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Tangent-point self-avoidance energies for curves

Paweł Strzelecki∗, Heiko von der Mosel∗∗

June 25, 2010

Abstract

We study a two-point self-avoidance energy Eq which is defined for all rectifiable curves in
Rn as the double integral along the curve of 1/rq. Here r stands for the radius of the (smallest)
circle that is tangent to the curve at one point and passes through another point on the curve, with
obvious natural modifications of this definition in the exceptional, non-generic cases. It turns out
that finiteness of Eq(γ) for q ≥ 2 guarantees that γ has no self-intersections or triple junctions
and therefore must be homeomorphic to the unit circle S1 or to a closed interval I. For q > 2
the energy Eq evaluated on curves in R3 turns out to be a knot energy separating different knot
types by infinite energy barriers and bounding the number of knot types below a given energy
value. We also establish an explicit upper bound on the Hausdorff-distance of two curves in R3

with finite Eq-energy that guarantees that these curves are ambient isotopic. This bound depends
only on q and the energy values of the curves. Moreover, for all q that are larger than the critical
exponent qcrit = 2, the arclength parametrization of γ is of class C1,1−2/q, with Hölder norm of
the unit tangent depending only on q, the length of γ , and the local energy. The exponent 1−2/q
is optimal.

Mathematics Subject Classification (2000): 28A75, 49Q10, 53A04, 57M25

1 Introduction

Imagine a space craft travelling with constant speed along an unknown and possibly quite irregular
closed path Γ in an unexplored territory of the universe. After some time L > 0 the loop is completed at
least once, and the only data the astronauts can measure at time t are the ratios of the squared distance
from any previous position Γ(s), to the distance of the current line of direction `(t) from that previous
position Γ(s), i.e., the quotients

2r(Γ(t),Γ(s)) :=
|Γ(t)−Γ(s)|2

dist(`(t),Γ(s))
∈ [0,∞] for s < t. (1.1)

What can the astronauts say about their path of travel? In other words, how much information about a
closed curve of finite length in Euclidean space is encoded in the relative tangent-point data (1.1)? The
answer is: If the astronauts obtain a finite integral mean of some inverse power of all these data (after
time 2L) they can extract essential topological information as well as explicit smoothness properties
of their path of travel!

∗PS and his research is partially supported by the Polish Ministry of Science and Higher Education grant no. N N201
397737 (years 2009-2012).

∗∗HvdM is partially supported by the DFG grant Mo966/4-1.
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To make this precise we assume from now on that the path Γ ⊂ Rn is a rectifiable curve of finite
length, parametrized by arclength on the circle SL ∼= R/(LZ) of perimeter L. Hence, Γ is a (not nec-
essarily injective) Lipschitz continuous mapping with |Γ′|= 1 a.e. on SL. Geometrically, the tangent-
point function

r(Γ(t),Γ(s)) =
|Γ(t)−Γ(s)|2

2dist(`(t),Γ(s))
=

|Γ(t)−Γ(s)|
2sin<)(Γ′(t),Γ(s)−Γ(t))

,

involving the tangent line `(t) := {Γ(t)+ µΓ′(t) : µ ∈ R} and defined for all s ∈ SL and almost all
t ∈ SL, determines the radius of the unique circle that is tangent to Γ at the position Γ(t) and passes
through Γ(s). (This radius is set to be zero if Γ(t) = Γ(s), and is infinite if the vector Γ(s)−Γ(t) 6= 0
is parallel to the tangent Γ′(t)).

The only assumption in the result indicated above is finiteness of the tangent-point potential

Eq(Γ) :=
∫ L

0

∫ L

0

dsdt
rq(Γ(t),Γ(s))

for some q ≥ 2. (1.2)

Theorem 1.1 (Finite energy path is a manifold). If Eq(Γ) < ∞ for some q≥ 2 then the image Γ(SL) is
a one-dimensional topological manifold (possibly with boundary), embedded in Rn.

In particular, the image curve has no self-intersections, although there is no chance to deduce
injectivity of the arclength parametrization Γ itself, since the integrand depends only on the image
Γ(SL). Take, for example, a k-times covered circle of length L/k, for which the integrand is constant,
r(Γ(t),Γ(s))≡ r0 for all s, t ∈ SL, so that the energy amounts to

Eq(k-times covered circle) =
L2

rq
0

= k2
∫ L/k

0

∫ L/k

0

dsdt
rq

0
= k2Eq(once-covered circle) < ∞.

So the space craft’s course cannot be too wild, since it traces a one-dimensional manifold without
any non-tangential self-crossings. But without further input the astronauts have no clue of how often
they have completed that course. Moreover, in case their path forms a manifold with boundary, say, a
circular arc, there would be an abrupt (and for the crew probably quite noticeable) change of direction
at the endpoints of that arc. Mathematically, one can easily reparametrize the manifold to obtain a new
injective arclength parametrization, which translates to the additional information that the spacecraft
does not pass by any previous position at all, Γ(t) 6= Γ(s) for all t 6= s, which we will assume from
now on.

In light of Theorem 1.1 the tangent-point potential Eq evaluated on closed curves in R3 may
serve as a valid knot energy as suggested by Gonzalez and Maddocks in [12, Section 6], that is, as
a functional separating different knot types by infinite energy barriers. It was shown by Sullivan [26,
Prop. 2.2] that for q > 2 the energy Eq blows up on a sequence of smooth knots converging smoothly
to a smooth curve with self-crossings. (His proof uses the Taylor formula up to order two for the
converging curves, and a uniform bound for the remainders.) As a consequence of our analysis we
generalize this result to continuous curves replacing smooth convergence by uniform convergence
(see Proposition 5.1). Thus Eq for q > 2 is indeed self-repulsive or charge, and hence a knot energy
according to the definition given by O’Hara [16, Def. 1.1], which provides an affirmative answer to
an open question posed in [16, Problem 8.1]. It also turns out that Eq is strong for q > 2: among all
continuous closed curves γ of fixed length L and Eq(γ) < E there are only finitely many knot types,
see Proposition 5.2. This gives a partial answer to a conjecture expressed by Sullivan in [26, p. 184]
(leaving open the case q = 2, and we do not consider links with more than one component). Both these
knot-theoretic results are based on a priori C1,α -estimates for curves of finite Eq-energy, discussed in
more detail later on.
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We will show in addition that two curves, whose Hausdorff-distance is bounded above by an
explicit small constant depending only on the energy values, are in fact in the same knot class. A qual-
itative version of such an isotopy result is well-known in the smooth category; see e.g. [14, Chapter
8], or [2]. Here, however, we have explicit quantitative bounds. Notice also that Hausdorff-distance
alone, no matter how small, does not suffice to separate knot classes;1 bounded Eq-energy is crucial
here.

Theorem 1.2 (Isotopy). For any q > 2 there is an explicit constant δ (q) > 0 depending only on q
such that any two closed rectifiable curves with injective arclength parametrizations Γ1, Γ2, with
finite Eq-energy, are ambient isotopic if their Hausdorff-distance is less than

δ (q)max{Eq(Γ1),Eq(Γ2)}−
1

q−2 .

Our proof of Theorem 1.2 follows closely the arguments of Marta Szumańska who proved in her
Ph.D. thesis a similar result [27, Chapter 5] for a related three-point potential, the integral Menger
curvature

Mp(Γ) :=
∫ L

0

∫ L

0

∫ L

0

dsdtdσ

Rp(Γ(s),Γ(t),Γ(σ))
, p > 3, (1.3)

where R(x,y,z) denotes the circumcircle radius of three points x,y,z in Euclidean space. Essentially
one reduces the isotopy question to that between polygons inscribed in Γ1 and Γ2, whose edge lengths
are solely controlled in terms of the energy. For polygonal knots a similar result is contained in the
work of Millet, Piatek, and Rawdon [15, Theorem 4.2], where instead of (1.3), the polygonal thickness
of the polygons together with their edge length determines the smallness condition on the Hausdorff
distance that guarantees isotopy of two polygonal knots. For general curves, thickness was defined by
Gonzalez and Maddocks in [12] as the smallest possible circumcircle radius R(·, ·, ·) when evaluated
on all triples of distinct curve points. This concept of thickness was used as a tool in variational
applications involving curves and elastic rods subject to various topological constraints; see e.g. [13],
[6], [18]–[20], [10], [11], and has been studied numerically, [7], [8], [1].

The inverse of thickness of a curve Γ can be obtained as limits M
1/p
p (Γ) for p → ∞, or E

1/q
q (Γ)

for q → ∞. In our papers [23, 21, 22] we have studied regularizing, self-avoidance and compactness
effects of several integral energies, including Mp, which involve, vaguely speaking, various bounds
for 1/R understood as a function of three variables, including bounds in Lp, in Lp(X1,L∞(X2)) where
X1 = SL and X2 = SL×SL (or vice versa), and in spaces that resemble the classic Morrey spaces Lp,λ .
In each case we were able to detect similar phenomena: there is a certain limiting exponent for which
an appropriate functional is scale invariant, and above this exponent three sorts of effects take place.
First, curves with finite energy have no self-intersections. Second, these energies serve well as knot
energies allowing for valuable compactness results for equibounded families of loops in fixed isotopy
classes, which is due to the third, the regularizing effect: Curves with finite energy are more regular
than initially assumed.

For the present tangent-point potential Eq we obtain the following regularity theorem, which shows
that the astronauts would not experience any sudden change of direction during their travel.

Theorem 1.3 (Regularity). If q > 2 and the arclength parametrization Γ : SL → Rn is chosen to be
injective, then Γ is continuously differentiable with a Hölder continuous tangent, i.e., Γ is of class

1Consider for example two different torus knots on the surface of a very thin rotational torus; for the classification of
torus knots see e.g. Burde and Zieschang [5, Chapter 3.E].
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C1,1−(2/q). More precisely, for each q > 2 there exist two constants δ (q) > 0 and c(q) < ∞ depending
only on q such that each injective arclength parametrization Γ with Eq(Γ) < ∞ satisfies

|Γ′(u)−Γ
′(v)| ≤ c(q)

(∫ v

u

∫ v

u

dsdt
r(Γ(s),Γ(t))q

)1/q

|u− v|1−2/q (1.4)

for all u,v ∈ SL with |u− v| ≤ min
(
δ (q)Eq(Γ)−1/(q−2), 1

2 diamγ
)
.

The exponent q = 2 is a limiting one here. It is relatively easy to use scaling arguments and
check that Eq(Γ) = ∞ for each q ≥ 2 when Γ parametrizes a closed polygonal curve, but polygons
have finite energy for all q < 2. The resulting Hölder exponent 1− 2/q is reminiscent of the classic
Sobolev imbedding theorem in the supercritical case: the domain of integration is two-dimensional,
and the integrand is related to curvature. For C2-curves the behaviour of 1/r close to the diagonal of
SL × SL (where 1/r might blow up for curves with low regularity) encodes some information about
curvature, i.e. about second derivatives of the arclength parametrization Γ. The point is that we need
no information about the existence of Γ′′ in order to prove Theorem 1.3. A priori, we deal with curves
that are rectifiable only, and even the existence of Γ′ at all parameters cannot be taken for granted.

Note that inequality (1.4) is qualitatively optimal: for curves of class C1,1 the integrand 1/r is
bounded, and (1.4) yields then |Γ′(u)−Γ′(v)| . |u− v|sup(1/r) for u,v sufficiently close; nothing
stronger can be expected as the familiar example of a stadium curve shows. We discuss other examples
briefly at the end of Section 6.

Before describing the main ideas of the proof and the structure of the paper we would like to
mention that while working on generalizations of self-avoidance energies to surfaces in R3, see [24],
which involved a search for suitable integrands, we have realized that Eq is a model energy that might
be the easiest one to extend to the fully general case, i.e. to submanifolds of arbitrary dimension and
co-dimension [25]. This was one of the motivations to write the present note: to lay out in a simple,
relatively easily tractable case all the arguments that should be applicable in much greater generality.

Theorem 1.1 is obtained as a corollary of a slightly more general result, see Theorem 1.4 below.
We first prove a technical lemma (see Section 2) which shows how Eq can be used to control the
behaviour of the so-called P. Jones’ β -numbers,

βγ(x,r) := inf
{

sup
y∈γ∩B(x,r)

dist(y,G)
r

: G is a straight line through x
}

, (1.5)

for small r > 0 and closed balls B(x,r) of radius r with center x. It turns out that if E2(Γ) < ∞ then
βγ(x,r) → 0 as r → 0 uniformly with respect to x, see Lemma 2.3 and the remark at the end of
Section 2. And this is the key point to prove that γ = Γ(SL) is a topological manifold, as we have the
following.

Theorem 1.4. If Γ : SL → Rn is arclength, and the image γ = Γ(SL) satisfies

sup
x∈γ

βγ(x,d)≤ ω(d) (1.6)

where ω : [0,L]→R is a continuous nondecreasing function with ω(0) = 0, then γ is a one-dimensio-
nal submanifold of Rn (possibly with boundary).

The main idea behind the proof of Theorem 1.4 is simple: if the result were false, then we could
find a point x in γ where a triple junction occurs; in a small ball B centered at x we would have (at
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least) three disjoint arcs of γ in a long narrow tube. Two of them would then be very close (i.e., would
leave B crossing ∂B in the same spherical cap at one end of the tube). Observing points of those two
arcs, and using (1.6) on smaller and smaller scales, we are able to obtain a contradiction and eventually
show that there could be no triple junction at x. For details, see Section 3.

By the preliminary results of Section 2, if Eq(Γ) < ∞ for some q > 2, then the control of β numbers
is much better than just (1.6). Namely,

sup
x∈γ

βγ(x,r) . rκ (1.7)

for κ = (q−2)/(q+4) < λ = 1−2/q; the constant in (1.7) depends on Eq(Γ). Applying (1.7) itera-
tively, we find in Section 4 suitably defined cones that contain short arcs of γ and obtain an estimate
for their opening angles, proving that Γ′ exists everywhere and is of class2 Cκ .

Section 5 contains the proof of the isotopy result, Theorem 1.2. In the last section we show how
to bootstrap the initial gain of C1,κ -regularity obtained in Section 4, to the optimal regularity Γ ∈
C1,1−(2/q), and we will establish (1.4). We stress the fact that Inequality (1.4) in Theorem 1.3 provides
a uniform a priori estimate. This can be used in variational applications and to ensure compactness for
infinite families of curves with uniformly bounded energy. Some results of that type have been stated
in [21, 22]; we do not follow that thread here.

Finally, let us say that, at the moment, we have no clue how Γ′ behaves in the limiting case q = 2
(we do not even know if it is defined everywhere for curves with finite E2-energy) but we are tempted
to think that Γ′ has vanishing mean oscillation for q = 2 and that local oscillations of the tangent can
be controlled by the local energy of the curve.

Notation

We write G(x,y) to denote the straight line through two distinct points x,y ∈ Rn. If x = Γ(s),y =
Γ(t) ∈ γ := Γ

(
SL
)
⊂ Rn, then, abusing the notation slightly, we write sometimes G(s, t) instead of

G(Γ(s),Γ(t)).
For a closed set F in Rn we set

Uδ (F) := {x ∈ Rn : dist(x,F) < δ}, δ > 0.

In some places, it will be more convenient to work directly with the slabs Uδ around appropriately
selected lines than to deal with the information expressed only in the language of β -numbers. Finally,
in Section 4 we work with cones. For x 6= y ∈ Rn and ε ∈ (0, π

2 ) we denote by

Cε(x;y) := {z ∈ Rn : ∃ t 6= 0 such that <)(t(z− x),y− x) <
ε

2
} (1.8)

the double cone whose vertex is at the point x, with cone axis passing through y, and with opening
angle ε . All balls B(x,r) with radius r > 0 and center x ∈ Rn are closed balls throughout the paper.

2Let us remark that for an m-dimensional set Σ⊂Rn that is Reifenberg flat with vanishing constant uniform estimates of
β -numbers imply that Σ is a C1,κ -manifold, see David, Kenig and Toro [9] and Preiss, Tolsa and Toro [17]. Here, we have
no Reifenberg flatness a priori – in general rectifiable curves do not have to be Reifenberg flat; in fact we prove it by hand,
using energy bounds leading to (1.7).
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2 Decay of beta numbers

Lemma 2.1. Let Eq(Γ) be finite. There exists a constant c0 = c0(q) > 0 such that if ε < 1/200 and
d < diamγ satisfy

ε
4+qd2−q ≥ c0(q)Eq(Γ) , (2.9)

then for every two points of the curve such that |Γ(s)−Γ(t)|= d we have

γ ∩B2d
(
Γ(s)

)
⊂ U20εd

(
G(s, t)

)
.

In particular,
βγ(Γ(s),2d)≤ 10ε.

For q > 2 we set κ = (q−2)/(q+4).

Corollary 2.2. There exists a δ1 = δ1(q) > 0 such that if Eq(Γ)1/(q+4)dκ < δ1, then

βγ(Γ(s),2d)≤ c1(q)Eq(Γ)1/(q+4)dκ .

Proof of Lemma 2.1. For s, t ∈ SL, d = |Γ(s)−Γ(t)|> 0 and ε > 0 small, we set

Ad(s,ε) := Γ
−1(Bε2d(Γ(s)) = {τ ∈ SL : Γ(τ) ∈ Bε2d(Γ(s))} ,

Xd(s, t,ε) := {σ ∈ Ad(s,ε) : Γ
′(σ)exists with <)(Γ′(σ),Γ(t)−Γ(s)) ∈

[ ε

10
,π − ε

10
]
} ,

Nd(s, t,ε) := Ad(s,ε)\Xd(s, t,ε) .

Note that |Ad(s,ε)| ≥ 2ε2d. The proof has two steps:

• we use the inequality

Eq(Γ)≥
∫

Xd(s,t,ε)

∫
Ad(t,ε)

r−q dσ dτ

to show that Xd(s, t,ε) must be a small subset of Ad(s,ε), so that |Nd(s, t,ε)|& ε2d;

• we argue by contradiction, using energy estimates again, and show the desired inclusion.

Step 1. Fix σ ∈ Xd(s, t,ε) and τ ∈ Ad(t,ε). We shall show that 1/r((Γ(σ),Γ(τ)) & ε/d.
Since |Γ(s)−Γ(t)|= d, the triangle inequality yields

2d > d(1+2ε
2)≥ |Γ(σ)−Γ(τ)| ≥ d(1−2ε

2) . (2.10)

Let

x := Γ(σ)+d
Γ(t)−Γ(s)
|Γ(t)−Γ(s)|

= Γ(σ)+
(
Γ(t)−Γ(s)

)
∈ Rn .

Then |x−Γ(σ)|= d and |Γ(τ)− x| ≤ 2ε2d by the triangle inequality. By definition of Xd(s, t,ε), the
angle α = <)(x−Γ(σ),Γ′(σ)) is contained between ε/10 and π − ε/10. Therefore

dist(x, `(σ)) = d sinα ≥ d sin
ε

10
≥ dε

20
,

and
dist(Γ(τ), `(σ))≥ dε

20
−2ε

2d ≥ dε

25
(2.11)
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(here we use ε < 1/200). Combining (2.10) and (2.11), we obtain

1
2r(Γ(σ),Γ(τ))

≥ dε

25
(2d)−2 =

ε

100d
.

Integration gives

Eq(Γ)≥
∫

Xd(s,t,ε)

∫
Ad(t,ε)

r−q dτ dσ ≥ const · |Xd(s, t,ε)|ε2+qd1−q,

as Ad(t,ε)≥ 2ε2d. If |Xd(s, t,ε)| ≥ 1
2 ε2d, then

Eq(Γ)≥ const(q) · ε
4+qd2−q,

which gives a contradiction for an appropriate choice of c0(q) > 0 in the lemma.
Thus, we have

|Xd(s, t,ε)|< 1
2

ε
2d and |Nd(s, t,ε)|> 3

2
ε

2d.

Step 2. Suppose now that Γ(τ) ∈ B2d(Γ(s))\U20εd
(
G(s, t)

)
. Fix a σ ∈ Nd(s, t,ε).

Since then |Γ(σ)−Γ(s)| < ε2d and the (acute) angle between the vectors Γ′(σ) and Γ(t)−Γ(s)
is very close to 0 or π (the difference is at most ε/10), one can check that in fact

`(σ)∩B2d(Γ(s)) ⊂ Uεd(G(s, t))∩B2d(Γ(s)) .

Therefore the distance from Γ(τ) to `(σ) is at least 19εd. If τ1 ∈ Ad(τ,ε), then

dist(Γ(τ1), `(σ))≥ 19εd− ε
2d ≥ 18εd ,

and
1

r(Γ(σ),Γ(τ1))
≥ 18εd

(3d)2 >
ε

d
.

Integrating this inequality, we obtain

Eq(Γ)≥
∫

Nd(s,t,ε)

∫
Ad(τ,ε)

r−q dτ1 dσ ≥ 3
2

ε
2d ·2ε

2d ·
(

ε

d

)q
= 3ε

4+qd2−q .

Again, for an appropriate choice of c0(q) this gives a contradiction with (2.9). 2

Since the assumption q > 2 was not used at all in the proof of the lemma, it is easy to check that
the same reasoning that was used to obtain (2.9) gives in fact the following

Lemma 2.3. Assume that q = 2 and E2(Γ) < ∞. Then there exists a constant c > 0 such that

sup
x∈γ

βγ(x,d)≤ cωE(d), d ≤ diamγ, (2.12)

where

ωE(d) := sup
(∫

A

∫
B

dsdt

r
(
Γ(s),Γ(t)

)2

)1/6

, (2.13)

the supremum being taken over all pairs of subsets A,B ⊂ SL with H 1(A),H 1(B)≤ 1
100 d.

Remark. By the absolute continuity of the integral, this lemma implies that every curve with finite E2
energy satisfies the assumptions of Theorem 1.4.
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3 The image of Γ is a manifold

This section is devoted to the proof of Theorem 1.4. We will argue by contradiction. The proof has
two steps; one of them has preparatory topological character and the second one shows how to use the
assumption on the uniform decay of β ’s.

Proof of Theorem 1.4. We recall the assumption of the theorem that the arclength parametrization
Γ : SL → Rn with image γ = Γ(SL) satisfies (1.6) for some continuous nondecreasing function ω :
[0,L]→R with ω(0) = 0. In addition, however, we assume that γ is neither homeomorphic to the unit
circle S1 nor to the unit interval I = [0,1]. Our goal is to show that this leads to a contradiction.

Step 1. Triple junctions.
Claim: There exists a triple junction x ∈ γ , i.e. there are three closed sets αi ⊂ γ , i = 1,2,3, such that
αi is a continuous image of the unit interval with diamαi > 0 for i = 1,2,3, and such that

αi∩α j = {x} whenever i 6= j, i, j = 1,2,3. (3.1)

Remark. We allow the αi to have self-intersections, i.e. we do not require αi to be a homeomorphic
image of the interval. Moreover, more than three arcs of the curve may meet at x; we just need three
of them to obtain the desired contradiction in Step 2 in order to complete the proof of Theorem 1.4.

Proof of the claim. We consider two distinct cases.

Case 1. Suppose that γ contains a proper closed subset γ1 that is homeomorphic to S1. Take a point
y ∈ γ \γ1, y = Γ(s). Suppose w.l.o.g. that Γ(s1) ∈ γ1 for some s1 > s, s1 ∈ [0,L] (otherwise just reverse
the parametrization). Let

σ0 := inf{σ > s : Γ(σ) ∈ γ1}

It is easy to see that x = Γ(σ0) ∈ γ1 is a triple junction; two of the arcs αi of γ are contained in γ1 and
the third one joins y 6∈ γ1 to x.

Case 2. Suppose that Case 1 fails and γ contains no proper closed subset homeomorphic to S1. Con-
sider the family of all proper subarcs of γ ,

A = {γ̃ ⊂ γ : γ̃ is homeomorphic to I},

which is partially ordered by inclusion. We will prove in detail below that every chain in A has an
upper bound in A , so that by the Kuratowski–Zorn Lemma A has a maximal element, γmax. We have
γmax 6= γ , as γ is not homeomorphic to I by assumption. Now, take a point y ∈ γ \ γmax, y = Γ(s), and
proceed like in Case 1 joining y with an arc to a point x ∈ γmax. Notice that x cannot be an endpoint of
γmax, since this would contradict the maximality of γmax.

It remains to be shown that every chain in A indeed has an upper bound in A , which is obvious
for any finite chain. For an infinite chain C := {γl}l∈Σ ⊂A where the index may be chosen to coincide
with the length of the respective arc, l = L (γl)≤H 1(γ) for γl ∈ C , i.e. where the index set Σ is a (in
general uncountable) subset of [0,H 1(γ)], we can choose a nondecreasing sequence of indices li with
γi ≡ γli ∈C , γi ⊂ γi+1 and li → l∗ := supΣ∈ (0,H 1(γ)].3 Now continuously extend the corresponding
nested injective arclength parametrizations

Γi : [−li/2, li/2]→ Rn with Γi([−li/2, li/2]) = γi and Γi+1|[−li/2,li/2] = Γi for all i ∈ N (3.2)

3Assuming that at least one member of C has positive diameter, otherwise the claim is trivially true.
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by virtue of

Γi(t) :=

{
Γi(−li/2) for t ∈ [−l∗/2,−li/2)
Γi(li/2) for t ∈ (li/2, l∗/2]

to all of [−l∗/2, l∗/2]. Since |Γ′i(t)| ≤ 1 for all t ∈ [l∗/2, l∗/2], i ∈ N, we obtain the uniform bound
‖Γi‖C0,1([−l∗/2,l∗/2],Rn) ≤ C for all i ∈ N, which implies by the Theorem of Arzela-Ascoli that some
subsequence Γ j converges to some curve Γ ∈C0,1([−l∗/2, l∗/2],Rn) uniformly on [−l∗/2, l∗/2]. For
distinct parameters s, t ∈ (−l∗/2, l∗/2) one can find j0 ∈ N such that for all j ≥ j0 we have s, t ∈
(−l j/2, l j/2), so that by (3.2)

|Γ(s)−Γ(t)|= lim
j→∞

|Γ j(s)−Γ(t)| (3.2)= |Γ j0(s)−Γ j0(t)| 6= 0,

which means that Γ is injective, hence a homeomorphism on the open interval (−l∗/2, l∗/2). But if
Γ(l∗/2) were equal to Γ(τ) for some τ ∈ [−l∗/2, l∗/2) then the arc Γ([τ, l∗/2]) would be homeomor-
phic to S1 which would contradict our assumption that γ is neither homeomorphic to S1 nor contains
a proper closed subset homeomorphic to S1. The same contradiction would occur if Γ(−l∗/2) = Γ(τ)
for some τ ∈ (−l∗/2, l∗/2]. Hence γ∗ := Γ([−l∗/2, l∗/2]) is homeomorphic to the unit interval I, that
is γ∗ ∈A . Finally γ∗ is maximal for the chain C . Indeed, if l∗ = supΣ∈ Σ then γ∗ is the desired upper
bound because for l < l∗ it cannot be that γl∗ is contained in γl , so that total ordering in the chain
implies that γl ⊂ γl∗ . If l∗ 6∈ Σ, on the other hand, we have l < l∗ for any l ∈ Σ, which implies that the
corresponding arc γl is contained in one of the γi for i sufficiently large, and hence also γl ⊂ γ∗.

The proof of our claim on the existence of (at least one) triple junction is complete now.
Step 2. Tilting tubes. We now fix a point x ∈ γ that is a triple junction, and a small distance d0,

0 < d0 <
1
2

min
i=1,2,3

(
diamαi

)
,

where αi denote the closed, connected subsets of γ satisfying (3.1) above.
Let h(s) := sω(s) for s ∈ [0,L]. Shrinking d0 if necessary, we can ensure the initial smallness

condition
h(d0) <

1
20

d0. (3.3)

Rotating and translating the coordinate system in Rn, we can assume without loss of generality
that x = 0 ∈ Rn and select the three distinct points

yi ∈ αi∩∂B(0,d0), i = 1,2,3

where y1 = (d0,0, . . . ,0). Assumption (1.6) implies now

γ ∩B(0,d0) ⊂ U2h(d0)(G(x,y1)) . (3.4)

The intersection of the sphere ∂B(0,d0) with the tube U2h(d0)(G(x,y1)) consists of two symmetric
spherical caps; by Dirichlet’s pigeon-hole principle, one of these caps must contain two of the three
distinct points yi. Renumbering the αi and yi if necessary, we may assume that y1 is as above and
y2 = (a,y′2) ∈ α2∩∂B(0,d0) with a > 0 and y′2 ∈ Rn−1, |y′2| ≤ 2h(d0).

Let v0 = (−1,0, . . . ,0) and H0 = (v0)⊥. Fix a point z ∈ α1∩
(1

2 y1 +H0
)
.

From now on, we will work only with α1 and α2. Proceeding inductively, we shall define a se-
quence of distances dm → 0, unit vectors vm, linear (n− 1)-dimensional subspaces Hm = (vm)⊥ and
points xm ∈ α2 such that

|z− xm| ≤ 2h(dm), m = 1,2, . . . (3.5)
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As dm → 0 and h(s)→ 0 as s → 0, this will yield z = limxm ∈ α1∩α2, a contradiction.
The distances dm, auxiliary vectors vm and hyperplanes Hm = (vm)⊥ will be defined in such a way

that for all m = 1,2, . . .

4hm−1 ≤ dm ≤ 6hm−1 where hm := h(dm), (3.6)

<)(vm,vm−1)≤
π

4
, (3.7)

zm = z+dmvm ∈ α1, (3.8)

γ ∩B(z,dm)⊂U2hm(Gm) where Gm = G(z,zm). (3.9)

For Pm(t) = z+ tvm +Hm we shall also show that

Pm(t)∩αi∩U2hm(Gm) 6= /0 for all |t| ≤ 1
2 dm and i = 1,2, (3.10)

for each m = 1,2, . . .. Notice that (3.6) in connection with the initial smallness condition (3.3) will
yield dm → 0 as m → ∞.

We begin the construction for m = 1. Select z1 ∈ P0(4h0)∩α1, h0 = h(d0). Such a point exists
since α1 joins z to x = 0 and by continuity must intersect all planes z + tv0 + H0, |t| ≤ 1

2 d0, while
staying in the tube U2h(d0)(G(x,y1)). Let v1 = (z1− z)/|z1− z|, H1 := (v1)⊥, and P1(t) := z+ tv1 +H1.
Note that <)(v1,v0)≤ π/4 by construction. Set d1 = |z1− z|.

We already have (3.6)–(3.8) for m = 1; condition (3.9) for m = 1 follows directly from (1.6). To
obtain (3.10) for m = 1, we just use (3.7) and continuity.

Assume now that dm, vm, Hm, zm, and Pm have already been defined for m = 1, . . . ,N so that
(3.6)–(3.10) are satisfied for all 1 ≤ m ≤ N. We use (3.10) for m = N to select a point zN+1,

zN+1 ∈U2hN (GN)∩PN(2hN)∩α1 .

Clearly, 4hN ≤ |zN+1−z| ≤ 6hN (the second estimate is a simple application of the triangle inequality).
Thus, dN+1 := |zN+1− z| satisfies (3.6) for m = N +1, and choosing vN+1 := (zN+1− z)/|zN+1− z| we
also have (3.7)–(3.8) for m = N +1.

Again, (3.9) for m = N +1 follows from the assumption on the decay of β ’s. Thus, the intersection
αi∩B(z,dN+1) ⊂U2hN+1(GN+1), i = 1,2; combining these inclusions with (3.7) and with continuity,
we obtain (3.10) for m = N +1.

This completes the inductive construction. Now, using (3.10) for i = 2, we select for each m a
point

xm ∈U2hm(Gm)∩Pm(0)∩α2 .

By definition of U2hm(Gm), (3.5) does hold. This completes the whole proof of Theorem 1.4.

4 Differentiability

Throughout this section, we fix q > 2 and consider a rectifiable curve γ = Γ(SL) whose arclength
parametrization Γ is injective on SL. The first step towards the proof of Theorem 1.3 is to establish the
following.

Proposition 4.1. Let q > 2. Assume that Γ : SL → Rn is injective and Eq(Γ) < E < ∞. Then Γ′ is well
defined everywhere and Γ′ ∈Cκ for κ := q−2

q+4 ∈ (0,1).
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Moreover there exist two positive constants δ2(q), c2(q) such that whenever x = Γ(s) and y = Γ(t)
satisfy |x− y|= d < δ2(q)E−1/(q−2), then

φ := c2(q)E1/(q+4)d(q−2)/(q+4) <
1
4

(4.1)

and we have

|Γ′(s)−Γ
′(t)| ≤ c2(q)E1/(q+4)|Γ(s)−Γ(t)|κ , (4.2)

3
4
|s− t| ≤ |Γ(s)−Γ(t)| ≤ |s− t|, (4.3)

γ ∩B(x,2d)∩B(y,2d) ⊂ Cφ (x,y)∩Cφ (y,x). (4.4)

Proof. The argument is in fact similar to the proof of Corollary 2.6 and Theorem 2.10 in [22]. We just
sketch the main points, leaving (relatively easy) computational details as an exercise.

Fix x,y ∈ γ with 0 < |x− y|= d.

Step 1. For N = 0,1,2 . . . set dN = d/2N , and select points yN ∈ ∂B(x,dN)∩ γ so that y0 = y. Let

εN :=
(
c0(q)E

)1/(q+4)dN
κ (4.5)

so that condition (2.9) of Lemma 2.1 is satisfied for εN and dN . The lemma yields

γ ∩B(x,2dN)⊂U20εNdN (G(x,yN)), N = 0,1,2, . . . (4.6)

so that the lines GN := G(x,yN) satisfy

sin<)(GN ,GN+1)≤
20εNdN

dN+1
= 40εN . (4.7)

Thus, φN := <)(GN ,GN+1)≤ 80εN . Using (4.5) and summing a geometric series (here the assumption
q > 2 is crucial!), we obtain

∞

∑
N=0

φN ≤ φ := c2(q)E1/(q+4)dκ (4.8)

where c2(q) = 80c0(q)1/(q+4)
∑

∞
N=0 2−Nκ . Now, to guarantee φ < 1/4, one just assumes that d is

sufficiently small, i.e. d < δ2(q)E−1/(q−2) with δ2(q) := (4c2(q))−1/κ . By induction,

γ ∩B(x,2d) ⊂ Cφ0+···+φN (x,y)∪ (U20εNdN (GN)∩B(x,2dN)) . (4.9)

Passing to the limit N → ∞, we obtain

γ ∩B(x,2d)⊂Cφ (x,y) (4.10)

with φ ≡ φ(q,E,d) defined by (4.8).

Step 2. Reversing the roles of x and y we obtain

γ ∩B(x,2d)∩B(y,2d) ⊂ Cφ (x,y)∩Cφ (y,x)

where φ is defined by (4.8); this is the desired condition (4.4).
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Step 3. Assume now that Γ is differentiable at s and t and recall that Γ was supposed to be injective.
Condition (4.4) yields then

<)(Γ′(s),Γ′(t))≤ φ = c2(q)E1/(q+4)dκ = c2(q)E1/(q+4)|Γ(s)−Γ(t)|κ (4.11)

(note that the difference quotients of Γ at s and t must belong to cones with vertices at 0, axis parallel
to y− x and opening angle given by (4.1)).
Step 4. Since Γ is differentiable everywhere, and |Γ′| = 1 a.e., (4.11) gives (4.2) on a (dense) set of
full measure. Thus, Γ′ has a continuous extension F to all of SL; one easily checks that in fact F = Γ′

everywhere. Finally, assuming without loss of generality that t > s, we estimate

|Γ(t)−Γ(s)| ≥ 〈Γ(t)−Γ(s),Γ′(s)〉

=
〈∫ t

s

(
Γ
′(τ)−Γ

′(s)+Γ
′(s)
)

dτ, Γ
′(s)
〉

≥ (t− s)

(
1− sup

τ∈[s,t]
|Γ′(τ)−Γ

′(s)|

)
≥ 3

4
(t− s) .

(To check the last inequality, let S be the closed slab bounded by two planes passing through x and y,
and perpendicular to x− y, i.e. to the common axis of the two cones, and note that for each τ ∈ [s, t]
we have in fact Γ(τ) ∈ Cφ (x,y)∩Cφ (y,x)∩ S. This follows from the bound |Γ′(s)− Γ′(t)| < 1/4,
injectivity of Γ and (4.4). Thus, for each such τ we also have |Γ′(τ)−Γ′(s)|< 1/4.) The bi-Lipschitz
condition (4.3) follows.

The proof of Proposition 4.1 is complete now. (See also [22, Proof of Thm. 2.10] where a similar
scheme of reasoning is used.) 2

5 Energy bounds and knot classes

We start this section with the observation that Eq is repulsive (or charge), that is, Eq blows up on a
sequence of knots converging uniformly to a limit curve with self-crossings.

Proposition 5.1. If Γ : SL → Rn is a closed arclength parametrized curve of length 0 < L < ∞ with
Γ(s) = Γ(t) for different arclength parameters s 6= t, s, t ∈ SL, and if there is a sequence of rectifiable
closed injective curves γk : SL → Rn converging uniformly to Γ, then Eq(γk) → ∞ as k → ∞ for any
q > 2.

PROOF: Assume to the contrary that (for a suitable subsequence) limk→∞ Eq(γk) < E < ∞. We set

ε :=
1
2

min
{

diamΓ([s, t]),diamΓ(SL \ [s, t]),δ2(q)E
−1

q−2

}
> 0, (5.12)

where δ2(q) is the constant of Proposition 4.1, and choose τ ∈ (s, t) and σ ∈ SL \ [s, t] such that

|Γ(τ)−Γ(t)|= 1
2

diamΓ([s, t]) and |Γ(σ)−Γ(s)|= 1
2

diamΓ(SL \ [s, t]).

For sufficiently large k0 = k0(ε) ∈ N we find ‖γk−Γ‖C0(SL,Rn) < ε/10 for all k ≥ k0. In particular, by
(5.12),

|γk(τ)− γk(t)| ≥ |Γ(τ)−Γ(t)|− 2ε

10
=

1
2

diamΓ([s, t])− ε

5

(5.12)
≥ 4

5
ε,

(5.13)

and, analagously, |γk(σ)− γk(s)| ≥
4
5

ε,
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but
δk := |γk(t)− γk(s)| ≤

ε

5
(5.12)
< δ2(q)E

−1
q−2 for all k ≥ k0.

Hence, we can apply (4.4) of Proposition 4.1 to obtain the inclusion

γk∩B(γk(t),2δk)∩B(γk(s),2δk)
(4.4)
⊂ Cφ (γk(t),γk(s))∩Cφ (γk(s),γk(t)).

Since there is an integer k1 ≥ k0 such that Eq < E for all k ≥ k1 we know that the corresponding
injective arclength parametrizations Γk are continuously differentiable according to Proposition 4.1,
so that the points γk(t) and γk(s) must be connected by a subarc of γk that is completely contained in
the doubly conical region

Dk := Cφ (γk(t),γk(s))∩Cφ (γk(s),γk(t))∩B(
1
2
(γk(t)+ γk(s)),

δk

2
)

of diameter δk ≤ ε/5. (Otherwise, the unit tangent vector of the arclength parametrization Γk would
jump at γk(t) and γk(s) contradicting C1-smoothness for k ≥ k1.) Since all γk are simple, either the
point γk(τ), or γk(σ) lies on that connecting arc within Dk, thus contradicting the lower bound 4ε/5
in (5.13). 2

Proposition 5.2. If q > 2, then the Eq-energy is strong in the following sense: For each E > 0 and
L > 0 there are at most finitely many knot types which have a representative γ such that

Eq(γ) < E, H 1(γ) = L.

Remark. The length constraint H 1(γ) = L is necessary here, since by rescaling an arbitrary smooth
simple curve we can make its Eq-energy as small as one wishes. An alternative would be to consider
Ẽq(γ) := (H 1(γ))q−2Eq(Γ). This is a scale invariant energy.

Proof. We argue by contradiction. Assume there are infinitely many knot types of length L with the
same energy bound, and by translational invariance we can assume moreover that all these knots
contain the origin. Take their arclength representatives Γ j, j = 1,2, . . . , and use inequality (4.2) of
Proposition 4.1 to conclude that the family

{Γ
′
j} j=1,2,... ⊂ C0(SL,S2)

is eqicontinuous. Invoking the Arzela–Ascoli compactness theorem and passing to a subsequence, we
may assume that Γ j converges in the C1-topology to some limit Γ ∈ C1(SL,R3). Let γ be the curve
parametrized by Γ.

We next check that γ is simple, i.e. Γ is injective on SL ≡ R/LZ. To this end, we shall rely on
Proposition 4.1 to prove that there exists an ε0 = ε0(q,E) > 0 such that all Γ j satisfy

|Γ j(s)−Γ j(t)| ≥ min
(

ε0,
|s− t|

2

)
for all j and all s, t ∈ SL. (5.14)

Upon passing to the limit j → ∞, this implies the injectivity of Γ. All γ j with j sufficiently large
are contained in a small C1 neighbourhood of γ . Thus, according to a known isotopy result, see e.g.
[14, Chapter 8] or [2], they would all have to be of the same knot type, thereby contradicting the
assumption that each γ j is in a different isotopy class.
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To complete the proof, it is now enough to prove (5.14). Consider g j ∈C1(SL×SL) given by

g j(s, t) : = |Γ j(s)−Γ j(t)|2 .

By Proposition 4.1 the Γ j are uniformly bounded in C1,κ , where κ = (q−2)/(q+4). Thus, it is easy
to show that there is a constant ε1 = ε1(q,E) > 0 such that

g j(s, t)≥
|s− t|2

4
for all j and all s, t such that |s− t| ≤ ε1(q,E). (5.15)

Since Σ = SL × SL \ {(s, t) : |s− t| < ε1(q,E)} is compact, for each j there is a pair (s j, t j) ∈ Σ such
that

g j(s j, t j)≤ g j(s, t) for all (s, t) ∈ Σ.

Now, we either have |s j − t j|= ε1(q,E) in which case (5.15) implies

g j(s, t)≥
ε1(q,E)2

4
for all s, t ∈ Σ, (5.16)

or, by minimality, we have ∇g j(s j, t j) = 0, which is equivalent to

Γ
′
j(s j)⊥

(
Γ j(s j)−Γ j(t j)

)
and Γ

′
j(t j)⊥

(
Γ j(s j)−Γ j(t j)

)
. (5.17)

Fix j. Let d j := |Γ j(s j)−Γ j(t j)|. If d j < δ2(q)E−1/q−2, where δ2(q) stands for the constant from
Proposition 4.1, then, by (4.1) and (4.4) of that Proposition, we have

φ j := c2(q)E1/(q+4)dκ
j <

1
4

and
γ j ∩B(Γ j(s j),2d j)∩B(Γ j(t j),2d j) ⊂ C1/4(Γ j(s j),Γ j(t j))∩C1/4(Γ j(t j),Γ j(s j)).

The last condition, however, clearly contradicts (5.17). Hence,

d j = |Γ j(s j)−Γ j(t j)| = inf
(s,t)∈Σ

|Γ j(s)−Γ j(t)|

≥ ε2(q,E) : = δ2(q)E−1/q−2 for each j = 1,2, . . . (5.18)

Summarizing (5.15), (5.16) and (5.18), we obtain (5.14) with ε0 : = min
{

ε1(q,E)/2,ε2(q,E)
}

. 2

Now we present the proof of the isotopy result, Theorem 1.2. The proof consists of two steps.
The first one, see Proposition 5.4 below, is preparatory: we use Proposition 4.1 to show that a curve
γ of length L and finite energy at most E is ambient isotopic to a polygonal line that has roughly
LE1/(q−2) vertices, all of them belonging to γ . In the second step, we replace two curves that are close
in Hausdorff distance by polygonal curves (staying in the same knot class) and exhibit a series of ∆

and ∆−1-moves4 transforming one of them into the other one. (The proof that we present gives a value
of δ3 which is far from optimal; we do not know how to obtain a sharp result of that type.)

Before passing to the details, let us recall a definition, see e.g. [5, Chapter 1].

4These are not the so-called Reidemeister moves; see [5, Chapter 1] for the distinction.
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Definition 5.3. Let u be one of the segments of a polygonal knot γ in R3 and let T = conv(u,v,w) be
a triangular surface bounded by the segments u,v,w such that T ∩ γ = u. We say that

γ
′ = (γ \u)∪ v∪w

results from γ by a ∆-move. The inverse operation is called a ∆−1-move.

Let γ1 and γ2 be two polygonal knots in R3. If γ1 can be obtained from γ2 by a finite sequence of
∆ and ∆−1-moves, then one says that γ1 and γ2 are combinatorially equivalent. Two polygonal knots
γ1 and γ2 are ambient isotopic if and only if they are combinatorially equivalent, see [5, Chapter 1].

Proposition 5.4. Let q > 2. Assume that Γ : SL →R3 is injective and Eq(Γ) < E. Let δ2(q) > 0 be the
constant defined in Proposition 4.1. Then γ = Γ(SL) is ambient isotopic to the polygonal curve

Pγ =
N⋃

i=1

[xi,xi+1]

with N vertices xi = Γ(ti)∈ γ , whenever the parameters 0 = t1 < .. . < tN < L and tN+1 = t1 are chosen
on SL so that

|xi− xi+1|< δ2(q)E−1/(q−2) . (5.19)

Proof. We follow [27, Prop. 5.2] with minor technical changes. For x 6= y ∈ R3 we denote the closed
halfspace

H+(x,y) : = {z ∈ R3 : 〈z− x,y− x〉 ≥ 0} .

We shall work with ‘double cones’

K(x,y) : = C1/4(x,y)∩C1/4(y,x)∩H+(x,y)∩H+(y,x) .

For sake of brevity, set Ki := K(xi,xi+1) and vi := xi+1 − xi. We are going to use Proposition 4.1 to
verify two properties of Ki.

Claim 1. For each z ∈ Ki the intersection of γ and the two-dimensional disk

Di(z) := Ki∩ (z+ v⊥i )

contains precisely one point. If diamDi(z) > 0, then this point of γ is in the interior of Ki.

Indeed, note first that γ ∩Di(z) is nonempty, as an arc of γ joining xi with xi+1 must be contained
in Ki since if this were not the case, then (4.4) of Proposition 4.1 would be impossible for an injective
and differentiable Γ. If there were two distinct points y1,y2 ∈ γ ∩Di(z), then (4.4) could not hold both
for the couple x = xi,y = y1, and for the couple x = xi,y = y2, simultaneously. Finally, the second
statement of Claim 1 follows from the fact that Inequality (4.1) is strict.

Claim 2. Whenever i 6= j (mod N) we find that the sets Ki \{xi,xi+1} and K j \{x j,x j+1} are disjoint.
Suppose to the contrary that

(Ki \{xi,xi+1})∩ (K j \{x j,x j+1}) 6= /0, (5.20)

and assume without loss of generality

diamK j ≤ diamKi. (5.21)
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If x j = Γ(t j) were contained in Ki \{xi,xi+1} then we would either find that the disk Di(x j) contains
two distinct curve points contradicting Claim 1, or that there is a parameter τ ∈ (ti, ti+1) such that
Γ(τ) = Γ(t j) although Γ is injective, which is absurd. The same reasoning can be applied to x j+1 =
Γ(t j+1), so that we conclude from (4.4) and Assumptions (5.20) and (5.21) that the two tips x j, x j+1
of K j are contained in the set Zi defined as

Zi := C 1
4
(xi,xi+1)∩C 1

4
(xi+1,xi)∩B(xi,2|vi|)∩B(xi+1,2|vi|)\

[
Ki \{xi,xi+1}

]
, (5.22)

which is just the intersection of the two cones within the balls centered in xi and xi+1 but without the
slab bounded by the two parallel planes ∂H+(xi,xi+1) and ∂H+(xi+1,xi).

We know that x j 6= xi since i 6= j (mod N) and Γ is injective. If x j 6= xi+1 then (5.20), (5.21), and
(5.22) enforce

|vi|
(5.21)
≥ |v j|

(5.20)
> min{|x j − xi+1|, |x j − xi|},

and
x j+1 ∈ int(H+(xi,xi+1)) ∩ int(H+(xi+1,xi)), (5.23)

which by (4.4) leads to x j+1 ∈ Ki contradicting (5.22) unless x j+1 = xi. If in the latter case x j is
contained in R3 \H+(xi+1,xi) then we obtain |v j| = |x j+1 − x j| > |vi| contradicting our assumption
(5.21). If, on the other hand, x j is in H+(xi+1,xi), it is by (5.22) actually contained in R3\H+(xi,xi+1),
but then (5.20) cannot hold.

Finally, x j = xi+1 in combination with (5.20) also leading to (5.23) is a contradictory statement,
since |v j| ≤ |vi| by (5.21).

We are now in the position to define the ambient isotopy between γ and Pγ . Note that F : SL →R3

given by
F(t) := [xi,xi+1]∩Di(Γ(t)) for t ∈ [ti, ti+1), i = 1, . . . ,N

is a well defined homeomorphism, parametrizing Pγ . The desired isotopy

H : R3× [0,1]→ R3

is equal to the identity on R3 \
⋃N

i=1 Ki, and on each ‘double cone’ Ki it maps each two-dimensional
slice Di(z), z ∈ Ki, homeomorphically to itself, keeping the boundary circle of Di(z) fixed and moving
the point Γ(s) along a straight segment on Di(Γ(s)) until it hits [xi,xi+1]. 2

Proof of Theorem 1.2. Abbreviate the maximal energy value E := max{Eq(Γ1),Eq(Γ2)} of the two
simple arclength parametrized curves Γi : SLi → R3 of respective (and a priori possibly quite differ-
ent) lengths Li, i = 1,2. Recall the assumption that the two curves are close in Hausdorff-distance:
distH(Γ1,Γ2) < δ (q)E−1(q−2).

Fix N = N(q,E) so that L1/N =: η < 1
3 δ2(q)E−1/(q−2), set ε := η/50 and let ti := (i−1)η ∈ SL1

for i = 1, . . . ,N, and tN+1 := t1. By Proposition 5.4, γ1 is ambient isotopic to the polygonal line

Pγ1 :=
N

∑
i=1

[xi,xi+1]

where xi := Γ1(ti). Now, for i = 1, . . . ,N we set wi := Γ′1(ti), αi := Γ1
(
[ti, ti+1]

)
⊂ γ1, and introduce

the half-spaces H+
i := H+(xi,xi +wi) and H−

i := R3 \H+
i , which are bounded by affine planes Pi :=

xi +w⊥
i . Consider the tubular regions

Ti := H+
i ∩H−

i+1∩Bε(αi).

16



Their union contains γ1 =
⋃

αi; we clearly have Ti∩Ti+1 = /0 as αi+1 ⊂ H+
i+1. Moreover, Ti∩Tj = /0

also when |i− j|> 1. To see this, we will use Proposition 4.1 to prove

inf{|Γ1(τ)−Γ1(σ)| : (σ ,τ) ∈ SL1 ×SL1 , |σ − τ| ≥ η} ≥ 3
4

η . (5.24)

Before doing so, let us conclude from (5.24): If there existed a point z ∈ Ti ∩Tj with |i− j| > 1, we
could find σ ∈ [ti, ti+1) and τ ∈ [t j, t j+1) such that |Γ(σ)−Γ(τ)| ≤ 2ε = η/25 by triangle inequality,
a contradiction to (5.24).

To verify (5.24), we repeat the trick that has already been used in the proof of Proposition5.2.
Notice that (4.3) applied to Γ1 implies

|Γ1(τ)−Γ1(σ)| ≥ 3
4
|τ −σ | ≥ 3

4
η for all η ≤ |τ −σ | ≤ 3η , (5.25)

so that the continuously differentiable function g : SL1 ×SL1 → R given by g(s, t) := |Γ1(s)−Γ1(t)|2
attains a positive minimum g0 > 0 on the compact set K3η , where we set Kρ := SL1×SL1 \{|s−t|< ρ},
i.e., there is a pair of parameters (s∗, t∗) ∈ K3η such that g(s, t)≥ g(s∗, t∗) = g0 for all (s, t) ∈ K3η . If
|s∗− t∗|= 3η we can apply (5.25) to find

|Γ1(τ)−Γ1(σ)|=
√

g(τ,σ)≥
√

g(s∗, t∗) = |Γ1(s∗)−Γ1(t∗)|
(5.25)
≥ 3

4
η for all (τ,σ) ∈ K3η .

If, on the other hand, |s∗−t∗|> 3η then by minimality ∇g(s∗, t∗) = 0, which implies that both tangents
Γ′1(s

∗) and Γ′1(t
∗) are perpendicular to the segment Γ1(s∗)−Γ1(t∗). Thus the intersection

Γ1(SL1)∩B(Γ1(s∗),2
√

g0)∩B(Γ1(t∗),2
√

g0)

cannot be contained in the intersection Cφ (Γ1(s∗),Γ1(t∗))∩Cφ (Γ1(t∗),Γ1(s∗)), which according to
(4.4) means that

|Γ1(s∗)−Γ1(t∗)| ≥ δ2(q)E
−1

q−2 > 3η ,

establishing (5.24) also in this case.
Assume now that distH(γ1,γ2) < ε . We shall prove that γ2 is ambient isotopic to γ1; by the choice

of ε , this will mean that Theorem 1.2 holds with δ3(q) = δ2(q)/150.
Claim. For each i = 1, . . . ,N there is a point

yi ∈ Pi∩ γ2∩B(xi,2ε).

Without loss of generality we can assume that the curve Γ1 is oriented in such a way that

<)(Γ′1(ti),vi) <
1
8

and <)(Γ′1(ti),vi−1) <
1
8

for all i = 1, . . . ,N, (5.26)

that is, each tangent Γ′1(ti) points into the set Ki := K(xi,xi+1) = K(Γ1(ti),Γ1(ti+1)), which readily
implies for the hyperplanes Pi ⊥ Γ′1(ti), i = 1, . . . ,N,

<)(Pi,vi)≥<)(Pi,Γ
′
1(ti))−<)(Γ′1(ti),vi) >

π

2
− 1

8
,

and similarly <)(Pi,vi−1) > π

2 −
1
8 .
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Indeed, according to (4.4)[
γ1∩B(xi,2|vi|)∩B(xi+1,2|vi|)∩H+(xi,xi+1)∩H+(xi+1,xi)

]
⊂ Ki,

which implies that the tangent direction of the curve Γ1 at xi cannot deviate too much from the straight
line through xi and xi+1. The inequalities in (5.26) provide a quantified version of this fact.

Since distH(γ1,γ2) < ε we find three points

zi ∈ γ2∩B(xi,ε), zi+1 ∈ γ2∩B(xi+1,ε) and zi−1 ∈ γ2∩B(xi−1,ε) for all i = 1, . . . ,N.

If zi ∈ Pi we set yi := zi, and we are done. Else we know that zi ∈ H+
i \Pi or that zi ∈ H−

i . In the first
case we will work with the two points zi and zi−1, in the second with zi and zi+1 in the same way, so
let us assume the second situation zi ∈ H−

i . We know that zi+1 ∈ H+ \Pi since by (4.3)

dist(zi+1,H−
i )≥ dist(xi+1,H−

i )− ε
(4.3)
≥
(

3
4
− 1

50

)
η > 0.

On the other hand, zi and zi+1 are not too far apart,

ρi := |zi− zi+1| ≤ |zi− xi|+ |xi− xi+1|+ |xi+1− zi+1|< 2ε +η < δ2(q)E− 1
q−2 ,

so that we can infer from (4.4) applied to the points x := zi and y := zi+1 that

γ2∩B(zi,2ρi)∩B(zi+1,2ρi)∩H+(zi,zi+1)∩H+(zi+1,zi)⊂ K(zi,zi+1). (5.27)

We will show that [
K(zi,zi+1)∩Pi

]
⊂ B(xi,2ε). (5.28)

Notice that K(zi,zi+1) \ Pi consists of two components, one containing zi ∈ γ2, and the other one
containing zi+1 ∈ γ2, which implies that the intersection in (5.28) is not empty. Since γ2 connects zi

and zi+1 by (5.27) within the set K(zi,zi+1), the inclusion in (5.28) yields the desired curve point

yi ∈ Pi∩ γ2∩B(xi,2ε) for all i = 1, . . . ,N,

thus proving the claim.

To prove (5.28) we first estimate the angle <)(zi+1− zi,vi) by the largest possible angle between a
line tangent to both B(xi,ε) and B(xi+1,ε) and the line connecting the centers xi, xi+1:

<)(zi+1− zi,vi)≤ arcsin
ε

|vi|/2
,

so that

<)(zi+1− zi,Γ
′
1(ti)) <

1
8

+ arcsin
2ε

|vi|
(4.3)
<

1
8

+ arcsin
2η/50
3η/4

<
1
5
.

Now, let z̃i be the orthogonal projection of zi onto Pi. Since <)(z̃i−zi,zi+1−zi) = <)(Γ′(ti),zi+1−zi) <
1
5 , it is easy to see that K(zi,zi+1)∩Pi ⊂ B(z̃i, h̃)∩Pi where

h̃ ≤ |zi− z̃i| tan
(1

5
+

1
8

)
≤ ε tan

(8+5
40

)
<

ε

2

(see Figure 1 below), which establishes K(zi,zi+1)∩Pi ⊂ B(xi,2ε) and hence (5.28).
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Figure 1. The intersection of the doubly conical re-
gion K(zi,zi+1) with the plane Pi is contained in the
ball B(z̃i, h̃)⊂ B(xi,2ε).

Since |yi − yi+1| < η + 4ε < 3η < δ2(q)E−1/(q−2),
the curve γ2 is ambient isotopic to the polygonal curve
Pγ2 =

⋃N
i=1[yi,yi+1]. To finish the proof of Theorem 1.2,

it is now sufficient to check that Pγ1 and Pγ2 are combina-
torially equivalent.

Since the sets Ti are pairwise disjoint, we have

conv(xi,xi+1,yi,yi+1)∩Pγ1 = [xi,xi+1].

This guarantees that all steps in the construction that fol-
lows involve legitimate ∆ and ∆−1-moves. The first step,
taking place in T 1, is to replace [x1,x2] by the union of
[x1,y1] and [y1,x2], and then to replace [y1,x2] by the
union of [y1,y2] and [y2,x2]. Next we perform one ∆−1

and one ∆-move in each of the T j for j = 2, . . . ,N − 1,
replacing first [y j,x j] and [x j,x j+1] by [y j,x j+1], and
next trading [y j,x j+1] for the union of [y j,y j+1] and
[y j+1,x j+1]. Finally, for j = N we perform two ∆−1-
moves: first replace [yN ,xN ] and [xN ,x1] by [yN ,x1], and

then replace [yN ,x1] and [x1,y1] (which has been added at the very beginning of the construction) by
[yN ,y1]. This concludes the whole proof. 2

6 Bootstrap: optimal regularity of Γ′

In this section, we show how to derive Theorem 1.3. The overall idea is similar to the one in [22,
Section 6] but here the proof is a little bit less involved.

Assume that Γ is 1–1, Γ′ ∈Cκ , κ = (q−2)/(q+4). Restricting Γ to a sufficiently short interval I
in [0,L], and rotating the coordinate system if necessary, we may assume that the first component Γ′1
of the tangent vector satisfies Γ′1 ≥ 0.99 on I and |Γ′i| ≈ 0 on I for all i = 2, . . . ,n. In fact, to achieve
such control of Γ′ on I it is enough to assume that

|I| ≤ δ4(q)Eq(Γ)−1/(q−2)

for some δ4(q) > 0 sufficiently small; the desired control of Γ′ follows then from Proposition 4.1.
Let

Φ(t) := sup
J⊂I

L 1(J)≤t

(
osc

J
Γ
′
)

for |t| ≤L 1(I) (6.1)

(here, J denotes an arbitrary subinterval of I). We shall show that for every u,v ∈ I, u < v,

|Γ′(u)−Γ
′(v)| ≤ 2Φ

( |u− v|
N

)
+100K0|u− v|λ , (6.2)

where λ = 1−2/q, N = N(q) > 8 is a large number such that 2/Nκ < 1/2, and

K0 :=
(

N2
∫ v

u

∫ v

u
r−q dsdt

)1/q

.
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Once (6.2) is established, we can iterate it to get rid of the first term on the right hand side of (6.2) and
prove that

|Γ′(u)−Γ
′(v)| ≤ c3(q)

(∫ v

u

∫ v

u
r−q dsdt

)1/q

|u− v|1−2/q . (6.3)

The argument that shows that (6.2) yields (6.3) is technical but relatively easy; similar reasonings are
well known in the theory of PDE (e.g. when one deals with various Campanato–Morrey estimates).
Similar arguments are described in more detail in our papers [22, Section 6] (see the Remark that
follows the statement of Lemma 6.1 there) and [24, Section 6]. The reader is invited to fill in the
computational details or to consult [22, 24].

Proof of (6.2). We fix u < v ∈ I and set

Y0 := {s ∈ [u,v] : H 1(Y1(s))≥ 2|u− v|/N} ,

Y1(s) := {t ∈ [u,v] : 1/r(Γ(s),Γ(t))≥ K0|u− v|−2/q} .

The reader should think of the parameters in Y0 and Y1(s) as ‘bad’ ones. Here is a word of informal
explanation. Suppose that a curve is just C1,λ for λ = 1−2/q and not smoother, say like the graph of
x 7→ |x|2−2/q near zero. We would then expect that a typical point Γ(v) can be roughly at the distance
d1+λ from the tangent line at Γ(u) when |Γ(u)− Γ(v)| ≈ d or, equivalently for a flat graph over
some interval, |u− v| ≈ d. But then 1/r at these two points would not exceed a constant multiple of
d1+λ /d2 ≈ |u− v|−2/q by the explicit formula (1.1) for the radius r. As we know nothing about the
existence of Γ′′, there are no a priori upper bounds for 1/r that we might use. However, it is illustrative
to look at the sets of points where the model bound 1/r . |u− v|−2/q is violated. It will turn out that
there are ‘not too many’ such points at all scales, and this will be enough to conclude.

Set also
E(u,v) :=

∫ v

u

∫ v

u
r−q dsdt .

We have

E(u,v) ≥
∫

Y0

∫
Y1(s)

r−q dt ds

≥ H 1(Y0) ·
2|u− v|

N
· Kq

0 |u− v|−2 = H 1(Y0) ·
2N

|u− v|
·E(u,v) ,

so that

H 1(Y0)≤
|u− v|

2N
.

Now, select s ∈ [u,v]\Y0 and t ∈ [u,v]\Y0 such that

max(|u− s|, |t− v|) <
|u− v|

N
.

By the triangle inequality,

|Γ′(u)−Γ
′(v)| ≤ |Γ′(u)−Γ

′(s)|+ |Γ′(s)−Γ
′(t)|+ |Γ′(t)−Γ

′(v)|

≤ 2Φ

( |u− v|
N

)
+ |Γ′(s)−Γ

′(t)| .

If the tangent lines `(s) and `(t) are parallel, we have Γ′(s) = Γ′(t) and there is nothing more to
prove. Thus, let us assume that `(s) and `(t) are not parallel and proceed to estimate |Γ′(s)−Γ′(t)|.
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Let G := [u,v]\
(
Y1(s)∪Y1(t)

)
. By definition of Y1(·) and choice of s, t, we have

H 1(G) > |u− v|
(

1− 4
N

)
>
|u− v|

2
. (6.4)

If σ ∈ G, then by definition of Y1(s) and of the tangent-point radius (see (1.1)) we obtain

dist(Γ(σ), `(s)) <
1
2

K0|u− v|−2/q|Γ(σ)−Γ(s)|2 ≤ 1
2

K0|u− v|2−2/q =: h0 . (6.5)

A similar inequality is satisfied by the distance of Γ(σ) to the other line, `(t).

Now, let H = span(Γ′(s),Γ′(t)) ⊂ Rn be the two-dimensional plane spanned by the two tangent
vectors Γ′(s) and Γ′(t). Choose two points p1 ∈ `(s) and p2 ∈ `(t) such that |p1− p2|= dist(`(s), `(t))
and let x := (p1 + p2)/2. (If `(s) and `(t) intersect, x = p1 = p2 is their common point; otherwise, the
segment J(s, t) := [p1, p2] is perpendicular to each of these two lines and x is its midpoint.)

Let P = x+H. Then dist(`(s),P) = dist(`(t),P) = |p1− p2|/2. Let πP be the orthogonal projection
onto P and let

l1 := πP(`(s)) , l2 := πP(`(t)) .

The lines l1, l2 intersect at x ∈ P. Note that since G is nonempty by (6.4), we have in fact by virtue of
(6.5)

|p1− p2|= 2|x− p1| ≤ 2h0,

and
dist(Γ(σ), li)≤ 2h0, i = 1,2, σ ∈ G .

Thus,
Z := Γ(G) ⊂ U3h0(l1)∩U3h0(l2) . (6.6)

Therefore, the projection πP(Z) of Z onto P is contained in a rhombus R in P. The center of symmetry
of R is at x; the sides of R are parallel to l1 and l2; its height equals 6h0 and its acute angle

γ0 := <)(l1, l2) = <)(Γ′(s),Γ′(t))

(since Γ′1 ≥ 0.99 on I, the angle <)(Γ′(s),Γ′(t)) is acute). The longer half-diagonal D of R is given by

D =
6h0

sin(γ0/2)
, (6.7)

and
πP(Z) ⊂ R ⊂ BD(x)∩P.

Since D ≥ 6h0, invoking (6.6) and the triangle inequality we conclude that

Z = Γ(G) ⊂ B2D(x) .

Now, recall that Γ′1 ≥ 0.99 on I. Let t2 = supG and t1 = infG. We then have

4D = diamB2D(x)≥ |Γ(t2)−Γ(t1)| ≥ Γ1(t2)−Γ1(t1)

=
∫ t2

t1
Γ
′
1(σ)dσ

≥ 0.99H 1(G) .
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Thus

H 1(G) < 5D =
30h0

sin(γ0/2)
by (6.7)

≤ 30πh0

γ0
(6.8)

Combining two estimates of H 1(G), (6.4) and (6.8), we obtain

<)(Γ′(s),Γ′(t)) = γ0 ≤
60πh0

|u− v|
(6.5)
≡ 30πK0|u− v|1−2/q < 100K0|u− v|1−2/q.

This yields the desired estimate of |Γ′(t)−Γ′(s)|. The proof of the second part of Theorem 1.3 is now
complete. 2

Remark. To see that the exponent 1− 2/q is indeed optimal and cannot be replaced by any larger
exponent, we follow the idea given by M. Szumańska in her PhD thesis [27]. One has to fix an
arbitrary a ∈ (2− 2/q,2] and consider γ that is the graph of f (x) = xa say on [0,1]. It is possible
to check that Eq(γ) is finite; however, the derivative of the arclength parametrization of γ is not Höl-
der continuous with any exponent larger than β = a− 1. Since β can be an arbitrary number in
(1− 2/q,1], the exponent 1− 2/q is indeed optimal. We do not give here the computational details
which are somewhat tedious but routine; one just has to pass from the graph description of γ to the
arclength parametrization and use Taylor’s formula in estimates. The key point is that f ′(x) = axa−1

is not Hölder continuous with any exponent larger than β = a−1, due to its behaviour near to 0.
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