonal 

antibody (AS-0588) reacting against begomoviruses and monoclonal antibodies (AS-0542 and 
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AS-0546) specifying TYLCV strains (DSMZ-Braunschwieg, Germany) were used at 

recommended dilution for detection of TYLCV infected leaves by TAS-ELISA (II.2.3.3.2). 

Goat anti mouse (GAM) and goat anti rabbit (GAR) antibodies, conjugated to alkaline 

phosphatase (AP) or horseradish peroxidase (HRP) (Dianova, Hamburg), which could react 

against constant region (Fc) of mouse and rabbit antibodies, were used as a secondary 

antibodiy in immunoblot (II.2.3.3.1) and ELISA (II.2.3.3.2) analysis. 

NBT/BCIP (Bio-Rad) and pNPP (Bio-Rad) were used as substrate for detection of 

immobilized proteins in Westernblot (II.2.3.3.1.1) and ELISA (II.2.3.3.2), respectively. ABTS 

(Roche) substrate containing L-tartaric acid/sodium carbonate was used as a substrate for 

horse radish peroxidase enzyme in ELISA (II.2.3.3.2). 

 

II.1.6 Synthetic oligonucleotides 

All synthetic oligonucleotides were obtained from MWG-Biotech (Ebersberg, Germany). 

Oligonucleotides used for sequence analysis and amplification of DNA are listed below.  

 

1. Primers used for amplification of C1 and V1 and V2 genes and cloning into TOPO 

vector (Invitrogen):  

C1 primers: 

Forward primer (SalI):  5´- GAC GTC GGT CGA CGC AGC CCC CAA TCG G -3´ (28-mer) 

Reverse primer (NotI): 5´- CGC TGA ACG GCG GCC GCT TAC GCC TTA TTG -3´ (30-

mer) 

V1 primers: 

Forward primer (SalI):  5´- GAC GTC GGT CGA C TC GAA GCG ACC AGG CG -3´ (29-

mer) 

Reverse primer (NotI): 5´- CGT CAC CGC GGC CGC TTA ATT TGA TAT TGA ATC -3´ 

(33-mer) 

V2 primers:  

Forward primer (SalI):  5´- GAC GTC GGT CGA CTG GGA CCC ACT TCT AAA TG  -3´ 

(32-mer) 

Reverse primer (NotI): 5´- CGT CAC CGC GGC CGC TCA GGG CTT CGA TAC  -3´ 

(30mer) 

 

2. Primer used for amplification and cloning of C1 gene as fusion with DsRed in pTRAkt 

vector: 
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C1 primers: 

Forward primer (AflIII): 5´- ATT AAC ATG TAT GGC AGC CCC CAA TC -3´ (26-mer) 

Reverse primer (AflIII): 5´- TAAT ACATGT TCGCCTTATTGGTTTCTTC -3´ (29-mer) 

 

3. Primer used for amplification and cloning of scFv-RWAV gene as cytosolic expression 

in pTRAkt vector: 

Forward primer (NcoI):  5´ ATG CCC ATG GCC CAG GTG CAG CTT C -3´ (25-mer) 

Rewerse primer (XbaI): ATG CTC TAG ATT AGT GAT GGT GAT GGT GAT GAT TC -3´ 

(35-mer) 

 

4. Primer used for amplification and cloning of scFv-RWAV gene with nuclear targeting 

signal in pTRAkt vector: 

 

Forward primer with NLS signal (BspHI): 5´ - ATG CTC ATG AAT GGC TCC CAA GAA 

GAA GAG AAA GGT ACC CAT GGC CCA GGT GCA GCT TC -3´ (59-mer) 

Rewerse primer (XbaI): ATG CTC TAG ATT AGT GAT GGT GAT GGT GAT GAT TC -3´ 

(35-mer) 

 

5. Primers used to restore frame in VH  region of pHENHI-HScCP1: 

 

5.1 Restoring of frame in VH frame work 3: 

Forward primer: 5´- CAC CCT GTT CCT GCA AAT GAA CTA CCC TCA C -3´ (31-mer) 

Reverse primer: 5´- CAT TTG CAG GAA CAG GGT GTT CTT GGG ATT G  -3´ (31-mer) 

 

5.2 Restoring of frame in VH frame work 4: 

Forward primer: 5´- GCC GCT GGA TTG TTA TTA CTC GC -3´ (24-mer) 

Reverse primer: 5´- AGA CGG TGA CCG AGG TCC TTC AC -3´ (23-mer) 

 

6. Primers used for making cDNA and subsequent amplifying by real time PCR to 

quantify scFv transcript in transgenic plants: 

Forward primer (pA35S): 5´- CCG CAA AAA TCA CCA GTC -3´ (18-mer) 

Reverse primer (pA35S): 5´- CAA CAC ATG AGC GAA ACC -3´ (18-mer) 

7. Primers used for cDNA synthesis and PCR amplification of mouse VH - and VL - 

domains: 
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Table II-1: Murine phage display primer sequences for first strand cDNA generation from 

total RNA in 5′-3′ orientation. 

Name Sequence 

COH30 (VH IgG1) GGC CAG TGG ATA GAC AGA 

COH 32 (VHIgG2a/2b) TAA CCC T(TA)G ACC AGG CAT CC 

MuPD31 (κVL) GCT GAT GCT GCA CCA ACT GTA TCC GTC GAC

GCG GCC GCG ACT AGT 

MuPD32 (λVL) TTT CCA CCT TCC TCT GAR GAG CTT GTC GAC

GCG GCC GCG ACT AGT 

 

 

Table II-2: Sequences of murine VH-domain specific forward primers MPDVHF1-

MPDVHF16 in 5′-3′ orientation (degeneracy codes: K= G or T; M = A or C; S = C or G; R = 

A or G; W = A or T). 

Name Overhang region  Restriction enzymes (SfiI/ 

NcoI) 

Annealing region 

MPDVHF1 C ATG CCA TGA 

CTC GC 

G GCC CAG CCG GCC

ATG GCC 

GAK GTR CAG CTT CAG 

GAG TCR GGA 

MPDVHF2 C ATG CCA TGA 

CTC GC 

G GCC CAG CCG GCC

ATG GCC 

CAG GTG MAG CTG AWG 

GAR TCT GG 

MPDVHF3 C ATG CCA TGA 

CTC GC 

G GCC CAG CCG GCC

ATG GCC 

GAG GTC CAG CTR CAR 

CAR TCT GGA CC 

MPDVHF4 C ATG CCA TGA 

CTC GC 

G GCC CAG CCG GCC

ATG GCC 

CAG GTW CAG CTS CAG 

CAG TCT G 

MPDVHF5 C ATG CCA TGA 

CTC GC 

G GCC CAG CCG GCC

ATG GCC 

SAG GTC CAR CTG CAG 

SAR YCT GGR 

MPDVHF6 C ATG CCA TGA 

CTC GC 

G GCC CAG CCG GCC

ATG GCC 

GAG GTT CAG CTG CAG 

CAG TCT GGG 

MPDVHF7 C ATG CCA TGA 

CTC GC 

G GCC CAG CCG GCC

ATG GCC 

GAR GTG AAG CTG GTG 

GAR TCT GGR 

MPDVHF8 C ATG CCA TGA 

CTC GC 

G GCC CAG CCG GCC

ATG GCC 

GAG GTG AAG STY MTC 

GAG TCT GGA 
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MPDVHF9 C ATG CCA TGA 

CTC GC 

G GCC CAG CCG GCC

ATG GCC 

GAR GTG AAG CTK GAK 

GAG WCT GR 

MPDVHF10 C ATG CCA TGA 

CTC GC 

G GCC CAG CCG GCC

ATG GCC 

GAV GTG MWG CTK GTG 

GAG TCT GGK 

MPDVHF11 C ATG CCA TGA 

CTC GC 

G GCC CAG CCG GCC

ATG GCC 

GAG GTG CAR CTK GTT 

GAG TCT GGT G 

MPDVHF12 C ATG CCA TGA 

CTC GC 

G GCC CAG CCG GCC

ATG GCC 

SAG GTY CAG CTK CAG 

CAG TCT GGA 

MPDVHF13 C ATG CCA TGA 

CTC GC 

G GCC CAG CCG GCC

ATG GCC 

CAG ATC CAG TTG GTG 

CAG TCT GGA 

MPDVHF14 C ATG CCA TGA 

CTC GC 

G GCC CAG CCG GCC

ATG GCC 

CAG GTS CAC STG RWG 

SAG TCT GGG 

MPDVHF15 C ATG CCA TGA 

CTC GC 

G GCC CAG CCG GCC

ATG GCC 

CAG GTT ACT CTR AAA 

GWG TST GGC C 

MPDVHF16 C ATG CCA TGA 

CTC GC 

G GCC CAG CCG GCC 

ATG GCC 

GAT GTG AAC TTG GAA 

GTG TCT GG  

 

 

Table II-3: Sequences of murine VL-domain specific forward primers MPDVLF1-

MPDVLF15 in 5′-3′ orientation (degeneracy codes: K= G or T; M = A or C; S = C or G; R = 

A or G; W = A or T). 

Name Overhang region  Restriction 

enzymes (AscI) 

Annealing region 

MPDVLF1 CAT GCC ATG ACT 

CGC 

GGC GCG CCT GAC ATT GTG MTG WCH CAG 

TCT CCA 

MPDVLF2 CAT GCC ATG ACT 

CGC 

GGC GCG CCT GAC ATT CAG ATG ATT CAG 

TCT CC 

MPDVLF3 CAT GCC ATG ACT 

CGC 

GGC GCG CCT GAC ATT GTT CTC WHC CAG 

TCT CC 

MPDVLF4 CAT GCC ATG ACT 

CGC 

GGC GCG CCT GAC ATT GTG MTG WCH CAG 

TCT CAA 

MPDVLF5 CAT GCC ATG ACT 

CGC 

GGC GCG CCT GAT RTT KTG ATG ACC CAR 

RCK GCA 
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MPDVLF6 CAT GCC ATG ACT 

CGC 

GGC GCG CCT GAT RTT KTG ATG ACC CAR 

RCK CCA 

MPDVLF7 CAT GCC ATG ACT 

CGC 

GGC GCG CCT GAC ATT GTG ATG ACC CAR 

BHT G 

MPDVLF8 CAT GCC ATG ACT 

CGC 

GGC GCG CCT GAT ATT KTG ATG ACC CAR 

AYT CC 

MPDVLF9 CAT GCC ATG ACT 

CGC 

GGC GCG CCT RAM ATT GTG MTG ACC CAA 

TYT CCW 

MPDVLF10 CAT GCC ATG ACT 

CGC 

GGC GCG CCT SAA AWT GTK CTS ACC CAG 

TCT CCA 

MPDVLF11 CAT GCC ATG ACT 

CGC 

GGC GCG CCT GAY ATY CAG ATG ACM CAG 

WCT AC 

MPDVLF12 CAT GCC ATG ACT 

CGC 

GGC GCG CCT GAY ATY CAG ATG ACH CAG 

WCT CC 

MPDVLF13 CAT GCC ATG ACT 

CGC 

GGC GCG CCT GAC ATT GTG ATG ACT CAG 

GCT AC 

MPDVLF14  CAT GCC ATG ACT 

CGC 

GGC GCG CCT CAR SYT GTK STS ACT CAG 

KAA T 

MPDVLF15  CAT GCC ATG ACT 

CGC 

GGC GCG CCT CAR SYT GTK STS ACT CAG 

KCA T 

 

Table II-4: Sequences of murine VH-domain specific reverse primers MPDVHB1-

MPDVHB5 in 5′-3′ orientation (degeneracy codes: K= G or T; M = A or C; S = C or G; R = 

A or G; W = A or T). 

Name Overhang region Restriction 

enzymes (BstEII)

Annealing region 

MPDVHBII-1 TGM RGA GAC GGT G AC CGT RGT C 

MPDVHBII-2 TGM RGA GAC GGT G AC CGT RGT G 

MPDVHBII-3 TGM RGA GAC GGT G AC CAG RGT C 

MPDVHBII-4 TGM RGA GAC GGT G AC CGA GGT T 

MPDVHBII-5 TGM RGA GAC GGT G AC CGA RAT T 
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Table II-5: Sequences of murine κ and λ VL -domain specific reverse primers MPDVLB1-

MPDVLB5 in 5′-3′ orientation (degeneracy codes: K= G or T; M = A or C; S = C or G; R = A 

or G; W = A or T). 

Name Overhang region  Restriction enzymes

 (SalI/NotI) 

Annealing region 

MPDVLB1 CT AGT GGT ACT 

CCA C  

GC GGC CGC GTC

GAC 

AGC MCG TTT CAG YTC CAR 

YTT 

MPDVLB2 CT AGT GGT ACT 

CCA C  

GC GGC CGC GTC

GAC 

AGC MCG TTT KAT YTC CAR 

YTT 

MPDVLB3 CT AGT GGT ACT 

CCA C  

GC GGC CGC GTC

GAC 

AGC MCG TTT BAK YTC TAT 

CTT TGT 

MPDVLB4 CT AGT GGT ACT 

CCA C  

GC GGC CGC GTC

GAC 

AGC MCG AGC MCG TTT TAT 

TTC CAA MKT 

MPDVLB5 

(λ) 

CT AGT GGT ACT 

CCA C  

GC GGC CGC GTC

GAC 

CTG RCC TAG GAC AGT SAS 

YTT GGT 

 

 

Table II-6: Primers used for DNA sequencing [LI-COR IR2-DNA sequencer, labelled with 

IRD 700 or IRD 800 (USB/Amersham)]. Sequences are in 5′-3′ direction. 

 

 

 

 

 

 

 

 

 

 

8. Primers used for cDNA synthesis and Q-PCR analysis of transgenic plants by 

amplification of pA35S region: 

Forward primer: 5´- CCG CAA AAA TCA CCA GTC -3´ (18-mer) 

Reverse primer: 5´- CAA CAC ATG AGC GAA ACC -3´ (18-mer) 

 

Name  Sequence 

Universe GTT GTA AAA CGA CGG CCA GT 

Reverse (P4) ACA CAG GAA ACA GCT ATG AC 

pHEN forward GCC GCT GGA TTG TTA TTA CTC GC 

pHEN backward TTT CAA CAG TCT ATG CGG CCC C 

pSS forward ATC CTT CGC AAG ACC CTT CCT CT 

pSS reverse           AGA GAG AGA TAG ATT TGT AGA GA 

LMB3  CAG GAA ACA GCT ATG AC 
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9. Primers used for detection of pBIN19 sequence in the agroinoculated plants: 

Forward primer: 5´- CCG AGA TAG GGT TGA GTG -3´ (18-mer) 

Reverse primer: 5´- CTG GCC GTC GTT TTA CAA C -3´ (19-mer) 

 

II.1.7  Bacterial strains 

The following bacterial strains were used for in vivo amplification of plasmid DNA, phage 

display, protein expression and plant transformation. E. coli strains DH5α and XL1-blue 

(II.1.7) were used as a host cells for all intermediate cloning constructs. E. coli strain BL21 

(λDE3) was used for expression of GST and MBP fusion proteins (II.2.2.1 and II.2.2.2). E. 

coli strain XL1-blue was used for generation of phage-displayed scFv library. E. coli strain 

TG1 was used for amplifying eluted phages after solid-phase panning of phage libraries 

(II.2.6). E. coli strain HB2151 was used for expression and purification of soluble scFv-

fragments (II.2.2.3.2) (Table 7). 

The bacterial strain Agrobacterium tumefaciens GV3101 [pMP90RK, GmR, KmR, RifR  (Konz 

and Schell, 1986) was used for agrobacterium-mediated gene transformation (II.2.8.3). 

Table II-7: Names and genotypes of E. coli strains used throughout the work. 

Strain Source Genotype 

DH5α (Ausubel et al., 

1995) 

F´ (f80d Lac 2∆M15) ∆(LacZYA-argF) U169end 

A1 rec1 hsdR17(rk- mk+) deoR thi-1 supE44 

gyrA96 relA1 λ- 

HB2151 (Ausubel et al., 

1995) 

K12, ara, ∆(lac-pro), thi/ F´ pro A+B+, 

lacIqz∆M15 

BL21(λDE3) Novagen F- ompT hsdSB (rB - mB-) 

gal dcm (DE3) 

XL1-Blue Stratagene 

 

recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 

lac [F′ proAB laclIq Z∆M15 Tn10 (Tetr)] 

TG1 Stratagene 

 

supE thi-1 ∆(lac-proAB) ∆(mcrB-hsdSM) 5(rK- 

mK-) [F´traD36 proAB lacIq Z∆M15] 

BL21(λDE3) Novagen F- ompT hsdSB (rB- mB-) gal dcm (DE3) 

DH5αTM-T1R Invitrogen 

 

F´ φ80lacZ∆M15 ∆(lacZYA-argF)U169 recA1 

endA1 hsdR17(rk-, mk+) phoA supE44thi-1 gyrA96 

relA1 tonA 
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II.1.8    Plants and animals 

Nicotiana tabacum L. cv. Petite Havana SR1 was used for transient protein expression after 

agroinfiltration (II.2.8.3.1). N. benthamiana grown from seeds, was used for stable 

transformation of scFv fragment constructs (II.2.8.3.2.1). Lycopersicum esculentum (cv. 

Super Marmande) was used for stable transformation with pTRAkt-ScRep-GFP (II.2.8.3.2.2). 

6-8 weeks old female BALB/c mice were used for immunization with MBP-Rep fusion 

protein (II.2.4).  

 

II.1.9    Helper phages 

M13KO7 helper phage is an M13 derivative phage carrying the mutation Met40Ile in geneII. 

The p15A origin of replication and the kanamycin resistance gene from Tn903 were inserted 

within the M13 origin of replication (Vieira and Messing, 1987). 

  

II.1.10  Plasmids and phagemides 

The following plasmids were used in this thesis. Furthermore, schematic presentations of all 

vector maps used in this thesis are provided in the Appendix.  

The pCR2.1-TOPO is a cloning vector designed for cloning of PCR products directly from a 

PCR reaction. No ligase, post-PCR procedures, or PCR primers containing specific sequences 

are required. The plasmid vector is linearized with single 3’ T overhangs for TA cloning and 

topoisomerase I covalently bound to each 3´ phosphate of vector. PCR products must contain 

a single 3’ adenine overhang which allows the PCR inserts to ligate efficiently with the 

vector.  

The pMBL-T/A is a cloning vector (2.9 kb) for direct cloning of PCR products. The vector 

prepared by cutting with EcoRV and adding 3´ terminal thymidine to both ends. These singe 

3´-T overhangs at the insertion site greatly improve the efficiency of ligation of PCR.  

The pGEX-5X-3 (Amersham Pharmacia Biotech) was used for subcloning of C1, V1 and V2 

viral genes for expression as a GST fusion protein. The cloned gene introduced downstream 

of GST gene. 

The pMAL-c2X (New England Biolabs) is an expression vector that expresses the male gene 

fused to the lacZα gene. Restriction sites between malE and lacZα are available for inserting 

the coding sequence of interest. The cloned gene is inserted downstream from the malE gene 

of E. coli, which encodes maltose-binding protein (MBP), resulting in the expression of an 

MBP fusion protein.  
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The pHENHI is a phagemid vector [4,6 kBp, AmpR, ori [M13], lacI, lacZ, pelB, c-myc, His-

6, Gen III, pMB1 ori ( rop-)] (Hoogenboom et al., 1991). This vector contains a N-terminal 

pelB leader peptide that targets the expressed protein into the periplasmic space and a C-

terminal His6 tag for purification via IMAC (Ni-NTA). 

The pIT2 (HIS-myc tag) is a phagemid vector used for construction of Tomlinson I and J 

libraries. It contains SfiI/NcoI-XhoI, SalI-NotI cloning sites.  

The pTRAkt (8,4 kbp, AmpR, CbR, KmR), kindly provided by Thomas Rademacher (Institute 

of Molecular biotechnology, RWTH-Aachen,Germany), is an optimized binary plant 

expression vector containing the p35SS promoter, 5´ untranslated region (5´-UTR) from 

Tobacco etch virus and  pA35S polyadinelation signal (3´-UTR) from CaMV. A matrix 

attachment region was introduced to improve transcription. 

  

II.1.11  Equipment and applications 

Cameras: MP4 (Polaroid, Cambridge, MA, USA). E.A.S.Y 429K camera (Herolab, 

Wiesloch). 

Centrifuges: AvantiTM 30 and AvantiTMJ-25 (Beckman, California, USA), Biofuge A 

(Heraeus, Hanau), Sigma 3-10 and Sigma 4-10 (Sigma, St. Louis, Missouri, USA), RC5C and 

RC5B plus (Sorval instruments, Du Pont, Bad Homburg). Rotors: F0650, F2402H, JLA 

10.500 and JA 25.50 (Beckman), #1140 and #11222 (Sigma), RLA-300, SS-34 and GS-3 (Du 

Pont). 

DNA gel electrophoresis apparatus: wide mini and mini cells for DNA agarose 

electrophoresis and power supplies (Bio-Rad). 

DNA-sequencing machines: LI-COR IR2-4200 Sequencer (LI-COR, MWG-Biotech) and 

Base ImageIRTM 4.0 software (LI-COR).   

Electroporation apparatus: “Gene pulserTM”, “Pulse controller” unit, Extender unit 

(BioRad) and 0.2 cm cuvettes (Bio-Rad).  

InnovaTM 4340 incubator shaker (New Brunswick Scientific, Nürtingen).  

Thermocyclers: Primus and Primus PCR 96 plus (MWG-Biotech). 

Photometers: Spectrophotometer Uvikon 930 (Kontron, Neufahrn) and multi-channel 

spectrophotometer Spectromax 340 (Molecular Devices, Sunnyvale, Kalifornien). 

Probe sonicator (Braun Biotech, Melsungen). 

Protein gel electrophoresis equipment: Mini PROTEAN IITM from BioRad. Gel Air Dryer 

(Bio-Rad). Protein gel – Novex Mini-Cell, Invitrogen, and X Cell II Blot Module. 
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UV-Transilluminators: wavelength 302 nm and UVT-20M (Herolab). UV-chamber (Bio-

Rad). 

Software: Windows NT 4.0 operating system (Microsoft); Microsoft Office 2000 

(Microsoft); Adobe Photoshop 6.0 (Adobe); Chromas; and GCG (Wisconsin Package TM of 

Genetic Computer Group). 

Plant growth cabinets: Snijder climatic cabinet (Snijder, Tilburg, Netherlands) Photoperiod 

16h, light intensity 400 uE m-2 s-1. 

Mini hybridization oven (Biometra, Göttingen,Germany) 

 

II.2  Methods 

All experiments related to the genetic engineering were performed according to the 

regulations of “S1-Richtlinien” and were officially approved by the “Regierungspräsidium 

des Landes NRW” (RP-Nr.: 23.203.2 AC 12, 21/95) and “BGA” [AZ 521-K-1-8/98:AI3-

04/1/0866/88 (S1) and 55.8867/-4/93 (greenhouse)]. 

General recombinant DNA techniques including PCI (phenol/chloroform/isoamyl alcohol), 

DNA precipitation, restriction enzyme digestion, DNA ligation, DNA agarose gel 

electrophoresis, were according to the standard protocols described in (Ausubel et al., 1995; 

Sambrook et al., 1996). 

 

II.2.1  Recombinant DNA technologies 

 

II.2.1.1 Isolation of plasmid-DNA from E.coli 

Recombinant plasmid DNA was purified using QIAprep® Plasmid Isolation Mini (II.1.4) 

according to the manufacturers’ manual based on the alkaline lyses method (Sambrook et al., 

1996). Quality and quantity of DNA was confirmed by reading the absorbance at 260 nm and 

280 nm in a spectrophotometer according to (Müller et al., 1993) and (Sambrook et al., 1996) 

or analytical agarose gel electrophoresis (II.2.1.3). Isolated DNA samples were stored at –

20°C. 

 

II.2.1.2 PCR amplification 

Polymerase chain reaction (PCR), a procedure for rapid in-vitro enzymatic amplification of a 

specific segment of DNA, was used for the amplification and modification of genes of interest 

as well as for the insertion or short nucleotide sequences. The reactions were performed in 

0.2ml PCR tubes (Biozym, Oldenburg), using a PCR thermocycler (MWG Biotech). The 
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cycler contained a heated lid to avoid the use of mineral oil. PCR reactions were carried out in 

a total volume of 50 µl as described in the following table: 

 

Components Volume Final concentration 

10X PCR buffer 5 µl 1X 

50 mM MgCl2 2.5 µl 2.5 mM 

2.5 mM dNTPs  1 µl 0.25 mM each 

10 pmol forward Primer 0.5-1 µl 10 pmol 

10 pmol backward primer 0.5-1 µl 10 pmol 

Template DNA 0.5-5 µl 10-100 ng 

Taq DNA polymerase (5U/µl) 0.5 µl 2.5 units 

dd H2O To  50 µl  

 
Amplification was carried out under the following conditions: 

  10    min 95°C 

  1      min 95°C 

  1      min 55°C         35 X 

  1.5   min 72°C 

  10    min 72°C 

 
 

The optimal annealing temperature (TP) of the primer was experimentally optimized 

(temperature gradient) or calculated by the empirical formula (WU et al. 1991). TP = 22 + 

1.046 [2x(G +C) + (A + T)] PCR products were resolved on a 1-1.2% (w/v) agarose gel 

(II.2.1.3) with appropriate DNA markers to confirm the successful amplification and integrity 

of the amplified product. 

For generation of highly sensitive hybridization probes suitable for detection of low copy 

target sequences in southern-blot hybridization (II.8.8), DIG-11-dUTP (alkali stable) was 

incorporated into V1-PCR product according to the manufacturees instructions (Roche). 

Recombinant E. coli and Agrobacteria clones harboring plasmid DNA containing the gene of 

interest were identified by PCR as described by (Jesnowski et al., 1995). Single colonies were 

picked with sterile toothpicks and dipped each in a PCR tube containing 10µl of sterile water. 

15µl of the PCR mix were added to each 10µl bacterial suspension giving a final volume of 

25µl. Specific primers annealing to the 5’ and 3’ ends of the cloned gene or primers specific 
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for the vector backbone were used for PCR reaction. Thermocycler conditions were used as 

described above. 10µl of the PCR product were analyzed on a 1.2% (w/v) agarose gel 

(II.2.1.3). 

 

II.2.1.3  Analytical agarose gel electrophoresis 

Plasmid DNA, PCR fragments and restriction enzyme digested DNA (II.1.4) were 

electrophoretically separated on 0.8-1.2% (w/v) agarose gels prepared in TBE buffer 

containing 0.1µg/ml ethidium bromide as described by (Sambrook et al., 1996). 

Known amount of DNA molecular marker such as 100 bp DNA ladder or PstI-digested 

lambda DNA were used for evaluation of sample size, integrity and determination of DNA 

concentration. The DNA was visualized on an UV transilluminator at 302nm and documented 

by a black and white E.A.S.Y 429K camera (Herolab). 

 

II.2.1.4  Preparative gel electrophoresis 

Preparative gel electrophoresis was used for isolation of DNA fragments after restriction 

enzyme digestion (II.1.4) or PCR amplified DNA (II.2.1.2) prior to cloning in the appropriate 

vectors. After electrophoresis, the desired DNA fragments were excised from the gel and 

purified using the “QIAquick Gel Extraction Kit” (Qiagen) (II.1.4) according to the 

manufacturers’ protocol. 

 

II.2.1.5  Quantification of nucleic acids 

The amount of RNA or DNA in a sample was estimated by analytical agarose gel 

electrophoresis or by measuring the OD260nm. The OD260nm of 1 corresponds to ~50µg/ml of 

dsDNA or ~40µg/ml of ssDNA and RNA. Purity of the nucleic acid was ascertained by the 

OD260nm / OD280nm ratio of the measured optical density, which is 1.8 for pure DNA and 2.0 

for pure RNA. 

 

II.2.1.6  Restriction of DNA 

Restriction endonucleases, appropriate buffers and BSA solution were obtained from New 

England Biolabs (Schwalbach). Single or double restriction of DNA fragments were 

performed at suitable buffer and temperature according to the manufacturers’ protocol. 
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II.2.1.7  Dephosporylation 

To prevent auto-ligation of plasmid vector, dephosphorylation of restricted vector-DNA was 

accomplished with CIP (Calf Intestine Phosphatase, NEB) at 37°C for one hour according to 

the manufacturers’ protocol. 

 

II.2.1.8  Klenow Fill-in 

For the fill-in of single-stranded DNA 5’-fragments, the Klenow Fragment of DNA 

polymerase I of E.coli was used (Joyce and Grindley, 1983). The Klenow-Fill-in reaction was 

done for making blunt ends according to the manufacturers’ protocol. 

 

II.2.1.9  Ligation of DNA 

Restriction enzyme digested DNA (II.2.1.6) was ligated using 80 U T4 DNA-Ligase or 1 µl 

Quick T4 DNA-Ligase (NEB) in buffer systems recommended in the manufacturers’ protocol 

in a final volume of 20 µl. Sticky-end ligations were carried out at 22 °C for 30 min whereas 

blunt ligations were incubated at 4 °C (overnight). Ligation product was used for 

transformation of E.coli (II.1.7). 

 

II.2.1.10 DNA sequencing and sequencing analysis 

Fluorescently labelled primers were used for sequence analysis by chain terminating 

inhibitors (Sanger et al., 1977) using the “Thermosequenase sequencing kit’’ and the LICOR 

4200 IR2 automated DNA sequencer. For evaluation of sequencing data the Base ImageIR 4.0 

software package was used. 

The universe primer (II.1.6) was used for sequencing of viral gene cloned in the TOPO 

vector. The pGEX forward and backward primers were used for confirming of the truncated 

viral genes (NC1 and NV1) cloned in the pGEX-5X-3 vector. Forward and backward pHEN 

primers were used for sequencing of scFv-fragments in the pHENHI phagemid vector. The 

LMB3 primer was used to determine sequence of scFv genes harboured in pIT vector. The 

pSS forward and reverse primers were used for sequence analysis of genes in pTRAkt vector. 

Chromas software package was used for displaying the chromatogram files from LI-COR 

automated DNA sequencer. The sequences were edited and exported for further analysis with 

the Wisconsin PackageTM of Genetic Computer Group (GCG). 
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II.2.1.11 In vitro site-directed mutagenesis 

GeneTailor™ Site-Directed Mutagenesis Kit (Invitrogen) was used for making DNA 

mutation in framework 3 of VH-scFv-HScCP1 according to the manufacturer`s protocol. The 

methylation reaction was prepared as follow: 

 

 

Reagent Amount 

Plasmid DNA 100 ng 

Methylation Buffer 1.6 μg 

10X SAM 1.6 μg 

DNA methylase (4U/μl) 1 μl 

Steril, distilled water to 16 μl 

 

 

 

The methylation was accomplished for 1 hr at 37°C. The PCR reaction was obtained as 

following table: 

Component Volume Final 

concentration 

10X High fidelity PCR  

buffer 

5μl 1X 

10mM dNTP 1.5μl 0.3 mM each 

50 mM MgSO4 1μl 1 mM 

Primers (10μM each) 1.5μl 0.3μm each 

Methylated DNA (12.5-

31.25 ng) 

2-5μl As required 

Platinum® Taq high 

fidelity (5U/μl) 

0.2-0.5 μl 1-2.5 units 

Autoclaved, distilled 

water 

to 50 μl  
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Amplification was carried out under the conditions described below:  

Segment Cycle Temperature Time 

1 1 94 °C 2 minutes 

94°C 30 seconds 

55°C 30 seconds 

2 20 

68°C 5.5 minutes 

3 1 68°C 10 minutes 

After the DNA amplification, 2 μl of PCR product was used for transformation into 50 μl of 

DH5αTM-T1R competent cell (II.1.7). 

 
II.2.1.12  Growth and maintenance of bacterial strains 
 
II.2.1.12.1.  Culturing and maintenance of E. coli 

Individual colonies of all E. coli strains were obtained by plating the corresponded strain on 

LB agar plates. Strains carrying an F′ factor were spread on M9 plates. Incubation was 

performed at 37°C. LB medium containing the suitable antibiotics and 2% glucose was 

inoculated with a single recombinant colony of E. coli and grown overnight at 37°C with 

vigorous shaking (225 rpm). The plates were stored at 4°C for short periods (less than 2 

weeks). For long term storage of bacterial strains, glycerol stocks were prepared by mixing 

600 µl of a fresh overnight culture with 600 µl of 40% (v/v) sterile glycerol. Bacteria glycerol 

stocks were stored at -80°C. 

 
II.2.1.12.2  Culturing and maintenance of Agrobacterium 

Single colonies of A. tumefaciens were examined for the presence of plasmids by clony check 

PCR (II.2.1.2). Positive colonies were inoculated in 10 ml of YEB-Rif-Km-Carb medium and 

cultivated at 28°C for 2 days with vigorous shaking at 250 rpm. The culture was transferred to 

Falcon tubes and Agrobacteria cells were precipitated by centrifugation at 4000g for 10 min at 

15°C. The cells were resuspended in a 1:1 volume of YEB Rif-Km-Carb medium and 

glycerol stock media (GSM). The suspension was aliquoted (100µl) and stored at –80°C. 

. 

Glycerol stock media (GSM): 

                                                   Glycerol               50% (v/v) 

                                                   MgSO4                 100 mM 

                                                   Tris-HCl pH 7.4    25 mM 
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II.2.1.13 Bacterial transformation 
 
II.2.1.13.1  Preparation of competent E. coli cells for heatshock transformation 
 
E.coli competent cells were prepared for CaCl2-mediated heatshock transformation as 

described by (Hanahan, 1985). Briefly, a single bacterial colony was inoculated in 5 ml of LB 

broth and cultured at 37°C overnight (overnight). 0.5 ml of the overnight culture was 

transferred into 50 ml of LB broth containing 20 mM MgSO4 and 10 mM KCl. The cells were 

cultured at 37°C for 3-4 hours until the OD600nm reached 0.4-0.5 and then transferred to an ice-

cold tube. After incubation on ice for 10 min, the cells were recovered by centrifugation 

(2000g/4°C/10 min). The pellets were resuspended in 15 ml ice-cold TfB-I solution by gentle 

vortexing and stored on ice for 10 min. The cells were recovered by centrifugation as 

described above and resuspended in 2 ml ice-cold TfB-II. 200 µl- aliquots of the suspension 

were dispensed into prechilled microcentrifugation tubes, frozen immediately in liquid 

nitrogen and stored at -80°C.  

TfB-I pH 5.8: 

Potassium acetate  30 mM 

MnCl2    50 mM 

CaCl2    10 mM 

Glycerol               15% (v/v) 

TfB-II pH 6.8: 

MOPS              30 mM 

CaCl2    75 mM 

RbCl    10 mM 

Glycerol              15% (v/v) 

 

 
II.2.1.13.2  Transformation of E. coli by heat-shock 

After thawing of the competent cells (II.2.1.13.1), plasmid DNA (up to 100 ng) or ligation 

products (Sambrook et al., 1996) were mixed gently with the competent cells and incubated 

on ice for 30 min. The cells were then exposed to 42°C for 90 seconds and placed on ice for 2 

min. 800 µl of LB medium were added to the tubes and incubated at 37°C for 45 min. 200 µl 

of cells were plated onto a LB-agar plate supplemented with appropriate antibiotics and 

incubated at 37°C overnight.  
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II.2.1.13.3 Preparation of competent E. coli cells for electroporation 

Electrocompetent E. coli were prepared from the following strains, DH5α, BL21(λDE3) and 

XL1-blue (II.1.7) as described (Dower et al., 1988). A single bacterial colony from an LB 

plate was cultured in 5 ml LB-broth and cultured at 37°C overnight. Three ml of fresh 

overnight culture was transferred into 500 ml of LB broth. The cells were cultured at 37°C for 

3-4 hours until the mid-log phase (OD600nm = 0.5-0.8). Then the cells were placed on ice for 

15-20 min and harvested by centrifugation (3000g/4°C/10 min). Cells were washed three 

times with sterile water and resuspended in ice-cold 10% (v/v) glycerol to a 300-fold 

concentration from the original culture volume (at >1010 cells/ml). 40 µl aliquots were stored 

at -80°C. 

 

II.2.1.13.4 Transformation of E. coli by electroporation 

Electrocompetent cells (II.2.1.13.3) were thawed on ice and 50 μl of the cells were mixed 

with 1 pg to 300 ng of DNA in sterile dH2O. The cell/DNA mixture was transferred into a 

prechilled electroporation cuvette (0.2 cm) and assembled into a safety chamber. After 

application of the pulse (25 µF, 2.5 kV, 200 Ω), the cells were diluted in 1 ml of SOC 

medium and incubated at 37°C with shaking for 1 h. Finally, 100 µl of the cells were plated 

onto LB agar containing appropriate antibiotics and incubated at 37°C overnight. 

 

II.2.1.13.5 Preparation of electrocompetent Agrobacterium cells 

A single colony of A. tumefaciens strain GV3101 grown on YEB-agar plate containing 

100µg/ml rifampicin (Rif) and 25µg/ml kanamycin (Km) (YEB-Rif-Km) was inoculated in 5 

ml of YEB-Rif-Km medium in a 100 ml Erlenmeyer flask and incubated at 28°C for two days 

with shaking (250 rpm). 1 ml of the culture was transferred into 100 ml of YEB-Rif-Km 

medium and cultivated at 28°C for 15-20 h with shaking (250 rpm) until the OD600nm 

reached 1-1.5. The cells were chilled on ice for 15 min and spun down by centrifugation 

(4,000g/4°C/5 min). The culture medium was decanted and the cells were washed three times 

with 10 ml of dH2O by centrifugation and resuspended in 500 µl of sterile 10% (v/v) glycerol. 

45 µl-aliquots of the suspension were dispensed into prechilled microcentrifugation tubes, 

frozen immediately in liquid nitrogen and stored at -80°C. 

 

YEB-Rif-Km medium: 

   Nutrient Broth              0.5% (w/v) 

   Yeast Extract    0.1% (w/v) 
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   Peptone   0.5% (w/v) 

   Sucrose    0.5% (w/v) 

2 mM MgSO4, 100 µg/ml rifampicin, 25 µg/ml kanamycin were added after autoclaving and 

cooling. 

 

II.2.1.13.6 Transformation of Agrobacterium by electroporation 

0.2-1.0 µg of plasmid DNA (II.2.1.1) in sterile dH2O was added to a thawed aliquot of 

electrocompetent Agrobacterium cells (II.2.1.13.5) and incubated on ice for 3 min. The 

cell/DNA mixture was transferred into a prechilled electroporation cuvette (0.2 cm) and 

assembled into a safety chamber. After application of the pulse (25 µF, 2.5 kV, 200 Ω), the 

cells were diluted in 1 ml of SOC medium in a 4.0-ml tube and incubated at 28°C with 

shaking (250 rpm) for 1 h. Finally, 1-10 µl of the cells were plated on YEB-agar containing 

100 µg/ml rifampicin (Rif), 25 µg/ml kanamycin (Km) and 100 µg/ml carbenicillin (Carb) 

(YEB-Rif-Km-Carb) and incubated at 28°C for 2-3 days. As a control transformation of 

Agrobacterium cells with H2O was performed. 

 

II.2.2  Expression and purification of recombinant proteins  

 

II.2.2.1 Expression and purification of GST fusion proteins 

pGEX plasmids are designed for inducible, high level intracellular expression of gene or gene 

fragments as fusion with Schistosoma japonicum GST. GST-fusion proteins were expressed 

and purified via affinity chromatography using Glutation Sepharose 4B according to a 

modified protocol based on (Smith, 1993). A freshly transformed single colony of E. coli 

strain BL21(λDE3) (Novagen) harbouring recombinant plasmid DNA was inoculated in 10 ml 

of 2YT medium containing 1% (w/v) glucose and 100 µg/ml ampicillin and cultivated 

overnight at 37°C with vigorous shaking. The following day 1L of fresh 2YT medium 

containing 0.1% (w/v) glucose and 100 µg/ml ampicillin media were inoculated with 10 ml 

overnight culture and grown at 37°C and 225 rpm till OD 600 nm reaches to 0.6-0.8. Expression 

of recombinant proteins was then induced by addition of IPTG to a final concentration of 0.25 

mM. Cells were cultured 4 hr at 25°C. The cells were harvested by centrifugation (15 

min/5000 g/4°C) and the supernatant was discarded. The pellet was resuspended in cold PBS 

buffer (50 ml/1000 ml bacterial culture) supplemented by protease inhibitor cocktail (1 

tablet/50 ml PBS) and DTT to final concentration of 5 mM. The cells were broken by 

sonication on ice 4 times for 40 sec (150W with 30 sec intervals). Triton X-100 (20% (v/v) 
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stock solution) was added to a final concentration of 1% (v/v). Cell debris and insoluble 

components were removed by centrifugation (20 min/11000g/4°C) and the supernatant 

subjected to glutathione affinity chromatography according to the manufacturers instructions 

(Amersham Pharmacia Biotech).  Elution buffer was used to release bound fusion proteins 

from the column. The purified fractions were immediately stored at -20ºC before use. 

Elution buffer: 0.154 g Glutation dissolved in 50 ml Tris-HCl 50 mM, pH 8 

 

II.2.2.2 Expression and purification of MBP fusion proteins 

The pMALTM vectors provide a method for expressing and purifying a protein. The cloned 

gene is inserted downstream from the male gene of E. coli which encodes maltose binding 

protein (MBP). The freshly transformed single colony of E. coli strain BL21(λDE3) 

(Novagen) harbouring recombinant plasmid DNA was inoculated in 10 ml of 2YT medium 

containing 1% (w/v) glucose and 100 µg/ml ampicillin and cultivated overnight at 37°C with 

vigorous shaking. The following day 1L of fresh 2YT/0.1% (w/v) glucose and 100 µg/ml 

ampicillin media were inoculated with 10 ml overnight culture and grown at 37°C and 225 

rpm to an OD600nm of 0.5-0.8. Expression of recombinant proteins were then induced by 

addition of IPTG to a final concentration of 0.25 mM and were cultured 4 hr more at 25°C. 

The cells were then harvested by centrifugation (15 min/5000 g/4°C) and the supernatant was 

discarded. The pellet was resuspended in cold column buffer and frozen overnight at -20°C. 

The samples were thawed in cold water and sonicated four times in short pulses of 30 sec 

(150W with 30 sec interval). The crude extract (supernatant) was obtained by centrifugation 

at 9000 x g for 30 minutes at 4°C. Supernatant was subjected to amylase resin according to 

the manufacturer` s instructions (New England Biolabs). To elute the bound proteins, 3ml 

100mM-maltose containing column buffer was added to the column and the eluted protein 

was collected in separate fractions and stored at -20ºC. 

Column buffer: 20 mM Tris HCl pH 7.4,  200 mM NaCl, 1 mM EDTA and 1 mM DTT  

 

II.2.2.3 Expression and purification of soluble scFv antibodies 

 

II.2.2.3.1  Mini-induction of scFv in pHENHI phagemid vector 

A single recombinant colony (II.2.1.13.2) of E. coli strain XL1-blue or HB2151 harboring the 

pHENHI phagemid containing the scFv gene was inoculated in 2 ml of 2YT medium 

containing 100 μg/ml ampicillin and 0.1% (w/v) glocuse and cultivated at 37 °C for 3-4 hr 

with shaking until the OD600 nm reached 0.4-0.6. The induction was carried out at 30°C for 16 
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hr after addition of 0.5 mM IPTG. The cells were removed by centrifugation (4000g/4°C/10 

min) and the supernatant were used for immunoblotting (II.2.3.3.1) and ELISA (II.2.3.3.2). 

 

 

II.2.2.3.2 Large scale expression and purification of scFvs by IMAC 

Recombinant pHENHI plasmid harbouring scFvs genes were initialy transformed into E. coli 

strain HB2151. A single recombinant colony was inoculated in 10 ml of 2YT medium 

containing 1% (w/v) glucose and 100 µg/ml ampicillin (2YTGA) and cultivated overnight at 

37°C with shaking (200 rpm).  Three ml of the overnight culture were transferred into 500 ml 

of 2YT media containing 0.1% (w/v) glucose and 100 µg/ml ampicillin and grown at 37°C 

until the OD600nm reached 0.7- 0.8. Expression of scFv fragments were induced by addition of 

IPTG to a final concentration of 1 mM for 3 hours at 30°C. The culture was centrifuged (4000 

g/4°C/20 min) and the pelleted bacteria were resuspended in 10 ml of resuspension buffer (30 

mM Tris, 20 % (w/v) sucrose, pH 8.0). EDTA was added to a final concentration of 1 mM. 

The suspension was incubated at 4°C for 10 min with gentle agitation followed by 

centrifugation at (8000 g/4°C/20 min). The supernatant S1 was taken and kept on ice. The 

pellet was resuspended in 9 ml of ice cold 5 mM MgSO4 and incubated at 4°C for 8-9 min on 

a shaker. EDTA was added to a final concentration of 1 mM and the suspension was agitated 

for 3 more minutes followed by centrifugation at (8000 g/4°C/20 min). The second 

supernatant (S2) was mixed with the first supernatant (S1) and dialysed against PBS prior to 

IMAC affinity purification. Ni-NTA-agarose was added in a disposable column and 

equilibrated with 10-20 volumes of wash buffer. Imidazol and sodium chloride were added 

into the dialyzed periplasmic fraction to a final concentration of 10 mM and 500 mM, 

respectively. The sample was passed twice through the pre-equilibrated Ni-NTA matrix. The 

column was washed with 20 volumes of wash buffer and the proteins were eluted in three 

fractions with 700 µl of elution buffer. Collected fractions were immediately dialysed against 

PBS (pH 7.4) to remove imidazol and salt. To control the yield and purity of dialyzed scFv 

fragments 15 µl were run in a SDS-PAGE (II.2.3.2). The concentration was determined using 

the Bradfrod protein assay (II.2.3.1). 

Wash buffer: 1x PBS, 30 mM imidazol; 500 mM NaCl 

Elution buffer: 1x PBS, 250 mM imidazol pH 4.5 
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II.2.3  Protein analysis 

 

II.2.3.1 Quantification of total soluble protein  

The concentration of purified protein was determined by Bradford assay (Bradford, 1976) or 

visual comparison with a purified protein of known concentration in Coomassie-stained gel 

(II.2.3.2) and/or Western blot (WB) (II.2.3.3.1.1) assays.  

For Bradford assay the protein solution of interest was serially diluted. BSA was also serially 

diluted and used as standard. 10 µl of each dilution was transferred into the wells of a low 

binding microtiter plate (Greiner, Solingen, Germany). 10 µl of the buffer was used as a 

blank. 200 µl of Bradford reagent were added to each well, mixed with the proteins and 

incubated at RT for 10 min followed by the measurement of OD595nm. For each dilution, 

measurements were performed in duplicate and the average was taken for the calculation of 

the protein concentration. 

 

II.2.3.2 SDS-PAA gel electrophoresis and Coomassie brillant blue staining 

Discontinuous SDS-polyacrylamide gels (stacking gel 4%, pH 6.8; separating gel 12%, pH 

8.8) (Ausubel et al., 1995) were used for separation of protein samples. Before loading onto 

the gel, protein samples were denaturated in SDS-PAA-sample buffer and heated 3min at 

95°C. The proteins were separated electrophoretically with 20V/cm for 1 hour. Protein bands 

were revealed by staining with Coomassie brilliant blue or transferred to nitrocellulose 

membrane for immunoblot analysis (Ausubel et al., 1995). Proteins were detected after 

incubating the gel for 30 min in Coomassie staining solution at RT under constant rocking. 

Coomassie staining was removed by adding destaining solution until the protein bands were 

clearly visible.  

10X SDS-PAA-sample buffer: 

                                              Tris-HCl (pH6.8)                      62.5 mM 

                                              Glycerol                                    10% (V/V) 

                                              SDS                                           2%(W/V) 

                                              β-Mercaptoethanol                    5%(V/V) 

                                              Bromephenol Blue                     0.05(W/V) 

                                               

SDS-PAGE running buffer (pH 8.3): 

Tris-HCl (pH 8.3)   125 mM (w/v) 

Glycine    960 mM (v/v) 
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SDS     0.5% (w/v) 

 

Coomassie staining solution: 

Coomassie brillant blue G-250  0.25% (w/v) 

Methanol     50% (v/v) 

Glacial acetic acid    9% (v/v) 

Coomassie destaining solution: 

Methanol     10% (v/v) 

Glacial acetic acid    10% (v/v) 

II.2.3.3 Immuno assays 

 

II.2.3.3.1 Immunoblot analysis 

 

II.2.3.3.1.1 Western-blot analysis (WB) 

Electrophoretically separated proteins (II.2.3.2) were transferred from an SDS-PAGE gel to 

PVDF or HybondTM-C nitrocellulose membrane (0.45 µm). The membrane was blocked with 

PBS buffer containing 3% (w/v) skimmed milk powder (MPBS) and blotted proteins probed 

with a primary antibody (anti c-myc, anti-His, anti GST, or anti MBP) that reacted specifically 

with antigenic epitopes displayed by the target protein attached to the membrane. The bound 

antibody was detected by addition of appropriate secondary polyclonal antibody coupled to 

alkaline phosphatase (AP). The target protein was finally revealed by addition of substrate 

BCIP/NBT. 

PBS buffer (pH 7.3): 

   NaCl    137 mM 

   KCl    2.7 mM 

   Na2HPO4x2H2O 8.1 mM 

   KH2PO4   1.5 mM 

 

Transfer buffer (pH 8.3): 

   Tris-HCl, pH 8.3 25 mM 

   Glycine   92 mM 

   Methanol   20% (v/v) 

 

AP buffer (pH 9.6): 
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   Tris-HCl, pH9.6  100mM 

   NaCl   100mM 

   MgCl2   5mM 

 

II. 2.3.3.1.2  Dot-blot analysis 

About 5 µl of supernatant (II.2.8.5) containing soluble scFv fragments extracted from plants 

were immobilized on Immobilon-P PVDF membrane. Immobilized scFv fragments were 

detected using 1:5000 diluted anti-c-myc monoclonal antibody 9E10 followed by 1:10000 

diluted AP-labelled goat anti-mouse polyclonal antiserum. Binding of AP-conjugated 

secondary antibodies was revealed by adding BCIP/NBT substrate. 

 

II.2.3.3.2  ELISA (Enzyme-linked immunosorbent assay) 

Indirect ELISA was used for analysis of bacterially and plant expressed soluble scFv 

fragments. About 10-50 µg/ml antigens in PBS were directly coated on high-binding 

microtitre plates by incubating at 4°C overnight followed by a blocking step using 2% (w/v) 

skimmed milk in PBS. 100 µl of scFv solutions were then applied to the plates and incubated 

at 37°C for 2 hr. Bound scFvs were detected using 1:5000 diluted anti-c-myc monoclonal 

antibody 9E10 followed by 1:5000 diluted horseradish peroxidase (HRP)-conjugated goat-

anti-mouse polyclonal antibodies. ABTS substrate dissolved in ABTS buffer (Boheringer 

Mannheim) was used for color development at 37°C for 30 min followed by the measeurment 

of OD405nm. 

For titre determination of polyclonal antibodies from sera of mice, direct ELISA was 

performed using GST-Rep, GST-NRep, MBP and GST proteins as antigens/controls. 10µg/ml 

of antigens was coated onto high binding ELISA plates. GST and MBP (10 µg/ml) were 

included as a control. Antigens were coated at 37°C for 2 hours and blocked with 4% (w/v) 

skimmed milk in 1xPBS. Serial dilutions of sera (1:500-1:1024000) in 1xPBS were added to 

the coated plates and incubated at 37°C for 2 hours. After three washes with PBS-T, bound 

antibodies were detected by addition of 1:5000 diluted GAMAP polyclonal antibodies in 

blocking buffer and p-nitrophenyl phosphate (pNPP) as substrate (Sigma). ELISA plates were 

incubated at 37°C for 20-60 minutes followed by measurement of the OD405 nm.  

For detection of TYLCV infected leaves, triple antibody sandwich ELISA (TAS-ELISA) was 

used. This ELISA is based on monoclonal antibodies which react with all TYLCV species. It 

employs a polyclonal antibody (IgG) for coating and monoclonal antibody (MAbs) for 

decorating of the virus coat protein. Since the monoclonal antibody is not labeled, a secondary 
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mouse specific antibody (RAMAP) is used to react with the bound MAb. Polyclonal antibody 

(DSMZ AS-0588) with monoclonal antibody (DSMZ AS-0546/2) kindly prepared by S. 

Winter from DSMZ, Braunschweig, Germany were used according to manufacturer’s 

protocol. 

 

II.2.4  Immunization of mice 

The treatment and maintenance of laboratory animals was approved by the 

‘Regierungspräsidium des Landes NRW’ (RP-Nr.: 50.203.2 AC 02/06). Three female mice 

(Balb/c) each were immunized with 100 µg of MBP-Rep fusion protein mixed with 40µl 

GEBRU’s adjuvant. Seven further 50µg injections into the tail vein were given at weekly 

intervals with 20µl GEBRU’s adjuvant per mouse. One boost more was performed 1 day prior 

to sacrifice with concentration of 50µg. After final boosting, blood was taken from the tail 

vein using a 26 gauge needle (20 µl) and a capillary for picking up blood. The blood was 

diluted up to 2-fold with PBS for estimation of antibody titre by ELISA (II.2.3.3.2). 

 

II.2.4.1 Isolation of mouse spleen and spleen cell preparation 

The immunized mouse (II.2.4) was sacrificed with Isofluran, sterilized with 70% (v/v) ethanol 

and then dried with some paper towels. The spleens from immunised mice were removed and 

dissected. Spleenocytes were prepared by disrupting the spleen using a mechanical 

homogenizator in 7 ml Trizol. 

 

II.2.5  Construction of phage-displayed ScFv libraries 

 

II.2.5.1 Isolation of total RNA from spleen cells 

Isolation of total RNA was carried out using Trizol extraction (Invitrogen). Frozen 

homogenized spleenocytes incubated in RT to complete dissociation of nucleoprotein 

complexes. Total RNA was purified using chloroform and subsequent precipitation by 

Isopropyl alcohol and ethanol according to the manufacturers’ protocol. 

 

II.2.5.2 The first strand cDNA synthesis 

To remove genomic DNA, about 3 μg total RNA was treated with DNase I enzyme 

(Fermentas). First-strand cDNA was synthesised from 2 µg of total RNA using Super 

Script™ II Reverse Transcriptase (RT) (Invitogen) and oligo dT primer according to the 

manufacturers instructions. 
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II.2.5.3  Construction of scFv libraries 

Variable heavy and light regions were amplified by PCR using two specific sets of primers 

binding to the murine framework region 1 and 4 (II.1.6). For each forward primer separate 

PCR reactions were performed whereas backward primers were used as a cocktail. PCR 

reactions and amplification program were accomplished as mentioned in tables below: 

 

 

Components Volume Final concentration 

10X PCR buffer 5  µl 1X 

MgCl2   (50 mM) 1.5 µl 2.5 mM 

dNTPs (2.5 mM) 4 µl 0.2 mM each 

Forward primer (10 pmol/μl) 1 µl 10 pmol 

Reverse primer (10 pmol/μl) 1 µl 10 pmol 

cDNA template 4 µl  

Taq DNA polymerase (5U/µl) 0.5 µl 2,5 units 

dd H2O To  50 µl  

 

PCR reaction was carried out under the following conditions: 

5   min 95°C 

1   min 95°C 

1    min 52°C        35X 

1.5 min 72°C 

  5 min   72°C 

PCR amplified heavy (VH) and light (VL) chain fragments were gel purified using “QIAquick 

gel extraction kit” (Qiagen) (II.1.4) and digested with SfiI/BstEII (VH) or AscI/NotI (VL) 

enzymes, respectively. To create the sublibraries, the pHENHI phagemid DNA was digested 

with SfiI and BstEII or AscI and NotI and gel purified. 200 ng of purified vector were ligated 

with a five fold molar excess of purified fragments. Ligation products were electroporated 

into electrocompetent E. coli XL1Blue cells (II.1.7). The scFv fragment libraries were 

constructed by recovering VH fragments from the VH sublibrary and cloning into the VL 

sublibrary.  
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II.2.5.4 BstNI  fingerprinting 

The variability of the generated scFv libraries was tested by restriction analysis with BstNI. 

The PCR-amplified scFv fragments from 17 randomly selected E. coli colonies were digested 

with 5 U BstNI at 60oC for 2 h. This method was first described in phage display protocols by 

(Marks et al., 1991). Digested fragments were separated in a 2% (w/v) agarose gel (II.2.1.3) 

and the variability of the library was estimated. 

 

II.2.6  Phage displayed scFv selection 

Phage particles were rescued from the scFv-libraries by super infection with helper phage 

M13KO7 (Clackson et al., 1991). Phage titers were determined by addition of phage dilutions 

to exponentially growing E. coli TG1/XL1-blue strains. For isolation of phages exposing 

antigen specific antibodies, panning procedures were performed. GST/MBP-Rep fusion 

proteins (~50-100µg/ml) were immobilized overnight to immunotubes. After 2h blocking 

with PBS, 4% (w/v) skimmed milk, the phage solution was added to the antigen-coated 

immunotubes and incubated for 1 h under rotation on an under and over turntable and then 1.5 

h without rotation. Phages that showed no or low affinity for the immobilized antigen were 

washed away by PBS containing 0.05% (w/v) Tween20 followed by PBS. Each washing step 

was performed 20 times by filling the tube and decanting immediately. Phages with affinity to 

the antigen were eluted from the tube by addition of 1 ml of 100 mM triethylamine (freshly 

prepared) with rotation on an under and over turntable for 8-10 min followed by neutralisation 

with 1 M Tris-HCl pH 7.5. Nine ml of log phase E. coli TG1/XL1-blue cells were infected 

with eluted phages and plated on 2xYT agar plates containing 1% (w/v) glucose and 100 

µg/ml ampicillin (2x YTGA-agar). The plates were incubated overnight at 37oC. Cells were 

scrapped off the agar by adding 5 ml of 2x TY medium containing 15% (v/v) glycerol and 

stored at -80oC for a new round of selection. 

The total eluted phage titer indicating the successful binding and elution of phages, was 

determined after each round of panning by addition of dilutions to exponentially growing E. 

coli TG1/XL1-blue. An increasing titer of eluted phages in subsequent round of panning 

indicated the enrichment for clones, which bind most strongly to the target antigen. 
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II.2.7  Cloning of specific scFvs interacting to TYLCV virion from hybridoma 

cell lines 

 

II.2.7.1 Purification of mouse mAbs from the hybridoma supernatants 

Hybridoma clones producing monoclonal antibodies against TYLCV virion, briefly named 

HTYLCV1, HTYLCV2, HTYLCV3 and HTYLCV4 (kindly provided by Dr. S. Winter, 

DSMZ-Braunschweig, Germany) were grown in 200 ml tissue culture flasks. The culture 

supernatants were harvested when the medium became acidic. The storage bottle for 

collection of the cell supernatant was always handled in sterile conditions to avoid any 

contamination. 

The mouse Mab was purified from the hybridoma supernatant via Protein A chromatography. 

Protein-A, a 43 kDa cell wall protein produced by the bacteria Staphylococcus aureus 

contains four binding sites for the Fc regions of IgG located in the interface between the CH2 

and CH3 domains and is commonly used for antibody purification. Protein-A was isolated 

and purified first by (Sjoquist et al., 1972). 

About 1.6 ml of Protein A matrix was packed in a column and equilibrated with 5 column 

volumes of PBS (pH 7.4). The hybridoma supernatant was centrifuged (10000 rpm/ 

10 min/4°C) and filtered through Whatman 3M paper before applying it onto the column. The 

supernatant was passed through the column at a flow rate of 5 ml/min. Non-specifically bound 

proteins were washed away with PBS containing 100 mM NaCl (pH 7.4). The bound antibody 

was eluted from the column with 4 ml of elution buffer (100 mM glycine, pH 3) under gravity 

flow. The pH of the eluate was immediately adjusted to pH 7 by adding 1 M Tris pH 11. 

0.01% (w/v) of sodium azide and 10% glycerol (v/v) were added to the eluate. The eluate was 

aliquoted and frozen at –20°C. The Protein A matrix was regenerated by washing the column 

with 2 column volumes of 1.5 M HCl and stored in 20% (v/v) ethanol at 4°C. 1-10 microlitres 

of the eluate were used for ELISA (II.2.3.3.2), WB (II.2.3.3.1.1) and SDS-PAGE analysis 

(II.2.3.2). 

 

II.2.7.2 Construction of scFv fragmnets 

Starting from the hybridoma cells, corresponding scFvs were made from each hybridoma 

lines by extraction of total RNA from hybridoma cells following the cDNA synthesis, VH and 

VL amplification by specific primers (II.1.6) and cloning into pHENHI by the same way used 

for construction of scFv phage library (II.2.5.3). 

 



Matherial and Methods................................................................................................................. 

                    62 
 
 

II.2.7.3 Soluble expressions of scFv fragments and indirect ELISA 

Screening of scFv-fragment libraries was performed after the third round of panning by small 

scale induction of scFv expression from pHENHI or pIT2 phagemid vectors in ELISA plates. 

96 recombinant clones of E. coli strain TG1/XL1-blue were randomly selected and inoculated 

in 100µl of 2xTY, 100µg/ml ampicillin, 1% (w/v) glucose in microtiter plates. The plates 

(master plates) were grown at 37oC overnight. The next day, 5 μl of bacterial culture was 

transferred from the master plate to a second plate containing 200 µl 2x TY, 100 µg/ml 

ampicillin, 0.1% (w/v) glucose. Bacteria were grown at 37oC for 2-3h. Soluble scFv fragment 

expression was induced at 30oC for 16-24 h by addition of IPTG to a final concentration of 1 

mM. The cells were removed by centrifugation and the supernatant was used for detection of 

positive clones by indirect ELISA as it was described (II.2.3.3.2). 

 

II.2.7.4  Characterisation of selected scFv by western blotting 

Selected scFvs from the last step (II.2.7.3) were analyzed by western blot. Recombinant 

clones of E. coli strain HB2151 were inoculated in 50ml of 2xYT, 100µg/ml ampicillin, 1% 

(w/v) glucose in sterile tubes. The Next day, 50μl of this culture were transferred to 50 ml 

fresh 2x TY, 100 µg/ml ampicillin, 0.1% (w/v) glucose. Bacteria were grown at 37oC for 2-

3h. Soluble scFv fragment expression was induced at 30oC overnight by addition of IPTG to a 

final concentration of 1 mM. The cells were removed by centrifugation and the supernatant 

was used for western blot as described (II.2.3.3.1.1). 

 

II.2.8   Generation and characterisation of transgenic plants 

 
II.2.8.1  Growth and maintenance of tobacco plants 

Tobacco plants were grown in a greenhouse in ED73 standard soil (Patzer, Sinntal-Jossa) with 

0-30% (v/v) sand under supplementary illumination of 10 000 Lux (plus the sun light), 70-

90% humidity and 16h photoperiod at 24°C (or higher depending on the outside temperature). 

To prevent pollination from other plants, flowers were covered with plastic bags with micro 

pores. Mature, dried seeds were stored in paper bags at RT. 

 

II.2.8.2  Preparation of recombinant Agrobacteria 

100 ml of YEB-Km-Rif-Carb medium was inoculated with 100 µl of glycerol stock of the 

selected recombinant Agrobacteria harbouring a plant expression vector. The culture was 

grown at 28°C overnight with shaking at 250 rpm. Next day the cells were precipitated by 

centrifugation at 5000 g for 10 min at 15-25°C and transferred into 250 ml of induction 
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medium and cultivated at 26°C overnight with shaking at 250 rpm. Agrobacteria cells were 

centrifuged (4000g/15-25°C/15 min) and resuspended in 50 ml of MMA solution and kept at 

RT for 2 h. The OD600nm was measured after 1:10 dilution and the cell suspension was 

adjusted to an OD600nm of 1. 100 ml of the diluted cell suspension was used for vacuum 

infiltration. 

 

Induction medium: 

YEB medium  

MES 10mM 

pH was adjusted to 5.6 and 2 mM MgSO4, 50 µg/ml kanamycin, 50 µg/ml rifampicin, 100 

µg/ml carbenicillin, 20 µM acetosyringone were added after autoclaving and cooling. 

 

MMA buffer: 

MS-salts (Murashige & Skoog, basic salt mixture) 0.43% (w/v) 

MES 10mM 

pH was adjusted to 5.6 and Sucrose 2% (w/v) and Acetosyringone was added directly before 

use 200 µM. 

 

II.2.8.3  Recombinant agrobacterium-mediated transformation 

 

II.2.8.3.1.  Transient transformation of intact leaves 

Transformation of young N. tabacum cv. Petite Havana SR1 and N. benthamiana plants was 

transiently accomplished by vacuum infiltration and inoculation by syringe. 

In vacuum infiltration young leaves were placed in 100 ml of agrobacteria suspension in a 

“Weck” glass and a continuous vacuum (60-80 mbar) was applied for 15-20 min. The applied 

vacuum was released rapidly and the leaves were briefly rinsed in tap water and kept on wet 

Whatman paper no. 1 with adaxial side upwards. The plastic tray was sealed with saran wrap 

and placed at 22°C with a 16 h photoperiod for 3 days. As control, leaves were infiltrated with 

agrobacteria suspension, which did not contain pTRAkt plasmid. 

In syringe inoculation, whole tobacco plants in pots were used. So, lower epiderm of intact 

leaf was scratched by pipet tip and agrobacterium suspension was injected into beneath space. 

Tobacco pots were kept at 22°C with a 16 h photoperiod for 3 days.   
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II.2.8.3.2  Stable transformation of  N. benthamiana 

Stable transformation of N. benthamiana was performed with the help of Dr. Flora Schuster 

(Institute of Molecular Biotechnology, RWTH-Aachen, Germany). Transgenic N. 

benthamiana was generated by leaf disc transformation using recombinant Agrobacteria 

transformed with pTRAkt plasmid carrying cytosolic or nuclear taregeting of different scFv 

genes with and without fusion to GFP (II.2.1.13.6). Transgenic T0 plants were regenerated 

from transformed callus as recomended (Fraley et al., 1983) and (Horsch et al., 1985). Briefly, 

wild type plants were grown on MS medium in “Weck” glasses and the youngest leaves 

(length up to 4 cm) were used for transformation. The agrobacteria suspension was prepared 

as described above (II.2.1.12.2) and the OD600nm was adjusted to at least 1.0 after dilution in 

MMA buffer. The leaves were cut into 8-10 pieces and transferred into “Weck” glasses 

containing 50- 100 ml of agrobacteria suspension and incubated at RT for 10-15 min. The leaf 

pieces were then transferred onto sterile pre-wetted Whatman filters in petri dishes closed 

with saran wrap and incubated at 26-28°C in the dark for two days. Following washing with 

distilled water containing 100 µg/ml kanamycin and 200 µg/ml claforan, leaf pieces were 

transferred onto MS II-plates and incubated at 25°C in the dark for one week and with a 16 h 

photoperiod for 2-3 weeks. After shooting, the shoots were removed and transferred onto MS-

III-plates and incubated at 25°C with a 16 h photoperiod for 10-14 days until roots developed 

and transferred into soil. The young leaves from regenerated transgenic plants were used for 

immunoblot analysis of expressed scFvs. 

 

MS medium: 

 MS-salts                            0.43% (w/v) 

 Myo-Inosite (SERVA)      0.1% (w/v) 

 Sucrose                             2% (w/v) 

 Thiamin-HCl                     0.4 mg/l 

 Distilled water add to 1000 ml 

The pH was adjusted to 5.8 with 1 N NaOH (for preparation of solid medium, 0.8% (w/v) 

agar were added), autoclaved and 500 µl of vitamin solution I were added upon cooling to 

55°C. 

 

MS-II medium: 

MS medium supplemented with:  

   BAP (in DMSO, from Sigma)             1 mg/l 
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   NAA (from Sigma)     0.1 mg/l 

   Kanamycin      100 mg/l 

   Claforan       200 mg/l 

   Betabactyl      200 mg/l 

MS-III medium: 

MS medium supplemented with: 

   Kanamycin                    100 mg/l 

   Claforan                         200-250 mg/l 

   Betabactyl                     200-250 mg/l 

 

Vitamin solution I: 

    Glycin    0.4% (w/v) 

    Nicotinic acid    0.1% (w/v) 

    Pyridoxin   0.1% (w/v) 

Filter sterilized and stored at 4°C. 

 

II.2.8.4  Fluorescent microscopy  

The infiltrated tobacco leaves (II.2.8.3.1) were checked for GFP, DsRed fluorescence using 

Olympus BX41 flourescent microscope. GFP was excited at 488 nm and emissions collected 

at 500 to 515 nm. DsRed was excited at 568 nm and emissions collected at 600 to 620 nm.  

 

II.2.8.5 Preparation of total soluble proteins from plant leaves 

For the extraction of transiently expressed scFv in infiltrated tobacco leaves (II.2.8.3.1) or in 

stable transformed tobacco plant (II.2.8.3.2), third leaf from apical was displaced and 

grounded with a mortar and pestle in liquid nitrogen to a fine powder. Total soluble proteins 

were extracted using 2 ml of extraction buffer per gram leaf material. Cell debris was 

removed by two rounds of centrifugation (16000g/4°C/30 min) and the supernatant was used 

for subsequent analyses (II.2.3.3). 

 

Extraction buffer: 

        PBS pH 7.5                  1X 

        EDTA                         5 mM 

        β-mercaptoethanol     5 mm 
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II.2.8.6  Quantification of scFv transcripts in transgenic plants 

 

II.2.8.6.1  Extraction of total RNA from transgenic plants and cDNA construction 

Total RNA of transgenic plants were extracted by RNeasy mini kit (Qiagen) according to the 

manufacturers’ instructions. Quality and yield of extracted RNA was examined by running on 

agarose gele electrophoresis and reading the absorbance at 260 nm and 280 nm in a 

spectrophotometer. Isolated total RNA was stored at -20°C.  

3 μg of total RNA was subjected to DNA digestion through DNaseI enzyme (Fermentas, St. 

Leon-Rot). cDNA synthesis was performed using 2 µg of total RNA,  SuperScript™ II 

Reverse Transcriptase (RT) (Invitogen) and specific reverse pA35S primer (II.1.6) 

recognizing 3´ untranslated region according to the manufacturer’s instruction. 

 

II.2.8.6.2  Quantitative (real-time) PCR assays 

Real-time PCR was performed using  Platinum® SYBR® Green qPCR SuperMix-UDG 

(Invitrogen) reaction buffer containing 2X SuperMix, 50X ROX reference dye, 50 mM MgCl2 

and 20X BSA. Specific primer recognizing 3`-UTR (pA35S) region were designed (II.1.6) to 

target the same amplicon presented in all transgenic plants. Real time PCR was done in total 

20 µl reaction mixture including 1X qPCR Mastermix plus 10 μM for each primer and 2 µl of 

cDNA with dilution 100 as a template. Amplifications were accomplished in 96 well plates 

with optical caps on ABI Prism®  7000 sequence detection system (SDS) (Applied biosystem, 

Foster City, USA). PCR reaction was carried out under the following conditions: 

 2    min 50°C 

10   min 95°C 

15   sec   95°C 

 1    min 60°C          

 

The results were analysed with ABI Prism 7000 SDS and Exel softwares and relative 

quantities of the transcripts were calculated by using the standard curve method.  

 

II.2.8.7 Extraction of total DNA from transgenic plants 

Plant total DNA was isolated from transgenic and wild type plants based on alkaline lysis 

method. Tissue from new emerged leaves (50- 100 mg) was ground with mortar and pestle in 

liquid nitrogen and extracted in 500 µl extraction buffer. Then vortex briefly and add 500 µl 

of phenol-chlorophorm-isoamylalcohol (25:24:1). After being mixed and centrifuged, the 

40X 
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supernatant was phase-separated with 300 µl chloroform. The nucleic acids in the resulting 

supernatant were precipitated by adding 40 µl Sodium aceate 3M pH 5.2 and 1 ml ethanol 

96%. After removing of all liquids in the tube, the pellet was resuspended in 100 µl TE buffer 

1 µl RNase (10 mg/ml) was added and solution was mixed and incubated 15-30 min at 37°C. 

Following RNA digestion, DNA was precipitated by adding sequentially 10 µl Sodium 

acetate 3M pH 5.2 and 250 µl ethanol 96%. The pellet resulting from centrifugation was dried 

and resuspended in 60 µl TE buffer. The concentration of purified DNA was calculated by 

OD260/280 measurements on a spectrophotometer. The integrity of purified DNA was 

visualized on agarose gel. 

Extraction buffer:  

  Tris-HCl (pH 8.5)   100mM 

   NaCl                       100 mM 

   EDTA                10 mM 

     SDS                    0.2% 

 

TE buffer: 

  Tris-HCl (pH 8)        10mM 

   EDTA                      1mM 

 

 

II.2.8.8  Sothern blot hybridization assay 

This assay is based on chemiluminescent detection of viral and plasmid DNA using 

digaxigenin-labled probes on nylon membrane. The full-length of TYLCV-CP (777 bp) was 

used for preparation of probe. The probe contained both plus and minus strand obtained by 

incorporating digoxigenin-dUTP (Roche, Mannheim) in PCR amplification using CP specific 

primers (II.1.6) according to the manufacturer’s instruction. The probe was used at a final 

concentratin of 1 ng/ml in hybridization buffer. 

S1 nuclease treatment was performed to distinguish between ssDNA and dsDNA form of 

virus. About 5μg of total DNA was used for S1 treatment. S1 nuclease was added to reaction 

mixture at 1.2 units/μg of DNA and incubated for 30 min at 37°C. The reaction was stopped 

using 0.1 vol. of 100 mM EDTA (pH 8.0) and used for southern hybridization.  

About 1 μg of total DNA extracted from control and transgenic plants was submitted on a 1 % 

agarose gel electrophoresis in 1XTBE buffer for 3 hr at constant voltage 80. To facilitate 

blotting of big DNA fragments, de-purination step was done to take the purines out with HCl 
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0.25M for 15 minutes. Before transferring DNA onto membrane, the double-stranded DNAs 

must be denatured because only single stranded nucleic acids could bind to the membrane and 

furthermore, DNA must be single stranded to be able to hybridize with the probe. Therefore, 

the gel was emerged sequentially in denaturing and naturalising buffer and exposed to 

Hybound-N+ membrane (Amershame pharmacia biotech) over and connected to a big 

chamber containing 20X SSC buffer. By capillary action, the DNA molecules are moved from 

the gel to the membrane, where they bind to the membrane. The transferring was left 

overnight. The blotted DNA was cross linked with UV light at 254nm and 125mJ energy by 

means GC Gene linkerTM (BioRad, München). Residual EtBr was removed by 3 times 

washing with 2X SSC buffer at RT for 3-5 hour. Pre-hybridization step is required before 

hybridization to block non-specific sites. For this mean, the membrane was incubated with 10 

ml Dig Easy Hyb (Roche, Mannheim) in hybridization tube for 30 min at 37°C inside Mini 

hybridization oven (Biometra, Göttingen,Germany). Single-stranded DNA is required to base-

pair with complementary sequences, for this mean, the dig-labelled probe is denatured by 

heating 5 min at 95°C and immediately added to new Dig Easy Hyb. The hybridization 

solution is added to the membrane and incubated at 37°C overnight. This long incubation 

allows the single stranded probe DNA molecules to hybridize (base-pair) to their 

complementary DNA sequences on the membrane.  

The next day, pour off the hybridization solution and membrane is subjected to a series of 

washes that remove any of the DNA probes that is not correctly base-paired to its 

complementary sequences. Firstly, membrane was washed once with 2X SSC buffer for 3 min 

and twice with 2XSSC+0.1% SDS for 5 min at RT. Another washing was done twice at 65°C 

with 0.5X SSC+0.1% SDS. Then the membrane was washed with 1X Maleic acid buffer and 

blocked with 1% Southern blocking buffer for 30 min at RT. Anti Dig-AP-conjugate (Roche, 

Mannheim) antibody was used for interacting against dig-labelled probe. The next washing 

with 1X Maleic acid+0.3% Tween20 removes non-bound conjugate. The membrane was 

soaked into Alkali-phosphatese detection buffer for 5 min at RT and subjected to substrate 

CDR-Star (Roche, Mannheim) by dropping 1 ml on membrane. Finally the membrane was 

exposed to CCD-camera. 

 

Denaturing buffer: 

                                    NaOH                            500mM 

                                    NaCl                              1.5 M 
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Neutralizing buffer: 

                                    Tris-HCl  (pH 7.5)        1M 

                                    NaCl                              1.5M 

 

20X SSC (pH 7): 

                                    NaCl                             3M 

                                    Tri-Citrate Dihidrate    0.3M                    

10X Maleic acid buffer (pH 7.5): 

                                   Maleic acid                    1M 

                                   NaCl                              1.5M 

                                   

10 % Southern-Blocking buffer: 10% Casein in 100 ml 1X Maleic acid buffer 

 

Alkali-Phosphatase detection buffer: 

   Tris-HCl (pH 9.0)        0.1 M 

   NaCl    0.15 M 

 

II.2.8.9 Agroinoculation of N. benthamiana plants with TYLCV-Ir 

To assay virus resistance in N. benthamiana, transgenic and wild type plants were infected 

with pBIN19-2TYLCV-Ir agroinfectious clone. Young plants at the 4-5 leaf stage were 

inoculated. A.tumefaciens cultures were grown at 28°C for about 48 hr on YEB plate 

supplemented by kanamycin 50mg/lit and rifampicin 50 mg/lit. The plant apex was excised at 

the time of agroinoculation and used for subsequent molecular analysis. A yellow pipet tip 

was touched to bacterial culture and rubbed on the decapitated surface of plants. After 

inoculation, plants were observed for disease symptoms, weekly for 2 months, and assayed 

for presence of TYLCV genome using molecular hybridization or PCR.  
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III   Results 
 

III.1   Cloning and expression of the viral genes in bacterial expression vectors 

 

III.1.1   Cloning of viral C1, V1 and V2 genes into TOPO vector 

The viral genes V1 (777bp), V2 (351bp) and C1 (1081bp) encoding Rep, CP and MP, 

respectively, were amplified from a pBIN19-2TYLCV infectious clone (Figure 1) (kindly 

provided by Dr. A. Kheyr-Pour, CNRS, France) using specific primers (II.1.6). Restriction 

sites SalI and NotI were introduced into the forward and reverse primers for sub-cloning into 

desired vectors (II.1.10). The PCR products were directly cloned into pCR2.1-TOPO vector 

and sequences verified from the pCR2.1-TOPO-C1, pCR2.1-TOPO-V1, pCR2.1-TOPO-V2 

clones. 
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Figure 1: Schematic representation of TYLCV viral genes used for cloning and expression.  

A: Linearized TYLCV depicting the genes of interest, transcription direction and the primers used for 

amplification of viral genes. B and C: Functional domains of Rep and CP and restriction sites used for 

making deletion NRep and NCP constructs, respectively. Δ: The portion of Rep removed for making 

of pTRAkt-DRep-DsRed construct (III.6.1.1); NLS: Nuclear localization signal; NES: Nuclear export 

signal; WFT: White fly transmission domain. 

 

 

 

 

 

Figure  2: PCR amplification for cloning of C1, V1 and 

V2 genes. 

Viral C1, V1 and V2 genes were amplified using specific 

primers (II.1.6) and PCR products were separated on a 

1.2% (w/v) agarose gel.  1: C1 (1081bp), 2: V1 (777 bp) 

and 3: V2 (351bp) genes. M: λ PstI DNA size ladder. 
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III.1.2  Cloning and expression of viral C1, V1 and V2 genes as GST fusion 

To produce GST fusion proteins, the C1, V1 and V2 genes were cloned via SalI/NotI 

digestion to the C-terminus of GST gene in pGEX5x-3 (Amersham/Pharmacia) expression 

vector. New constructs were named pGEX-C1, pGEX-V1 and pGEX-V2 encoding fusion 

GST-Rep, GST-CP and GST-MP proteins, respectively. 

The one third amino terminal parts of C1 gene (133aa) carrying cleavage/linkage and DNA 

binding domains was cloned as fusion with GST. For this purpose, the C-terminal part of the 

C1 gene in pGEX-C1 was removed by NdeI/NotI digestion followed by modifying non-

compatible overhang ends using Klenow fragment DNA polymerases and subsequent blunt-

end ligation (Figure 1B). The resulting plasmid expressing the GST-NRep fusion protein was 

named pGEX-NC1. In addition, approximately half of the C-terminal component of V1 

(144aa) was removed from pGEX-V1 by ClaI/NotI digestion and new pGEX-NV1 construct 

was produced. DNA sequencing results revealed that the modified NCI and NV1 gene 

sequences were in frame with the C-terminus of GST gene.  

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3: SDS-PAGE analysis of affinity purified GST fusion protein. 

GST fusion proteins were affinity purified using glutathione sepharose matrix (II.1.3). Purified 

proteins were separated on 12% (w/v) SDS-PAA gels stained with Coomassie brilliant blue (II.2.3.2) 
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1: GST-MP (40.55kDa), 2: GST-CP (57.2kDa), 3: GST-Rep (67.75kDa), 4: GST-NCP (41.2kDa), 5: 

GST-NRep (42.6kDa), M: Mark 12 protein marker. 

 

The resulting recombinant plasmids were transformed separately into E. coli strain BL21λ-

DE3 (II.1.7). The expression and purification (II.2.2.1) of the GST-MP and GST-NRep fusion 

proteins were carried out according to the manufacturers’ instructions. When expression of 

GST-Rep, GST-CP and GST-NCP were induced with 1mM IPTG at 30°C, most part of fusion 

proteins were produced as insoluble inclusion bodies and degraded (data not shown). The 

following modifications were carried out to decrease degradation and improve solubility of 

the yield. The IPTG concentration was reduced to 0.25 mM and the incubation temperature 

was lowered to 22°C in 4 hr. The yield of purified fusion proteins varied from 0.5-1mg per 

litre culture medium for GST-Rep, GSR-NCP and GST-CP to almost 5mg/L for GST-MP and 

GST-NRep. Affinity purified fusion proteins showed high purity for GST-MP and GST-NRep 

while majority of GST-CP and GST-Rep fusion proteins are degraded. Some degradation was 

detected in purified GST-NCP in Coomassie-stained SDS-polyacrylamide gels (SDS-PAGE) 

as well (Figure 3).  

Purified proteins GST-Rep, GST-NRep, GST-MP, GST-CP and GST-NCP were used for 

panning of naive and immunized phage display libraries (II.2.6).  
 

III.1.3  Cloning and expression of viral genes as fusion proteins with MBP 

The gene of interest was introduced in frame downstream from the malE gene, which encodes 

maltose-binding protein (MBP) of E. coli, resulting in the expression of a MBP fusion 

protein. The C1, NC1, V1, NV1 and V2 genes were cloned in frame with the MBP coding 

sequence into pMAC1 (kindly provided by Adel Zakri, Institute of Molecular Biotechnology, 

RWTH-Aachen, Germany) obtained from pMAL-c2x vector (New England Biolabs). The 

cloning was performed by SalI/NotI digestion and subsequent replacing AC1 in pMAC1 with 

C1, NC1, V1, NV1 and V2 genes from pGEX-C1, pGEX-NC1, pGEX-V1, pGEX-NV1 and 

pGEX-V2, respectively. The new constructs were named pMAL-C1, pMAL-NC1, pMAL-V1, 

pMAL-NV1 and pMAL-V2. The E. coli strain BL21λ-DE3 (II.1.7) was used for expression 

of recombinant MBP fusion proteins. 

The expression and purification of MBP-NRep and MBP-MP were carried out using the 

manufacturer protocols (II.2.2.2) while for expression and purification of MBP-Rep, MBP-CP 

and MBP-NCP the following changes were made: induction time and temperature were 

optimized to decrease the level of inclusion body formation and degradation of fusion proteins 
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(data not shown). The amount of purified fusion protein ranged from ~1mg per litre culture 

medium for MBP-Rep, MBP-CP and MBP-NCP to up to 4 mg/L culture in MBP-NRep and 

MBP-MP.  

The purified fusion proteins were used for phage display panning (II.2.6) and screening the 

scFv libraries for specific binders. The MBP-Rep was also used for immunization of mice.  
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Figure 4: SDS-PAGE and immunoblot analysis of affinity purified MBP fusion proteins. 

MBP fusion proteins were expressed and affinity purified using the amylase matrix and separated on 

12% (w/v) SDS-PAA gel and stained with Coomassie blue (A and B) (II.2.3.2) or blotted onto 

HybondTM-C nitrocellulose membrane (C) (II.1.3). Immunoblot was performed using a polyclonal 

rabbit antiserum (New England Biolabs) raised against MBP as primary antibody and goat-anti rabbit 

conjugated to alkaline phosphatase as a secondary antibody followed by NBT/BCIP staining for 10 

min at RT. 

A) M: Mark 12 protein size marker; 1, 2 and 3: induced cells expressing MBP fusion MP, CP and 

Rep ; 4, 5 and 6: cell lysate ; 7, 8, and 9: pellet ; 10, 11 and 12: crude extract; 13,14 and 15: 

elution fractions 

B) M: Mark 12 protein size marker; 1, 2, 3, 4 and 5: elution fractions of MBP-MP, MBP-CP, 

MBP-NCP, MBP-Rep and MBP-NRep, respectively 

C) M: pre-stained protein size marker; 1, 2, 3, 4 and 5: elution fractions of MBP-MP (56.86kDa),  

MBP-CP (73.5kDa), MBP-NCP (57.53kDa), MBP-Rep (84.06kDa) and MBP-NRep 

(58.9kDa), respectively 

 

III.2  Immunization of mice and determination of antibody titre 

Affinity purified MBP-Rep fusion protein was used to immunize three mice. Immunization 

was repeated eight times at one week intervals, subcutaneously (II.2.4). After each boosting, 

polyclonal antisera from mouse were prepared by blood sampling from the tail vein and the 

titre determined by indirect ELISA (II.2.3.3.2).  The antibody titer refers to the highest 

dilution at which antigen-specific binding was detectable above background binding to the 

negative control. To estimate cross reactivity of antibodies against MBP fusion partner, 

ELISA tests (II.2.3.3.2) were performed with GST-Rep protein and MBP was used as a 

control.  

After the seventh boosting, the final polyclonal antibody titre was over 1:150,000. A high 

cross reactivity was observed with polyclonal antibody against MBP. 
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Figure 5: Determination of 

polyclonal antibody titers obtained 

from mouse immunized by MBP-

Rep by direct ELISA. 

The recombinant purified fusion proteins 
GST-Rep, GST-NRep, MBP and GST 
(10 μg/ml each) were coated to ELISA 
plates (II.2.3.3.2). Serial dilutions of sera 
were added to the coated plates and 
incubated for 2 hours. Bound antibodies 
were detected by addition of GAMHRP 
polyclonal antibody (1:5000). ELISA 
readings were performed at OD405nm after 
one hour incubation with ABTS substrate 
at 37°C. X indicates the antiserum 
dilutions.  

 
 
 
 
III.3   Construction of phage displayed scFv libraries 
 
III.3.1   Isolation of total RNA from mouse spleen cells 
Total RNA was isolated from spleen cells of mice immunized with MBP-Rep (II.2.4). 

Agarose gel (1.2%) analysis showed good integrity of the isolated RNA (Figure 6). The 28S 

and 18S ribosomal RNA were visible as distinct bands indicating the quality and integrity of 

the total RNA. The RNA concentration and the purity of isolated total RNA was determined 

by spectrophotometry. The yield of total RNA isolated from an individual mouse, from 108 

spleen cells, was around ~1 mg. 

 

  
 
Figure 6: Analysis of total RNA isolated from mouse spleen 
cells.  
Total RNA (1 µg) was isolated from spleen cells of immunized 
mouse (II.2.4) and separated on a 1.2% (w/v) agarose gel. The 
major ribosomal RNA species (28S and 18S rRNA) could be 
visualized by etidium bromide showing dsRNA molecules. 
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III.3.2  Synthesis of cDNA strand and amplification of variable heavy and light 

chain fragments 

Total RNA isolated from spleen cells was used for RT-PCR amplification of variable heavy 

(VH) and light (VL) chain fragments and subsequent construction of scFv library. 3 µg of total 

RNA was terated with DNase I enzyme and reverse transcribed to synthesize cDNA, using 

oligo-dT primers.  

Mouse antibody heavy and light chain variable regions were amplified by PCR using cDNA 

as template. Eight individual PCR reactions were performed to amplify heavy and light 

variable fragments. All PCR products had the expected size of 400 to 450 bp (Figure 7). No 

visible band was detected when λ light chain primers were used (data are not shown). Re-

amplification of λ variable domains failed to amplify a PCR product. 

 

 

 

 

 

 

 

 

 

 

Figure 7: Amplification of variable heavy and light chain fragments from MBP-Rep immunized 
mice using primers specific for murine. 
Nucleic acids were separated on a 1.2% (w/v) agarose gel. M= λ PstI DNA ladder. Lines 1-4 and 5-8 
show variable heavy and light fragments amplified using specific murine forward and reverse primers, 
respectively (II.1.6). 
 
 
III.3.3   Construction of phagemid-scFv libraries 
The strategy shown in Figure 8 was used to establish the scFv library expressing recombinant 

antibodies against Rep (II.2.5.3). The PCR amplified VH and VL fragments were gel purified 

and digested with SfiI/BstEII and AscI/NotI, respectively. To make heavy and light chain sub-

libraries, digested VH and VL fragments were separately cloned into pHENHI vector. The 

constructed sublibraries contain inserts with a size around 380 bp.   
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Figure 8: Schematic presentation of cloning procedure for the construction of murine scFv 
libraries. 
The VH and VL amplification mixes were digested with SfiI/BstEII or AscI/NotI, respectively and 
ligated into the linearized pHENHI vector. Then the VL was excised with AscI/NotI and sub-cloned 
into the pHENHI vector containing the corresponding VH fragment. pelB: pelB leader peptide; c-myc: 
myc epitope tag for detection. 
 
 
The construction of scFv libraries were performed by recovering of VL fragments from the VL 

sub-libraries and cloning them into the linearized pHENHI vector containing the 

corresponding VH fragments and transformed into electrocompetent E. coli XL1-Blue cells 

(II.1.7). After electroporation, cells were plated on LB medium containing 1% (w/v) glucose 

and 100 mg/ml ampicillin and incubated overnight at 37°C. All grown colonies were scraped 

off the plates in 5mL 2×YT medium with 25% (v/v) glycerol and subsequently stored at -

80°C. To check the cloning efficiency in the resulting ARep library, 17 individual colonies 

were randomly selected and tested by colony check PCR (II.2.1.2) using pHEN specific 

primers (II.1.6) (Figure 9). The amplified PCR products revealed that all selected clones 

contain scFv fragment with expected size 900-950 bp length. To verify the library diversity, 

PCR-amplified scFv fragments were subjected to BstNI digestion (II.2.5.4). RFLP (restriction 

fragment length polymorphism) analysis indicated that ~ 75% of the clones had different 
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restriction patterns (Figure 10). In some cases, sequencing results obtained form selected 

clones showed framshifts located within coding region of scFv which in turn led to failure 

expression. These frame shifts occurred in primer binding sites of VH and VL regions in result 

of incorrect binding of specific primers (data not shown).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Analysis of PCR product of randomly selected colonies from murine scFv libraries 
with specificity for Rep. 
1-17: PCR amplification of scFv-fragment of 17 independent colonies separated on a 1.2% (w/v) 
agarose gel. M: λ PstI DNA ladder 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Analysis of murine scFv fragments after BstNI digestion. 
Samples were analyzed on a 2% (w/v) agarose gel. 1-18: BstNI fingerprinting of 18 randomly selected 
colonies from ARep scFv library. M: 50 bp ladder.  
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III.4   Selection and characterisation of specific scFvs 
 
III.4.1  Solid phase panning of ARep library against recombinant Rep fusion 

protein  
 
The phage-displayed scFv library ARep was panned three times against 50 µg/ml GST-Rep 

(1st and 3rd round) and MBP-Rep (2nd round) immobilized on the surface of the high binding 

immuno-tubes (II.2.6). In each round of panning around 10 13 cfu of recombinant phages were 

used. During three rounds of panning, population of recovered phages increased from 2.5 x 

104 to 1.2 x 107.  

 
III.4.2 Solid phase panning of naive Tomlinson I and J libraries against 

recombinant fusion Rep, CP and MP proteins  
 
The Tomlinson I and Tomlinson J scFv libraries (MRC Laboratory of Molecular Biology and 

the MRC Centre for protein engineering, Cambridge, UK) comprise over 108 different scFv 

fragments. They had been cloned in phagemid (pIT2) and transformed into TG1 E. coli cells.  

The Tomlinson I and J libraries were screened for Rep, CP and MP binders using MBP-

NRep/GST-NRep, MBP-CP/GST-NCP and MBP-MP/GST-MP as antigens, respectively. 3 

rounds of panning were performed in each case and, in order to remove unspecific GST/MBP 

binders, MBP fusion proteins (II.2.2.2) were used in the first and the 3rd panning rounds 

whereas GST fusion proteins (II.2.2.1) were used in the 2nd  panning round.  

 

Table III-1: Enrichment of scFv fragments specific Rep through multiple rounds panning of phage 
display libraries.  
  

scFv phage 

library 

Antigen Panning 

round 

Input phage Output  

phage 

GSR-Rep 1 1013 2.5x104 

MBP-Rep 2 1013 3.1x106 

 

ARep 

GST-Rep 3 1013 1.2x107 

MBP-NRep 1 1013 3.2x103 

GST-NRep 2 1013 4.1x104 

 

Tomlinson I 

GST-NRep 3 1013 7.8x105 
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III.4.3   Screening and characterisation of selected scFv-fragments  
After the third panning round of Tomlinson I, Tomlinson J and ARep phage display libraries 

with different fusion proteins, 96 colonies were randomly selected from each plate and grown 

in microtitre plates. Expression of soluble scFv-fragments was induced by 1 mM IPTG. The 

specificity of scFv-fragments was tested in direct ELISA assays against bacterially expressed 

GST fusion proteins (GST-NRep, GST-Rep, GST-MP and GST-CP).  
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Figure 11: Screening of selected clones from the scFv libraries Tomlinson I (A) and ARep (B) in 

soluble ELISA. 

Binding activity of 60 randomly selected soluble murine scFv binding to Rep protein after the third 

round of panning was revealed by direct ELISA (II.2.3.3.2). Around 50 µg/ml of MBP-Rep was 

coated on microtitre plates. Bacterial supernatant was added in 2% MPBS to a final volume of 100µl. 

The specific scFv were detected by adding of 1:5000 diluted 9E10 monoclonal antibody, and goat 

anti-mouse polyclonal antibody conjugated to horse radish peroxidase as secondary antibody (1:5000). 

ELISA readings (OD405nm) were performed after 30 min incubation with ABTS substrate at 37°C. A 

and B: soluble scFvs selected from Tomlinson I and ARep libraries were used, respectively. 

 

To overcome the differences based on expression in micro-titre plates, 12 clones with distinct 

absorbance profiles were subjected to mini scale periplasmic expression. Their reactivity to 

the recombinant MBP-Rep, MBP-NRep, GST-NRep and MBP was evaluated by direct 

ELISA.  

Approximately 60% of the positive clones selected from scFv library ARep displayed activity 

against Rep protein (Figure 11). These specific scFv exclusively reacted to GST-Rep and 

MBP-Rep fusion proteins (Figure 16) but not to GST-NRep and MBP-NRep. This shows that 

corresponding scFvs have failed to bind to the amino-terminal part of Rep and no cross 

reactivity to MBP and GST was observed. 

To verify the integrity and differentiate between scFv-fragments, DNA of 10 clones was 

PCR-amplified and purified. All clones consisted similar DNA sequence producing scFv 

around 29.9 kDa. 

In the case of the clones selected by panning the Tomlinson I library, around 70% of the 

analyzed clones showed a specific binding to both Rep and NRep fusion proteins. No MBP or 

GST binders were found which indicates the efficiency of using two different antigen fusions 

for excluding all the binders against the fusion partners. To verify the presence of full size 

scFv-fragments, the DNA inserts of 10 clones that showed a high reactivity to GST-Rep were 

PCR-amplified followed by BstNI fingerprinting. All clones analyzed showed an insert of 

about 1 kb and BstNI digestion indicated the presence of only one banding pattern (Figure 

12). In addition, sequencing results verified that these clones contained identical scFv 

sequences. 
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Figure 12: Finger printing analysis of Rep binder clones selected from Tomlinson I phage 

display library.  

The scFvs gene was amplified by specific pHEN primers (II.1.6) and subjected to BstNI digestion. 
Samples were analyzed on a 2% (w/v) agarose gel. 1-10: RFLP patterns of 10 selected clones reacting 
to Rep. M: DNA ladder.  
 

Panning of Tomlinson I library through immobilized recombinant MP led to select some 

positive clones detected in direct ELISA. But further analysis revealed that they are 

specifying against MBP fusion partner. No specific scFv was selected from panning of 

Tomlinson libraries I and J using immobilized recombinant fusion CP.  

 
III.4.4   Sequence analysis of scFv fragments specific to Rep  
 
The DNA of different clones selected from the Tomlinson I library showing high activity 

against Rep were sequenced by pHEN specific primers. The sequencing results showed that 

all clones contained an identical sequence and named scFv-ScRep1.  

In the same way, ten specific clones reacting against Rep selected from the ARep phage 

display library were sequenced. Sequencing results revealed they, too, contained an identical 

sequence that named scFv-ScRep2. 

M 1 2 3 4 5 6 7 8 9 10

514 bp

448 bp
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Both scFv-ScRep1 and scFv-ScRep2 had open reading frames encoding proteins of 28.1 kDa, 

and 29.9 kDa, respectively. The sequence alignment of the two scFv-fragments with the 

consensus sequence of IMGT databases (http://imgt.cines.fr/IMGT_vquest/) indicated that 

variable heavy and light chain fragments were members of different groups. Notably 

divergences were observed from closely related germline V-gene segments both in the 

nucleotide and amino acid level. Table III-2 summarizes the sequencing results of the two 

selected scFvs. 

Amino acid comparison of the selected scFv showed no major similarity in the framework 

and CDR regions of both heavy and light chain fragments. The deduced amino acid alignment 

of two scFv is presented in Figure 13. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13: Alignment of the deduced amino acid sequences of selected murine scFv fragments 
interacting with Rep (ScRep1 and ScRep2). 
Complementary determining regions (CDRs) were determined according to IMGT databases. - : no 
amino acid at this position. The complementary determining regions (CDR) and polylinker have been 
indicated. 
 
 
Table III-2: Summary of nucleotide length and deduced molecular weight of derived scFv with 
specificity for Rep 
 

Designation of 
scFv 

Nucleotide length (bp) Deduced MW (kDa) 

scFv-ScRep1 726  25.5 kDa 

scFv-ScRep2 744 27.09 kDa 

CDRH1 CDRH2

CDRH3

Linker CDRL1

CDRL2 CDRL3

CDRH1 CDRH2

CDRH3

Linker CDRL1

CDRL2 CDRL3
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Table III-3: V-gene family of two scFvs specific for Rep. The alignment of the selected scFvs to the 
germline gene sequences most closely related to theirs performed using the IMGT database 
(http://imgt.cines.fr./imgt_vquest/).  
 

Mouse/Human 
IgG Family 

Closest germline gene 
sequences 

Identity 
(Nucleotides) 

scFv 

VH VL VH VL VH VL 
scFv- ScRep1 IGHV3 

 
IGKV1 
 

M99660 X59315 94.44%  
(272/288 nt) 
 

96.77% 
(270/279 nt) 
 

scFv-ScRep2 IGHV9 
 

IGKV6 
 

AJ851868 Y15981 96.87%   
(279/288 nt)  
 

92.83% 
(259/279 nt) 
 

 
 
 
III.4.5   Large scale expression and IMAC purification of soluble scFvs from 

phage libraries 

The scFv-ScRep1 gene was sub-cloned into pHENHI vector via NcoI/NotI digestion. 

Expression of scFv-ScRep1 and scFv-ScRep2 was performed in E. coli strain HB2151. The 

His6 tagged scFvs were purified by IMAC as described in material and methods (II.2.2.3.2).  

The scFvs were diluted from Ni-agarose matrices with buffer containing 200 mM Imidazole. 

To remove the Imidazole from the purified scFvs, they were dialysed with cold PBS solution. 

During the dialysis a lot of white precipitate was observed in the tube, which was removed by 

centrifugation. The SDS-PAGE analysis indicated that the precipitate was scFv (data are not 

shown) and caused to decrease total scFv yield. To reduce precipitate formation, dialysis was 

performed using PBS buffer containing 15 mM Imidazole. This treatment led to reducing of 

white precipitate formation and, as shown in Figure 15, increased total yield of scFv.  

SDS-PAGE analysis of the affinity purified scFv-ScRep1 and scFv-Rep2 revealed the 

presence of a band of approximately 30 kDa for scFv fragments (Figure 14).   
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Figure 14: SDS-PAGE analysis of affinity 
purified scFvs.  

The scFv-ScRep1 and scFv-ScRep2 were expressed 
in the E. coli strain HB2151 (II.1.7). The expressed 
scFvs were purified by IMAC (II.2.2.3.2). 1: scFv-
ScRep2 and 2: scFv-ScRep1. M: Protein marker.   
 
 
 
 
 
 
 
 
 

 
 
 
 

 

 

 

 
 
Figure 15: The effect of buffer containing Imidazole on 
total scFv yield through dialysis. The purified scFv-
ScRep1 protein was dialyzed three times either by PBS 
buffer (1) or PBS buffer containing 15 mM Imidazole (2). 
After dialysis white precipitate was removed by 
centrifugation and 20 µl of supernatant subjected to SDS-
PAGE. Dialyzed proteins were separated on 12% (w/v) 
SDS-PAGE (II.2.3.2) and stained with Coomassie brilliant 
blue. M: Protein marker.   
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III.4.6  Comparative analysis of the binding activities of scFv-ScRep1 and scFv-
ScRep2 to fusion Rep protein 

Direct ELISA (II.2.3.3.2) using bacterially expressed scFvs revealed high specificity of both 
scFv-ScRep1 and scFv-ScRep2 against full Rep fusion proteins, while only scFv-ScRep1 
reacts against fusion NRep proteins. WB analysis (II.2.3.3.1.1) shows that scFv-ScRep2 binds 
to both entire and degraded MBP-Rep bands but not to MBP-NRep, indicating it interacts 
with the middle segment of Rep. 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 16 : Direct ELISA of the scFv-ScRep1 and scFv-ScRep2 reactivity with different 
antigens. 

About 100μl of 10 μg/ml of GST-NRep, GST-Rep, MBP-NRep, MBP-Rep, GST and MBP fusion 
proteins were coated on microtiter plates. 100μl of the o/n induced bacterial supernatant was added 
and bound scFvs were detected by addition of 9E10 monoclonal antibody and GAM polyclonal 
antibody conjugated to horse radish peroxidase as secondary antibody. ELISA readings (OD405nm) 
were performed after 30 min incubation with ABTS substrate at 37°C.  
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Figure 17: WB analysis of bacterially expressed scFv-ScRep1 against different Rep fusion 
proteins. 
Purified fusion Rep proteins were separated on a 12% (w/v) SDS-PAGE gel and Coomassie-stained 
(A). In WB analysis (B), proteins were blotted onto a nitrocellulose membrane and bacterially 
expressed scFv-ScRep1 was used for detection. The banding was revealed by 9E10 monoclonal 
antibody and GAMAP antibody conjugated to alkaline phosphatase followed by staining with 
NBT/BCIP. 1: GST-NRep; 2: GST-Rep; 3: MBP-NRep; 4: MBP-Rep; 5: GST-MP; 6: MBP-MP; M: 
Prestained protein marker 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18: WB analysis of bacterially expressed scFv-ScRep2 against recombinant fusion Rep 
proteins. 
Purified fusion Rep proteins were separated on a 12% (w/v) SDS-PAGE gel and Coomassie-stained 
(A). In WB analysis (B), proteins were blotted onto a nitrocellulose membrane and bacterially 
expressed scFv-ScRep2 was used for detection. The banding was revealed by 9E10 monoclonal 
antibody and GAMAP antibody conjugated to alkaline phosphatase followed by staining with 
NBT/BCIP. 1: MBP-Rep; 2: MBP-NRep; 3: GST-NRep; 4: MBP-MP; M: Molecular weight protein 
marker 
 
 

III.5  Cloning of scFvs against TYLCV virion from specific hybridoma cell lines  

III.5.1  Purification and analysis of mouse HTYLCV1, HTYLCV2, HTYLCV3 

and HTYLCV4 monoclonal antibodies 

Four different hybridoma cell lines (kindly provided by Dr. S. Winter from DSMZ, 

Braunschweig, Germany) produced monoclonal antibodies HTYLCV1, HTYLCV2, 

HTYLCV3 and HTYLCV4 which could bind to TYLCV virion. These cells were propagated 

in tissue culture flasks and secreted MAbs from supernatants were collected and used for 

purification. The hybridoma culture supernatants were centrifuged to remove the cells and cell 
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debris before applying them to the equilibrated Protein A matrix (II.1.3). Approximately 4 mg 

each purified antibody was obtained. The SDS-PAGE analysis of the purified mouse MAbs 

showed two major bands of approximately 53 and 26 kDa corresponding to the mouse heavy 

and light chains, respectively. As shown in Figure 19 line 1, the heavy chain of MAb-

HTYLCV1 is clearly lighter than other heavy chains.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: SDS-PAGE analysis of the affinity purified mouse MAb HAV. The mouse MAb 

HTYLCV1 (1), HTYLCV2 (2), HTYLCV3 (3) and HTYLCV4 (4) purified from the hybridoma 

culture supernatants (II.2.7.1) were separated on a 12% (w/v) SDS-PAGE gel and stained with 

Coomassie brilliant blue (II.2.3.2). M: Molecular weight marker. 
 
ELISA (II.2.3.3.2) and immunoblot (II.2.3.3.1) analysis with the purified antibodies 

demonstrated high specificity of the HTYLCV1 antibody to recombinant GST-CP and MBP-

CP but failed to react with GST-NCP and MBP-NCP carrying amino-terminal portion of CP. 

HTYLCV1 recognized entire CP in WB assay indicating that it probably binds to a linear 

epitope (Figure 20).  

Immunoassays analysis showed while HTYLCV2, HTYLCV3 and HTYLCV4 monoclonal 

antibodies did not bind to recombinant CP, they are interacting with the infected leaf extract 

only (data are not shown), demonstrating that these MAbs are binding to either neotopes 

presented in entire virions or discontinuous epitopes in native CP. 
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Figure 20: Mouse monoclonal HTYLCV1, HTYLCV2, HTYLCV3 and HTYLCV4 binding 
activity tests against recombinant CP in ELISA and WB. 
A) Indirect ELISA to show reactivity of MAbs HTYLCV1, HTYLCV2, HTYLCV3 and HTYLCV4 to 
recombinant CP proteins. 100 µl of 5µg/ml purified (II.2.7.1) MAbs were applied on a MBP-CP, 
MBP-NCP, GST-CP, GST-NCP, MBP and GST coated ELISA plate (II.2.3.3.2). Bound MAbs were 
revealed by monoclonal GAM antibody conjugated to horse raddish peroxidase. ELISA readings 
(OD405 nm) were performed after 30 min incubation with ABTS substrate at 37°C. B and C) WB assay 
of MAb HTYLCV1 reactivity with recombinant CP. Different recombinant CP proteins were loaded 
into SDS-PAGE gel (B) and transferred onto nitrocellulose membrane (C) as described in 
(II.2.3.3.1.1). Immunodetection was carried out with alkaline phosphatase conjugated GAM antibody. 
Detection was performed with NBT/BCIP for 10 min at RT. M: pre-stained protein marker; 1: GST-
CP; 2: GST-NCP; 3: MBP-CP and 4: MBP-NCP. 
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III.5.2  Amplification and cloning of the heavy and light variable domains of 

HTYLCV1, HTYLCV2, HTYLCV3 and HTYLCV4 MAbs 

Indirect ELISA was used to determine the constant domain of heavy and light chains of 

HTYLCV1, HTYLCV2, HTYLCV3 and HTYLCV4 MAbs (Figure 21). All constant regions 

of heavy and light chains belonged to IgG2b and κ groups. Total RNA from hybridoma cell 

lines (II.2.7.2) were isolated (Figure 22) and reverse transcribed utilizing COH 32 

(VHIgG2a/2b) and MuPD31 (κVL) primers with SuperScript™ II Reverse Transcriptase (RT) 

(Invitrogen). The corresponding VH and VL domains of the mouse MAbs were individually 

amplified by specific murine forward and reverse primers (II.1.6) from cDNAs templates and 

followed by digestion and cloning into pHENHI vector using same strategy utilized for the 

construction of the ARep phage library (II.2.5.3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21: Indirect ELISA analysis to detect heavy and light constant regions of murine 
HTYLCV1, HTYLCV2, HTYLCV3 and HTYLCV4 MAbs.  
Binding activity of HTYLCV1, HTYLCV2, HTYLCV3 and HTYLCV4 murine monoclonal 

antibodies to specific antibodies recognizing constant region of heavy chain (IgG1, IgG2a, IgG2b, 

IgG3, IgM and IgA) or light chain (kappa and lambda) was studied. Detection was carried out by 

adding GAM conjugated to alkaline phosphatise enzyme. ELISA readings (OD405nm) were performed 

after 30 min incubation with pNPP substrate at 37°C. 
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Figure 22: Analysis of total RNA 
extracted from mouse hybridoma 
cells.  
Total RNAs were isolated from 
hybridoma cell lines secreting 
monoclonal HTYLCV1 (1), HTYLCV2 
(2), HTYLCV3 (3) and HTYLCV4 (4) 
antibodies (II.2.5.1) and separated on a 
1.2% (w/v) agarose gel. The major 
ribosomal RNA species (28S and 18S 
rRNA) are indicated. 
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Figure 23:  Amplification of variable heavy and light chain fragments from hybridoma cell lines. 
Nucleic acids were separated on a 1.2% (w/v) agarose gel. A and B: amplification of heavy and light 
chain fragments from synthesized cDNA using specific primers (II.1.6), respectively. Lines 1-4, 5-8, 
9-12 and 13-16 are showing amplified variable fragments corresponding to HTYLCV1, HTYLCV2, 
HTYLCV3 and HTYLCV4 antibodies, respectively. M: λ PstI DNA ladder.  
 

 

III.5.3   Sequence analysis of VH and VL raised from mouse MAbs  

Ten clones of each pHENHI-VH and/or pHENHI-VL sub-library made from murine MAbs 

were picked at random and sequenced. More than 80% of clones contained full size heavy and 

light chain variable domains. All VH and VL sequences made from same hybridoma lines were 

compared and belonged to the corresponding group. Alignment results revealed that all 

differences took place in primer binding sites lying on frame works 1 and 4 regions. Frame 

work regions have crucial role in correct folding of scFv fragments, and unsuitable amino 

acids inserted by primers may led to failure or loss in binding activity of scFv (Worn and 

Pluckthun, 2001). Accordingly, clones with the highest similarity to corresponding group 

(Table III-5) were selected and full length scFvs were constructed by inserting of VL 

fragments into concerning pHENHI-VH via AscI/NotI digestion. 

The alignment results of nucleotide sequence of VH-HTYLCV1 with the IMGT 

(http://imgt.cines.fr/IMGT_vquest/) and KABAT databases and other similar VH fragments 

using BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) revealed a 39 bp deletion after position 

281 located in framework 3 and CDR3 regions downstream the original ATG start codon in 

NcoI site. This was in consensus with SDS-PAGE analysis of HTYLCV1 (Figure 19) 

indicating a lighter heavy chain of HTYLCV1 in comparison to the others. These results 

confirmed that the amino acid sequences after deletion site were no longer similar to 

corresponding group and following on the same frame led to a stop codon at position 366 in 

polylinker region.  These results indicate a possible frameshift within VH-TYLCV1. As 

shown in Figure 25 two possibilities were considered for the frameshift and the reading frame 

was restored by deletion of one A at position 258 (at the end of frame work 3) and/or position 

296 (frame work 4). 
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Figure 24: Amino acid sequences obtained form murine scFv fragments interacting to TYLCV 
(scFv-HScCP1-1, scFv-HScCP1-2, scFv-HScCP2, scFv-HScCP3 and scFv-HScCP4).  
Complementary determining regions (CDRs) were determined according to IMGT databases. - : no 
amino acid at this position. The complementary determining regions (CDR) and polylinker have been 
indicated. 
 
 
 
Table III-4: Summary of nucleotide length and deduced molecular weight of derived scFv 
with specificity for TYLCV virion 
 
 

Designation of scFv Nucleotide length (bp) Deduced MW (kDa) 

scFv-HScCP1-1 714 bp 25.49 kDa 

scFv-HScCP2 744 bp 26.42 kDa 

scFv-HScCP3 744 bp 26.84 kDa 

scFv-HScCP4 744 bp 26.37 kDa 

 
 
 
 
 
 
 
 
 
 
 
 

CDRH1 CDRH2 

CDRH3 

Linker CDRL1 

CDRL2 
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Table III-5: Comparison of amino acids in variable heavy and light chain of scFv-HScCP1-1, scFv-
HScCP1-2, scFv-HScCP2, scFv-HScCP3 scFv-HScCP4 fragments with IMGT databases. 
 
 

Mouse IgG Family Closest germline gene 
sequences 

Identity 
(Nucleotides) 

scFv 

VH VL VH VL VH VL 
scFv-HScCP1-1 IGHV5 

 
IGKV1 
 

AJ851868 Z72382 86.11%  
(248/288 nt) 
 

97.95%  
(288/294 nt) 
 

scFv-HScCP2 IGHV5 
 

IGKV4 
 

AF290961 AJ231234 95.83%  
(276/288 nt) 
 

96.01% 
(265/276 nt) 
 

scFv-HScCP3 IGHV1 
 

IGKV10 
 

J00488 M15520 95.13%  
(274/288 nt) 
 

96.77%  
(270/279 nt) 
 

cFv-HScCP4 IGHV5 
 

IGKV4 AJ851868 AJ231234 95.83%  
(276/288 nt) 
 

98.55%  
(272/276 nt) 
 

 
 

III.5.4   Restoring of reading frames in VH-HTYLCV1 sequence 

 

III.5.4.1  Open reading frame correction in frame work 3 of VH-HTYLCV1  

Restoring of reading frame in the end of framework 3 within VH-HTYLCV1 sequence was 

accomplished through one A deletion at position 258 (Figure 25). For this aim, 

QuickChange® II site-directed mutagenesis kit (Stratagene) and new primers (II.1.6) were 

used according to the manufacturer `s protocol (II.1.4).  

The correct deletion of the “A” nucleotide was confirmed by sequencing. The modified VH-

HTYLCV1 was cloned into pHEN-VL-HTYLCV1 via NcoI/BstEII and new scFv was named 

scFv-HScCP1-1. 

 

III.5.4.2  Open reading frame correction in frame work 4 of VH-HTYLCV1   

As an alternative strategy, the frame of VH-HTYLCV1 sequence was modified through one A 

deletion at position 296 within primer binding site at framework 4. For this purpose, entire VH 

fragment was amplified again using new reverse primer (II.1.6) containing BstEII (Figure 25). 

The amplified fragment directly cloned into pMBL cloning vector and a clone with expected 

sequence was selected. The modified VH fragment was recovered by NcoI/BstEII digestion 

and introduced upstream the polylinker into digested pHEN-VL-HTYLCV1. The new 

construct was named scFv-HScCP1-2. 
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Figure 25: Modifying of reading frame in VH part of scFv-HScCP1. 

Aligning of original sequence of scFv-HScCP1 to modified scFv-HScCP1-1 (A) and scFv-HScCP1-2 

(B). The frame in the original sequence was restored by deletion of nucleotide ´A` at position 258 (A) 

or 296 (B) downstream the original ATG stop codon located in the NcoI site. 

 

A 

B 
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III.5.4.3   Expression of scFv-HScCP1-1, scFv-HScCP1-2, scFv-HScCP2, scFv- 

HScCP3 and scFv-HScCP4 in bacterial culture 

One colony harboring full size scFv from each pHEN-HScCP1-1, pHEN-HScCP1-2, pHEN-

HScCP2, pHEN-HScCP3 and pHEN-HScCP4 clones were selected and a small-scale 

expression in E. coli strain HB2151 was carried out as described earlier (II.2.2.3.1). WB 

experiments showed expression of full size scFv on nitrocellulose membrane (II.1.3) (Figure 

26). The WB result revealed that scFv-HScCP1-1 and scFv-HScCP1-2 are clearly smaller 

than scFv-HScCP2 and scFv-HScCP3 and scFv-HScCP4. ELISA results showed that scFv-

HScCP3 could detect ACMV virus in infected leaves. The scFv-HScCP2, scFv-HScCP3 and 

scFv-HScCP4, like corresponding MAbs did not interact with recombinant CP fusion 

proteins. WB experiments showed low specificity of scFv-HScCP1-1 against MBP-CP and 

GST-CP (data are not shown) while scFv-HScCP1-2 failed to bind against recombinant CP.  

 
 
 
 
 
 
 
 
 
 
 
  
 

 

 

 

 

 

Figure 26: Immuno-blot analysis of bacterially expressed scFv-HScCP1-1, scFv-HScCP1-2, 
scFv-HScCP2, scFv-HScCP3 and scFv-HScCP4.  

Periplasmicly expressed scFvs were separated on a 12% (w/v) SDS-PAGE gel and blotted onto 
nitrocellulose membrane. The blotted scFvs were revealed by 9E10 monoclonal antibody and GAMAP 
antibody conjugated to alkaline phosphatase followed by staining with NBT/BCIP. 1: scFv-HScCP1-
1; 2: scFv-HScCP1-2; 3: scFv-HScCP2; 4: scFv-HScCP3; 5: scFv-HScCP4; M: Molecular weight 
protein marker. 
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III.6   Expression and characterization of recombinant proteins in transiently 

transformed plants 

 

III.6.1   Cloning of C1 and scFvs genes in pTRAkt plant expression vectors 
 
III.6.1.1  Cloning of C1 gene as fusion with DsRed protein 

DsRed is a red-emitting fluorescent protein isolated from reef corals (Discosoma sp.) 

possessing an excitation peak wavelength (553 nm) just above the excitation peak of 

chlorophyll (Matz et al., 1999; Matz et al., 1999). It emits at a wavelength (600-620nm) 

clearly distinguished from that of GFP (500-530nm). The different emission colour makes it 

valuable for in vivo multi labelling experiments, allowing co-monitoring and co-expression of 

different fusion proteins (Rodrigues et al., 2001). 

For cloning of C1 gene into pTRAkt-DsRed vector, C1 was amplified using specific primers 

(II.1.6) harbouring AflIII restriction enzyme site to introduce at the 5‘ and 3‘ ends. PCR 

product was then directly cloned into pMBL cloning vector (II.1.10). The correct clone was 

selected by sequencing and C1 coding gene was recovered by AflIII digestion and introduced 

upstream the DsRed coding region into NcoI digested pTRAkt-DsRed. The new construct was 

called pTRAkt-C1-DsRed (Figure 27).  

The constructs pTRAkt-DsRed and pTRAkt-C1-DsRed were used for transformation into 

Agrobacterium by electroporation (II.2.1.13.6). Ten independent recombinant colonies from 

each transformation were screened for the presence of insert by colony check PCR (II.2.1.2) 

using pSS specific primers (II.1.6) and no positive clone containing pTRAkt-C1-DsRed 

vector was identified. Transformation of pTRAkt-C1-DsRed construct into Agrobacterium 

was repeated several times, but no transformed clone was recovered. This may indicate toxic 

activities of Rep-DsRed fusion protein in agrobacteria cells. To overcome this problem, one 

deletion (98 aa) was carried out within the part of Rep which is responsible for ATPase 

activity (Figure 1B). For this aim, 294 nucleotides placed between 629-926 positions 

(designed as Δ region in Figure 1B) were removed by EcoNI/SfiI digestion. To restore the 

correct frame after digestion site, the restricted pTRAkt-C1-DsRed was treated with Klenow 

fragment DNA polymerase following blunt end ligation by T4 DNA ligase. The new 

construct was named pTRAkt-DC1-DsRed and transformed successfully into Agrobacterium 

by electeroporation (II.2.1.13.6). Single colony of recombinant Agrobacterium cultures 

harbouring the expected construct was used for transient expression (II.2.8.3.1).  
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Figure 27: Schematic presentation of the constructs used for DRep-DsRed (A) and DsRed (B) 

transient expression in plant. 

 p35SS: 35S promoter from Cauliflower Mosaic Virus (CaMV) with duplicated enhancer, UTR: 5` un-

translated region of Tobacco etch virus, pA35: polyadenylation signal. The cloning sites are depicted. 

 

 

III.6.1.2   Cloning of scFv genes into pTRAkt plant expression vector 

 

III.6.1.2.1   Cloning of scFvs genes into pTRAkt plant expression vector targeted to 

cytosol and nucleus  

For scFv expression and localization within the cytosol, scFv-RWAV (generated and 

characterized by A. Zakri, Institute of Molecular Biotechnology, RWTH-Aachen) was 

amplified by PCR from pHEN-scFv-RWAV plasmid using specific primers containing c-myc, 

His6 tag and NcoI/XbaI restriction sites (II.1.6). The amplified scFv-RWAV was initially 

introduced into pMBL cloning vector and followed by cloning into pTRAkt vector via 

NcoI/XbaI digestion and the new construct was named pTRAkt-RWAV (Figure 27). Since no 

leader peptide or tag has been added before or after scFv gene, this construct will be used for 

cytosolic expression of scFv fragment in plant cells. The successful cloning of pTRAkt-

RWAV was verified by test digestion and sequencing. Next, individual scFv-ScRep1, scFv-

ScRep2, scFv-HTYLCV2, scFv-HTYLCV3 and scFv-HTYLCV4 constructs were exchanged 

with scFv-RWAV in pTRAkt-RWAV via NcoI/NotI digestion. The resulting plasmids were 
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designated pTRAkt-ScRep1, pTRAkt-ScRep2, pTRAkt-HScCP2, pTRAkt-HScCP3 and 

pTRAkt-HScCP4. In the case of scFv-HScCP3, due to an additional NcoI sites located in the 

middle part of corresponding VL sequence, a ‘‘partial digestion’’ strategy was used. 

Additionally, two scFvs (scFv-ScRep1 and scFv-RWAV) were targeted to the nucleus by 

introducing the “SV40 T antigen” nuclear localization signal (NLS) at the N-terminus of the 

scFvs. For this purpose, the coding region of scFv-RWAV gene was amplified and cloned 

into pTRAkt in same way as for obtaining cytosolic expression except for using the forward 

primer containing NLS coding sequence (II.1.6). The resulting plasmids are named pTRAkt-

NLS-ScRep1 and pTRAkt- NLS-RWAV. 

All new constructs were transformed into Agrobacterium by electroporation (II.2.1.13.6) Ten 

independent recombinant colonies from each transformation were screened for the presence of 

insert by colony PCR (II.2.1.2) using pSS specific primers (II.1.6). 

 

III.6.1.2.2 Cloning of scFv genes in pTRAkt plant expression vector as N-terminal 

fusions with GFP and targeted to cytosol and nucleus  

 
The pTRAkt-GFP is a plant expression vector derived from pTRAkt (II.1.10) by insertion of 

the green fluorescent protein (GFP) coding sequence. For scFvs expression and localization in 

the cytosol and nucleus as N-terminal fusion with GFP, scFv-ScRep1 and scFv-ScRep2 were 

cloned into pTRAkt-scFv-RW-AV-GFP and pT-NLS-scFv-SCR-AC-GFP (kindly provided 

by A. Zakri, Institute of Molecular Biotechnology, RWTH-Aachen) via NcoI/NotI digestion 

and subsequent ligation and transformation into DH5α strain E. coli. The scFv fragments are 

located upstream the GFP coding sequence. The resulting plasmids, pTRAkt-ScRep1-GFP, 

pTRAkt-ScRep2-GFP and pTRAkt-NLS-ScRep1-GFP, were transformed into Agrobacterium 

by electroporation (II.2.1.13.6). Ten independent recombinant colonies from each 

transformation were screened for the presence of insert by colony check PCR (II.2.1.2) using 

pSS specific primers (II.1.6). 
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Figure 28: Schematic presentation of the constructs used for scFvs expression in plant. 

The vector pTRAkt was used for expression of scFv in tobacco leaves. A: the constructs used for 

expression in the cytosol, B: the constructs used for expression in the nucleus. C: the constructs used 

for expression in the cytosol as a fusion to GFP protein. D: the constructs used for expression in the 

nucleus as a fusion to GFP protein.  p35SS: 35S promoter from Cauliflower Mosaic Virus (CaMV) 

with duplicated enhancer; UTR: 5` untranslated region of Tobacco etch virus; pA35: polyadenylation 

signal; NLS: SV40 T antigen nuclear localization signal; c-myc: myc epitope tag for detection; His6: 

six repeated histidin for detection and purification of recombinant protein . The cloning sites are 

shown. 
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III.6.2   Transient transformation of tobacco plants 

 

III.6.2.1   Transient expression of Rep and scFvs in plant cells 

To study scFvs and Rep expression in tobacco plants, scFv-ScRep1, scFv-ScRep2, scFv-

RWAV, scFv-HScCP2, scFv-HScCP3, scFv-HScCP4, scFv-NLS-ScRep1, scFv-Cyt-ScRep1-

GFP, scFv-Cyt-ScRep2-GFP, scFv-NLS-ScRep1-GFP and DRep-DsRed constructs were 

transiently transformed either by injection of the induced recombinant Agrobacterium to the 

underside side of a N. tabacum leaf using a syringe without a needle and/or by vacuum 

infiltration (II.2.8.3.1).  

Infiltration of N. tabacum leaves with DsRed-DRep caused distinct necrotic local lesion 

within 3 days (Figure 29).  

An Olympus BX41 fluorescent microscope was used to monitor the intracellular localization 

of GFP and DsRed fusion constructs. As shown in Figure 30-B, DRep-DsRed fusion protein 

is predominantly localized within the nucleus and some fluorescence is observed in the 

cytosol compartment. In contrast, DsRed fluorescence in its native form was not particularly 

restricted to the nuclei of cells, but occurred throughout the cytoplasm (Figure 30-A).  

The GFP fusion proteins, including scFv-Cyt-ScRep1-GFP, scFv-NLS-ScRep1-GFP and 

scFv-Cyt-ScRep2-GFP, are accumulated in both the cytoplasm and nucleus (Figure 31). 

Individual GFP and DsRed proteins expressed from pTRAkt-GFP and pTRAkt-DsRed 

plasmids are visible in both the cytoplasm and nucleoplasm areas. 

 
 

Figure 29: Effect of DRep-DsRed protein on N. tabacum transiently expressing fusion protein. 

Tobacco leaves agro-infiltrated with plasmid harbouring DRep-DsRed (A) and DsRed (B) proteins 

(III.6.1.1) by injection onto fully expanded leaves. After 4 days, necrotic lesions appeared on 

infiltrated leaves with pTRAkt-DRep-DsRed plasmid.  
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Figure  30: Transient expression of DRep-DsRed and DsRed in N. tabacum leaves. 

Tobacco leaves were infiltrated (II.2.8.3.1) with recombinant agrobacteria harbouring the constructs 
pTRAkt-DsRed and pTRAkt-DRep-DsRed. After 4 days incubation, DsRed (A) and DRep-DsRed (B) 
expression and localization were analyzed using fluorescent microscope. DsRed was excited at 568 
nm and emissions collected at 600 to 620 nm. 
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Figure 31: scFvs expression as fusion with GFP in tobacco leaves. 

N. tabacum leaves were transiently transformed by agroinfiltration (II.2.8.3.1) with plasmid carrying 
GFP alone (A), scFv-Cyt-ScRep1-GFP (B), scFv-NLS-ScRep1-GFP (C) and scFv-Cyt-ScRep2-GFP 
(D). GFP fusion expression and localization was analyzed using fluorescent microscope. GFP was 
excited at 488 nm and emissions collected at 500 to 515 nm.  

 

The western blot analyses of the total soluble protein extracted from infiltrated leaves showed 

a distinct band of approximately 30 kDa for scFv-ScRep1, scFv-ScRep2, scFv-NLS-ScRep1 

(Figure 32). Expression levels of cytosolic scFv-ScRep1 construct was higher than scFv-

ScRep2 and scFv-NLS-ScRep1. Other scFv fragments constructs including scFv-RWAV, 

scFv-HScCP2, scFv-HScCP3, scFv-HScCP4, scFv-Cyt-ScRep1-GFP, scFv-Cyt-ScRep2-

GFP, scFv-Cyt-RWAV-GFP, scFv-NLS-ScRep1-GFP could not be detected by immunoblot 

analysis (data not shown). 

 

Figure 32: Immunoblot detection of transiently 

plant expressed scFv. 

Approximately 15µl of crude extract of tobacco 
plants transiently expressing scFvs was used for 
separation on 12% (w/v) SDS-PAGE gel and 
blotted onto nitrocellulose membrane. The blotted 
scFvs were revealed by 9E10 monoclonal antibody 
and GAM antibody conjugated to alkaline 
phosphatase followed by staining with NBT/BCIP. 
1: scFv-ScRep1; 2: scFv-NLS-ScRep1; 3: scFv-
ScRep2; M: Pre-stained molecular weight protein 
marker. 
 

 

 

 

 

III.6.2.2  Reactivity of plant extracted scFvs against recombinant proteins 

To determine the activity of plant expressed scFv fragments, crude extracts of tobacco plants 

transiently expressing scFv-ScRep1, scFv-ScRep2 and scFv-NLS-ScRep1, scFv-Cyt-ScRep1-

GFP and scFv-Cyt-ScRep2-GFP were extracted (II.2.8.5) and subjected for detection of 

recombinant Rep proteins in ELISA and western blot analysis. These experiments revealed 

that scFv-ScRep1, scFv-ScRep2 and scFv-NLS-ScRep1 are presenting high binding activity 

to recombinant Rep proteins indicating correct folding of these (Figures 33, 34 and 35).  
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Figure 33: WB analysis of bacterially expressed scFv-ScRep1 against fusion Rep 

proteins. 
Purified fusion Rep proteins were separated on a 12% (w/v) SDS-PAGE gel and blotted onto 
nitrocellulose membrane. Crude extract of plant transiently expressed scFv-ScRep1 was used for 
detection. The interactions were revealed by 9E10 monoclonal antibody and GAM antibody 
conjugated to alkaline phosphatase followed by staining with NBT/BCIP. 1: GST-NRep; 2: MBP-
NRep; 3: MBP-MP; M: Pre-stained molecular weight protein marker. 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 34: WB analysis of plant extracted scFv-ScRep2 against Rep fusion proteins. 
Purified fusion Rep proteins were separated on a 12% (w/v) SDS-PAGE gel and Coomassie-stained 
(A). In WB analysis (B), fusion Rep proteins were blotted onto nitrocellulose membrane and crude 
extract of plant transiently expressed scFv-ScRep2 was used for detection. The interactions were 
revealed by 9E10 monoclonal antibody and GAM antibody conjugated to alkaline phosphatase 
followed by staining with NBT/BCIP. 1: MBP-Rep; 2: MBP-NRep; 3: GST-NRep; 4: MBP-MP; M: 
Molecular weight protein marker 
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Figure 35: Direct ELISA of plant expressed scFv fragments reactivity with different antigens. 

100 μl of 20 μg/ml of GST-Rep, GST-NRep, MBP-Rep, MBP-NRep, MBP and GST fusion proteins 
were coated on microtiter plates. 100μl of the overnight induced bacterial supernatant was added and 
bound scFvs were detected by addition of 9E10 monoclonal antibody and GAM polyclonal antibody 
conjugated to horse raddish peroxidase as secondary antibody. ELISA readings (OD405nm) were 
performed after 30 min incubation with ABTS substrate at 37°C.  

 

III.6.2.3  Rep-specific scFvs binding activities in vivo 

To investigate in vivo binding activities of scFv-ScRep1 and scFv-ScRep2 against Rep, scFv-

Cyt-ScRep1-GFP and scfv-Cyt-ScRep2-GFP (III.6.1.2.2) were each co-expressed with DRep-

DsRed (III.6.1.1) in tobacco leaves using agroinfiltration by means of a syringe (II.2.8.3.1) 3-

7 days after infiltration, the DsRed and GFP fluorescence were monitored by fluorescent 

microscopy. Identically to individual infiltration, co-infiltration results revealed localization 

of scFv fragments GFP fusions and DRep-DsRed at both the cytoplasm and nucleus (Figure 

36 and 37). In some cells, co-localization of DRep-DsRed and scFv-GFP fusion proteins was 

observed (Figure 36-I and 37-I).  
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Figure 36: scFv-ScRep1 binding activity in vivo.  

Rep specific scFv-Cyt-ScRep1-GFP was co-expressed in tobacco leaves (II.2.8.3.1) with DRep-DsRed 
through agroinfiltration. Their interactions and localizations were analyzed using fluorescent 
microscope (II.1.11). The columns A and B show the GFP and DsRed imaging, respectively. GFP was 
excited at 488 nm and emissions collected at 500 to 515 nm. DsRed was excited at 568 nm and 
emissions collected at 600 to 620 nm. 
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Figure 37: scFv-ScRep2 binding activity in vivo.  

Rep specific scFv-Cyt-ScRep2-GFP was co-expressed in tobacco leaves (II.2.8.3.1) with DRep-DsRed 
using agroinfiltration. Interaction and localization were analyzed by fluorescent microscope (II.1.11). 
The columns A and B show the GFP and DsRed imaging, respectively. GFP was excited at 488 nm 
and emissions collected at 500 to 515 nm. DsRed was excited at 568 nm and emissions collected at 
600 to 620 nm. 
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III.7   Generation and characterization of stable transformed plants over- 

  expressing scFvs 

 

III.7.1   Stable transformation of N. benthamiana  plants over-expressing scFvs 

Following the transient expression, N. benthamiana stable transformation was performed 

through leaf disc method (II.2.8.3.2.1) with the A. tumefaciens harbouring pTRAkt-ScRep1, 

pTRAkt-NLS-ScRep1, pTRAkt-RWAV, pTRAkt-HScCP2, pTRAkt-HScCP3, pTRAkt-

HScCP4 and pTRAkt-ScRep1-GFP constructs. The kanamycin resistant shoots were sub 

cultured in the tobacco root-induction medium at intervals of 14 days. Subsequently, 

individual transformed rooted plants containing the relative construct were moved into the 

soil and kept in greenhouse under high humidity and assigned as T0 lines. The numbers of 

independent putative transformants are presented in table III-6. The concerning regenerated 

tobacco plants expressing ScRep1, NLS-ScRep1, RWAV, HScCP2, HScCP3 and HScCP4 

proteins were briefly named SR, NSR, RW, HSC2, HSC3 and HSC4, respectively.  Most of 

regenerated SR, NSR, RW and HSC2 tobacco lines in comparison to wild type plants had 

normal growth in the soil and did not show unusual growth characteristics. However, most of 

the rooted T0 HSC3 (23 out of 30 plants) and HSC4 (26 out of 30 plants) lines failed to grow 

normally in soil and died 1-2 weeks after transplantation. In 2-3 weeks, well grown T0 

progenies producing different transgenes were self pollinated for establishment of next 

generation (T1). 

To assess expression of scFv genes, leaf tissue from putative T0 transgenic plants were 

analyzed for accumulation of recombinant proteins by immunobloting analysis (II.2.3.3.1) of 

total soluble protein crude extracts (II.2.8.5). These results revealed that 10 out of 16 analyzed 

T0 SR progenies accumulated detectable amounts of scFv-ScRep1 protein in the cytosol. 

Further, Western blot analysis indicated these lines produced a polypeptide with the predicted 

size of 30 kDa. As shown in figure 38, the SR27 line showed the strongest reaction with anti-

Flag antibody. In addition, these results indicated that SR15 and SR22 lines accumulate 

relatively high amount of ScRep1 within the cytosol. Other SR lines produced less amount of 

transgene varying from non-detectable level (SR6) to faint band (SR17) corresponding to a 30 

kDa polypeptide.  

In contrast, similar experiments showed that transgenic T0 tobacco plants expressing NLS-

ScRep1, RWAV, ScRep1-GFP, HScCP2, HScCP3 and HScCP4 failed to accumulate 

detectable amount of recombinant proteins within the cells, although complementary PCR 

analysis using genomic DNA confirmed presence of transgenes in these plants.  
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The transgenic tobacco plants (SRG lines) producing ScRep1-GFP protein were screened by 

fluorescent microscopy and those expressing transgene protein were selected for next 

experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: Western blot analysis of T0 transgenic SR plants expressing scFv-ScRep1 

Approximately 15µl of crude extracts of transgenic SR tobacco plants expressing scFv-ScRep1 were 

used for separation on 12% (w/v) SDS-PAGE gel (II-2.3.2) and blotted onto nitrocellulose membrane 

(II.2.3.3.1.1). The blotted scFvs were revealed by 9E10 monoclonal antibody and GAM antibody 

conjugated to alkaline phosphatase followed by staining with NBT/BCIP. 1: positive control (scFv-

ScRep1 expressed by transiently transformed tobacco); 2: SR4; 3: SR6; 4: SR15; 5: SR16; 6: SR20; 7: 

SR22; 8: SR27; 9: SR32; 10: SR17; 11: negative control; M: Pre-stained molecular weight protein 

marker 

 

III.7.2  TYLCV virus resistance assay on T0 transgenic tobacco plants 
 
Since putative side effect of TYLCV infection on plant reproduction processes, individual T0 

progenies were initially allowed to grow till mature seeds were harvested. To determine 

protective ability of transgenes, independent T0 progenies expressing different scFv proteins 

were challenged with agroinfectious clone harbouring the pBIN19-2TYLCV-Ir construct. The 

agroinoculation was accomplished by injection of 10 μl suspension of agrobacterium culture 

with OD600nm ~ 0.05 into the stem and petioles. Negative and positive controls were 

inoculated in same way by injection of water and same suspension into the non-transgenic 

tobacco plants. Early symptoms were appeared 3-4 weeks post inoculation (wpi) on non-
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transgenic wild type and sensitive transgenic plants. The main symptoms included leaf curling 

and reducing of size of new emerged leaves (Figure 39-B and 39-D). Symptom developments 

were scored for 5 weeks and those with no clear symptoms were selected for next generation. 

Initial symptom observation indicates some protection against viral systemic spread occurred 

within the inoculated T0 transgenic plants (Table III-6). Compared to the non-transgenic and 

sensitive plants that developed distinct leaf curling, these plants remained symptomless or 

showed a significant reduction of symptom development (Figure 39-C). These plants were 

selected to undergo subsequent analysis. 

The presence of viral DNA in the infected plants was verified by PCR analysis using V2 viral 

gene (MP) specific primers (II.1.6.1). These results confirmed feasibility of PCR for detection 

of viral DNA within inoculated tobacco plants using either crude leaf extract or purified total 

DNA, it also proved its ability for detection of virus in the asymptomatic plants. To study 

presence of infectious clone DNA within leaves of agroinoculated plants, a complementary 

PCR with another primer set specific for vector sequences (II.1.6.9) was carried out. This 

analysis confirmed that only viral DNA is systemically dispersed in the infected plant while 

pBin19 vector DNA is exclusively confined within the inoculated site (figure 41).  

Southern hybridization analysis was carried out to study TYLCV replication and the 

accumulation of its DNA within inoculated plants. For this aim, around 1 µg of total DNA 

extracted from tobacco plants was separated by agarose gel electrophoresis. The bands were 

blotted onto positively charged membrane (II.1.3) and hybridized with digoxigenin-labeled 

DNA probe. The specific viral DNA bands were immunoenzymatically revealed by anti-

digoxigenin AP conjugated Fab fragments with luminol-based chemiluminescence detection 

system (Lumi-Imager F1TM- Roche. The Southern blotting assay confirmed that T0 

asymptomatic plants accumulate non-detectable amount of viral (figure 42).  

Alternatively, TAS-ELISA analysis was performed for detection of TYLCV particles within 

the infected plants. These results indicated that its application is restricted for detection of 

virion particles within the old infected plants showing severe symptoms and it failed to 

distinguish healthy plants from infected tobacco with mild symptom containing low virus titre 

(data not shown).  

Table III-6 represents the results obtained from T0 progenies virus resistant assays. The plants 

without clear symptoms, 5 weeks after inoculation, with low or no of viral DNA accumulation 

assigned as resistant plants. These results indicated that all inoculated NSR, HSC2, HSC3 and 

HSC4 lines as well as wild type plants showed clear symptoms and represent no resistance 
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against TYLCV challenge. However, SRG, SR and RW lines revealed varying degree of 

resistance from 8-28 percent.  

The individual T0 tobacco lines showing protection against TYLCV infection (table III-6) 

(e.g. tobacco lines G28, R14) were subjected for next generation establishment. 

 

 

Table III-6:   Analysis of wild type and transgenic T0 N. benthamiana plants challenged with 

TYLCV agroinfectious clone 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transgenic line
(T0)

Wild Type

NSR

No. of uninfected plants / total No.
of inoculated plants (5 wpi)

0/15

2/25
0/31

2/25

0/15

0/7

0/4
7/25

Resistance (%)

0

8

0

8

0

0

0

28

SR

a

a Percentage of plants not infectd 5 weeks post inoculation/ total number
of plants inoculated, Previously selected on kanamycin

RW

HSC2

HSC3

HSC4

SRG

Transgenic line
(T0)

Wild Type

NSR

No. of uninfected plants / total No.
of inoculated plants (5 wpi)

0/15

0/31

0

0

0

0

28

SR

a

a Percentage of plants not infectd 5 weeks post inoculation/ total number
of plants inoculated, Previously selected on kanamycin

RW

HSC2

HSC3

HSC4

SRG

Total Nr. Of
regenerated plants

___

25
25
31

7
4
29

26
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Figure 39: Resistance of T0 transgenic plants (N. benthamiana) to TYLCV infection. 

Wild type and transgenic T0 tobacco plants expressing specific scFv fragments were challenged by 

TYLCV agroinfectous clone. Non-transformed plants (B) and susceptible transgenic plants (D) 

showed typical disease symptoms of virus infection, including curling of new emerged leaves; 

whereas the resistant transgenic plants (C) are free of disease symptoms. The figures show the 

symptoms at about 5 weeks after inoculation. A: wild type non-transgenic tobacco plant injected by 

virus free suspension; B: Inoculated wild type non transgenic tobacco plant as a positive control; C: 

Resistant transgenic plant from SRG28 line; D: Susceptible transgenic plant from SRG17 line. 

 

 

 

 

A

C D

BA

C D

B



Results........................................................................................................................................... 

                    114 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 40: Detection of viral DNA sequence within the inoculated  tobacco. 

The PCR analysis was carried out using TYLCV V2 gene specific primer (MP) with total DNA 

purified (II.8.7) from tobacco plants 4 weeks after inoculation. The PCR product was subjected on 

1.2% agarose gel electrophoresis. 1: negative control (wild type tobacco not-inoculated); 2: SRG28 

line;  3: SRG36, 4: SRG18; SR27; 6: RW14; 7: SRG2; 8: positive control (wild type tobacco 

inoculated by TYLCV); M: λ DNA marker. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Tracing of viral and agroinfectious clone DNA within the agroinoculated tobacco 

plant. 

A wild type nontransgenic N. benthamiana plant was inoculated by leaf infiltration (II.2.8.3.1) with 

agrobacterium harbouring pBIN19-2TYLCV infectious clone. The plant kept for 4 weeks and 

distribution of viral and vector DNA in the plant was studied by PCR analysis using specific primers. 
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The figure A shows the presence of viral DNA within different leaves of entire infected plant using 

TYLCV V2 gene specific primer, whereas in the same leaves, figure B reveal presence of pBIN19 

sequence by specific primer set bracketing 401 bp of T-DNA. The PCR product was subjected on 

1.2% agarose gel electrophoresis. 1: negative control (wild type tobacco not-inoculated); 2 and 3:  

symptomatic leaves emerged after agroinoculation; 4: leaf tissue around the inoculation site; 5: 

positive control (pBIN19-2TYLCV DNA); M: λ DNA marker. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: Hybridization assay to determine TYLCV DNA accumulation in inoculated T0 

transgenic tobacco plants. 

Southern blot of DNA isolated from transgenic plants (II.8.8) expressing scFv was performed. Total 

DNA from tobacco plants was extracted (II.8.7) 5 weeks after inoculation with TYLCV agroinfectious 

clone. About 1 μg of total DNA were separated on 1% agarose gele, transferred to Hybond-N 

positively charged membrane and hybridized with digoxigenin labeled TYLCV specific DNA probe. 

1: negative control (DNA purified from not-inoculated plant); 2, 3 and 4: total DNA extracted from 

asymptomatic resistant lines RW14, SR27 and SRG28, respectively. Lanes 5 and 6 represent viral 

DNA accumulation in the susceptible transgenic lines SRG32 and SR15. 7: accumulation of viral 

DNA in wild type nontransgenic plant. 8: linearized TYLCV DNA by NcoI digestion of pBIN19-

2TYLCV. M: Dig-labled, DNA molecular weight marker III. The replicative forms of TYLCV are 

marked by; OC: open circular dsDNA; Lin: linear dsDNA; CCC: covalently closed circular dsDNA; 

SS: single stranded DNA 
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III.7.3  Challenging of T1 transgenic plants with TYLCV 
 
To obtain T1 putative independent transgenic plants, seeds derived from self-pollination of 

the resistant T0 lines were grown on MS medium supplemented with kanamycin. Non-

transgenic seedlings were screened out by analysing of T0 seeds for tolerance to the 

kanamycin. Due to presence of nptII gene within the integrated T-DNA, non-transgenic T1 

plants were screened for kanamycin resistance. Subsequently, resistant seedlings were 

transplanted to soil and kept in greenhouse. Alternatively, the SRG transgenic T1 progenies 

expressing ScRep1-GFP were selected base of fluorescence emission ability (II.2.8.4).  

The total number of kanamycin resistant tobacco plants per cultured seeds were calculated 

(Table III-7). Normally, they showed varying kanamycin resistance from 60 to 90 percent. 

Interestingly, all seeds raised from T0 SR22 line germinated poorly in kanamycin medium 

and obtained seedlings were too weak for transplantation to the soil and further assays.  

Of each T0 line, fifteen independent putative T1 transgenic progenies in 5-8 leaf stage were 

selected and tested for their ability to resist TYLCV infection. For this aim, a fresh 

agrobacterium culture harbouring a dimer of a fully infectious copy of the TYLCV-Ir 

genome, was made on petri dish containing YEB medium and relative antibiotics 

(II.2.1.12.2). To inoculate tobacco plants, the apical part of plant was removed and a pipet tip 

contaminated with agrobacterium culture was rubbed on the wounded surface. The excised 

apices were stored for subsequent molecular analysis. 

Hereafter, plants were weekly observed for disease symptoms and assayed for presence of 

TYLCV DNA through molecular hybridization method (II.8.8). 

Early symptoms in non-transgenic and sensitive plants appeared 2-3 wpi and developed 

during next weeks. Resistance response was evaluated at 4-5 wpi bases of symptom 

observation and DNA hybridization assays. Routinely, four weeks after inoculation, a young, 

fully expanded leaf near the apex was excised from individual plants and subjected for total 

DNA extraction and subsequent DNA hybridization analysis. This assay repeated later for 

plants in which TYLCV DNA was not detected. 
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Figure 43: Resistance of T1 transgenic plants (N. benthamiana) to TYLCV infection. 

Wild type and transgenic T1 tobacco plants expressing specific scFv fragments were challenged with 

TYLCV agroinfectious clone. Inoculation was accomplished on decapitated tobacco plants at 5-8 leaf 

stage. Non-transformed plants (D) and susceptible transgenic plants (E) showed typical disease 

symptoms of virus infection, including curling in new emerged leaves; whereas the resistant transgenic 

plants (B) are free of disease symptoms. An intermediate state could be observed with mild symptom 

on some transgenic plant (C). The figures show the symptoms at about 4 weeks after inoculation. A: 

wild type non-transgenic tobacco plant injected by virus free suspension; B: Resistant transgenic plant 

from SRG28-12 line; C: Resistant plant with moderate symptoms within the new emerged leaves in 

SRG28-5 line; D: Inoculated wild type with severe symptoms on non transgenic tobacco plant as a 

positive control; E: Susceptible transgenic plant from SRG28-3 line. 

 

A heterogeneous response was obtained within inoculated T1 progenies. Upon infection, wild 

type and sensitive transgenic plants showed sever symptoms including curling of the leaves 

and their size reduction (figure 43D and 43-E). The initial inoculation results revealed that 

SRG T1 transgenic plants expressing ScRep1-GFP recombinant protein showed a spectrum of 

symptoms ranging from a sever disease to a mild one and virtual absence of any symptoms. 

Figure 43 illustrates different symptom statues on inoculated T1 transgenic plants in 

comparison to tobacco wild type in 4 weeks after inoculation. Accumulation of viral DNA 

moviruses, it has been shown that Rep can interact with other viral proteins like REn. This 

interaction has not been seen In vivo, although in Replication of TGMV DNA molecules ation 

of viral DNA in infected plants, i.e. plants with sever symptoms also showed accumulation of 

TYLCV DNA in an amount comparable to that of untransformed plants. In contrast, plants 

lacking disease symptoms contained no or very little accumulation of TYLCV DNA. 

Complimentary analysis with S1 nuclease treatment was used to distinguish viral ssDNA 

structure from dsDNA intermediates (figure 44, lanes 10-11). Four weeks after inoculation, 

some plants with milder symptoms were also obtained as they accumulated a small and 

variable amount of viral DNA in comparison to sensitive non-transgenic plants (G28-3). In 

addition, table III-7 indicates that all T1 progenies raised from RW14, RW22 and SR27, in 

contrast to corresponding T0 precursor showed typical TYLCV symptoms; yellowing and 

curling of young leaved and stunting.  
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Table III-7:   Analysis of wild type and transgenic T1 progenies N. benthamiana plants 

challenged with TYLCV agroinfectious clone 

 

 

 

 

 

 

 

 

 

 

 

 

The resistance phenotype was determined by absence or remarkable reducing of disease 

symptoms and a concomitant substantial reduction or complete suppression of viral DNA 

replication. As shown in table III-7, T1 plants developed from SRG28 and SRG18 lines 

revealed highest resistance. 

Similar results were obtained when resistance assays were repeated. Together these results 

indicated that the resistance is inherited and even improved through the T1 generation (28% 

in T0 SRG line in comparison to 40% in T1 SRG28). The best performing lines were further 

analyzed.  

 

 

 

 

 

 

 

 

 

 

 

T1 transgenic
progeny

Virus resistance%

Wild type
SR22
SR27
RW14
RW22
SRG4
SRG18
SRG27
SRG28
SRG34
SRG36
SRG42

0 (0/45)a
76.9 (30/39)
82.2 (37/45)
80 (32/40)
90 (18/20)
90.4 (19/21)
77.7 (21/27)
85 (17/20)
86.9 (20/23)
60.7 (17/28)
65 (13/20)

inoculated plants

2 wpi 3 wpi 4 wpi

12/15

11/15
10/15
11/15
13/15
12/15
13/15
13/15
14/15
13/15
13/15

0/15

3/15
315
0/15
4/15
8/15
5/15
9/15
3/15
2/15
5/15

0/15

0/15
0/15
0/15
2/15
5/15
3/15
6/15
2/15
1/15
3/15

0b

0
0
0
13.3
33.3
20
40
13.3
6.6
20

Kanamycin resistance (%) No. of uninfected plants/ 

a Number of T1 seedlings resistant to kanamycin / total number of cultured seeds
b Percentage of plants not infected 4 weeks post inoculation/total analyzed plants

Virus resistance%

Wild type
a

76.9 (30/39)
82.2 (37/45)
80 (32/40)
90 (18/20)
90.4 (19/21)
77.7 (21/27)
85 (17/20)
86.9 (20/23)
60.7 (17/28)
65 (13/20)
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2 wpi 3 wpi 4 wpi

0/15

3/15
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0
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a
b Percentage of plants not infected 4 weeks post inoculation/total
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Figure 44: Hybridization assay to determine TYLCV DNA accumulation in T1 transgenic 

tobacco plants. 

Southern blot of DNA (II.8.8) isolated from transgenic plants expressing scFv 4 weeks after 

inoculation with TYLCV agroinfectious clone. Total DNA from tobacco plants was extracted (II.8.7)  

and about 1 μg of it was separated on 1% agarose gel, transferred to Hybond-N positively charged 

membrane and hybridized with digoxigenin labeled TYLCV specific DNA probe. The pBIN19-

2TYLCV purified DNA and linearized TYLCV released by NcoI digestion are shown in lanes 1 and 2, 

respectively. Lane 3 shows the negative control (DNA purified from not infected plant). Lanes 4-6 

indicate lack of viral DNA in the resistant transgenic lines SRG28-4, SRG28-5 and SRG28-12. Lanes 

7 and 8 show intermediate viral DNA accumulation within the resistant transgenic lines SRG28-7 and 

SRG28-9. Lanes 9 and 10 present results obtained from sensitive transgenic line SRG28-3 and wild 

type non-transgenic plants, respectively. The effect of S1 nuclease to remove ssDNA molecules in 

total DNA purified from infected plant is shown at lane 11. M: Dig-labled, DNA molecular weight 

marker III. The replicative forms of TYLCV are marked by; OC: open circular dsDNA; Lin: linear 

dsDNA; CCC: covalently closed circular dsDNA; SS: single stranded DNA 

 

 

III.7.4   Comparative analysis of transgenic lines expressing ScRep1-GFP protein 

III.7.4.1  Quantitative PCR analysis 

The expression of the introduced ScRep1-GFP gene in T1 transgenic plants was analyzed by 

real-time quantitative PCR (II.2.8.6.2). It was performed using fluorescent intercalating dye 

SYBERgreen assay on the ABI Prism 7700 sequence detection system (Perkin-Elmer Applied 

Bioscience). This dye gives a specific fluorescent signal when bound to double standard 
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DNA. Since the dye could bind equally to aspecific PCR amplification product, the specificity 

of the amplification was confirmed on an agarose gele. Total RNA from wild type tobacco (as 

a negative control) and SRG transgenic plants was separated and subjected to cDNA 

synthesis. About 1 μg of total RNA was digested with DNase enzyme and used for reverse 

transcription reaction with pA35S specific reverse primer (II.1.6.6). The real time PCR was 

accomplished using specific primers located in the 120 bp of 3´ untranslated region (pA35S) 

of the T-DNA insert. To confirm accuracy and reproducibility of real time PCR, the assay 

precision was determined in three repeats within one light cycler run. The figure 45 illustrates 

Q-PCR results obtained from some SRG transgenic plants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45: SYBR-Green RT-PCR analysis of ScRep1-GFP gene expression in independent SRG 

lines. Relative expression of ScRep1-GFP gene measured in different SRG lines. Total RNA was 

reverse transcribed, and aliquots were amplified using primer pairs specific for pA35S region. Data 

presented are means and standard deviations of three independent replicated experiments. 
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III.7.4.2 Fluorescence emission intensity  

The comparative analysis to determine fluorescence emission ability among independent T1 

SRG transgenic plants was carried out. These results revealed that individual SRG transgenic 

plants emit varying intensity of fluorescence under excitation by UV light (figure 46). 

Generally, plants expressing higher amounts of transgene have higher fluorescence emission.  

Together comparative quantitative RT-PCR and fluorescence intensity analysis with those 

obtained from virus resistant assay indicated that mostly plants with an elevated transcripts 

level consistently exhibited a higher degree of virus resistance. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 46: Comparative analysis for fluorescence emission intensity among independent 

transgenic plants expressing ScRep1-GFP protein.  
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Fluorescence emission ability in the individual T1 transgenic tobacco plants expressing ScRep1-GFP 

was compared. The forth leaf from top of SRG transgenic tobacco plants at 5 leaf stage was studied.   

Figures A, B and C represent descending rate of fluorescent emission in the SRG18B-7, SRG18B-10 

and SRG27B-6 lines, respectively. GFP was excited at 488 nm and emissions collected at 500 to 515 

nm.   

 

Furthermore, similar analysis was performed in different leaves of independent SRG plants at 

4-5 leaf stage. These results revealed ascending rate of fluorescence emission from leaves 

positioned in direction of top to beneath ones (Figure 47). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47: Fluorescence emission intensity within the leaves of individual transgenic plants. 

Accumulation of ScRep1-GFP fusion protein in single leaves detached from plant line SRG28C-10 
examined at 4 leaf stage. Three full expanded leaves were excised and their fluorescence emission 
ability was analyzed by fluorescent microscopy. A, B and C figures represent fluorescence abilities of 
leaves positioned at Top, middle and bottom of the main stem, respectively. GFP was excited at 488 
nm and emissions collected at 500 to 515 nm.  
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In spite of using constitutive promoter p35S for expression of transgene in the SRG transgenic 

tobacco plants, in some cases, cells within the same leaf showed different fluorescence 

emission ability (Figure 48). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48: Non-constitutive expression of transgene within the stable transformed tobacco plant. 

Non-constitutive expression behavior of transgene was studied in the stable transformed tobacco 

plants expressing ScRep1-GFP protein. Fluorescent microscopy shows that individual cells have 

different fluorescence emission ability. GFP was excited at 488 nm and emissions collected at 500 to 

515 nm 
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IV Discussion 
 

Plant viruses are one of the most important plant pathogens, causing great economic problems 

in several crops throughout the word. To control these agents, conventional methods like crop 

rotation, early detection and subsequent removal of inoculum source, cross protection and 

chemical control of their vectors have been applied for several decades. Nowadays, molecular 

biotechnology has provided powerful new measures, such as the development of transgenic 

plants expressing antiviral elements, pathogen related proteins or antisense RNAs that block 

pathogenesis. Antibody mediated resistance is a novel approach to create plants resistant to 

viruses, based upon the expression of recombinant antibodies binding to viral proteins to 

inhibit the virus’s replication in plants.  
The purpose of this study was to generate and characterize specific scFv fragments acting 

against TYLCV functional proteins and develop transgenic plants which produce these 

recombinant antibody fragments. Described in this study is the development of seven different 

transgenic plants. Subsequent analysis included challenging of transgenic plants with TYLCV 

agroinfectious clone and study of viral replication in these plants.  

Briefly summarized, the C1, V1 and V2 genes encoding Rep, CP and MP, respectively, were 

amplified by specific primers using the pBIN19-2TYLCV-Ir construct as a template. The 

PCR products were directly cloned into the TOPO vector (III.1.1) and successful clones were 

selected. Next, viral genes were sub-cloned into pGEX-5x3 (II.2.2.1) and pMALc2x (II.2.2.2) 

expression vectors and recombinant proteins were expressed in E. coli as C-terminal fusion 

with GST and MBP. In addition, the amino terminal part of CP and Rep proteins were also 

cloned and expressed as C-terminal fusions with GST and MBP.   

Using phage display technology one scFv against Rep were isolated through panning of naïve 

Tomlinson I scFv phage library. In addition, an ARep phage display library (III.3) constructed 

from spleen total RNA of a mouse immunized with MBP-Rep was panned and another scFv 

were screened and characterized. Four more scFv were developed from total RNA of murine 

hybridoma cells secreting specific MAbs against TYLCV virions. 

All scFv were cloned into a plant expression vector, and to perform an initial characterization 

were transiently transformed into tobacco leaves. Additionally, the Rep specific scFv 

fragments were cloned into the plant expression vector as N-terminal fusions with GFP. 

Expression of scFv fragment constructs and their functionality within plant cells were 

analysed. Next, these constructs were used to generate stable transformations in entire tobacco 

plants. Accumulations of scFv transcripts in plants presenting susceptible and resistant 
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phenotypes were investigated. Stable transformed tobacco plants were agroinoculated and 

protective ability of T0 and T1 transgenic progenies expressing scFv fragments was 

evaluated.  

 

IV.1 Expression and purification of viral recombinant proteins 

Heterologous gene expression in E. coli is the most frequently used expression system for 

high level production of recombinant proteins in molecular biology (Fani et al., 1998). 

Purified recombinant viral proteins were mainly used for immunization (II.2.4), panning of 

scFv phage library (II.2.6) and scFv characterization (II.2.7.4). To obtain TYLCV CP, MP 

and Rep proteins, the viral genes V1, V2 and C1 were amplified using specific primers and 

cloned into the TOPO vector (III.1.1). The viral genes were then cloned into pGEX5x3 

(III.1.2) and pMALc2x (III.1.3) expression vectors to produce recombinant proteins fused to 

the carboxyl-terminal of GST and MBP. The Glutathion S-transferase (GST) and Maltose 

binding protein (MBP) gene fusion systems are versatile systems for expression and 

purification of fusion proteins produced in E. coli. These systems are based on inducible and 

high level expression of genes fused to GST and MBP proteins and allows for production of 

fusion proteins in one-step affinity purification under native conditions. These fusion partners 

can lead to an increase in solubility of target proteins (Frangioni and Neel, 1993; Hannig and 

Makrides, 1998). The CP and Rep protein of geminiviruses are multi-functional and their 

amino terminals are responsible for several critical activities. The amino terminal portion of 

Rep (aa 1-136) and CP (aa 1-113) were individually selected and cloned downstream of GST 

and MBP, as C-terminal fused proteins, in corresponding vectors. For this purpose, the amino 

terminals of Rep and CP in pGEX-C1 and pGEX-V1 vectors were kept and the remainder of 

the gene in both cases was removed by restriction and subsequent ligation (III.1.2). The 

amino-terminal fragment selected from Rep contains the cleavage, linkage and DNA binding 

domains activities while for CP this part is responsible for nuclear localization.  

Over-expression of CP, NCP and Rep proteins in both expression systems suggested that a 

high proportion of unfolded and insoluble fusion proteins aggregated within inclusion bodies 

that were mostly removed with cell debris. To improve yield of soluble and correctly folded 

proteins, the culturing and induction conditions had to be optimized. To this aim, several 

modifications, such as decreasing the IPTG concentration to 0.25 mM, increasing induction 

time up to 6 hours and reducing the temperature to 22°C after induction, were applied. These 

optimizations resulted a decrease in protein expression and the produced fusion proteins were 

allowed sufficient time to fold correctly, therefore limiting accumulation inactive protein 
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aggregates, i.e. inclusion bodies, without reducing the final yield of the target protein. The 

positive effect of low temperature to reduce inclusion body formation has been demonstrated 

in many studies (Bishai et al., 1987; Schein, 1989). While low temperatures between 15-20°C 

have a slight effect on cell folding machinery, they significantly decrease the level of 

transcription and translation (Betton et al., 2002; Hunke and Betton, 2003) and as a result 

most of translated proteins are  correctly folded. 

SDS-PAGE and western blot analysis showed high integrity for GST/MBP-MP, but the 

majority of the purified GST-CP and GST-Rep were present as degraded proteins (Figure 3). 

Several attempts were carried out to optimize expression and purification conditions but they 

were unable to prevent this loss of integrity. Degradation of recombinant proteins is typically 

caused by  proteolitic activities of bacterial enzymes within the cell (Baneyx and Mujacic, 

2004) or the effect of rare codons and premature termination of heterologous gene expression 

(Ivanov et al., 1997). Proteolysis is a regulated process that is involved in several metabolic 

activities, such as the removal of incorrectly folded and abnormal proteins (Hannig and 

Makrides, 1998; Baneyx and Mujacic, 2004). Heterologous gene containing high levels of 

rare codons that are used at low frequency in E. coli and often leads to low levels 

heterologous protein expression or truncated products because of premature stops in protein 

translation (Ejdeback et al., 1997; Ivanov et al., 1997). In MBP fusion system, purified MBP-

Rep was visualized as two major bands in SDS-PAGE analysis (Figure 4, line 4), suggesting a 

cleavage site located downstream from the oligomerization domain of Rep, which is likely a 

target for enzyme mediated proteolysis (Gronenborn,  unpublished data). 

Because of degradation and low level expression occurring in production of entire CP and 

Rep fusion proteins, constructs for expression of N-terminal parts of CP and Rep were used. 

As a result, a higher efficiency in purification of NCP and NRep fusion proteins was obtained. 

While purified GST/MBP-NRep were visualized as unique bands of the expected size on 

SDS-PAGE, some degradations were still present in purified GST/MBP-NCP (Figures 3 and 

4). 

 

IV.2  Mice immunization  

To obtain specific antibody from a cloned immunological repertoire, a large and diverse 

library as well as an efficient selection procedure are required. The key to achieve this goal is 

the generation of a good immune response, isolation of high quality RNA and efficient cDNA 

synthesis from which the library constructed.  
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To elicit a strong immune response against viral Rep protein, three mice were immunized 

with MBP-Rep fusion protein by repeated injection of small doses of antigen (50 µg). After 

each injection the antiserum titre was measured by indirect ELISA. A high antiserum titre 

against the injected antigen usually indicates enrichment of an antigen-specific cell clones. 

The boosting continued until antiserum titre reached over 1:150,000 (III.2). To confirm the 

presence of antibodies against the viral antigen, Rep fusions (like GST-Rep) different from 

those used for immunization was also used for titration of serum polyclonal antibody.  

 

IV.3 Phage displayed scFv fragments selection 

To select specific scFv, two naïve Tomlinson scFv-phage display libraries, I and J, as well as 

an immunized ARep scFv library were panned. Phage display is a powerful means for 

obtaining specific peptides with high binding properties from a huge number of variants. 

There is a direct link between DNA sequences and protein function, and so from the single 

experimental setup the specific single clones can be rapidly selected from vast pools (Winter 

et al., 1994; Conrad and Scheller, 2005). 

MP, CP and Rep recombinant fusion proteins were used to select specific binders with high 

affinity from the Tomlinson I and J naïve libraries. The size of Tomlinson libraries were 

approximately 108 clones. To drive highly specific antibody fragments to a wide range of 

different antigens like polypeptides, polysaccharides, toxins and other small molecular 

compounds, many naïve phage display libraries have been successfully established. To create 

these naïve phage display libraries, variable gene sequences that have undergone some in vivo 

rearrangement are derived from the IgM mRNA of un-immunised animals (Willats, 2002). 

Fusion proteins could immobilize as antigens onto plastic immuno-tubes, and apply for 

selection of specific binders (Vaughan et al., 1996). To exclude false specific binders against 

fusion partners (rather than the proteins themselves), MBP fusion proteins were used in the 1st 

and 3rd round of panning while in the 2nd round GST fusion proteins were applied.  

Having highly purified target proteins or molecules facilitates selection of specific binders 

from a diverse phage library. Limited amounts of target antigens presented in the impure 

mixture increases trapping of non-specific phages (Hoogenboom et al., 1998). The enrichment 

of specific scFv fragments was accompanied by monitoring the amount of input and output 

phage in each cycle (Table III.1). In the third round of panning against immobilized Rep, the 

number of eluted phages was increased several folds in comparison to the number of phages 

eluted in the first round. This indicates population of specific binders has been raised during 

panning rounds. After the third round of selection, more than 70% of the analyzed clones 
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showed specific activity with the Rep protein (Figure 11). Some Rep binding clones were 

selected and amplified by specific primers and subjected to BstNI digestion. RFLP 

fingerprinting showed similar restriction patterns for all clones (Figure 12). Sequencing 

results confirmed identical DNA sequence for all Rep specific clones which were named 

scFv-ScRep1. Phage display technique was also used to select specific binders to MP and CP 

recombinant proteins through panning of both naïve scFv phage Tomlinson display libraries. 

Despite the high purity of the target proteins used in the process and repeated attempts, no 

specific binder was obtained after three rounds of panning.  

The ARep scFv library, unlike the naïve libraries, was generated from mice immunized 

against MBP-Rep protein. Immunized libraries containing a large population of specific 

binders against corresponding antigen are usually used to select antibodies with higher 

affinities from an equivalent library size (Bradbury and Marks, 2004). To construct such a 

library, total RNA was extracted from spleen cells of an immunized mouse and used to 

generate cDNA from the rearranged immunoglobulin transcripts with oligo dT primers. The 

degenerate sets of primers annealing to conserved domains of framework regions 1 and 4 of 

variable fragments were used to amplify VH and VL regions of immunoglobulin repertories. 

To clone these fragments, suitable restriction enzyme sites were incorporated at the end of 

amplified genes through PCR amplification. These restriction sites, including SfiI, BstEII, 

AscI and NotI, are rarely found in the antibody sequences, limiting the possibility of 

potentially interesting sequences being removed through the internal digestion. The scFv 

phage library was made by cloning of VH and VL fragments individually into the pHENHI 

vector (Figure 8). The colony check PCR using randomly selected clones showed that they 

carried full size scFv (Figure 9). The RFLP finger-printing assay (III.3.3) through BstNI 

digestion indicated diversity around of 75% (Figure 10). Due to separation and subsequent 

randomly combination of productive pairs of variable heavy and light chain during the 

cloning process, large antibody libraries are needed to guarantee that most original specific 

VH and VL pairs are present in the constructed library (Gherardi and Milstein, 1992; Posner et 

al., 1994). Further sequencing results verified that some clones contained full length scFv 

with the expected size but about half of them contained frameshifts and failed to produce 

entire scFv. Because of the use of degenerate primers for PCR amplification of antibody 

variable fragments, mismatches, point mutations and other errors can occur within the 

amplified DNA and lead to production of non-functional scFv molecules (Krebber et al., 

1997). The plasmid carrying non-productive, aberrant or truncated antibody fragments 

encoding sequences have a growth advantage over the clones expressing entire scFv and are 
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often preferred by the E. coli host and cause problems during the enrichment of antigen-

binding antibody sequences by phage display (Seehaus et al., 1992; Dziegiel et al., 1995). 

These events show the importance of the high stringency for washing procedures during the 

panning to remove scFv-free phages (Tur et al., 2001).  

Affinity selection of specific scFv was performed as for the Tomlinson libraries and after the 

third round of panning one clone with high binding activity to Rep was selected and 

designated scFv-ScRep2.  

Sequence analysis of specific Rep binding scFv fragments selected from naïve and 

immunized phage display libraries, scFv-Rep1 and scFv-ScRep2, showed that both scFv 

fragments were in frame with the cloning module. Sequence alignments with IMGT database 

(http://imgt.cines.fr/IMGT_vquest/) showed that their heavy and light chains variable domains 

are members of identical groups (Table III.3).  

The reaction of scFv-ScRep1 and scFv-ScRep2 with corresponding antigen in two different 

fusion systems (GST/MBP-Rep) confirm their specificity and suggests that the antigen 

folding was not affected by the fusion partner. No activity with GST and MBP was observed 

with these scFv fragments (Figure 16). 

The scFv-Rep1 reacted with both Rep and NRep recombinant fusion proteins through ELISA 

and Western blotting assays (Figures 16 and 17) indicating that its epitope is located in the 

amino-terminal portion of the Rep protein. The N-terminal of Rep contains cleavage, linkage, 

DNA binding and oligomerization domains which are responsible for some critical activities 

of Rep during viral replication (Gutierrez, 1999). 

ELISA results (Figure 16) showed that the scFv-ScRep2 only reacted with entire Rep 

recombinant protein, and not with C-terminal truncated Rep (NRep). This indicates that scFv-

ScRep2 could not bind to the amino-terminal portion of Rep. Western blot analysis revealed 

that it could still bind to degraded partes of C-terminal truncated MBP-Rep (Figure 18B-Line 

1) which are larger than NRep and must therefore include some additional portion of intact 

Rep. Together, these results suggest that scFv-ScRep2 binds with the middle part of Rep, 

which is responsible for the oligomerization activity of Rep. Since it has been shown that 

some critical aspects of geminivirus replication are entirely related to the oligomerization 

function of Rep (Orozco et al., 2000), this scFv seems to be an interesting candidate. 

 

IV.4  Expression and purification of scFv fragments 

The pHENHI and pIT2 expression vectors were used for large scale expression of scFv 

fragments. An important part of production of scFv fragments in E. coli is their secretion to 
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the periplasmic space, as it permits the production of soluble and functional proteins with 

correctly formed disulfide bonds in oxidative conditions. Phagemid pIT2 and pHEN series 

vectors have been engineered to express soluble scFv fragments into the culture medium by 

insertion of a pelB leader sequence upstream of the scFv gene and an amber stop codon 

between the scFv and gene III. In this system, high amounts of soluble scFvs can be produced 

in non-suppressor E. coli strains and secreted into the periplasmic space. The selected clone 

from Tomlinson I phage library producing scFv contained pIT2-scFv-ScRep1 construct and 

was initially used for large scale expression and purification of scFv-ScRep1. To provide an 

alternative for purification, scFv-ScRep1 was cloned into pHENHI vector. The pIT2-scFv-

ScRep1, pHENHI-scFv-ScRep1 and pHENHI-scFv-ScRep2 constructs were transformed into 

HB2151 strain of E. coli and soluble scFvs were produced by induction with IPTG. The 

secreted scFv was released from the periplasmic space by osmotic shock and subjected to 

IMAC purification system under native conditions. The SDS-PAGE result showed distinct 

bands with the expected molecular weight of about 30 kDa (Figure 15). The total yield of 

purified scFvs was relatively small; about 0.5 mg per litre of culture medium. Previous studies 

have shown that bacterial expression systems secreting scFvs into periplasmic space yields 

from 0.1-2 mg per litre culture medium, depending on properties of the variable domain 

structure and structure of scFv (Plückthun and Riesenberg, 1996). Expression and purification 

of scFv-ScRep1 using pHENHI rather than pIT2 vector led to higher total yield. It seems 

probable the discrepancy is due to different position of His6 tag in the two constructs. The 

scFv expressed from pIT2 vector contains a His6 tag between the scFv and the c-myc tag 

(Figure 45) which may account for its poor affinity binding in IMAC purification.  

The scFvs were diluted from Ni-agarose matrices with buffer containing 200 mM Imidazole. 

To remove the Imidazole from the purified scFvs, they were dialysed with cold PBS solution. 

During the dialysis a lot of white precipitate was observed in the tube, which was removed by 

centrifugation. The SDS-PAGE analysis indicated that the precipitate was scFv. Dialysis 

using PBS buffer containing 15 mM Imidazole reduced precipitate formation and increased 

total scFv yield (Figure 15-B). It has been proven that presence of Imidazole does not 

interfere with scFv binding activity and can increase its solubility (Hamilton et al., 2003). In 

addition, old and precipitated scFv can be re-dissolved in this buffer without loss of antigen 

binding activity. Neither salt bridge nor cross-linking of His6 tails mediated by metal ions 

leached from the column during elution are responsible for the limited solubility of the protein 

in the absence of Imidazole (Hamilton et al., 2003).  
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IV.5  Purification and characterization of MAbs against TYLCV virion 

The hybridoma clones HTYLCV1, HTYLCV2, HTYLCV3 and HTYLCV4 secreting 

monoclonal antibody specifying TYLCV virions were provided by Dr. S. Winter from 

DSMZ, Braunschweig, Germany. These cells were individually cultured and their 

supernatants were subjected to affinity purification using Protein A matrix. Around 4mg of 

purified antibodies were obtained from one litre of hybridoma culture supernatant. These 

monoclonal antibodies were used for their binding activities against recombinant fusion CP. 

Western blotting and ELISA assays showed that only MAb HTYLCV1 had high specificity 

and reactivity with entire CP fusions, but it did not recognize NCP protein which suggests that 

its corresponding epitope is not present in the amino-terminal. The high binding activity of 

HTYLCV1 against denatured CP in Western blotting suggests the epitope in question is 

linear. The carboxyl half of CP in begomoviruses contains highly conserved amino acids and 

most variation takes place in their amino terminal (Harrison et al., 2002). This MAb could, 

then, present a good choice for detection of several begomoviruses in infected plant material 

by immunoassays. The SDS-PAGE analysis of purified MAbs showed two major bands of 

approximately 55 and 26 kDa corresponding to the mouse heavy and light chain, but 

interestingly the HTYLCV1 heavy chain was smaller than others (Figure 19).  

 

IV.6  Cloning of specific scFv fragments from hybridoma clones 

To generate scFv from the hybridoma clones, the total RNA was extracted from hybridoma 

cells and used to generate cDNA. The isotype of MAb heavy and light chains were initially 

determined by ELISA using specific antibodies recognizing different constant regions. All 

constant regions of heavy and light chains belonged to IgG2b and κ groups, respectively 

(Figure 20-A). cDNA templates were then constructed using COH32 and MuPD31 primers by 

reverse transcriptase. The heavy and light variable regions were amplified individually using 

degenerate primers from cDNA template and cloned into pHENHI vector following the same 

strategy used for the construction of ARep phage library. Ten clones from each cloning 

reaction were randomly selected and sequenced. The sequencing results indicate some 

variations among the variable domain sequences obtained from identical hybridoma lines. It 

has been shown that aberrant mRNAs transcribed from rearranged, but non-functional, heavy 

and light chain genes in the hybridoma cells cause major difficulties for obtaining specific 

sequences. Furthermore, the adventitious templates are preferentially amplified over the 

complete ones by specific primers for the variable regions of antibody genes and may greatly 

dilute the desired antibody sequences (Ostermeier and Michel, 1996). After synthesis of a 
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functional imuunoglobulin molecule, the rearrangement process in the corresponding loci is 

terminated while the second allele of the B-cells with aberrant rearrangements produces many 

non-binder transcripts. As such, both functional transcripts producing mature immunoglobulin 

chain and aberrant mRNA containing stop codons or frameshifts are obtained. Some 

hybridoma lines are developed by fusion of myeloma cell with more than one B-cell that 

produces both functional and non-functional heavy and light chains. These in-frame but non-

specific sequences can not be distinguished from the binding chain by sequencing (Cabilly 

and Riggs, 1985; Yamanaka et al., 1995; Ostermeier and Michel, 1996; Krebber et al., 1997). 

Sequencing results indicate that some variation among VH and VL sequences raised from 

identical clones took place primarily in framework regions 1 and 4. Some clones showed a 

few nucleotide changes within the middle segments of variable regions. It seems that the 

former variation arises from degenerate primes used for amplification of variable domains 

while the latter is the result of PCR error normally occurring in amplification. These results 

imply each hybridoma line contains a unique template which is responsible for production of 

functional immunoglobulin transcript.   

While many differences are present in frameworks 1 and 4, specific clones with high binding 

activity to corresponding antigen should be selected. To select such functional clones, 

experiments like antigen binding activity of produced antibody have been successfully 

recommended (Krebber et al., 1997). The framework regions make up the conserved β-sheet 

domains which are responsible for the main-chain conformation of the CDRs and the 

interchain interactions responsible for bringing domains together (Chothia et al., 1985). The 

framework residues have been demonstrated to influence the conformation of CDR loops and 

thereby alter binding characteristics (Foote and Winter, 1992). In many cases, PCR-induced 

sequence changes in the framework regions resulted in impaired antigen binding, poor 

production yield and decreased thermodynamic stability (de Haard et al., 1998).  Since 

HTYLCV-1, HTYLCV-2 and HTYLCV-3 lack binding activity against recombinant CP, 

traditional phage display approach is unable to select specific clones. Selection of clones was 

carried out based off comparison to other similar sequences and to their corresponding groups 

and those harbouring preserved residues with highest similarity to its group were selected and 

used to generate scFv. Alignment results of VH and VL nucleotide sequence (Table III-5) 

showed that most similarities are in the VH fragments, as three out of four belonged to the 

IGHV5 group while the VL fragments were distributed among 3 groups. 

Sequence comparison of VH fragments raised from four different clones revealed that VH-

HTYLCV1 is considerably smaller than the other clones. This is in consensus with SDS-
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PAGE results of purified MAbs (Figure 19) indicating lesser molecular weight of the 

HTYLCV1 heavy chain. In addition, agarose gel electrophoresis results (Figure 23) confirmed 

that amplified VH fragments have a shorter VH-TYLCV1 length. The alignments of nucleotide 

sequence of VH-HTYLCV1 with IMGT (http://imgt.cines.fr/IMGT_vquest/) and KABAT 

(http://www.ncbi.nlm.nih.gov/BLAST/) databases revealed a 39 bp deletion took place after 

position 281 located within FR 3 and CDR3 downstream from the original AUG start codon 

in NcoI site. Sequencing data from different clones harbouring the VH-TYLCV1 showed the 

same situation - indicating deletion was not introduced during amplification of variable 

regions.  Furthermore, amino acid alignments indicate their sequences after the deletion site 

are no longer similar to other members of the group and following on the same frame led to a 

stop codon at position 366 in linker region (Figure 24). These results indicate a probable 

frameshift within VH-HTYLCV1. To overcome this problem, based off alignments results, 

two strategies were attempted (Figure 24). In the first, the frame was modified by deletion of 

one A at position 258 within framework region 3 using site directed mutagenesis kit and the 

new fragment was named VH-HTYLCV1-1. The sequence of the heavy chain variable region 

anti-DNA quadruplex antibody (AAC35990.1) (Brown et al., 1998) in the database, with 95% 

homology, had most similarity to this sequence. As an alternative, the frame was restored by 

deletion of one A at position 296 within the framework region 4 and it was named VH-

HTYLCV1-2. It had more similarity to the sequence of anti-activating transcription factor 1 

Ig variable heavy chain (AAC40156.1) (Bosilevac et al., 1998) with  95% homology.  

To generate entire scFvs, all VH fragments were cloned into corresponding pHENHI-VL and 

new constructs were named pHENHI-HTYLCV1-1, pHENHI-HTYLCV1-2, pHENHI-

HTYLCV2, pHENHI-HTYLCV3 and pHENHI-HTYLCV4. These constructs were 

transformed into HB2151 strain of E. coli followed by periplasmic expression. Blotting 

analysis confirmed integrity of periplasmic scFv fragments expression with expected 

molecular weight between 27-30 kDa (Figure 26). 

The binding activity of produced scFv fragments against recombinant CP was carried out by 

ELISA and Western blotting. These results indicated that scFv-HTYLCV2, scFv-HTYLCV3 

and scFv-HTYLCV4, like their MAbs precursors, could not bind to fusion CP. Despite high 

binding activity of MAb HTYLCV1, the scFv-HTYLCV1-1 showed low specificity. The 

reason for low specificity of scFv developed from MAb-HTYLCV1 is unclear. It could be due 

to miss-folding of variable fragments in absence of constant regions or, probably, that the 

right frame has not been restored after modification procedure. 
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IV.7  Expression and characterization of recombinant proteins in transiently 

transformed plants 

DsRed is a red-emitting auto-fluorescent protein isolated from reef corals (Discosoma sp.) 

possessing an excitation peak wavelength (553 nm) just above the excitation peak of 

chlorophyll (Matz et al., 1999; Matz et al., 1999). It emits at wavelength (600-620nm) 

different from that of GFP (500-530nm). The different emission colour makes it valuable for 

in vivo multi labelling experiments, allowing co-monitoring and co-expression of different 

fusion proteins (Rodrigues et al., 2001). For this purpose, the C1 gene was cloned into 

pTRAkt plant expression vector under control of the 35S promoter as an N-terminal fusion 

with the DsRed gene. The N-terminal fusion of C1 guarantees that all the fluorescence will be 

a result of the fusion expression and not the DsRed alone. The resulting pTRAkt-C1-DsRed 

was sequenced and used for transformation into GV3101 strain of A. tumefaciens. Ten 

independent recombinant colonies were screened for presence of insert by colony check PCR 

using pSS specific primers but no positive clone harbouring the construct was identified. The 

transformation was repeated several times but still no transformed clone was recovered. This 

may indicate toxic activities of fusion protein for agrobacterium cells. The Rep NTP binding 

domain (P-loop) could interfere with agrobacteria growth (Gronenborn, unpublished data). To 

remove amino acids within the Rep NTP binding domain, the pTRAkt-C1-DsRed construct 

was digested by EcoNI/SfiI and 294 nucleotides placed between 629-926 bps were cut out 

followed by modification and blunt end ligation. The new construct, pTRAkt-DC1-DsRed, 

was used for agrobacterium transformation. The PCR check results indicated the presence of 

construct in the recombinant agrobacteria cells.  

For cytosolic expression, the scFvs specifying Rep and/or TYLCV virion plus scFv-RWAV 

genes were cloned into pTRAkt vector, without any additional tags, under the 35S promoter. 

To visualize produced scFvs inside the cells, the green fluorescent protein (GFP) was used as 

a fusion partner. The GFP recovered from the jellyfish Aequorea victoria has widespread 

utilization for localization studies and identification of protein interactions and function. The 

GFP consists of 238 amino acids, with a total molecular weight of about 27 kDa. GFP does 

not influence the biological behaviour of its fusion partners (such as scFv), and that vice 

versa, GFP is not effected by other proteins fused to it (Hink et al., 2000; Lu et al., 2005). The 

GFP is a cytoplasmic protein with high stability, solubility, intrinsic fluorescence which can 

be expressed and is correctly folded within the reducing condition of cytosol (Casey et al., 

2000). Insertion of antibody binding loops to a particular stable form of GFP created an 

intrinsically fluorescent affinity reagent, fluorobody, combining the advantages of antibodies 
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(high affinity and specificity) and with those of GFP (stability and solubility) (Zeytun et al., 

2003). The scFv-GFP fusion can be produced as a functionally active protein inside the 

cytoplasm of prokaryote (Casey et al., 2000; Schwalbach et al., 2000) and eukaryote (Peipp et 

al., 2004) cells. The pTRAkt-ScRep1-GFP and pTRAkt-ScRep2-GFP constructs were made 

for expression of scFv-ScRep1 and scFv-ScRep2 as N-terminal fusion with GFP protein. This 

fusion ensured that all visualized green fluorescence resulted from the scFv-GFP fusion and 

not form native GFP.  

To target scFv into the nucleus, ´´SV40 T antigen`` nuclear localization signal (PKKKRKV) 

(Kalderon et al., 1984) was introduced to the amino terminal of scFv-ScRep1, scFv-RWAV 

and scFv-ScRep1-GFP. The nucleus provides a reducing environment that may interfere 

correct folding of antibody fragments (De Jaeger et al., 2000). It has been proven that anti-Tat 

scFv fragment could be effectively localized and acted against corresponding antigen within 

the nucleus of eukaryotic cells (Mhashilkar et al., 1995). The nucleus targeted scFv could be 

applied for immunomodulation of abnormal proteins within the nucleus (Hink et al., 2000). 

Nuclear targeting of scFv specifying plum pox virus (PPV) replicase has been successfully 

used for reduction of viral infection in transgenic N. benthamiana  (Esteban et al., 2003).  

The pTRAkt-ScRep1, pTRAkt-ScRep2, pTRAkt-RWAV, pTRAkt-HScCP2, pTRAkt-

HScCP3, pTRAkt-HScCP4, pTRAkt-NLS-ScRep1, pTRAkt-NLS-RWAV, pTRAkt-ScRep1-

GFP, pTRAkt-ScRep2-GFP and pTRAkt-NLS-ScRep1-GFP constructs were transformed into 

Agrobacterium cells by electroporation. Recombinant agrobacteria colonies harbouring 

corresponding plasmids were selected following PCR check using pSS primer and cultured in 

YEB medium supplemented with kanamycin, rifampicin and carbencilin antibiotics. Transient 

expression of recombinant proteins was carried out by vacuum infiltration and/or injection to 

tobacco leaves. The plant extracts were analyzed four days later. 

Agroinfiltration of tobacco leaves with DRep-DsRed caused severe necrotic local lesions at 

the infiltrated area (Figure 29). It has been shown that expression of recombinant geminivirus 

Rep in N. benthamiana plants causes hypersensitive response (HR) associated with local 

necrosis and a systemic burst of hydrogen peroxide production (van Wezel et al., 2002; Selth 

et al., 2004). The middle portion of the ACMV Rep, amino acids 119–179, is essential for 

induction of the HR phenotype. Another two regions of Rep, amino acids 1–85 and 86–118, 

have various effects on the Rep-mediated phenotype (van Wezel et al., 2002).  

The extremities areas immediately outside of the necrotic lesions were visualised by 

fluorescent microscopy. Most of the infiltrated cells showed DRep-DsRed fusion protein 

expression as a red fluorescence localized predominantly within the nucleus compartment 
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(Figure 30-B) although some fluorescence was occasionally observed in the cytoplasm of 

some cells. In contrast, DsRed fluorescence in its native form, was not particularly restricted 

to the nuclei of cells, but occurred throughout the cytoplasm (Figure 30-A). The molecular 

weight of DRep-DsRed is 55.3 kDa, above the size for efficient passive nuclear diffusion 

(Bonner, 1978; Ribbeck and Gorlich, 2002). It seems that nuclear targeting behaviour of Rep 

mediated driving of the DRep-DsRed fusion protein into the nucleus. Some geminivirus 

proteins such as Rep need to be targeted to the nucleus and its components to favour viral 

encapsidation and replication (Kim et al., 2004). A nuclear localization domain has been 

identified within geminivirus Rep (Hefferon et al., 2006). Our observations are compatible 

with other results that confirmed localization of Rep-GFP fusion protein took place mainly 

within the nucleus (Hong et al., 2003; Hefferon et al., 2006).  

Transient expression of GFP fusion scFvs were accomplished by infiltration of tobacco leaves 

with recombinant agrobacteria harboring ScRep1-GFP1, NLS-scFv-ScRep1-GFP and scFv-

ScRep2-GFP constructs. The expression and localization of scFv-ScRep1-GFP1, NLS-scFv-

ScRep1-GFP and scFv-ScRep1-GFP2 fusion proteins in transiently transformed tobacco 

leaves were visualized by fluorescent microscopy. All fusions were successfully expressed 

and localized in the cytoplasm and nucleus (Figure 31 A-D). Localization patterns of scFv-

ScRep1-GFP1 and NLS-scFv-ScRep1-GFP fusion proteins were similar, which may indicate 

the NLS tag has no effect on nuclear targeting and scFv fusions could passively cross the 

nuclear membrane. Previous studies have shown the successful expression and localization of 

some scFv-GFP fusions within the cytosol of transiently transformed tobacco cells (Zakri, 

unpublished data).  

Tobacco plants transiently expressing scFv-ScRep1, NLS-scFv-ScRep1, scFv-RWAV, NLS-

scFv-RWAV, scFv-ScRep2, scFv-HScCP2, scFv-HScCP3 and scFv-HScCP4 proteins were 

analyzed to detect scFv fragments in crude extract by blotting assays. The results showed that 

the scFv-ScRep1, NLS-scFv-ScRep1, scFv-ScRep2 accumulated at detectable levels within 

the tobacco leaves 4 days after infiltration (Figure 32). These scFv fragments had been 

selected from phage display libraries but other scFv fragments constructed from hybridoma 

clones were not produced in detectable level. These results confirm that the scFv 

accumulation capacity within the cell is highly dependent on the properties of the expressed 

scFv fragment. Intrinsic properties of scFv fragments determine scFv stability in the reducing 

conditions of cytosol and its ability to overcome the entropic destabilization of scFv protein 

folding caused by the absence of disulphide bridge formation (Frisch et al., 1996; De Jaeger et 

al., 1999; Ewert et al., 2003). While the scFv fragments engineered from hybridoma cell lines 
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have been selected based on the activity of the complete antibody, phage display selection 

provide high pressure needed for enrichment of functional scFv fragments with more stable 

scaffolds (De Jaeger et al., 2000; Worn and Pluckthun, 2001; Prins et al., 2005). The results 

confirm accumulation of scFv-ScRep1 and scScRep2 without disulfide bond formation in the 

cytosol. The highly conserved intra-chain disulphide bonds are one of the main structural 

features of immunoglobulins and are critical factors in the correct folding of the native 

antibody domain structures. Generally, the scFv stability and functionality is impossible 

without disulphide bond formation, but some antibody scaffolds can tolerate the deletion of 

the disulphide bridge and keep their stability and functionality (Glockshuber et al., 1992; 

Frisch et al., 1996). Several antibodies in the Kabat databases lack disulphide bridge in their 

structure but are still functional (Rudikoff and Pumphrey, 1986; Frisch et al., 1996; Proba et 

al., 1997). Sometimes addition of stabilizing amino acids improves the functionality of 

specific immunoglobulin lacking disulphide bonds (Frisch et al., 1996). While many scFv are 

accumulated at low levels, targeting them into the ER could improve their accumulation 

(Artsaenko et al., 1995; Rosso et al., 1996).  

To determine functionality of tobacco expressed scFv, the crude extract of leaves transiently 

expressing scFv-ScRep1, NLS-scFv-ScRep1, scFv-ScRep2, scFv-ScRep1-GFP and scFv-

ScRep2-GFP were applied for detection of recombinant Rep by ELISA and/or Western blot 

assays. The results showed that crude extracts containing scFv-ScRep1, NLS-scFv-ScRep1 

and scFv-ScRep2 could specifically bind to recombinant fusion Rep proteins but scFv-

ScRep1-GFP and scFv-ScRep2-GFP failed to do so (Figure 35). These results provide further 

evidence to verify correct folding of scFv-ScRep1 and scFv-ScRep2 in reducing conditions of 

cell with antigen binding activities. These scFvs introduce antibody fragments with a 

framework well adapted for cytosolic expression. It is shown that scFv800E6 was efficiently 

produced in the cytosol and remained functional for binding to its corresponding antigens 

(Lombardi et al., 2005). 

Further investigation to determine in vivo binding activities of scFv-Screp1 and scFv-ScRep2 

were performed. scFv-Screp1-GFP and scFv-ScRep2-GFP fusions were individually co-

expressed transiently with DRep-DsRed in the infiltrated tobacco leaves. The fluorescence 

microscopy was again performed 4 days after infiltration. As shown Figure 36 and 37, the 

expression and localization of GFP and DsRed fusions happened inside the cells. Some 

identical cells presented co-localization of both fusions. It is, however, difficult to determine 

if interaction between both fusion proteins is occurring at these loci.  
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IV.8   Generation and characterization of stable transformed N. benthamiana plants 
 
Transgenic tobacco (N. benthamiana) plants were generated by the leaf disc transformation 

procedure with agrobacteria harbouring pTRAkt-ScRep1, pTRAkt-NLS-ScRep1, pTRAkt-

RWAV, pTRAkt-HScCP2, pTRAkt-HScCP3, pTRAkt-HScCP4 and pTRAkt-ScRep1-GFP 

constructs. The regenerated plants were selected on MS medium containing kanamycin, 

transplanted into soil and kept under high humidity for next 2 weeks. The corresponding 

regenerated tobacco plants expressing ScRep1, NLS-ScRep1, RWAV, HScCP2, HScCP3 and 

HScCP4 proteins were briefly named SR, NSR, RW, HSC2, HSC3 and HSC4, respectively.  

Transgenic T0 tobacco plants were grown for 4-6 weeks in greenhouse and self-pollinated for 

next generation (T1) establishment. Most of rooted SR, NSR, RW and HSC2 tobacco lines 

successfully grew in soil and in comparison to wild type plants and did not show unusual 

appearance relative to production of transgene. However, most of the rooted T0 HSC3 (23 out 

of 30 plants) and HSC4 (26 out of 30 plants) lines failed to grow normally in soil and died 1-2 

weeks after transplantation into the soil. The fact that we were unable to regenerate plants 

expressing HScCP3 and HScCP4 proteins may be explained by deleterious effects that 

constitutive over-expression of active transgene probably has on the cell and lead to abolish 

normal growth of relative lines. In some cases, harmful side effects of transgene peptides 

which are significantly different from the identified natural versions have been identified 

(Altpeter et al., 2005). Insertion of T-DNA in transgenic plants may alter function or 

expression of other genes involved in all aspects of plant biology (Wilson et al., 2006). 

Usually, the unexpected phenotypes in transgenic plants can be affected either by pleiotropic 

effects of integrated DNA on the host genome or by side effect of various stresses related due 

to new researches (Filipecki and Malepszy, 2006). 

To study accumulation of transgene proteins within the transgenic plants, crude leaf extracts 

were prepared (II.2.8.5) and analyzed by immunoblotting experiments. These results indicated 

that SR lines expressing scFv-ScRep1 protein accumulated detectable amount of protein 

within the cytosol (figure 38), whereas independent RW, HSC2, HSC3 and HSC4 transgenic 

lines failed to accumulate detectable amount of relative transgene in the cell. Further PCR 

analysis using purified total DNA confirmed presence of transgene sequence within non 

accumulative T0 plants. It seems that these scFv that had been already raised from hybridoma 

clones, could not efficiently fold within the cytosol. It has long been proved that accumulation 

of expressed scFv in the cytosol exclusively depends on its intrinsic properties (Conrad and 

Fiedler, 1998; De Jaeger et al., 1999). Usually, scFv fragments developed form phage display 

libraries accumulate in higher level in comparison to those made from hybridoma clones. 
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Although the cytosol is a suitable compartment in which to inhibit virus replication, targeting 

of virus specifc antibodies to the secretory path way may block or at least reduce viral 

infection (Firek et al., 1993; Voss et al., 1995; Schouten et al., 1996; Fecker et al., 1997). 

Together these results confirm those obtained from transient expression analysis (III.6.2.1). 

The Western blot analysis results revealed varying accumulation of ScRep1 protein with the 

expected size of 30 kDa within the cytosol of SR lines (figure 38). These results indicated that 

SR15, SR 22 and SR27 lines produced the highest amount of transgene proteins which are 

comparable with those obtained in the transient agroinfiltration. Also these results showed 

that some SR lines (SR 17) accumulated low amount of transgene within the cell and others 

like SR6 failed to accumulate detectable amount of protein. It has long been identified that 

independent transgenic lines vary in transgene expression. These variations could be caused 

either by different position of T-DNA integration or copy number of insertion in the plant 

genome (Hobbs et al., 1990; Filipecki and Malepszy, 2006). High level production of 

transgene protein in the cell is preferable since sufficiently amounts of scFv are needed for 

blocking the function of desirable antigen (De Jaeger et al., 1999).   

The immunoblotting experiments of SRG lines leaf extracts failed to detect expressed 

ScRep1-GFP fusion protein. Using of polyclonal α-GFP antibody in this assay yeilded many 

non-specific bands on the membrane making it impossible to discriminate specific bands from 

others. As an alternative way, presence of ScRep1-GFP in T0 SRG lines was measured by 

their fluorescence ability. 

Altogether these results indicate that the transient state of transgene protein accumulation in 

infiltrated leaves is not always comparable to results after stable integration, but it verifies 

suitability of transient expression to show the highest levels that could be obtained by stable 

transformants. 

  

VI.9  Challenging of T0 transgenic tobacco lines with TYLCV 

The protective effect of expressed scFv fragments in T0 tobacco lines were directly assayed 

through inoculation of these plants with TYLCV agroinfectious clone. The great potential of 

antibody mediated resistance approach using recombinant antibodies, such as scFvs, to 

prevent viral infections has already been verified. While application of this approach had been 

limited for plant viral diseases (Tavladoraki et al., 1993; Voss et al., 1995; Schillberg et al., 

2000), but its feasibility against human viruses has been proved (Marasco, 1995). In the most 

cases coat proteins are targeted to obtain resistance against viral disease in plants (Tavladoraki 
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et al., 1993; Voss et al., 1995; Fecker et al., 1996; Schillberg et al., 2000; Schillberg et al., 

2001).  

Due to a potential negative effect of viral infection on reproduction processes of tobacco 

plants, the putative independent T0 lines were first self pollinated and allowed to grow till 

mature seeds were obtained. Inoculation of wild type and transgenic T0 lines was carried out 

with agroinfectious clone harbouring pBIN19-2TYLCV-Ir construct. The TYLCV 

agroinoculation is a simple and stightforward way for infection of tobacco plants and 

subsequent assays to study its protective ability against the viral disease (Bendahmane and 

Gronenborn, 1997). For this aim, old branches were removed and with 5-6 leaves remaining 

and inoculated through injection of 10 µl of agrobacterium suspension (OD600 ~ 0.05) into 

the petiol and stem of young branch. It was shown that following the agroinoculation of 

geminiviruses,  a T-DNA containing a dimmer of the viral genome is transfered into plant 

cell, where one copy of viral DNA is released and replicated as a circular double stranded 

form (Stenger et al., 1991). The inoculated plants were weekly inspected for symptom 

developments. Early symptoms including leaf curling and reducing of size of new emerged 

leaves were revealed on non-transgenic and sensitive transgenic plants 3-4 weeks after 

inoculation (Fig. 39). Scoring of disease symptoms were continued for 5 weeks and those 

with no clear or reduced symptoms in comparison to wild type plants were selected and used 

for subsequent evaluations.  

The accumulation of viral DNA and presence of virus particles in the inoculated plants were 

assayed through PCR, Southern blotting and TAS-ELISA analysis.  

The PCR results showed its worth for detection of viral DNA within the infected plants 

through either purified total DNA or crude extract of tobacco leaves. This method has been 

accepted as a rapid, specific, reliable, and sensitive method for detection of geminiviruses in 

infected plants (Gharsallah Chouchane et al., 2006; Maruthi et al., 2007). It was able to detect 

virus even in the symptomless samples that were assigned as a negative by conventional 

assays. Comparative PCR analysis using purified DNA and crude leaf extract proved 

feasibility of later way for detection of viral DNA. This could lead to a decrease of time 

needed for purification of total DNA. However, in some cases PCR analysis using leaf extract 

failed to detect viral DNA within the infected plants. Apparently, this detection system is 

limited by low DNA template concentration and presence of inhibiting components in the 

plant leaf extract.  

To detect and quantify virion particles in the inoculated plants, the TAS-ELISA analyses were 

accomplished. The results showed that this application is only useful for detection of infected 
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plants with severe symptoms and high virus concentration, but it failed to discriminate healthy 

plants from those with mild symptom containing low viral titres. These results are 

contradictory to reports that used TAS-ELISA as an efficient way to distinguish and 

comparison of TYLCV concentration among individual plants (Duan et al., 1997; Fuentes et 

al., 2006). The difficulty for detection of TYLCV virions via this system may be caused by its 

low concentration within the crude leaf extract. It is shown that TYLCV is a phloem limited 

geminivirus and is not present in the mesophyl (Rojas et al., 2001). This phenomenon could 

lead to drastically decrease detectable virion particles within the leaf extract. To improve 

detection system, several attempts like using higher concentration of antibodies and different 

leaf extraction methods without clear effects were accomplished.  

To determine viral DNA accumulation within the inoculated plants, Southern blotting 

hybridization analysis was performed. Many previous reports clearly showed feasibility of 

this assay as a simple method to determine viral DNA accumulation (Bendahmane and 

Gronenborn, 1997; Abhary et al., 2006; Shivaprasad et al., 2006). For this purpose, total DNA 

from inoculated plants were extracted and subjected to agarose gel electrophoresis. The 

separated DNA fragments were blotted onto positively charged membrane and hybridized 

with digoxygenin labelled probe. The results showed its great worth for detection of different 

viral DNA conformations e.g. open circular, linearized and supercoiled dsDNA as well as 

ssDNA structure within the infected plants (figure 42). Since S1 nuclease enzyme is able to 

degrade ssDNA molecules, it was applied to distinguish ssDNA from dsDNA molecules. 

Upon S1 nuclease treatment expected ssDNA fragments were no longer detectable (Fig. 44).  

Assessment of resistance status within the inoculated plants was evaluated 5 weeks after 

inoculation. This evaluation was initially accomplished by disease symptom. The 

complementary Southern hybridization analysis confirmed reduction or complete suppression 

of viral DNA replication in the symptomless plants. The samples with absence or remarkable 

reduction of disease symptoms were assigned as resistant plants.  

As shown in table III-6, among the transgenic tobacco plants, SRG lines expressing ScRep1-

GFP fusion protein revealed the highest resistance (28%) against TYLCV challenge as 7 out 

of 25 lines remained symptomless 5 weeks after inoculation. In the same time SR and RW 

lines presented 8 percent resistance against TYLCV infection while NSR, HSC2, HSC3 and 

HSC4 lines as well as non-transgenic plants were totally susceptible and showed severe 

symptoms.  
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VI.10   Challenging of T1 transgenic plants against TYLCV 

The seeds obtained from self pollinated T0 lines were individually grown in vitro with 

kanamycin selection. Transgenic seedlings were screened based on their tolerance to 

antibiotic and those with 3-4 small leaves transferred to soil and assigned as individual T1 

progenies. Alternatively, the SRG T0 seeds were directly sown into soil and T1 transgenic 

plants expressing ScRep1-GFP fusion protein were selected via fluorescent microscopy.  

Table III-7 shows the total number of T1 trangenic progenies per number of cultured seeds. 

The seeds obtained from T0 SR-22 line germinated poorly in MS medium and raised 

seedlings failed to establish in soil and died after 2 weeks. This may be caused by deleterious 

effect of expressed scFv on tobacco plants.  

The N. benthamiana is a very susceptible host for TYLCV infection and virus is able to 

accumulate to high levels within the infected young plants. This could lead to overcome the 

ability of transgenic plants and virus would be able to break the expected resistance. 

Therefore, finding the minimum effective inoculum to infect young tobacco plants is a major 

challenge. Initial experiments by injection of serial dilution of agrobacterium suspension into 

the stem and petiole of wild type tobacco were performed. As an alternative, inoculation of 

tobacco plants was performed by rubbing of a bacterial colony on the wounded surface of 

decapitated stem. These results indicated that the latter method caused lower severity and one 

week delay in appearance of disease symptoms. It seems that using this approach lead to 

optimal inoculum for infection of tobacco plants and is a promising method for TYLCV 

resistance assay on tobacco plants (Gronenborn, unpublished data).  

Out of each transgenic line, 15 individual transgenic plants were selected and subjected for 

agroinoculation. A fresh agrobacterium culture harbouring pBIN19-2TYLCV construct was 

made on petri dishes containing solified YEB medium. Individual plants in 5-8 leaf stage 

were inoculated by removing the stem apex and rubbing of bacteria colony on the wounded 

surface. The excised apices were stored for subsequent molecular analysis. The inoculated 

plants were kept in similar situation and weekly inspected for symptom developments. To 

study the effect of transgene on TYLCV infection and ability of transgenic plants to confer 

disease resistance, the initial evaluation was based on disease symptomology in inoculated 

plants. Early symptoms were revealed 2-3 weeks after inoculation. The sensitive transgenic 

lines as well as wild type plants showed clear symptoms including leaf curling on new 

emerged leaf. Symptom scoring was done during 4 weeks. To evaluate viral DNA 

accumulation within the tobacco plants, symptomless plants as well as symptomatic ones 

were analyzed by hybridization assay. These results indicated that symptomless plants 
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contained no detectable viral DNA. In contrast, plants with severe symptoms also showed 

accumulation of viral DNA in an amount comparable to that of untransformed wild type 

plants. Four weeks after inoculation, some plants with milder symptoms were also obtained. 

Generally, hybridization analysis indicated direct relation between symptom severity and 

accumulation of viral DNA. Therefore, the TYLCV disease symptom status could provide 

confident and direct information about the viral DNA level within the inoculated plants, these 

results are compatible with other report as found similar correlations (Bendahmane and 

Gronenborn, 1997).  

Resistance response against viral infection was evaluated 4 weeks after inoculation. Plants 

with remarkable reducion of disease symptoms or without distinct symptoms were assigned as 

resistant. Hybridization assays, showed that they have substantial reduction or complete 

suppression of viral DNA replication. The table III-7 shows that all T1 progenies obtained 

from SR27, RW14 and RW22 revealed typical TYLCV symptoms. The SRG28 and SRG18 

lines expressing ScRep1-GFP protein showed highest resistance by amount of 40% and 

33.3%, respectively. These results indicate that resistance phenotype is inherited and 

improved through the T1 generation from 28% in T0 to 40% in T1 progenies of SRG28 line.  

Other lines including SRG4, SRG27, SRG34, SRG36 and SRG 42 presented intermediate 

level of protection by amount of 13.3, 20, 13.3, 6.6 and 20 percent resistance against TYLCV 

challenging. 

Hereafter, the protective ability of transgene in the symptomless plants was studied. The 

observation revealed that some lines like SRG28-12 remained symptomless even 7 wpi. 

However, some initially resistant plants like SRG28-4 were unable to prevent TYLCV 

invasion for a long term and virus could overcome resistance mediated by scFv expression. 

Similar results have been reported for transgenic resistant plants challenged with TYLCV 

(Noris et al., 1996; Zrachya et al., 2007). This phenomenon could be explained by high 

replication ability of TYLCV within the N. benthamiana and incomplete inhibition of viral 

replication by scFv which, in turn, could lead to systemic infection and breaking resistance in 

transgenic plants. Concerning to this issue, two other important factors should be considered. 

First, use of the 35S promoter has been shown to have some drawbacks. It is not completely 

constitutive as previously believed, and can produce a mosaic pattern of expression 

(Neuhuber et al., 1994). The fluorescent microscopy results showed that some cells in SRG 

transgenic lines produced no or reduced amounts of ScRep1-GFP fusion protein allowing 

virus replication to occur. Second, the type and dose of inoculum may substantially affect the 
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level of resistance (Anderson et al., 1992). Apparently, use of lower agrobacterium dose may 

be resulted to observe more resistant plants. 

The most promising lines, SRG28 and SRG18, showing higher resistance phenotype were 

selected for subsequent analysis. Quantitative PCR analysis was performed to compare 

amount of transcripts among the selected transgenic lines. These results indicated that plants 

with an elevated ScRep1-GFP transcripts level, like SRG28-12, consistently exhibited a 

higher degree of virus resistance. However, a strict correlation between the amount of the 

transcripts and degree of resistance is difficult to assess. It has been proved that resistance to 

plant viruses in antibody producing transgenic plants depends on the level of antibody 

expression (Biocca et al., 1995). However ability of low levels of cytosolic scFv to give 

highly resistant transgenic plants has been demonstrated for TMV (Zimmermann et al., 1998) 

suggesting that even small amounts of functional antibodies are efficient for virus 

inactivation.  

Alternatively, comparative analses for intensity of fluorescence emission among T1 lines 

expressing ScRep1-GFP fusion protein were carried out. These results indicated that lines 

with higher transcripts level such as G28-12 emitted fluorescent light with higher intensity in 

comparison to those with less amounts of transgene transcripts. Generally, elevated amount of 

ScRep1-GFP transcripts is directly correlated with higher fluorescent intensity emitted from 

transgenic SRG lines. The copy number of foreign DNA integrated to host genome and 

position of integration on  chromosomal loci significantly influence expression level of 

transgene (Finnegan and McElroy, 1994). Hence the variation of fluorescence emission in the 

various progeny lines may also be caused by these effects. 

In addition, fluorescence emission intensity in different leaves of independent SRG plants at 

3-4 leaf stage, was studied. These results indicated increasing rate of fluorescence from upper 

leaves to lower one. It may be caused by post translation modification occurred on expressed 

fusion protein. Similarly, higher accumulation of transgene within the lower leaves of 

transgenic tobacco plants expressing TYLCV Rep protein has been reported (Noris et al., 

1996; Zrachya et al., 2007).  

The data reported here show that transgenic tobacco expressing ScRep1-GFP are capable to 

neutralize TYLCV infection. It is possible that the produced cytosolic scFv fusion protein 

directly interact with newly senthesized viral Rep and block its active site or render the 

structure of the Rep. However, the mode of interaction between this fusion protein and the 

viral Rep requires further investigation. The geminivirus Rep is the only single viral protein 

indispensable for their DNA replication (Orozco et al., 2000). It is a multifunctional protein 
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whose activities comprise, the specific recognition of its cognate replication origin (Jupin et 

al., 1995), the sequence specific DNA cleavage and linkage (Laufs et al., 1995) and an 

ATPase activity (Desbiez et al., 1995). All these essential functions of Rep make it an ideal 

target for obtaining virus resistance by antibody-mediated suppression of its function. 

By contrast, SR transgenic lines expressing ScRep1 alone presented limited ability to inhibit 

viral replication. Comparison of the results obtained from virus resistance assay of SRG and 

SR lines indicate that GFP fusion partner is probably responsible for improvement of 

protective ability in SRG lines. The GFP is a cytoplasmic protein with high stability and 

solubility. It is proved that insertion of antibody binding loops to such a particular stable form 

of GFP create an intrinsically fluorescent affinity reagent, fluorobody, combining advantages 

of antibodies (high affinity and specificity) and with those of GFP (stability and solubility) 

(Zeytun et al., 2003). The loss of protective ability within the T1 SR plants may be caused by 

low expression of scFv within the cells. It is possible that scFv fragment have not been 

accumulated in the plant cells at levels sufficient to completely neutralize the viral infection. 

Due to importance of TYLCV-mediated damage, substantial efforts have been focused to 

obtain virus resistant plants. Some successfully attempted approaches to obtain resistance 

against geminivirus infections involved introducing of natural tolerance loci from wild type 

tomato species into L. esculentum cultivars (Zakay et al., 1990), production of transgenic 

plants expressing an Rep antisense RNA (Bendahmane and Gronenborn, 1997), production of 

siRNA targeted coat protein in transgenic plant (Zrachya et al., 2007), introduction of 

defective interfering DNAs (Stanley et al., 1990) or intron-hairpin RNA derived from viral 

Rep protein (Fuentes et al., 2006) and expression of mutated movement proteins (Von Arnim 

and Stanley, 1992; Hou et al., 2000).  

This study provides the first successful attempt to obtain resistant plants against plant DNA 

viruses via recombinant antibody mediated resistance. This approach could potentially 

provide an effective means for protecting plants against TYLCV infection. The main result of 

this work is reducing of viral replication in tobacco plants expressing the specific fusion scFv 

proteins. So far, all applications of antibody mediated resistance in plants have been 

accomplished against RNA viruses. Of these attempts, the most ones used coat proteins as a 

target to inhibit or decrease viral infection (Tavladoraki et al., 1993; Voss et al., 1995; Fecker 

et al., 1996; Schillberg et al., 2000). Expression of recombinant antibody binding to TMV 

coat protein resulted in reduced susceptibility of tobacco plants against viral infection (Voss et 

al., 1995). Similarly, constitutive intracellular expression of scFv fragment against AMCV 

coat protein lead to resistant N. benthamiana lines with a lower virus accumulation, reduced 
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incidence of infections and a delay in the viral symptom development (Tavladoraki et al., 

1993). Because of high variability of viral coat proteins, and higher accumulation of viral coat 

proteins within the cells, these plants might not result in perfect and broad range resistance. In 

contrast, low accumulation of viral replicase protein within the plant cells provides suitable 

target for obtaining higher resistance through recombinant antibodies against replicases. 

Feasibility of this approach to develop broad spectrum resistance against Tomato bushy stunt 

virus (TBSV) has been verified. Here, tobacco plants expressing scFv against RNA-dependent 

RNA polymerase protein lead to high level resistance against infection with related virus and 

showed varying degrees of resistance against four plant viruses from different genera 

(Boonrod et al., 2004). 
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VI  Appendices 
 

VI.1  List of abbreviations 

°C  degree Celsius 

%  percentage 

A  adenine 

aa  amino acid(s) 

Ab  antibody 

Amp  ampicillin 

ampr  ampicillin resistance 

AP   alkaline phosphatase 

BCIP  5-bromo-4-chloro-3-indolyl phosphate 

bp   base pair 

BSA   bovine serum albumin    

C   cytosine 

CaMV  cauliflower mosaic virus 

Cb   carbenicillin 

CB   coating buffer 

CDR   complementarity determining region 

CH   constant region of heavy chain 

CL   constant region of light chain 

Da   Daltons, g/mol 

DMSO  dimethylsulfoxide 

DNA   desoxyribonucleic acid 

dNTP   deoxynucleotide triphosphate 

DTT   dithiothreitol 

E. coli   Escherichia coli 

EDTA   ethylenediaminetetraacetic acid 

ELISA  enzyme-linked immunosorbent assay 

ER   endoplasmic reticulum 

Fc   fragment crystallizable 

G   glycine 

GAM   goat-anti-mouse (antibodies) 

gm   gram  
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h   hour(s) 

His   histidine 

Ig   immunoglobulin 

KA   equilibrium association constant 

kDa   kilodalton 

kg   kilogram 

Km   kanamycin 

l   liter(s)  

LBA   Luria broth with ampicillin 

M   molarity (mol/L) 

mAb   monoclonal antibody 

min   minute(s) 

mRNA  messenger ribonucleic acid 

MW   molecular weight 

nm  nanometer 

OD   optical density 

PAGE   polyacrylamide gel electrophoresis 

PBS   phosphate buffered saline 

PBST   phosphate buffered saline containing 0.05% (v/v) Tween20 

PCR   polymerase chain reaction 

PTGS    posttranscriptional gene silencing 

rAb   recombinant antibody 

RE  restriction enzyme 

Rif   rifampicin 

rpm   rotations per minute 

RT   room temperature 

scFv   single chain Fragment variable 

SDS   sodium dodecylsulfate 

SOE   splicing by overlap extension 

T   thymin 

Taq   Thermus aquaticus 

T-DNA  transfer DNA 

Tris   trishydroxymethylaminomethane 

U   unit 
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UTR   untranslated region 

UV   ultraviolet 

V   Volt 

VH   variable region of heavy chain 

VL   variable region of light chain 

v/v   volume per volume 

w/v   weight per volume 
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VI.2  Vector maps 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
A) Map of the GST fusion vector (pGEX-5X-3) showing the reading frames and main features. MCS: 
multiple cloning sites, ampr: ß-lactamase ampicillin resistant gene, p tac: promoter induced by IPTG, 
lac Iq: repressor protein coding region, pBR322ori: plasmid replication origin. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Map of the pMAL-c2X vector (6648 base pairs) with its main features. lac Iq: repressor protein coding 
region, maIE: the maltose binding protein coding gene, pBR322 ori: plasmid replication origin fused to 
the lacZα gene. Unique restriction sites are indicated. Arrows indicate the direction of transcription of 
the reading frames. 
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Map of the plant expression vector pTRA-kt. p35S: 35S promoter from CaMV with duplicated 35S 
enhancer, CHS: 5’ UTR of TEV, RB: right border, ColE1 ori: replication origin for E. coli, PK2 ori: 
replication origin for A. tumefaciens, bla: Ampicillin resistance for E. coli / Carbenicillin resistance for A. 
tumefaciens. 
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Map of the pHENHI/pIT2 phagemid vectors. Pel B: leader peptide (pectate lyase gene) that targets the 
expressed protein into the periplasmic space, Amber: TAG stop codon. 
 
Figure 49: Schematic presentation of the vectors used in this study. 
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