
MontiWeb - Model Based Development of
Web Information Systems

Michael Dukaczewski Dirk Reiss
Mark Stein

Institut f. Wirtschaftsinformatik
Abt. Informationsmanagement

Technische Universität Braunschweig
http://www.tu-braunschweig.de/wi2

Bernhard Rumpe
Software Engineering

RWTH Aachen
http://www.se-rwth.de

ABSTRACT
The development process of web information systems is of-
ten tedious, error prone and usually involves redundant steps
of work. Therefore, it is rather efficient to employ a model-
driven approach for the systematic aspects that comprise
such a system. This involves models for the data structure
that shall be handled by the system (here: class diagrams),
various editable and read-only presentations (views) on com-
binations and extractions of the underlying data (here: a
special view language) and ways to connect these views and
define data flow between them (here: activity diagrams).

In this paper, we present the MontiWeb approach to model
and generate these aspects in a modular manner by incor-
perating the MontiCore framework. Therefor we shortly in-
troduce the infrastructure that helps to develop modular
systems. This involves the whole development process from
defining the modeling languages to final code generation as
well as all steps in between. We present the text-based class
and activity diagram languages as well as a view language
that are used to model our system.

1. INTRODUCTION
The development of web information systems is a domain
that is rather well understood. Quite a number of web
application frameworks offer means to implement such sys-
tems using a wide range of approaches in almost every mod-
ern programming language (for an overview, we refer to
[30]). However, most of these frameworks still demand a
vast amount of repetitive and tedious work to implement
similar parts of a web application: usually a datastructure
needs to be implemented following a well-defined and under-
stood scheme, same applies to the persistence mechanisms
- either manually written or by using a framework such as
JPA [13]. In web systems most of the datastructure need
appropriate presentations to provide CRUD (create, read,
update and delete) functionality and page flow needs to be
defined for each web application. Depending on the tech-
nology employed, the effort needed to implement this varies
a lot: frameworks like Apache Struts [2] require the main-
tenance of lengthy and unreadable XML files to specify the
flow between different pages.

In order to develop such a system as efficient as possible
and thus to reduce laborious and error prone work of man-
ually writing the verbose code and configuration files of a
web application framework, the adoption of a model driven

approach [21, 15, 14] is usually a good choice. Abstract-
ing from implementation details, the developer can focus on
specifying the essentials of the system. These are in partic-
ular (1) means to define the data structure of the applica-
tion, (2) ways that enable the developer to define views on
the data structure and (3) the possibility to connect these
views and specify the relevant parts of a complete web ap-
plication. From the models describing these aspects, one
or more code generators can create many necessary parts
of a web-based system. Of course the discussed languages
do not cover every aspect (e.g. complicated authentication
or application specific functionality is not covered), but the
generators and their frameworks used provide a large part
of the basic functionality.

In this paper, we present the web application modeling frame-
work MontiWeb. One of the main targets of this approach
is to come up with running prototypes early and refine those
in an agile way until the final system is developed. There-
fore, the MontiWeb approach does provide defaults. The
discussed generators are in particular connected to target
frameworks and components, that e.g. do provide persis-
tence and a standard authentication mechanism that how-
ever can be replaced and adapted to specific needs.

Generally DSLs can be designed as graphical or text-based
modeling languages. Both have its advantages and disad-
vantages. As we do not focus on graphical frontends, but
on agile usability, we use a textual notation due to the ad-
vantages presented in [11] and the fact that both can be
transformed into eachother.

The rest of the paper is organized as follows: Section 2 intro-
duces the framework we use to implement the web applica-
tion modeling languages, Section 3 describes the languages
in detail, Section 4 presents related work regarding the mod-
eling of web information systems and Section 5 concludes
this paper and gives an outlook of future extensions.

2. DEVELOPING DSLS USING THE MON-
TICORE FRAMEWORK

As already mentioned in Section 1, we use the modeling
framework MontiCore [18, 17, 19] as technological basis for
MontiWeb. MontiCore is being developed at RWTH Aachen
and TU Braunschweig. It allows the convenient specification
of textual modeling languages and provides an extensive in-
frastructure to process these. It is designed for the rapid

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Publikationsserver der RWTH Aachen University

https://core.ac.uk/display/36415457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


development of domain specific languages. A modeling lan-
guage can be defined in an integrated format that combines
both abstract and concrete syntax in one specification.

MontiCore-Grammar

1 grammar Classviews {
2

3 external Annotation;
4 interface ViewElement;
5

6 Classviews = Annotation* name:IDENT
7 "{" Attributes? Views* "}";
8

9 Modifier = (Editor:["editor"] |
10 Display:["display"] | Field:["field"]);
11

12 View = Annotation* Modifier name:IDENT?
13 "{" ViewElement+ "}";
14

15 ViewParameter implements ViewElement =
16 Annotation* Modifier? name:IDENT ";";
17 // ...
18 }

Figure 1: Definition of AST (Metamodel) and con-
crete textual syntax for Classviews

As shown in Figure 1, a grammar in MontiCore starts with
the keyword grammar and is identified by a name (here:
Classviews). Non-terminals are notated on the left hand
side of a production (here: Classviews (6), Modifier (9),
View (12) and ViewParameter (15)) and used on the right
hand side. Keywords are enclosed in double-quotes whereas
named elements have a name in front of a colon, followed
by the type of element afterwards (e.g., name as the name
and IDENT as the type of the predefined terminal (6, 12)).
Rules can have a cardinality (e.g. * (6, 7) for 0 to unlim-
ited occurence, + (13) for 1 to unlimited and ? (7, 12, 16)
for optional occurrence) and alternative rules (e.g. (9, 10),
seperated by the pipe character (|)) are supported. The
keyword external marks certain non-terminals as defined
outside of the actual grammar (3) and needs to be linked to
another non-terminal from a different grammar. The key-
word interface (4) implies that the following element is a
placeholder for arbitrary elements that implement this inter-
face. Here, the non-terminal ViewElement can be replaced
by the non-terminal ViewParameter or further here ommit-
ted non-terminals (indicated by the three dots (17)).

Besides these constructs, MontiCore supports extension mech-
anisms such as grammar inheritance (see [19] for a more
detailed description of this and the abovementioned con-
cepts). From the grammar, several tools for model instance
processing, model-to-model transformation, and code gener-
ation are generated and used within the MontiWeb tool.

3. MONTIWEB - MODELING WEB APPLI-
CATIONS

The difficulties with developing web information systems
manually were briefly described in Section 1. These prob-
lems mainly occur due to the application of different tech-
nologies that are not designed to be used together. For
data persistence, a relational database management system

is the common case. Modern frameworks like Struts [2] or
Tapestry [3] use template engines like Velocity [28], Free-
marker [9] or XML for generating the presentation. The
controller is commonly written in a modern GPL like Java.
Since all these technologies are developed independently but
still describe the same elements on different levels, changes
often need to be made in all of them. For example, if a new
attribute shall be added to the data structure, all three lay-
ers are affected and need to be modified. Furthermore, often
glue code in formats such as XML configuration files need
to be touched as well. Thus, a model driven development
approach can help a lot in these cases: convenient infrastruc-
ture provided, each of these layers can be defined in its own
modeling language and describe the appropriate matter con-
cisely. Therefore, adding one field would mainly concern one
model element and reflect into all other layers automatically.
Here the order in which the models are specified is not im-
portant. Modeling can be an incremental process where the
different models are written in parallel and independently
of eachother and then the consistency between them can be
checked on the model level and be ensured through tested
code generation. The three modelling languages with syntax
and function in the websystem and interaction are described
in the following.

3.1 Data Structure
The central aspect of a web information system is the under-
lying data structure. The language describing it should be
flexible enough to express all necessary aspects and yet easy
and domain specific enough to raise the level of abstraction
above manual implementation.

Three requirements for the data structure description are
set: (1) A type system (2) composability and (3) relationship
between model elements. By a domain specific data type
system special characteristics are assigned to the data. Thus
validation of data, transformation rules, storage mechanisms
and other data-specific functions are easily possible.

Composability of complex data means that one data struc-
ture can be made up from elementary data types as well as
complex ones defined elsewhere in the model. The relation-
ships between the data define mapping properties. Since
class diagrams offer enough expressiveness for data model-
ing and are generally well-known, MontiWeb uses a textual
representation of a subset of UML/P [25, 24] class diagrams
to describe the data structure. In the following we explain
how the chosen modeling language met the three require-
ments for the description of the data structure. An exam-
ple of such notation is shown in Figure 2. It shows the
simplified data structure of a carsharing service that con-
sists of persons and cars. A class diagram begins with the
keyword classdiagram and is named right after (1). It con-
tains class definitions that are notated straight-forward with
the corresonding keyword. The different attributes are de-
fined within the class and consist of a type (e.g. MWString

(4) which represents a domain specific implementation of
a String) and a name (e.g. name (4)). MontiWeb distin-
guishes two types of classes: (a) Base classes - are similar to
primitive types of Java. They do not include any attributes
and are implemented in the target system according to their
own rules. (b) Complex classes - contain attributes of base
classes as well as other complex classes. To model relation-



ships between two classes, associations can be used.

MontiWeb provides two types of associations. Normal asso-
ciations (not shown in the example) in the generated web
system are treated as link between objects, i.e. for an asso-
ciation between class A and B, an object of class A can be
assigned to an object of class B. The second type of associ-
ation is composition. It is denoted by the keyword compo-

sition (17-18) and the two associated classnames (Person
and Car). Associations can have named roles (keeper and
cars), cardinalities (* in this case, the ommission on the
other side implies exactly 1) and directions (here, -> which
implies that a person owns cars that only exists in combi-
nation with the person). In compositions, one class is em-
bedded into the other class, whereas the embedded object is
created simultaneously with its parent object. The compo-
sition represents a part-whole or part-of relationship with a
strong life cycle dependency between instances of the con-
taining class and instances of the contained classes. This
implies that if the containing class is deleted, every instance
that it contains is deleted as well. Using to multiplicity and
direction, other properties of the association or composition
can be defined. In MontiWeb, static selection lists, such as
days of the week, can be defined by enumerations (9), and
can also be considered as a type of attributes. The entire
data structure is distributed over several class diagrams. A
class diagram is an excerpt of the overall system. The source
code in Figure 2 shows a part of the car sharing web system.

Classdiagram

1 classdiagram Carsharing {
2

3 class Person {
4 MWString name;
5 Email email;
6 Number age;
7 }
8

9 enum Brand {AUDI, BMW, VW;}
10

11 class Car {
12 Brand brand;
13 Number numSeats;
14 MWDate constYear;
15 }
16

17 composition Person (keeper)
18 -> (cars) Car [*];
19 }

Figure 2: Datastructure of a Carsharing application

3.2 View Structure
The presentation layer is responsible for rendering the data
and providing the interface between a human user and the
web information system. Since the main focus of MontiWeb
is the domain of data-intensive web applications, the model-
ing language used offers means to conveniently specify data
entry and presentation rather than extensive structures to
detailly describe pretty interfaces. Nevertheless, the gener-
ated layout can be altered by the common means of adjust-
ing the templates for code generation and the inclusion of
Cascading Style Sheets (CSS) and thus fitted to a certain
(corporate) design. From a language to specify views of a

web system, we demand the following: (a) different, pos-
sibly limited views on the underlying data structure must
be specifiable, (b) views are composable, i.e. once defined
views can be composed to and reused in other ones, (c) static
parts (e.g. text or images) can be included in dynamic views
on the data and (d) web specific convenience functionality
like validation, filtering, sorting data etc. can be modeled
with the provided language. Since the UML does not offer
any way to specify such features, we developed a domain
specific Classview language which allows the specification
of different views on a certain class from a class diagram.
Each Classview file includes named views on exactly one
class (and thus fulfilling the abovementioned requirement
(a)). An example of such for class Person is depicted in
Figure 3.

Classviews

1 Person {
2

3 attributes {
4 @Required
5 @Length(min=3, max=30)
6 name;
7 @Required
8 age;
9 }

10

11 display protectedMail {
12 name;
13 @AsImage(alt=false)
14 email;
15 cars;
16 }
17

18 display welcome {
19 text {Welcome to Carsharing Service}
20 include protectedMail;
21 age;
22 }
23

24 @Captcha
25 editor registration {
26 name;
27 email;
28 age;
29 cars;
30 }
31

32 display error {
33 @Warning
34 text {You are not old enough!}
35 }
36 }

Figure 3: Example of Classviews

Within MontiWeb, special functionality (such as the ones
noted above in (d)) is encoded in a syntax that is borrowed
from Java annotations. These begin with an ampersand (@)
and may have additional attribute-value pairs in parens ap-
pended to it (e.g. (5)). For MontiWeb, we already offer
a rich selection of predefined domain-specific annotations -
some of them shown in the example and explained in the
following. The rules within the element attributes (3-9)



apply to all views within the classview file. Here these im-
ply that the attributes name and age are obligatory to en-
ter (@Required (4, 7)) and name may appear 3 to 30 chars
(@Length(min=3, max=30) (5). These result in the gener-
ation of according AJAX verifictaion mechanisms. Subse-
quently, the different views are specified. These begin with
the type of view (here: display (11, 18, 32) for views that
simply output the data and editor (25) that renders the
appropriate input fields for the classes’ attributes) and are
followed by a name. The view protectedMail renders the
name, email address and cars data of a person whereas the
email address is being transformed to an image (caused by
the web-specific annotation @AsImage to avoid automatic
email address harvesting). The welcome view displays some
static text (19), does furthermore include the protected-

Mail view and displays a persons age. This functionality
satisfies the demands (b) and (c) from above. The reg-

istration view is an editor view and thus provides input
fields for name, email and age of a person and – as cars

denotes the composition of car objects within a person –
means to associate such objects to a person. The annota-
tion @Captcha (24) produces a captcha field on this view.
Finally, the view error (32-35) simply consists of a static
text that is rendered in a manner that indicates a warning.

An example of how the registration view could be ren-
dered is shown in Figure 4.

Figure 4: View ”editor”

3.3 Control- and Dataflow
Defining only the data structure and different views on it
suffices for generating basic web information systems that
allow rudimentary data manipulation functionality like en-
tering and saving, showing and updating the data. To create
more complex web applications, we need means to model
both, control and data flow between the different pages or
views respectively. For this purpose, we use a profile of UML
activity diagrams [22] in textual notation. An example of an
activity diagram is shown in Figure 5. It describes a process
of user registration where a user enters his user data and is
then directed to either a welcome page (in case his age is
greater than 18) or an error page (if the age is smaller than
18).

An activity diagram starts with the keyword activity fol-
lowed by the activities’ name (here: UserRegistration).
Actions (introduced by the keyword action (3, 8, 13)) posses

Activity Diagram

1 activity UserRegistration {
2

3 action Registration {
4 out: Person p;
5 view : p = Person.registration();
6 }
7

8 action Welcome {
9 in: Person p;

10 view : Person.welcome(p);
11 }
12

13 action Error {
14 in: Person p;
15 view : Person.registrationError(p);
16 }
17

18 initial -> Registration;
19 Registration.p -> [p.age >= 18] Welcome.p
20 | [p.age < 18] Error.p;
21 Welcome | Error -> final;
22 }

Figure 5: Example of Activity Diagrams

a name as well and include different contents: in (9, 14) and
out (4) followed by an attribute type (Person) and attribute
name (p) specify input and output parameters of an action.
The keyword view (5, 10, 15) indicates the kind of content
of an action. The view itself is referenced by its name and ei-
ther can take an object as argument (10, 15) to initialize the
view or return an object which is assigned to an output pa-
rameter (5). Transitions within an activity are represented
by an arrow symbol (-> (18, 19, 21)) and may contain sev-
eral sources and targets. The keywords initial and final

denote start and final nodes of an activity and the pipe char-
acter (| (20, 21)) depicts alternative flows - with conditions
on the right hand side (19, 20) or as alternative routes to the
final node (21). Object flow is modeled by appending the
parameter name to the action name and for simple control
flow, these parameters are left out.

Besides these notation elements, concepts such as parallel
flow, hierarchical actions (which themselves are specified by
an activity) and roles to which actions can be assigned are
supported as well but omitted in this paper for the sake of
space. Furthermore, different content can be included in an
action. Presently, the inclusion of Java code is supported
along the already mentioned view calls.

3.4 Aggregation (Interaction) of Component
Specific Languages

The described models define three views on a whole system.
They are developed and specified independently from each
other to maintain clean seperation of the different compo-
nents. Nevertheless the model parts have some well-defined
connection points. Elements that are defined in one model
are referenced from another (e.g., views are referenced from
an action). The inter-model-relationships are essential for
completeness and correctness of the whole system and fi-
nally define its behavior.



When developing modeling languages from scratch for parts
of a domain, first and foremost only these parts are con-
sidered. However, although they will work in isolation, they
are often used in combination to model the complete system.
Therefore, the notation of a language must provide means
to connect to other components.

Interaction between modeling languages can be realized with
different mechanisms [26], e.g. by embedding one language
into another like SQL is embedded into a GPL like Java. In
MontiWeb, the inter-language interaction is realized by us-
ing the pipeline pattern [26]. There, the different languages
are independent but still implicitly connected, i.e. the im-
plicit relationships are explicitly checked within the genera-
tion process. The visibility between the MontiWeb models
is depicted in Figure 6. The controller functionality is real-
ized similar to the Application Controller pattern [8]. Here,
class diagrams are completely independent from the rest of
the model. Neither the data presentation (classviews) nor
the flow control (activity diagrams) are of importance for the
data definition and thus can not be referenced from there.
Classviews depend on the data structure as they define ex-
plicit views thereof and contain references (e.g. to class-
names, attribute names and types or association names) to
it. Classviews do not reference activity diagrams, vice versa
activity diagrams reference classviews by name. As the con-
trol flow defines the central logic of a web information sys-
tem, both class diagrams and classviews are referenced from
there. To maintain consistency between these models, inter-
model checks are performed through, e.g. modular symbol
tables. Thus the existence of a referenced view or class can
be verified.

Activitydiagram

Classdiagram Classviews

Figure 6: Models of MontiWeb and their dependen-
cies

4. RELATED WORK
Similar approaches of modeling of web information systems
can be classified into (a) modeling using graphical languages,
and (b) modeling using textual languages.

One graphical modeling tool in the domain of web informa-
tion systems is WebML. Unlike MontiWeb, WebML distin-
guishes two domain segments: (a) data design concerns the
specification of data structures and (b) hypertext design is
used to describe the structure of web pages [6]. Both of these
languages incorporate UML class diagrams. For hypertext
design, predefined classes like Entry for the generation of a
web form or Data to display a class are used. The naviga-
tion structure is depicted by directed associations between

classes. Furthermore, WebML supports a XML based tex-
tual modeling language which lacks tool support. Therefore,
the use of their own graphical modeling tool is favored [5].

UWE (UML-based Web Engineering) [16] follows a similar
approach as WebML. It uses class diagrams for data struc-
ture specification and, like MontiWeb, uses acivity diagrams
to describe the modeling of workflow. UWE’s notation is a
graphical one as well. Like WebML, the UWE models can
be exported in an XML format.

Another tool that uses graphical modeling is AndroMDA [1].
AndroMDA does not have its own editor yet, but uses XMI
as input format which is supported by some UML Editors.
Like MontiWeb, it uses class diagrams for data structure
and activity diagrams for workflow description. AndroMDA
does not offer a specific language to describe the view aspect
of a web information system, but generates it from extra
class diagrams that have to be specified additionally. To
get a working application, all parts have to be provided. A
generation of standard behavior as MontiWeb does is not
supported.

As a textual modeling approach, WebDSL [29] follows a sim-
ilar approach as MontiWeb. The language there is specified
using SDF [12] and Stratego/XT [4] for language transfor-
mation. They use a purely domain specific modeling lan-
guage and is not leaned on UML.

The Taylor project [27] follows an MDA approach to model
and develop JEE applications. The models are created using
Eclipse Graphical Modeling Framework (GMF) [10] and are
stored in XMI format by incorporating EclipseUML [7]. As
notation for data structure, Taylor uses class diagrams, busi-
ness processes are defined by activity diagrams as well. The
navigation structure between pages is specified by a state
machine language where states depict pages and transitions
links from page to page.

Another popular approach for generating web information
systems is Ruby on Rails [23]. Although it is not a pure
model based approach, a prototype application can be gen-
erated using the Ruby on Rails scaffold mechanism. From a
simple model in a Rails-specific notation and a HTML-based
view template language, CRUD functionality and a very ba-
sic controller can be generated. However, unlike MontiWeb,
the focus of Rails is the manual programming of all three
components, aided by extensive web-specific functionality
provided by the language.

The Mod4j (Modeling for Java) [20] project aims at the effi-
cient development of administrative enterprise applications
by employing a model driven approach. Like MontiWeb,
Mod4j seperates the application into its different aspects and
offers a modeling language for each. The Business Domain
Model is represented by an UML class diagram. Page flow is
modeled using a specific Service Model and the presentation
in the application has its own modeling language as well.
Mod4j is based on Eclipse technology and uses XText [31]
for the development of languages.



5. CONCLUSION AND FUTURE WORK
In this paper we described our approach to model and gen-
erate web information systems to tackle the insufficiences
that occur when developing such systems manually. Espe-
cially the difficulties caused by the combination of normally
orthogonal frameworks are approached. Within MontiWeb,
we use three languages for the three main segments of a web
information system. Two of them come from the UML/P,
one language (classviews) is completely new defined. These
languages reflect the requirements of each domain compo-
nent and were adapted to their specific needs.

The currently reached status involves pretty stable languages,
as discussed here, and appropriate generation tools. Fur-
thermore a number of presentation forms for various data
types (such as Date, String etc. are defined). We cur-
rently work on extensions of the provided functionality in
various ways. This includes e.g. components for more fine
grained security, identification and authentication as well as
the possibility to easily integrate predefined (third-party)
components that provide application specific functionality.
We plan to further extend and complete the already used
languages (e.g. include inheritance in class diagrams) and
incorporate new ones to model not yet covered aspects of
a web information system (such as use case diagrams for
requirements modeling). Furthermore, we think of genera-
tion of a modular API to access the generated system via
SOA-services or add SOA-functionality provided by other
servers.

6. REFERENCES
[1] AndroMDA Homepage http://www.andromda.org/.

[2] Apache Struts Homepage
http://struts.apache.org/.

[3] Apache Tapestry Homepage
http://tapestry.apache.org/.

[4] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and
E. Visser. Stratego/XT 0.17. A Language and Toolset
for Program Transformation. Science of Computer
Programming, 72:52–70, 2008.

[5] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling
Language (WebML): a modeling language for
designing Web sites. Computer Networks,
33(1-6):137–157, June 2000.

[6] S. Ceri, P. Fraternali, and M. Matera. Conceptual
modeling of data-intensive web applications. IEEE
Internet Computing, 6(4):20–30, 2002.

[7] Eclipse UML Project
http://www.eclipse.org/modeling/mdt/?project=uml2.

[8] M. Fowler. Patterns of Enterprise Application
Architecture. Addison-Wesley, 2003.

[9] Freemarker Website http://freemarker.org/.

[10] Graphical Modeling Framework Website.
http://www.eclipse.org/gmf/.

[11] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and
S. Völkel. Textbased Modeling. In 4th International
Workshop on Software Language Engineering, 2007.

[12] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers.
The syntax definition formalism SDF - Reference
Manual. Sigplan Notices, 24(11):43–75, 1989.

[13] Java Persistence API http://java.sun.com/javaee/-
technologies/persistence.jsp.

[14] S. Kelly and J.-P. Tolvanen. Domain-Specific
Modeling: Enabling Full Code Generation. Wiley,
2008.

[15] A. G. Kleppe, J. Warmer, and W. Bast. MDA
Explained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003.

[16] N. Koch and A. Kraus. The expressive power of
UML-based engineering. In Second International
Workshop on Web Oriented Software Technology
(CYTED), 2002.

[17] H. Krahn, B. Rumpe, and S. Völkel. Efficient Editor
Generation for Compositional DSLs in Eclipse. In
Proceedings of the 7th OOPSLA Workshop on
Domain-Specific Modeling 2007, 2007.

[18] H. Krahn, B. Rumpe, and S. Völkel. Integrated
Definition of Abstract and Concrete Syntax for
Textual Languages. In Proceedings of Models 2007,
pages 286–300, 2007.

[19] H. Krahn, B. Rumpe, and S. Völkel. Monticore:
Modular development of textual domain specific
languages. In Proceedings of Tools Europe, 2008.

[20] Mod4j Homepage http://www.mod4j.org/.

[21] Object Management Group. MDA Guide Version 1.0.1
(2003-06-01), June 2003.
http://www.omg.org/docs/omg/03-06-01.pdf.

[22] Object Management Group. Unified Modeling
Language: Superstructure Version 2.1.2 (07-11-02),
2007. http://www.omg.org/docs/formal/07-11-02.pdf.

[23] Ruby on Rails Website http://rubyonrails.org.

[24] B. Rumpe. Agile Modellierung mit UML :
Codegenerierung, Testfälle, Refactoring. Springer,
2004.

[25] B. Rumpe. Modellierung mit UML. Springer, 2004.

[26] D. Spinellis. Notable Design Patterns for Domain
Specific Languages. Journal of Systems and Software,
56(1):91–99, Feb. 2001.

[27] Taylor Homepage (http://taylor.sourceforge.net/).

[28] Velocity Website http://velocity.apache.org/.

[29] E. Visser. WebDSL: A Case Study in Domain-Specific
Language Engineering. Technical Report
TUD-SERG-2008-023, Delft University of Technology,
Software Engineering Research Group, 2008.

[30] I. Vosloo and D. G. Kourie. Server-Centric Web
Frameworks: An Overview. ACM Computing Surveys,
40(2):1–33, 2008.

[31] Xtext Homepage http://www.eclipse.org/Xtext/.


