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Abstract The concept of the new fully adaptive flow solver Quadflow has been
developed within the SFB 401 over the past 12 years. Its primary novelty lies in the
integration of new and advanced mathematical tools in a unified environment. This
means that the core ingredients of the finite volume solver, the grid adaptation and
grid generation are adapted to each others needs rather than putting them together
as independent black boxes. In this paper we shall present recent developments and
demonstrate their efficiency by numerical experiments for some representative basic
configurations.

1 Introduction

The work performed in the SFB 401 was motivated by two central questions arising
from engineering applications, namely, (i) how to influence wake vortices generated
by a lift-producing aircraft in order to reduce takeoff and landing frequencies at
airports, and (ii) of better understanding the interaction of structural dynamics and
aerodynamics to design new concepts for supporting wing structures. The accurate
and reliable simulation of such processes pose challenging questions near or even
beyond current simulation capabilities. The development of concepts that reduce
computational complexity already on the level of mathematical algorithmic design
appears to be indispensible. This has been the core objective of the new adaptive
and parallel solver Quadflow [6, 7]. In order to exploit synergy effects, this solver
has been designed as an integrated tool where the core ingredients, namely, (i) the
flow solver concept based on a finite volume discretization, (ii) the grid adaptation
concept based on wavelet techniques, and (iii) the grid generator based on B-spline
mappings are adapted to each others needs, see Figure 1. In particular, the three tools

Wolfgang Dahmen, Nune Hovhannisyan and Siegfried Müller
Institut für Geometrie und Praktische Mathematik, RWTH Aachen University, D-52056 Aachen,
e-mail: dahmen,hovhannisyan,mueller@igpm.rwth-aachen.de

1



2 Dahmen, Hovhannisyan, Müller

are not just treated as independent black boxes communicating via interfaces but
are highly intertwined on a conceptual level mainly linking (i) the multiresolution-
based grid adaption that reliably detects and resolves all physical relevant effects,
and (ii) the B-spline grid generator which reduces grid changes to just moving a
“few” control points whose number is, in particular, independent of any local grid
refinements.
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Fig. 1 Quadflow: An integrated concept

Over the past few years the above framework has been further enriched and ex-
tended by mathematical concepts, such as multilevel time stepping [20, 19, 23],
multilevel solver strategies [24], time step control [29, 27, 28], adaptive local flux
and source reconstruction [17], as well as techniques from computer science. In
particular, parallelization of the multiresolution grid adaptation using space-filling
curves [31], has been incorporated to further improve the efficiency of Quadflow.

Originally, the multiresolution-based grid adaptation technique was kept separate
from the treatment of discrete evolution equations, cf. [7]. However, the multiresolu-
tion analysis offers a much higher potential when applying it directly to the discrete
evolution equations arising from the finite volume discretization rather than just us-
ing it as a data compression tool for the set of discrete cell data. In the present work
we explain how to integrate the multiresolution anaysis in the flow solver by pre-
senting recent developments on (i) a local strategy to compute numerical fluxes and
sources on locally refined grids with hanging nodes, cf. [17], (ii) a multilevel time
stepping strategy where refinement is also performed in time, cf. [23], and (iii) an
FAS-like strategy to solve efficiently the nonlinear problems arising from an implicit
time discretization of the underlying finite volume scheme, cf. [24].

Of course, in spite of the significant reduction of the accomplished computational
complexity (Cpu time and memory) in comparison to computations on uniform
meshes, efficiently performing 3D computations for complex geometries requires
complementing efforts concerning parallelization techniques. The performance of
a parallelized code crucially depends on the load-balancing. Since the underlying
adaptive grids are unstructured, this task cannot be considered trivial. This issue
will be addressed in more detail in [12].

The aim of the present work is to give an overview on recent developments re-
garding multiscale-based grid adaptation. For this purpose, we first summarize the
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basic ingredients of the grid adaptation concept starting with the underlying equa-
tions and their discretization using finite volume schemes, see Section 2. This is
followed by the multiscale analysis of the discrete cell averages resulting from the
finite volume discretization, see Section 3 and the construction of locally refined
grids using data compression techniques, see Section 4. Applying the multiscale
analysis to the original finite volume discretization on the uniform grid we obtain
multiscale evolution equations, see Section 5. The crucial point is then to perform
the time evolution on the adaptive grid where the accuracy of the uniform discretiza-
tion is maintained but the computational complexity is proportional only to the num-
ber of cells of the adaptive grid. For this purpose, the computation of the local flux
balances and sources has to be performed judisciously, see Section 6. The resulting
scheme is further accelerated using multilevel time stepping strategies in case of an
explicit time discretization for instationary flow problems, see Section 7, and FAS-
like multigrid techniques in case of an implicit time discretization for steady state
flow problems, see Section 8. Finally, in Section 9, we present several computations
that confirm the efficiency of the aforementioned concepts.

2 Governing equations and finite volume schemes

The fluid equations are determined by balance equations

∂

∂ t

∫
V

u dV +
∮

∂V
f(u) ·n dS =

∫
V

s(u) dV , (1)

where u is the array of the mean conserved quantities, e.g., density of mass, mo-
mentum, specific total energy, f is the array of the corresponding convective and
diffusive fluxes, and s denotes a source term that may occur, for instance, in turbu-
lence modelling.

The balance equations (1) are approximated by a finite volume scheme. For this
purpose the finite fluid domain Ω ⊂ Rd is split into a finite set of subdomains, the
cells Vi, such that all Vi are disjoint at each instant of time and that their union covers
Ω . To simplify notation, we will always assume that the grid does not move with
time. Furthermore let N(i) be the set of cells that have a common edge with the cell
i, and for j ∈ N(i) let Γi j := ∂Vi ∩ ∂Vj be the interface between the cells i and j
and ni j the outer normal of Γi j corresponding to cell i. For the time discretization
we may use either explicit (forward Euler (θ = 0)) or implicit schemes (Crank-
Nicholson (θ = 0.5), backward Euler (θ = 1)) where the time step may vary i.e.,
tn+1
i = tn

i + τ
n+1
i . These can be written in the form

vn+1
i +θ

τ
n+1
i
|Vi|

(Bn+1
i −|Vi|Sn+1

i ) = vn
i − (1−θ)

τ
n+1
i
|Vi|

(Bn
i + |Vi|Sn

i ) (2)

to compute the approximated cell averages vi of the conserved variables on the new
time level. Here the fluxes and the source terms are approximated by
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Bn
i := ∑

j∈N(i)
|Γi j|F(vn

i j,v
n
ji,ni j), Sn

i := S(vn
i ), (3)

where the numerical flux function F(u,w,n) is an approximation for the flux
f (u,n) := f · n in outer normal direction ni j on the edge Γi j. The numerical flux
is assumed to be consistent, i.e., F(u,u,n) = f (u,n). For simplicity of presentation
we neglect the fact that, due to higher order reconstruction, it usually depends on
an enlarged stencil of cell averages. Moreover, to preserve a constant flow field we
assume that the geometric consistency condition ∑ j∈N(i) |Γi j|ni j = 0 holds.

3 Multiscale Analysis

A finite volume discretization typically works on an array of cell averages. In or-
der to realize a certain target accuracy at the expense of a possibly low number of
degrees of freedom, viz. a possibly low computational effort, one should keep the
size of the cells large whereever the data exhibit little variation, reflecting a high
regularity of the searched solution components. Our analysis of the local regularity
behavior of the data is based on the concept of biorthogonal wavelets [10]. This ap-
proach may be seen as a natural generalization of Harten’s discrete framework [15].
The core ingredients are (i) a hierarchy of nested grids, (ii) biorthogonal wavelets
and (iii) the multiscale decomposition. In what follows we will only summarize the
basic ideas. For the realization and implementation see [22].

Grid hierarchy. Let be Ωl := {Vλ}λ∈Il a sequence of different meshes corre-
sponding to different resolution levels l ∈ N0 where the mesh size decreases with
increasing refinement level. The grid hierarchy is assumed to be nested, i.e., each
cell λ ∈ Il on level l is the union of cells µ ∈M0

λ
⊂ Il+1 on the next higher refinement

level l +1, i.e.,
Vλ =

⋃
µ∈M0

λ
⊂Il+1

Vµ , λ ∈ Il+1, (4)

where M0
λ
⊂ Il+1 is the refinement set and, hence, Ωl ⊂Ωl+1. A simple example is

shown in Figure 2 for a dyadic grid refinement of Cartesian meshes. Note that the
framework presented here is not restricted to this simple configuration but can also
be applied to unstructured grids and irregular grid refinements, cf. [22].

Fig. 2 Sequence of nested grids

Box function and cell averages. With each cell Vλ in the partitions Ωl we asso-
ciate the so–called box function
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φ̃λ (x) :=
1
|Vλ |

χ
Vλ

(x) =
{

1/|Vλ | , x ∈Vλ

0 , x 6∈Vλ

, λ ∈ Il (5)

defined as the L1–normalized characteristic function of Vλ . By |V | we denote the
volume of a cell V . Then the averages of a scalar, integrable function u ∈ L1(Ω) can
be interpreted as an inner product, i.e.,

ûλ := 〈u, φ̃λ 〉Ω with 〈u,v〉Ω :=
∫

Ω

uvdx. (6)

Obviously the nestedness of the grids as well as the linearity of integration imply
the two–scale relations

φ̃λ = ∑
µ∈M0

λ
⊂Il

ml,0
µ,λ φ̃µ and ûλ = ∑

µ∈M0
λ
⊂Il

ml,0
µ,λ ûµ , λ ∈ Il−1, (7)

where the mask coefficients turn out to be ml,0
µ,λ := |Vµ |/|Vλ | for each cell µ ∈M0

λ

in the refinement set.
Wavelets and details. In order to detect singularities of the solution we consider

the difference of the cell averages corresponding to different resolution levels. For
this purpose we introduce the wavelet functions ψ̃λ as linear combinations of the
box functions, i.e.,

ψ̃λ := ∑
µ∈M1

λ
⊂Il+1

ml,1
µ,λ φ̃µ , λ ∈ Jl , (8)

with mask coefficients ml,1
µ,λ that only depend on the grids. The construction of

the wavelets is subject to certain constraints, namely, (i) the wavelet functions
Ψ̃l := (ψ̃λ )λ∈Jl

build an appropriate completion of the basis system Φ̃l := (φ̃λ )λ∈Il .
By this we mean (ii) they are locally supported, (iii) provide vanishing moments
of a certain order and (iv) there exists a biorthogonal system Φl and Ψl of primal
functions satisfying analogous two-scale relations. The last requirement is typically
the hardest to satisfy. It is closely related to the Riesz basis property of the infinite
collection Φ̃0∪

⋃
∞
l=0Ψ̃l of L2(Ω), say. For details we refer to the concept of stable

completions, see [10].
Aside from these stability aspects the biorthogonal framework facilitates an effi-

cient change of bases. While the relations (7), (8) provide expressions of the coarse
scale box functions and detail functions as linear combinations of fine scale box
functions, the mask coefficients in the analogous two-scale relations for the dual
system Φl ,Ψl give rise to the reverse change of bases between Φ̃l ∪Ψ̃l and Φ̃l+1,
i.e.,

φ̃λ = ∑
µ∈G0

λ
⊂Il

gl,0
µ,λ φ̃µ + ∑

µ∈G1
λ
⊂Jl

gl,1
µ,λ ψ̃µ , λ ∈ Il+1, (9)

where we rewrite the basis function φ̃λ on level l + 1 by the scaling functions φ̃µ

and the wavelet functions ψ̃µ on the next coarser scale l. Here again the mask coef-
ficients gl,0

µ,λ and gl,1
µ,λ depend only on the grid geometry.
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Biorthogonality also yields a data representation in terms of the primal system.
The corresponding detail coefficients are given by

dλ := 〈u, ψ̃λ 〉Ω = ∑
µ∈M1

λ

ml,1
µ,λ ûµ , λ ∈ Jl , (10)

whose two-scale format follows from its functional counterpart (8).
Note that, by biorthogonality, the dλ are the expansion coefficients with respect

to the basis Ψ , obtained by testing u by the elements from Ψ̃ . Therefore, Ψ is called
primal system, while Ψ̃ is used to expand the cell averages which are functionals of
the solution u whose propagation in time gives rise to the finite volume scheme. The
primal basis itself will actually never be used to represent the solution u. Instead
the enhanced accuray of the approximate cell averages can be used for higher order
reconstructions commonly used in finite volume schemes.

Cancellation Property. It can be shown that the details become small with in-
creasing refinement level when the underlying function is smooth

|dλ | ≤C 2−l M ‖u(M)‖L∞(Vλ ). (11)

in the support of the wavelet ψ̃λ . More precisely, the details decay at a rate of at
least 2−l M provided the function u is differentiable and the wavelets have vanishing
moments of order M, i.e., 〈p, ψ̃λ 〉Ω = 0 for all polynomials p of degree less than
M. Here we assume that the grid hierarchy is quasi-uniform in the sense that the
diameters of the cells on each level l is proportional to 2−l .

If coefficient and function norms behave essentially the same, as asserted by the
Riesz basis property, (11) suggests to neglect all sufficiently small details in order to
compress the original data. In fact, the higher M the more details may be discarded
in smooth regions.

Multiscale Transformation. In order to exploit the above compression potential,
the idea is to transform the array of cell averages uL := (ûλ )λ∈IL corresponding to a
finest uniform discretization level into a sequence of coarse grid data u0 := (ûλ )λ∈I0
and details dl := (dλ )λ∈Jl

, l = 0, . . . ,L−1, representing the successive update from
a coarser resolution to a higher resolution.

In summary, according to (7) and (10), the change of bases provides two–scale
relations for the coefficients inherited from the two–scale relations of the box func-
tions and the wavelet functions

ûλ = ∑
µ∈M0

λ
⊂Il+1

ml,0
µ,λ ûµ , λ ∈ Il , dλ = ∑

µ∈M1
λ
⊂Il+1

ml,1
µ,λ ûµ , λ ∈ Jl , (12)

and, conversely,

ûλ = ∑
µ∈G0

λ
⊂Il

gl,0
µ,λ ûµ + ∑

µ∈G1
λ
⊂Jl

gl,1
µ,λ dµ , λ ∈ Il+1, (13)
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Fig. 3 Two-scale Transformation Fig. 4 Multiscale transformation

which reflects the typical cascadic format of a wavelet transform. The two-scale
relations are illustrated for the 1D case in Figure 3.

A successive application of the relations (12), see Figure 4, decomposes the array
ûL into coarse scale averages and higher level fluctuations. We refer to this transfor-
mation as multiscale transformation. It is inverted by the inverse multiscale trans-
formation (13).

4 Multiscale-based spatial grid adaptation

To determine a locally refined grid we employ the above multiscale decomposition.
The basic idea is to perform data compression on the vector of detail coefficients
using hard thresholding as suggested by the cancellation property. This will signif-
icantly reduce the complexity of the data. Based on the thresholded array we then
perform local grid adaptation where we refine a cell whenever there exists a signif-
icant detail, i.e. a detail coefficient with absolute value above the given threshold..
The main steps in this procedure are summarized as follows:

Step 1: Multiscale analysis. Let be vn
L the cell averages representing the dis-

cretized flow field at some fixed time level tn on a given locally refined grid with
highest level of resolution l = L. This sequence is encoded in arrays of detail coeffi-
cients dn

l , l = 0, . . . ,L−1 of ascending resolution, see Figure 4, and cell averages on
some coarsest level l = 0. For this purpose the multiscale transformation (12) need
to be performed locally which is possible due to the locality of the mask coefficients.

Step 2: Thresholding. In order to compress the original data we discard all detail
coefficients dλ whose absolute values fall below a level-dependent threshold value
εl = 2l−Lε . Let

Dn
L,ε :=

{
λ ; |dn

λ
|> εl , λ ∈ Il , l ∈ {0, . . . ,L−1}

}
be the set of significant details. The ideal strategy would be to determine the thresh-
old value ε such that the discretization error of the reference scheme, i.e., difference
between exact solution and reference scheme, and the perturbation error, i.e., the
difference between the reference scheme and the adaptive scheme, are balanced. For
a detailed treatment of this issue we refer to [11].

Step 3: Prediction and grading. Since the flow field evolves in time, grid adap-
tation is performed after each evolution step to provide the adaptive grid at the new
time level. In order to guarantee the adaptive scheme to be reliable in the sense that
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no significant future feature of the solution is missed, we have to predict all signifi-
cant details at the new time level n+1 by means of the details at the old time level
n. Let D̃n+1

L,ε be the prediction set satisfying the reliability condition

Dn
L,ε ∪Dn+1

L,ε ⊂ D̃n+1
L,ε . (14)

Basically there are two prediction strategies (i.e. ways of choosing D̃n+1
L,ε ) discussed

in the literature, see [14, 11]. Moreover, in order to manage grid adaptation this
set is additionally inflated somewhat so that the grid refinement history, i.e. the
parent-child relations of subdivided cells correspond to a graded tree, i.e. transitions
between cells of different levels are sufficiently gradual. The connection with trees
whose leaves form the grid partition and whose interior nodes are the refined cells
will be addressed later again in some more detail.

Step 4: Grid adaptation. By means of the set D̃n+1
L,ε a locally refined grid is de-

termined along the following lines. We check the transformed flow data represented
on D̃n+1

L,ε proceeding levelwise from coarse to fine whether the detail associated with
any cell marked by the prediction set is significant. If it is we refine the respec-
tive cell. We finally obtain the locally refined grid with hanging nodes represented
by the index set G̃n+1

L,ε . The flow data on the new grid can be computed from the
detail coefficients in the same loop where we apply locally the inverse multiscale
transformation (13).

Fig. 5 Grid adaptation: refinement tree (left) and corresponding adaptive grid (right)

5 Adaptive multiresolution finite volume schemes

The rationale behind our design of adaptive multiresolution finite volume schemes
(MR-FVS) is to accelerate a given finite volume scheme (reference scheme) on a
uniformly refined mesh (reference mesh) through computing actually only on a lo-
cally refined adapted subgrid, while preserving (up to a fixed constant multiple) the
accuracy of the discretization on the full uniform grid. We shall briefly indicate now
how to realize this strategy with the aid of the ingredients discussed in the previous
section.
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The conceptual starting point is to rewrite the evolution equations (2) for the cell
averages, i.e., vk = vL,k for k ∈ IL, of the reference scheme in terms of evolution
equations for the multiscale coefficients. For this purpose we apply the multiscale
transformation (12) to the set of evolution equations (2). Then we discard all equa-
tions that do not correspond to the prediction set D̃n+1

L,ε of significant details. Finally
we apply locally the inverse multiscale transformation (13) and obtain the evolution
equations for the cell averages on the adaptive grid G̃n+1

L,ε which is obtained from
D̃n+1

L,ε as explained before:

vn+1
λ

+Θ λλ (Bn+1
λ −|Vλ |S

n+1
λ ) = vn

λ
− (1−Θ)λλ (Bn

λ + |Vλ |S
n
λ ), (15)

for all λ ∈ G̃n+1
L,ε where λλ := ∆ tn+1/|Vλ |. Here the flux balances Bn

λ , the numerical
fluxes Fn

λ and the source terms Sn
λ are recursively defined from fine to coarse scale

via

Bn
λ = ∑

Γ l
λ ,µ
⊂∂Vλ

|Γ l
λ ,µ |F

l,n
λ ,µ , (16)

F l,n
λ ,µ = ∑

Γ
l+1

µ,ν ⊂Γ l
λ ,µ

|Γ l+1
µ,ν |F

l+1,n
µ,ν = . . . = ∑

Γ L
µ,ν⊂Γ l

λ ,µ

|Γ L
µ,ν |F(vn

L,µν ,vn
L,νµ ,nL,µν), (17)

Sn
λ = ∑

Vµ⊂Vλ ,µ∈Il+1

|Vµ |
|Vλ |

Sn
µ = . . . = ∑

Vµ⊂Vλ ,µ∈IL

|Vµ |
|Vλ |

S(vn
µ). (18)

We refer to (17) and (18) as exact flux and source reconstruction, respectively. Since
in (18) we have to compute all sources on the finest scale, there is no complexity
reduction, i.e., we still have the complexity of the reference grid. In order to gain
in efficiency we therefore have to replace the exact flux and source reconstruction
by some approximation such that the overall accuracy is maintained. This will be
discussed in detail in Section 6.

The complete adaptive scheme consists now of the following three steps:
Step 1. (Refinement) Determine the prediction set D̃n+1

L,ε from the data of the old
time time step tn and project the data of the old time step to the pre-refined grid
G̃n+1

L,ε of the new time level, i.e.,

{vn
λ
}λ∈Gn →{vn

λ
}

λ∈G̃n+1 .

Step 2. (Evolution) Evolve the cell averages associated to the pre-refined grid G̃n+1
L,ε

according to (15) where the numerical fluxes and sources are not necessarily deter-
mined by (17) and (18), respectively, i.e.,

{vn
λ
}

λ∈G̃n+1
L,ε
→{vn+1

λ
}

λ∈G̃n+1
L,ε

.

Step 3. (Coarsening) Compress the data of the new time level by thresholding the
corresponding detail coefficients and project the data to the (somewhat coarsened
new) adaptive grid Gn+1

L,ε , i.e.,
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{vn+1
λ
}

λ∈G̃n+1
L,ε
→{vn+1

λ
}

λ∈Gn+1
L,ε

.

The performance of the adaptive MR-FVS crucially depends on the threshold
parameter ε . With decreasing value the adaptive grid becomes richer and, finally,
if ε tends to zero, we obtain the uniform reference mesh, i.e., the adaptive scheme
coincides with the reference scheme. On the other hand, the adaptive grid becomes
coarser with increasing threshold value, i.e., the computation becomes faster but
provides a less accuracte solution. An ideal choice would maintain the accuracy of
the reference scheme at reduced computational cost. For a detailed analysis we refer
to [11, 17] and explain here only the main ideas..

In order to estimate the error, we introduce the averages ûn
L of the exact solu-

tion, the averages vn
L determined by the reference FVS and the averages vn

L of the
adaptive scheme prolongated to the reference mesh by means of the inverse mul-
tiscale transformation where non-significant details are simply set to zero. Ideally
one would like to choose the threshold ε so as to guarantee that ‖ûn

L− vn
L‖ ≤ tol

where tol is a given target accuracy and ‖·‖ denotes the standard weighted l1-norm.
Since vn

L can be regarded as a perturbation of vn
L this is only possible if L is chosen

so as to ensure that the reference scheme is sufficiently accurate, i.e. one also has
‖ûn

L−vn
L‖ ≤ tol. Again ideally, a possibly low number of refinement levels L should

be determined during the computation such that the error meets the desired toler-
ance ‖ûn

L− vn
L‖ ≤ tol. Since no explicit error estimator is available for the adaptive

scheme, we try to assess the error by splitting the error into two parts corresponding
to the discretization error τn

L := ûn
L− vn

L of the reference FVS and the perturbation
error en

L := vn
L−vn

L. We now assume that there is an a priori error estimate of the dis-
cretization error, i.e., τn

L ∼ hα
L where hL denotes the spatial step size and α the con-

vergence order. Then, ideally we would determine the number of refinement levels
L such that hα

L ∼ tol. In order to preserve the accuracy of the reference FVS we may
now admit a perturbation error which is proportional to the discretization error, i.e.,
‖en

L‖ ∼ ‖τn
L‖. From this, one can derive a suitable level L = L(tol,α) and ε = ε(L).

Therefore it remains to verify that the perturbation error can be controlled. To
this end, note that in each time step we introduce an error due to the thresholding
procedure. Obviously, this error accumulates in each step, i.e., the best we can hope
for is an estimate of the form ‖en

L‖ ≤ C nε. However, the threshold error may be
amplified in addition by the evolution step. In order to control the cumulative per-
turbation error, we have to prove that the constant C is independent of L, n, τ and
ε .

For this purpose, we have to choose a prediction strategy satisfying the reliability
condition (14). In [14], a heuristic approach was suggested, taking into account the
finite speed of propagation and the steepening of gradients that are characteristic for
hyperbolic problems. So far the reliability condition (14) could not be rigorously
verified for this approach. However, in [11] a slight modification of Harten’s pre-
diction strategy was shown to lead to a reliable prediction strategy in the sense of
(14) for homogeneous conservation laws using exact flux reconstruction. Recently,
in [17] this could be extended to inhomogeneous conservation laws where an ap-
proximate flux and source reconstruction strategy was used.
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6 Approximate flux and source approximation strategies

As already mentioned above, the adaptive MR-FVS with exact flux and source re-
construction (17) and (18) will have the same complexity as the reference scheme
performed on the reference mesh. If there is no inhomogeneity, i.e., s≡ 0, then the
complexity of the resulting algorithm might be significantly reduced from the car-
dinality of the reference mesh to the cardinality of the refined mesh. To see this we
note that, due to the nestedness of the grid hierarchy and the conservation property
of the numerical fluxes, the coarse-scale flux balances are only computed by the fine-
scale fluxes corresponding to the edges of the coarse cell, see (17). Those in turn,
have to be determined by the fine scale data. However, the internal fluxes cancel and,
hence, the overall complexity is reduced. For instance, for a d-dimensional Carte-
sian grid hierarchy we would have to compute 2d 2(L−l)(d−1) fluxes corresponding
to all fine-scale interfaces µ ∈ IL with ∂Vµ ⊂ ∂Vλ where λ ∈ Il , due to the subdivi-
sion of the cell faces. Note that in both cases missing data on the finest scale have to
be determined where we locally apply the inverse two-scale transformation. This is
illustrated in Figure 6. On the other hand, the coarse scale sources can be computed
similarly with the aid of the recursive formulae (18). Here, however, we have to
compute all sources on the finest scale which at the first glance prevents the desired
complexity reduction.

Hence the adaptive scheme with both exact flux and source reconstruction is
useless for practical purposes. However, in the reliability analysis one may perform
the adaptive scheme with some approximate flux and source recosntruction to be
considered as a further perturbation of the “exact” adaptive scheme.

Fig. 6 Exact (left) versus local (right) flux and source computation

In order to retain efficiency we therefore have to replace the exact flux and source
reconstruction by some approximation such that the overall accuracy is maintained.
A naive approach would be to use the local data provided by the adaptive grid, i.e.,

F l,n
λ ,µ = F(vn

l,λ µ
,vn

l,µλ
,nl,λ µ), Sn

λ = S(vn
λ
) (19)

for λ ,µ ∈ Il .
So far, this approach is applied in Quadflow. Obviously, the complexity of the

resulting adaptive MR-FVS is reduced to the cardinality of the adaptive grid. Unfor-
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tunately, this approach may suffer from serious loss in accuracy in comparison with
the reference scheme. This is demonstrated by a performance study in Section 9.3
for a model problem.

Recently, in [17] a new approach was suggested using an approximate flux and
source reconstruction strategy along the following lines:

Step 1. Determine for each cell Vλ , λ ∈ G̃n+1
L,ε , a higher order reconstruction poly-

nomial RN
λ

of degree N using only local data corresponding to the adaptive grid.
Step 2. Approximate the boundary and volume integrals in (17) and (18) by some
appropriate quadrature rules.
Step 3. Compute fluxes and source terms in quadrature knodes by determining
point-values or cell averages on level L of the local reconstruction polynomial RN

λ
,

respectively.

In [17], this concept has been analyzed in detail for the 1D case. In particular, it
was proven that the accuracy of the reference scheme can be maintained when using
the prediction strategy in [11] and judisciously tuning the parameters such as the
reconstruction order and the quadrature rules. In Section 9.3, we will demonstrate
that this new approach is superior to the naive approach with respect to accuracy
and efficiency.

7 Multilevel Time Stepping

For an explicit time discretization the time step size is bounded due to the CFL con-
dition by the smallest cell in the grid. Hence ∆ t is determined by the highest refine-
ment level L, i.e., ∆ t = τL. However, for cells on the coarser scales l = 0, . . . ,L−1
we may use ∆ t = τl = 2L−l τL to satisfy locally the CFL condition. In [23] a multi-
level time stepping strategy has been incorporated into the adaptive multiscale finite
volume scheme. This strategy has been extended to multidimensional problems in
[20, 19]. Here ideas similar to the predictor-corrector scheme [25] and the Adaptive
Mesh Refinement (AMR) technique [5, 4] are used. The differences between the
classical approaches and the multilevel strategy are discussed in detail in [23].

The basic idea is to save flux evaluations where the local CFL condition allows a
large time step. The precise time evolution algorithm is schematically described by
Fig. 7: In a global time stepping, i.e., using ∆ t = τL for all cells, each vertical line
section appearing in Fig. 7 (left) represents a flux evaluation and each horizontal
line (dashed or solid) represents a cell update of u due to the fluxes. In the multi-
level time stepping a flux evaluation is only performed at vertical line sections that
emanate from a point where at least one solid horizontal line section is attached.
If a vertical line section emanates from a point, where two dashed horizontal sec-
tions are attached, then we do not recompute the flux, but keep the flux value from
the preceeding vertical line section. Hence fluxes are only computed for the vertical
edges in Fig. 7 (right).
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tn

tn + τl

tn + τl−1

tn +3τl

tn + τl−2

Fig. 7 Synchronized time evolution on space-time grid

In case of the multilevel time stepping we perform 2L intermediate time steps
with step size τL, i.e., one macro time step corresponds to the time interval τ0 =
2L τL. On each intermediate time level (horizontal lines) u is updated for all cells.
Since not all fluxes have to be recomputed, we can save significantly in CPU
time. Furthermore, for each even intermediate time level, i.e., at tn + k τL for
k ∈ {2,4, . . . ,2L} we perfom the multiscale-based grid adaption but only for the
levels l = lk, . . . ,L where lk = min{l : 0 ≤ l ≤ L, k mod2L−l = 0} is the smallest
synchronization level. This partial grid adaptation procedure ensures that a discon-
tinuity can be tracked on the intermediate time levels instead of a–priori refining the
whole range of influence, see Fig. 7 (right).

8 FAS-like multilevel scheme

In the present work, we are interested in combining the multiscale-based grid adap-
tation with multigrid techniques to solve efficiently the nonlinear system (16) arising
from the implicit time discretization of the underlying finite volume scheme. First
work on adaptive multigrid techniques has been reported by Brandt [8, 9] who intro-
duced the so-called multilevel adaptive technique (MLAT) that is an adaptive gener-
alization of the full approximation scheme (FAS). The fast adaptive composite grid
method (FAC) [13, 21] can be regarded as an alternative to the MLAT approach. An
overview on multigrid methods can be found in the review book [30]. In contrast to
classical adaptive multigrid schemes we employ the multiscale transformation (12)
and (13) using biorthogonal wavelets to define the restriction and prolongation op-
erators, respectively. Since the underlying problem is nonlinear we choose the FAS
[8] for the coarse grid correction.

Note that similar investigations have been published in [18] where classical AMR
techniques are used for grid adaptation and the standard FAS method is extended to
locally refined grids. The definition of composite residuals turned out to be crucial
in this concept whereas they are easily determined from the multiscale analysis in
our strategy.

In order to solve the nonlinear system (16) arising from the implicit time dis-
cretization on locally refined grids in one evolution step we combine the FAS strat-
egy [8] with the multiresolution analysis. The main ingredients are (i) the smoother
to damp high frequencies, (ii) the restriction and prolongation operator to transfer



14 Dahmen, Hovhannisyan, Müller

data from coarse to fine and vice versa and (iii) the coarse grid problem to perform
the coarse grid correction. All of them are operating on adaptively refined grids that
are composed of cells in the underlying grid hierarchy. To describe them properly
we have to distinguish between (i) the cells of the adaptive grid that are levelwise
characterized by the index sets Gl ⊂ Il , l = 0, . . . ,L, and (ii) the cells in the grid
hierarchy that are being refined during the adaptation procedure; these are charac-
terized by the significant details that are levelwise determined by the index sets Dl ,
l = 0, . . . ,L−1, and DL := /0. Then the adaptive grid G is the union G =

⋃
l=0,...,L Gl

of the index sets Gl , l = 0, . . . ,L. Furthermore the composite set T is composed
of all cells in the adaptive grid and the cells characterized by significant details,
i.e., it is the union T :=

⋃
l=0,...,L Tl of the composite index sets Tl := Gl ∪Dl on

level l = 0, . . . ,L with Gl ∩Dl = /0. The above collection of cells and index sets,
respectively, can be interpreted in terms of a graded tree where the adaptive grid G
corresponds to the leaves of this tree and the non-leaves (interior nodes) correspond
to the significant details D. The composite collection T is the union of both, i.e.,
the tree itself. For an illustration see Figure 5 (left). Note that we suppress the time
index n for simplification of representation.

Smoothing. To smooth the data on level l we perform µ Newton steps, i.e.,

N′l(v
(i))∆ v(i) =−Nl(v(i))vn

l , v(i+1) = v(i) +∆ v(i), i = 0, . . . ,µ−1, (20)

with initial data v(0) = vm
l given by the mth FAS cycle . Here the nonlinear opera-

tor Nl is determined by the discrete evolution equations (16) of the implicit finite
volume scheme for the data corresponding to the composite grid Tl on level l, i.e.,

(Nl v)λ = vλ +
τl

|Vλ |
(Bλ −|Vλ |Sλ ), λ ∈ Tl ,

where we usually use the naive flux and source reconstruction strategy (19). The
linear systems is solved iteratively using GMRES with ILU(2) pre-conditioner. For
this purpose we employ the PETSc software library of Argonne National Laboratory
[3, 1, 2]. The iteration terminates when the residual is dropping below the tolerance
tol = 1.e−8 or the maximum number of 100 relaxation steps is exceeded.

Restriction. Due to the nestedness of the underlying grid hierarchy the restriction
operator Il

l+1 : Tl+1→ Dl is naturally defined by

vλ = ∑
µ∈M0

λ

|Vµ |
|Vλ |

vµ (21)

according to (7). This relation holds for all cells. However, the restriction is per-
formed on level l only for those cells that have been refined since we are working
on locally adapted grids. These are characterized by the set Dl of significant details.
Furthermore we note that by the restriction the adaptive grid Il on level l is inflated
by the new data corresponding to Dl . This is the composite grid Tl on level l.

Prolongation. For the prolongation of data µ ∈ Il+1 from level l to level l +1 we
employ the inverse two-scale transformation (13) where we put the details to zero,
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i.e.,
vµ = ∑

µ∈G0
µ

gl,0
λ ,µ vµ . (22)

This prolongation can be considered a higher order polynomial reconstruction of
fine grid data by coarse grid data provided the underlying wavelets have sufficiently
high vanishing moments. Note that the prolongation operator Il+1

l : Dl → Tl+1 is
only applied to cells of the composite grid Tl on level l that are refined according to
the significant details Dl .

Coarse grid problem. Let us assume that we have some approximation vl =
(vλ )λ∈Tl

and vl−1 = (vλ )λ∈Il−1
on level k = l− 1, l and some right hand side f l =

( fλ )λ∈Tl
. To set up the nonlinear problem on the coarser level l−1 we first have to

determine the residual of the nonlinear problem on level l, i.e., the defect. For this
purpose we compute the nonlinear operator Nl by means of the given data vl , i.e.,

(Nl vl)λ = vλ +
τl

|Vλ |
(Bλ −|Vλ |Sλ ), λ ∈ Tl .

Note that for the computation of the flux balances Bλ we resort also to data of the
adaptive grid on coarser scales. Then the defect on level l is determined by

dλ = fλ − (Nl vl)λ , λ ∈ Tl .

The defect data should not be confused with the detail coefficients of the multiscale
decomposition.

Next we apply the restriction operator Il−1
l to the defect (array) dl and to the data

vl , i.e.,
dλ = (Il−1

l dl)λ and vλ = (Il−1
l vl)λ , λ ∈ Dl−1.

Note that the restriction of the latter will not interfere with the given data vl−1 be-
cause Dl−1∩Gl−1 = /0. Therefore, we may concatenate the data on level l−1, i.e.,
vl−1 = (vλ )λ∈Gl−1∪Dl−1

. Furthermore we employ the same restriction operator for
both the defect and the data. In other approaches, it is suggested to use different
operators.

We then determine the right hand side f l−1 on the coarse scale l−1 by means of
the coarse grid data vl−1. For this purpose we first compute the nonlinear operator
Nl−1

(Nl−1 vl−1)λ = vλ +
τl−1

|Vλ |
(Bλ −|Vλ |Sλ ), λ ∈ Tl−1,

where again we may access to data of the adaptive grid on coarser scales to compute
the flux balances. Then the right hand side f l−1 is determined by

fλ = dλ +(Nl−1 vl−1)λ , λ ∈ Dl−1, (23)

for the cells on level l−1 that are being refined and

fλ = rn
λ
, λ ∈ Il−1, (24)



16 Dahmen, Hovhannisyan, Müller

for the non-refined cells in the adaptive grid. Here rn
λ

is the residual corresponding
to the old time level tn, i.e.,

rn
λ

= vn
λ
, λ ∈ Gl−1. (25)

Then the coarse grid problem is given by

(Nl−1 wl−1)λ ≡ wλ +
τl−1

|Vλ |
(Bλ −|Vλ |Sλ ) = fλ , λ ∈ Tl−1. (26)

Adaptive FAS cycle. Finally, we describe one iteration step m→ m + 1 of the
adaptive multilevel cycle

vm+1
l = ADAPCYCLE(l,γ,vm

l−1,v
m
l ,Nl , f l ,µ1,µ2)

in terms of the above ingredients. Here we restrict ourselves to the adaptive two-
scale case with given data vm

k on level k = l (fine grid) and on level k = l−1 (coarse
grid) corresponding to Gl and Gl−1, respectively. The iteration cycle is initialized by
the data on the adaptive grid at time level tn. From these we compute the residuals
rn

λ
, λ ∈ Gk, according to (25) that are stored in the right hand side terms f k: We

start with performing µ1 smoothing steps (20) on the data vm
l of level l. Next we

perform the coarse-grid correction. For this purpose, we first compute the defect d
m
l

from the relaxed data vm
l . The defect as well as the relaxed data are restricted from

Tl to Dl−1 according to (21). Note that there exist data vm
l−1 of the adaptive grid

on level l− 1 that are complemented by the restricted data on Tl−1. From this we
compute the right hand side f m

l−1 where we have to distinguish between cells of the
adaptive grid Gl−1 and the refined cells Dl−1 on level l−1, see (23) and (24). The
coarse grid problem (26) is then iteratively solved by the Newton scheme (20) or, if
there are additional scales, we recursively apply the algorithm again to the coarser
scale l−1. The current solution on the adaptive grid on level l−1 is then replaced
by the coarse grid solution ŵm

l−1 whereas for the refined cells Dl−1 the correction
v̂m

l−1 = ŵm
l−1− vm

l−1 is computed. The latter is interpolated to Tl using (22) and the
relaxed data are updated by the interpolation v̂m

l . On the corrected approximation
vm,cgc

l = vm
l + v̂m

l we again perform µ2 smoothing steps. The algorithm is sketched
in Figure 8.

Fig. 8 FAS (l, l−1) two-grid method
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9 Numerical results

The performance resulting from the above concepts, namely, the multilevel time
stepping, the multilevel solver and the flux and source reconstruction strategies, will
be investigated now by means of different test configurations in 1D and 2D: an
instationary flow over an oscillating plate, a steady state computation over a bump
and the solution of the inhomogeneous, inviscid Burgers’ equation, respectively.
For all computations the multiscale analysis is based on biorthogonal wavelets with
M = 3 vanishing moments. For the prediction we apply Harten’s original strategy,
cf. [14].

9.1 Multilevel time stepping: Oscillating plate

The multilevel time stepping strategy in combination with the naive flux reconstruc-
tion strategy (19) is investigated for an inviscid flow over an oscillating plate with
prescribed deformation in time. The deformation is determined by

w(t,x) =
α

l
sin(2π t β )∗ sin(π x/l)

with amplitude α = 0.2, panel length l = 1 and frequency β = 1/2π . The flow do-
main extends from -5 to 5 in x-direction and from 0 to 5 in y-direction. At time
t = 0 a periodic oscillation in the interval [0,1] is initiated at the the lower boundary.
The simplicity of the geometry allows us to employ transfinite interpolation tech-
niques for deforming the grid. Although the multiscale-based grid adaptation and
the multilevel time stepping strategies have been outlined here only for stationary
flow domains, these can be extended to moving grids by using an ALE formulation
of the Euler equations, cf. [7, 19].

The flow enters the domain from the left hand side with free-stream conditions
ρ∞ = 1.2929 [kg/m3], p∞ = 101325 [Pa], v∞ = (165.619,0) [m/s]. The reference
time is determined by tre f = 1./

√
p∞/ρ∞ = 279.947 [m/s]. At the boundaries we

impose slip conditions at the lower boundary and characteristic boundary condi-
tions elsewhere because of the subsonic free-stream conditions (M∞ = 0.5). The
grid is adapted after every timestep. The maximum refinement level is Lmax = 5, the
threshold ε = 0.002, the coarsest grid consists of 1375 cells. After two cycles of
the boundary oscillation the number of grid cells varies around 40.000 grid points
depending on the phase of the boundary movement.

The bump is moving periodically up and down. When the bump is moving up-
wards a shock occurs at the leeward side because of the acceleration of the flow. The
shock weakens and moves in upstream direction when the bump moves downward.
This can be deduced from Figure 9 where the Mach number at the midpoint of the
bump is plotted versus the dimensionless time t/tre f . When the shock is passing a
steep gradient can be seen.
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Fig. 9 Mach number at bump midpoint

The computation was carried out with both the global and the multilevel time
stepping strategy. Although we performed no grid deformation step for the inter-
mediate time levels in the latter case the accuracy of the solution is not affected as
can be concluded from Figure 9. On the other hand, in comparison to a global time
stepping strategy, we gain a factor of 3.7 in efficiency.

9.2 FAS-like multilevel scheme: Bump

Results of a 2D Euler transonic flow, considered in [26], are presented next in order
to illustrate the convergence and efficiency of the multilevel strategy. The computa-
tional domain is defined by a circular arc bump in a channel with a secant of length
l = 1[m] and a thickness of h = 0.024[m], see Figure 10. At the inlet boundary, the
Mach number is 0.85 and a homogeneous flow field characterized by the free-stream
quantities is imposed. At the outlet boundary, characteristic boundary conditions are
used. We apply slip boundary conditions across the solid wall.

Again, the multiscale analysis employs biorthogonal wavelets with the order M =
3 of vanishing moments. The threshold value in the grid adaptation step is ε =
2.5× 10−3 and L = 5. Since we are dealing with a steady state problem, the time
stepsize is determined locally for each cell by a time-dependent CFL number. For
the local flux computation we use the naive strategy (19). In each time step, we
perform one FAS cycle to approximate the solution of the nonlinear problem.

Our computation started on a structured grid corresponding to refinement level 1
that is determined by uniformly refining once the cells of the coarsest resolution of
24×8 cells, which span the entire computational domain, and we run to steady state.
Additional refinement levels are added in response to time residual dropping or after
a fixed number of time steps. In the present computation we enforced grid adaptation
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Fig. 10 Circular arc bump configuration.

after 20 iterations for the first five adaptation steps. Then additional adaptations are
performed as soon as the averaged residual of the density has dropped by a factor of
10−5.

Figure 13 (right) shows the computed pressure distributions after each adaptation
step. At Mach 0.85 there is a compression shock separating a supersonic and a
subsonic domain. The shock wave is sharply captured and the stagnation areas are
highly resolved as can be concluded from the adaptive meshes shown in Figure 13
(left).

Figure 11 shows the corresponding convergence history of the computation. The
measure of convergence to steady state is the averaged residual for the density, i.e.,

∑
λ∈Gn+1

L,ε

|Vλ |
|Ω |

(ρn+1
λ
−ρ

n
λ
).

At the beginning the residual oscillates and decreases almost monotonically be-
tween two adaptation steps. After each grid adaptation it increases by several orders
of magnitudes. This is caused by the thresholding that is performed within the mul-
tiscale analysis. After the 5th adaptation, the flow pattern is already established and
the residual decreases more strongly. In total, the residual was reduced from 10−4

to 10−16.
For steady flows, the CFL number is controlled and varied between a minimum

and maximum value during the computation. In the presence of shock waves, it is
not possible to start the computation with a large CFL number directly due to the
instationary behavior of the shock development. In the present work, computations
were initiated with CFLmin = 10 and increased after each time step by a constant
factor β = 1.05 until a maximum CFLmax is reached, i.e.,

CFL(tn) = β CFL(tn−1).

Figure 11(right) shows the history of the CFL number.
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Fig. 11 Temporal variation of the residual (left) and CFL number.

9.3 Local versus exact flux and source reconstruction: Burger’s
equation

In order to investigate the performance of the different flux and source reconstruc-
tion strategies discussed in Section 6, we conduct some parameter studies for a
simplified 1D configuration. For this purpose, we consider the inhomogeneous, in-
viscid Burgers’ equation with flux f (u) = 0.5u2, source s(u) = u(u− 0.5)(u− 1)
and initial data u0(x) = sin(2π x).

The computational domain Ω = [0,1] is discretized by N0 = 10 cells on the
coarsest level, i.e., h0 = 0.1. Hence the resolution for higher refinement levels is
Nl = 2l N0 and hl = 2−l h0. At the boundaries we use periodic boundary condi-
tions. For the time discretization, we have to respect the CFL condition. Here we
choose τ0 = 0.016. The final integration time is T = 0.24. Since we use global time
stepping, the CFL condition has to hold for the smallest cells corresponding to the
highest refinement level L, i.e., τ = 2−L τ0.

The explicit reference FVS (2) is determined by the Godunov flux. In order to
improve spatial and temporal accuracy, we employ a piecewise linear ENO recon-
struction, cf. [16]. For the source term, we apply the first order approximation (3).

Computations have been carried out for several threshold values ε and different
flux and source reconstruction strategies: (i) exact reconstruction strategy according
to (17) and (18), (ii) flux and source computation on unstructured meshes using
only local data corresponding to the adaptive grid according to (19) as is frequently
used in applications, cf. [7], and (iii) approximate reconstruction strategy using the
midpoint rule and reconstruction polynomials of degree N = 2 with central stencil
that are detailled in [17]. In the following, these are referred to as the original, naive
and modified adaptive MR-FVS.

The solution develops a shock at time t = 1/π at position x = 0.5 which is moving
at negative speed due to the inhomogeneity. In Figure 14 we present the solution for
the modified adaptive scheme for L = 10, ε = 10−3 by points at the cell center of the
adaptive grid and the exact solution computed by the reference scheme on a uniform
grid corresponding to L = 14.
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To investigate the influence of the different flux and source reconstruction strate-
gies on the efficiency of the adaptive schemes, we have to consider the computa-
tional effort (memory and CPU time) and the accuracy (discretization and pertur-
bation error) for various different threshold values. All adaptive computations are
performed with L = 10 refinement levels.

According to the ideal strategy in Section 5, the threshold value ε has to be
chosen such that the discretization error τL = ûL− vL of the reference scheme and
the perturbation error eL = vL − vL are balanced. For L = 10 we obtain ‖τL‖ =
5.8× 10−4 where the “exact ” solution is obtained by the FVS on a uniform mesh
corresponding to L = 14 refinement levels.

First we consider the perturbation error due to thresholding plotted in Figure
17 for various threshold parameters. Obviously, the perturbation error is decreasing
with smaller threshold values. In particular, ‖eL‖→ 0 for ε→ 0+, i.e., the modified
adaptive scheme converges to the reference solution obtained on the reference grid
with L refinement levels. Of course, we do not gain in accuracy when choosing a
very small threshold value because the discretization error is fixed by the number of
refinement levels.
To determine the optimal threshold value, we plot the error ‖ûL−vL‖ of the adaptive
scheme for different threshold values, see Figure 16. From this, we conclude that
an optimal choice would be εopt ∈ [10−5,10−4] because the error of the adaptive
schemes is decreasing with decreasing threshold value ε as long as ε > εopt whereas
it stalls for ε < εopt . Hence, for ε > εopt the perturbation error due to thresholding
dominates whereas for ε < εopt the discretization error dominates.
The above observations concerning the discretization and perturbation error hold
true independently of the adaptive scheme. However, for a threshold value εopt in
the optimal range we see in Figures 17 and 16 that the highest accuracy is obtained
with the original adaptive scheme. The modified adaptive scheme looses a bit in
accuracy, but for the naive adaptive scheme the loss is much more severe.

To draw any conclusions concerning the efficiency of the different adaptive
schemes, we have to take the computational cost into account. First we discuss the
size of the adaptive grids that determine the memory requirements, see Figure 18.
We observe that the minimal grid size is usually obtained for the original adaptive
scheme whereas for the naive and the modified adaptive scheme we need more cells.
This might be caused by small oscillations induced by the reconstruction error. This
becomes more severe in the case of the naive adaptive scheme when the threshold
value is chosen too small, i.e., ε < εopt .

Finally, we consider in Figure 19 the computational time. The CPU time needed
for the original adaptive scheme is much higher as long as the threshold value is not
too small. This is caused by the source term computation on the uniform reference
grid dominating the overall cost for grid adaptation and time evolution. In case of the
naive and the modified adaptive scheme, the adaptive grid becomes more dense with
decreasing threshold values, i.e., more cells are refined, and the cost approaches the
cost of the reference computation on the reference grid. Of course, this behavior is
expected for any adaptive scheme.
To summarize the above observations, we conclude that for an optimal threshold
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value εopt the exact strategy is most accurate but at the cost of the reference com-
putation, i.e., there is no gain at all. For the naive adaptive scheme, we observe a
severe loss in accuracy at lower computational cost in comparison to the the mod-
ified adaptive scheme. This loss can only be compensated by a smaller threshold
value at higher computational cost. From this point of view, the approximate strat-
egy is more efficient when fixing the target accuracy by the discretization error, i.e.,
log(‖τL‖) =−3.24, see Figure 15.

Finally, we wish to point out that in practice the optimal threshold value εopt
can only be roughly estimated and, hence, the use of the local strategy cannot be
recommended: we either (i) loose significant accuracy if ε � εopt , see Figures 16,
or (ii) the computational cost (memory) is significantly higher due to instabilities
triggered by the increasing influence of the reconstruction error if ε � εopt , see
Figure 18.
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t = 1.2680 ·2π

t = 1.4090 ·2π

t = 1.5499 ·2π

t = 1.6907 ·2π

Fig. 12 Time evolution of Mach number distribution and adaptive grid for flow over moving bump
(multilevel time stepping, L = 5)
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L = 1: number of cells = 768

L = 2: number of cells = 2112

L = 3: number of cells = 4137

L = 5: number of cells = 7551

Fig. 13 Adaptive grid (left) and pressure contours over the bump (right) after each adaptation
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Fig. 14 Comparison of adaptive solution (L =
10, ε = 10−3) and exact solution (L = 14, ε = 0)

Fig. 15 Comparison of CPU time and error of
adaptive scheme for different threshold values.

Fig. 16 Error of adaptive solution with L = 10
and varying threshold value ε .

Fig. 17 Perturbation error of adaptive solution
(L = 10, varying threshold value ε) and refer-
ence solution (L = 10, ε = 0) on reference grid
(L = 10)

Fig. 18 Number of cells: Adaptive computa-
tions with L = 10 and varying threshold value
ε .

Fig. 19 Computational time: Adaptive compu-
tations with L = 10 and varying threshold value
ε .


