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Abstract—This work introduces the use of Gaussian processes
(GPs) for the estimation and understanding of crop development
and yield using multisensor satellite observations and meteoro-
logical data. The proposed methodology combines synergistically
information on canopy greenness, biomass, soil and plant water
content from optical and microwave sensors with the atmospheric
variables typically measured at meteorological stations. A com-
posite covariance is used in the GP model to account for varying
scales, nonstationary and nonlinear processes. The GP model
reports noticeable gains in terms of accuracy with respect to
other machine learning approaches for the estimation of corn,
wheat and soybean yields consistently for four years of data
across continental US (CONUS).

Sparse GPs allow obtaining fast and compact solutions up
to a limit, where heavy sparsity compromises the credibility of
confidence intervals. We further study the GP interpretability by
sensitivity analysis, which reveals that remote sensing parameters
accounting for soil moisture and greenness mainly drive the
model predictions. GPs finally allow us to identify climate
extremes and anomalies impacting crop productivity and their
associated drivers.

Index Terms—Gaussian processes (GP), modeling, inter-
pretability, crop yield estimation, CONUS, SMAP, MODIS

I. INTRODUCTION

RESEARCH and technological advances in the field of
remote sensing have greatly improved the ability to detect

and quantify the physical and biological stress that affects the
productivity of agricultural crops as well as their status and
evolution. Due to the exponential increase of the population
in the last fifty years, the demand in crop production has
increased, thus tripling the production of major cereals such as
wheat and rice [1]. In the same vein, the Food and Agriculture
Organization (FAO) of the United Nations estimates that 50%
more food needs to be produced by 2050 [2].

In this context, the availability of data through Earth Obser-
vation (EO) has opened new pathways for efficient agricultural
mapping, crop monitoring and evaluation. Among the available
EO data, vegetation indices from optical sensors like MODIS
are widely used as proxies to crop productivity. Complemen-
tary information conveyed by passive microwave sensors, such
as SMOS and SMAP, can contribute to an improved continu-
ous crop monitoring [3]. In addition, ancillary meteorological
variables, such as temperature or precipitation, influence crop
growth, development, and final grain yield are of paramount
relevance for monitoring crops too [4], [5]. Exploiting such
wealth and diversity of information in an automated manner
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is a challenge in itself. In recent years, machine learning (ML)
methods have promised improved accuracy in yield estimation,
and many methods have been actually applied for the crop
yield monitoring, from random forests, to neural networks and
kernel machines [3], [6], [7].

The vast majority of studies focus, however, and very little
on understanding and interpreting model’s predictions. Only
recent works such as [8] have explored this issue. In this paper,
we introduce Gaussian Process (GP) models to address the
problem of crop yield estimation and understanding jointly. We
compare GPs with other standard methods for estimation of
crop yield using informative drivers from optical and passive
microwave sensors as well as meteorological variables. To
deal with the particularities of the time series we introduce a
composite multisource GP which can deal with nonstationary
and nonlinear processes. Three crops are considered (corn,
wheat and soybean) and data is collected for years 2015-
2018 over continental US (CONUS). In order to deal with
such heterogeneous data sources efficiently, we also introduce
the use of a sparse GP model that can scale to bigger data
sets while still keeping high accuracy. More importantly, we
provide a ranking of covariates to assess the relevance and
synergy of remote sensing and meteorological data, as well as
confidence intervals for the predictions and spatially explicit
relevance maps of counties and years. Finally, the GP solution
helps us identify extremes and anomalies, and their associated
drivers.

II. GAUSSIAN PROCESSES FOR MODELING

Gaussian Processes are non-parametric probabilistic ap-
proaches for machine learning problems, mainly for regression
and classification. The GP regression method [9] has proven
very good performance in biophysical parameter retrieval and
model emulation [10], [11].

A. Notation
Let us fix notation first. Our goal is to learn a nonparametric

function f able to estimate our target variable (crop yield)
at county level y ∈ R from a set of D input features (e.g.
satellite and meteorological), x ∈ RD. We assume an additive
noise model y = f(x) + ε, where the noise is additive
independent and identically Gaussian distributed with zero
mean and variance σn, ε ∼ N (0, σ2

n). Let us define the stacked
output values y = [y1, . . . , yN ]>, denote the test points and
predictions with a subscript asterisk x∗ and y∗ respectively.
Now, the output values are distributed according to:(

y
f(x∗)

)
∼ N

(
0,

(
K + σ2

nI k∗
k>∗ k∗∗

))
, (1)

where the covariance terms of the test point k∗ =
[k(x∗,x1), . . . , k(x∗,xN )]>, k∗∗ = k(x∗,x∗) represents the
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self-similarity of x∗, and K is the N ×N kernel matrix that
contains all pairwise similarities between counties i and j with
entries [K]ij = k(xi,xj).

For prediction purposes, the GP model is obtained by
computing the posterior distribution over the unknown output
y∗, p(y∗|x∗,D), where D ≡ {xn, yn|n = 1, . . . , N} is the
training dataset. This posterior can be shown to be a Gaussian
distribution, p(y∗|x∗,D) = N (y∗|µGP∗, σ

2
GP∗), for which one

can estimate the predictive mean (point-wise predictions) and
the predictive variance (confidence intervals):

µGP∗ = k>∗ (K + σ2
nI)
−1y = k>∗ α, (2)

σ2
GP∗ = k∗∗ − k>∗ (K + σ2

nI)
−1k∗. (3)

where α are model weights.

B. Interpretability with GP models
GPs are not black boxes. They allow not only modeling

but also understanding parts of the problem in different ways.
First, note that, after optimization, a set of parameters αi ∈ R,
i = 1, . . . , N are learned for each one of the N training data
examples xi, indicating their relevance. Second, the predictive
variance σ2

GP∗ tell us about the confidence in the prediction,
which can be useful to identify anomalous cases as well as
to characterize extrapolation regimes. Third, GPs allow us
to optimize several hyperparameters efficiently and hence use
flexible kernel functions with interpretable parameters. Many
kernel functions are available [12]. In this work we propose the
linear combination of kernels to account for different signal
characteristics. In particular, we use:

K(xi,xj) = x>i xj+ν exp

(
− 1

2σ2
‖xi−xj‖2

)
+σ2

nδij , (4)

where ν is a scaling factor,σ is a dedicated parameter con-
trolling the spread of the signal relations, σn is the noise
standard deviation, and δij is the Kronecker’s symbol. Note
that the kernel function is a combination of three kernels: a
linear kernel to cope with linear features and to mimic the best
linear decision, a standard squared exponential kernel to deal
with locality and nonlinearities to modify the linear solution,
and a noise term to regularize the solution.

Finally, the GP model can be further scrutinized following
a sensitivity analysis. We suggest here ranking features from
a trained GP model by evaluating the impact of the inputs
on the prediction error in the context of the other predictors.
Essentially, for each feature d (or set of features associated to
a particular variable) the algorithm sets to zero their values
for all training samples, and evaluates the prediction RMSE,
which can be cast as as sensitivity (relevance) of that variable.
A normalized ranking of feature t is thus reported rd =
RMSEd/

∑D
d=1 RMSEt. In [12], we illustrated the usefulness

of this procedure for the identification of the most relevant
spectral channels for the retrieval of vegetation parameters
from hyperspectral data.

C. Fast and sparse GP models
One of the major drawbacks of GPs is dealing with a

high volume of training data. A naı̈ve implementation requires
computation which grows as O(N3) where N is the number
of training points. Moreover the memory requirements to
store the covariance matrix K grows as O(N2). This makes
GPs impractical when the training set is in the range of

hundred thousands points. Among the many available methods
to improve efficiency of GPs [13], we suggest the ‘subset of
regressors’ (SoR) approach. The idea is to define the approx-
imate solution as a function of a set of M � N inducing
variables u. Its corresponding prior is p(u) = N (0,KM,M ),
which is the same that is set for the noise free variables f of the
standard GP but using the inducing inputs points. The notation
KN,M indicates a matrix K of N rows and M columns.

The SoR method establishes the deterministic relation:

pSoR(f |u) = N (KN,MK−1M,Mu, 0),

and now integrating u, gives the prior over f : pSoR(f) =
N (0,QN,N ), where QN,N = KN,MK−1M,MKM,N . The pos-
terior pSoR(f∗|x∗,D) for a new input point x∗ is given by:

µSoR∗ = k∗,M (KM,NKN,M + σ2KM,M )−1KM,Ny, (5)
σ2

SoR∗ = σ2k∗,M (KM,NKN,M + σ2KM,M )−1kM,∗. (6)

This solution replaces K in (2)-(3) by Q in the standard
GP posterior, which also follows from the Nyström approx-
imation [14]. The computational complexity for training is
O(NM2), and O(M) for computing the predictive mean and
O(M2) for the predictive variance.

D. Inference and Bayesian optimization
The hyperparameters of the GP model θ = {ν, σ, σn} are

typically inferred by Type-II Maximum Likelihood, using the
marginal likelihood (also called evidence) of the observations,
which is also analytic (explicitly conditioning on θ):

log p(y|θ, σn) = logN (y|0,K + σ2
nI), (7)

and since its derivatives are analytic, the conjugate gradient
ascend is typically used for optimization. However, this pro-
cedure may end in local minima, mainly in high-noise regimes
and low-to-moderate number of examples. A possibility to
alleviate this would be running and sampling the GP with
different initial conditions, but this can be very expensive.
Instead, we searched the optimal hyperparameters using a
more robust Bayesian optimization procedure [15]. We provide
operational code snippets and data in GP4CROPS website for
the sake of reproducibility.

III. DATA COLLECTION AND PREPROCESSING

The USDS National Agricultural Statistics Services (USDA-
NASS) provides exhaustive surveys on crops at the county,
district, and state levels across the US. It includes production
information per crop type (e.g. area planted, area harvested,
yield) as well as information of crop progress, such as the
days of planting and harvest and the dates at which crops
had reached specific growth stages (i.e. emergence, bloom,
dropping leaves). This high level of detail makes CONUS an
ideal experimental site for large-scale crop yield studies. For
this work, we collected information on soy, corn and wheat
yields (t/ha) from USDA-NASS for years 2015 to 2018 from
35 states, at a county level, see Fig. 1.

Time series from three satellite-based bio-geophysical vari-
ables for the study period were selected: the Enhanced Vegeta-
tion Index (EVI) to account for vegetation chlorophyll content,
the Vegetation Optical Depth (VOD), sensitive to above-
ground biomass water-uptake dynamics, and Soil Moisture
(SM) which provides direct information of surface water

http://isp.uv.es/gp4crops.html
data access: http://quickstats.nass.usda.gov/
data access: http://quickstats.nass.usda.gov/
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Fig. 1: Study Area including the 35 states reporting soy-
bean, corn and wheat production during years 2015-2018
and cropland mask following the MODIS IGBP land cover
classification.

TABLE I: Data description.
Product Source Grid Temp. res. Purpose
Satellite
MODIS/EVI MOD13C1 v6 0.05◦ 16 d Phenology
VOD SMAP [17] EASE2 9 km 3 d Growth
SM SMAP [17] EASE2 9 km 3 d Moisture
MODIS/IGBP MCD12C1 v6 0.05◦ - Area
Meteorologic
Tmax Daymet v3 1 km x 1 km Monthly Temp.
Precip Daymet v3 1 km x 1 km Monthly Precip.

conditions. We also included monthly maximum temperature
(Tmax) and precipitation (Precip) from meteorological sta-
tions. These optical, microwave and meteorological features
constitute potential indicators of the vegetation state and
drivers for crop yield estimation as shown elsewhere [3], [16].
Table I summarizes the data used in this study. Variables were
first projected to a common grid (EASE2 9 km) and then a
crop mask was used to identify the croplands in the study
region and screen out data from mixed and non-agricultural
pixels (see Fig. 1).

Satellite and meteo pixel-based information was related to
the survey data at the county scale as follows. First, pixels
from each county were extracted according to its geographic
boundaries given by shapefile polygons and then spatially
averaged to produce time series of EVI, VOD, SM, Tmax
and Precip. We fixed a temporal observational window from
April to October of each year, which includes the growing
and senescence stages of all crops in the study area. Our
experimental setup takes all the available temporal information
following crop progress to estimate each year’s yield. All
years were considered altogether to learn a single model per
crop. Since we work with time series from multiple sources,
different variables (covariates) have different lengths L (i.e.
temporal dimension): EVI (L = 13), VOD and SM (L = 214),
Tmax and Precip (L = 7). Stacking all the observations would
make the problem intractable since the dimensionality would
increase largely. Therefore we applied a PCA per variable to
retain the same amount of variance each (95%) and stacked
the projected data instead. This allowed us to project the time
series in a lower dimensional representation: EVI (D = 11),
VOD (D = 10), SM (D = 27), Tmax (D = 6) and Precip
(D = 7). These components were finally stacked (leading to
a final -more tractable- dimensionality D = 61) and used for
regression. A dataset was obtained for each crop type, with a
total of N = 1744 samples for corn, N = 2060 for soy and
N = 1036 for wheat.

IV. EXPERIMENTAL RESULTS

We are interested in learning accurate and efficient estima-
tion models of crop yield but also, and more importantly, in
inferring the most relevant drivers and climate anomalies from
the proposed model.

To do this, we first compare several standard regression
models (ordinary least squares linear regression -LR-, random
forest -RF-, and the proposed GP composite model) for each
variable. This helps us learning what are the most important
variables and models in isolation. Second, we derive global
regression models fed with all considered variables. This
synergistic combination of multisensor data in the model is
studied in terms of robustness, confidence intervals, sparsity
and accuracy, and also by looking at the relative relevance of
the drivers when considered jointly.

A. Marginal approach
We analyze the information content of each individual

variable for predicting crop yield separately. Results are shown
in Table II. The GP model generally outperforms the rest,
although results are similar to RF. In all cases, maximum
temperature gives the higher R values for any crop and
regression model. In the case of corn crops, the highest R
value obtained (R=0.82) confirms the already demonstrated
strong dependence of corn growth with temperature. Corn
develops faster in warmer weather and slower in cold seasons1.
For soy and wheat crops, the highest R values were obtained
with Tmax and SM, and with Tmax and EVI, respectively. All
variables can be considered informative (R> 0.6) and will be
further considered jointly.

TABLE II: Results for different models (LR, RF and GP),
sets of variables and measures (mean error, ME [t/ha]; root-
mean-square error, RMSE [t/ha]; and Pearson’s correlation
coefficient R) over an independent test set for the marginal
configuration.

Model D LR RF GP
ME RMSE R ME RMSE R ME RMSE R

Corn N=1744
EVI 11 0.01 1.60 0.68 0.02 1.46 0.75 0.03 1.43 0.76
VOD 10 0.01 1.86 0.53 0.01 1.65 0.67 -0.01 1.48 0.74
SM 27 0.01 1.77 0.59 -0.02 1.48 0.76 0.02 1.35 0.79
Tmax 6 0.01 1.76 0.60 0.01 1.39 0.78 0.02 1.27 0.82
Precip 7 0.01 2.03 0.38 -0.01 1.72 0.62 0.01 1.65 0.66
Soy N=2060
EVI 11 -0.01 1.53 0.72 -0.01 1.41 0.77 -0.01 1.34 0.79
VOD 10 -0.01 1.81 0.57 -0.01 1.55 0.72 0.01 1.41 0.76
SM 27 -0.01 1.76 0.60 -0.02 1.45 0.77 -0.02 1.31 0.80
Tmax 6 -0.01 1.73 0.62 -0.03 1.28 0.82 -0.01 1.20 0.84
Precip 7 -0.01 2.05 0.36 -0.02 1.68 0.65 0.00 1.58 0.69
Wheat N=1036
EVI 11 0.05 1.50 0.72 0.04 1.38 0.78 0.04 1.36 0.78
VOD 10 0.05 2.01 0.38 0.04 1.72 0.62 -0.01 1.60 0.67
SM 27 0.05 1.83 0.54 0.02 1.58 0.70 0.03 1.44 0.75
Tmax 6 0.05 1.75 0.59 0.03 1.45 0.74 0.02 1.38 0.77
Precip 7 0.05 1.87 0.51 0.02 1.65 0.65 0.02 1.59 0.68

B. Joint approach
Table III shows the results for all considered variable com-

binations: satellite only (EVI, VOD, SM), meteorological only
(Tmax, Precip), and altogether. An important first conclusion
is that, independently of the considered combination, results

1https://www.agry.purdue.edu/ext/corn/news/timeless/heatunits.html
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TABLE III: Results for different models (LR, RF and GP),
sets of variables and measures (mean error, ME [t/ha]; root-
mean-square error, RMSE [t/ha]; and Pearson’s correlation
coefficient R) over an independent test set for the joint
configuration.

Model D LR RF GP
ME RMSE R ME RMSE R ME RMSE R

EVI+VOD+SM 48
Corn -0.01 1.43 0.75 0.01 1.29 0.81 0.01 1.21 0.83
Soy -0.02 1.35 0.78 -0.02 1.25 0.83 -0.03 1.15 0.85
Wheat -0.01 1.41 0.76 -0.05 1.30 0.80 -0.02 1.29 0.80
Tmax+Precip 13
Corn 0.01 1.62 0.68 -0.01 1.37 0.79 0.00 1.30 0.81
Soy -0.06 1.62 0.67 -0.04 1.27 0.82 -0.04 1.20 0.83
Wheat 0.01 1.61 0.67 -0.04 1.38 0.78 -0.04 1.32 0.79
Sat+Meteo 61
Corn -0.03 1.41 0.77 -0.03 1.27 0.83 -0.01 1.20 0.84
Soy 0.01 1.30 0.80 -0.01 1.19 0.84 0.01 1.09 0.86
Wheat 0.04 1.36 0.78 0.01 1.26 0.83 0.03 1.23 0.83

always improve over the marginal approach, thus suggesting
that variables convey complementary information (cf. with
results in Table II). Having information on the content of
chlorophyll (EVI), water stress (VOD) and soil moisture (SM)
further facilitates obtaining a useful model for crop yield
estimation, thus confirming the diversity in the variables nature
always helps, independently of the considered crop. Also, note
that, although the values obtained for precipitation have been
lower than the rest of the variables (e.g. R=0.65), its com-
bination with the maximum temperature achieves very good
performances, thus suggesting that meteo information could
suffice. Nevertheless, we finally observe a clear improvement
when meteo and remote sensing variables are combined in
the models, leading to better fitted (higher R), more accurate
(lower RMSE [t/ha]) and less biased (lower ME [t/ha]) models.

C. Interpretability
In all previous cases, GP models have outperformed the

rest. Here we suggest several techniques to interpret what the
model learned, by looking at the variables sensitivity, as well
as model sparsity and the distribution of confidence intervals.

Fig. 2: Sensitivity analysis per crop.

1) Sensitivity analysis: The sensitivity analyses are shown
in Fig. 2. For all three crops, the features that present a higher
RMSE and hence sensitivity (relevance) are EVI and SM. It
is observed that for all cases the precipitation variable is less
relevant compared to the others, as already seen in section
IV-A Table II. However, meteorological features, such as Tmax

and Precip, along with VOD generally reveal a considerable
impact. Results confirm our observations in [3].

2) Sparsity, accuracy, and confidence intervals: We run the
sparse GP model for different inducing points M (10%, 25%,
50%, 75%, 100%) for all joint crop-specific models. Training
was run 100 times and results are averaged in Fig. 3[left]. All
models were trained using a Bayesian optimization approach
with a 25% hold-out validation set. Results show that the
average performance is constant for M > 50%. Results
degrade when using only 25% of inducing variables, but only
by 7% in R. These results suggest that sparse GPs constitute an
efficient way to obtain efficient GP models without sacrificing
accuracy. Figure 3[middle] shows the density of GP model
weights |α| for different sparsity levels. As less inducing
points M are used (higher sparsity imposed), the distribution
becomes flatter, thus suggesting that all points become equally
relevant, while for bigger datasets a high degree of ‘virtual
sparsity’ (α ≈ 0) is achieved. Note for instance the heavy
tails and deemed similar densities for M > 25%. Interestingly,
Fig. 3[right] reveals a clear trade-off between sparsity and
confidence: Even if a low M can be prescribed to achieve fast
and acceptable results, the associated confidence intervals are
too wide in such cases, leading to coefficients of variation,
CV=100×σGP∗

µGP∗
, larger than 25% for M < 50%, which is

unacceptable and does not meet the GCOS and FAO recom-
mendations of 20%. On the contrary, considering M > 50%
of inducing points, accuracy becomes stable (R∼0.80) and
confidence intervals are below the GCOS prescription.

D. Learning anomalies and hotspots
Model weights α in GPs provide information about the

errors of the predictions and can serve as good indicators of
anomalies and hotspots. In our corn GP model, the highest
α values for all the years correspond to counties of the
state of Minnesota, being the highest α (most anomalous)
assigned to the county of Nobles for 2017. Figure 4 shows
the time series of the Nobles county and a typical county with
good predictions (modal α value). That year the temperature
in Nobles was higher than in the typical county (+8.33%),
associated with lower precipitation (-14.3%) and greenness
(EVI was -13.95%). Actually, a considerable decrease in
precipitation was observed for the summer period, where
values from moderate to severe drought for the neighbour state
of Iowa were recorded. The differences in VOD and SM were
minimal on average (∆ = 5.17%), which probably led to poor
results (high error, high α value) for this particular county. This
fact, associated with high confidence (low CV[%]) makes this
an anomalous county for the GP model.

Maps of α and CV[%] values, along the county yield and
predictive variances are shown in Fig. 5.

V. CONCLUSIONS

We introduced Gaussian processes (GPs) for the estimation
and understanding of crop development and yield estimation
using multisensor satellite observations and meteorological
data. The GP model gave noticeable gains in terms of accu-
racy and robustness with respect to other machine learning
approaches for the estimation of corn, wheat and soybean
yields consistently for four years of data over continental US.
Several strategies for understanding the main drivers of crop
yield were introduced; sensitivity analysis revealed that SM
and EVI were important drivers, sparse GPs reported robust
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Fig. 3: Accuracy for all crop-specific GP models (left), density of model weights (middle) and confidence intervals (right) for
different levels for sparsity for the corn model. The number of total samples for this experiment is N = 500, and we vary the
rate of inducing points, M [%].
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Fig. 4: Time series for the different variables of the counties with highest (most anomalous) and lowest (typical) α values.
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Fig. 5: Results for year 2017. Top: maps of α (left) and CV
[%] (right). Bottom: county-wise actual and predicted yield
with red-spotted anomaly corresponding to the Nobles county
(Minnesota). Shaded region indicates the predictive variances.

and fast results. Further work will consider assessing model’s
transportability with multitask GPs to Europe, where a higher
crop diversity and landscape fragmentation are present.
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