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ABSTRACT

In this work we evaluate multi-output (MO) Gaussian Process
(GP) models based on the linear model of coregionalization
(LMC) for estimation of biophysical parameter variables un-
der a gap filling setup. In particular, we focus on LAI and
fAPAR over rice areas. We show how this problem cannot be
solved with standard single-output (SO) GP models, and how
the proposed MO-GP models are able to successfully predict
these variables even in high missing data regimes, by implic-
itly performing an across-domain information transfer.

1. INTRODUCTION

Monitoring vegetation from space is of paramount impor-
tance. The Leaf area index (LAI) and the Fraction of
Absorbed Photosynthetically Active Radiation (fAPAR)
are among the most important essential climate variables
(ECVs) [1] for land and vegetation monitoring. LAI is a key
bio-physical parameter which represents half of the total leaf
area per unit of ground area [2], while fAPAR accounts for
the light absorption across an integrated plant canopy. Both
variables are used as indicators of the state and evolution of
the vegetation cover.

LAI and fAPAR have been extensively used in many agri-
cultural and remote sensing studies [3, 4], and are key in cli-
mate models [5]. Both products are assimilated into physical
models to describe vegetation processes, such transpiration
and photosynthesis, as well as machine learning models to
estimate carbon, energy and heat fluxes [6].

It goes without saying that the precise estimation and
modeling of the evolution through time of these parameters
have deep societal, economical and environmental impli-
cations. Unfortunately, LAI and fAPAR time-series often
exhibit high rates of missing data due to the presence of
clouds and snow. Gaps within the time-series reduce their
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usefulness for modeling and monitoring environmental phe-
nomena [7]. In this context, gap filling and interpolation
with statistical and process-based approaches has become a
successful choice in the last decade. Fusion techniques and
regression trees were used in image mosaics reconstruction
without clouds [8, 9]. Kriging and co-kriging techniques were
applied for spatial interpolation of missing data in Landsat
images [10, 11]. Recently, [12] compared gap filling and
interpolation methods on MODIS LAI products concluding
that, in general, temporal smoothing techniques performed
better than the rest, especially in high (> 20%) missing data
regimes.

In this work, we aim to explore advanced machine learn-
ing approaches for interpolation. In particular we will focus
on Gaussian processes (GPs) for regression [13], which has
recently provided very good results for model inversion and
bio-physical parameter estimation [14]. Noting the tight as-
sociation between LAI and fAPAR, we aim to model them to-
gether using multi-output Gaussian Processes (MO-GP). We
do this under the linear model of coregionalization (LMC)
framework [15]. These models take into account the relation-
ships among output variables learning a cross-domain kernel
function able to transfer information between time series. The
learned relations are exploited to do inferences on regions
where no training samples (gaps) are available for one of the
two variables. In contrast, the standard procedure of using
individual GPs for each variable cannot make reliable predic-
tions on areas with missing training samples.

The paper is organized as follows. Section 2 briefly re-
views the standard Gaussian Processes formulation, and intro-
duces the linear model of co-regionalization for multi-output
regression problems. Section 3 describes the datasets used
and the experiments and results. Section 4 draws final con-
clusions and outlines future work.

2. MULTIPLE-OUTPUT GAUSSIAN PROCESSES

This section first fixes the notation and reviews the standard
GP formulation, and then introduces the linear model for co-
regionalization in GPs to tackle multiple-output problems.



2.1. Gaussian Process Regression

GPs are state-of-the-art statistical methods for regression and
function approximation, and have been used with great suc-
cess in biophysical variable retrieval by following statistical
and hybrid approaches [16]. We start assuming we are given
a set of n pairs of measurements, {xi, yi}ni=1, perturbed by an
additive independent noise. We consider the following model,

yi = f(xi) + ei, ei ∼ N (0, σ2
n), (1)

where f(x) is an unknown latent function, x ∈ Rd, and σ2
n

represents the noise variance. Defining y = [y1, . . . , yn]ᵀ

and f = [f(x1), . . . , f(xn)]ᵀ, the conditional distribution of
y given f becomes p(y|f) = N (f , σ2

nI), where I is the n× n
identity matrix. It is assumed that f follows a n-dimensional
Gaussian distribution f ∼ N (0,K). The covariance matrix
K of this distribution is determined by a squared exponen-
tial (SE) kernel function with entries Kij = k(xi,xj) =
exp(−‖xi − xj‖2/(2σ2)), encoding the similarity between
input points [13]. In order to make a new prediction y∗ given
an input x∗ we obtain the joint distribution over the training
and test points, [

y
y∗

]
∼ N

(
0,

[
Cn kᵀ

∗
k∗ c∗

])
,

where Cn = K + σ2
nI, k∗ = [k(x∗,x1), . . . , k(x∗,xn)]ᵀ is

an n× 1 vector and c∗ = k(x∗,x∗) + σ2
n. Using the standard

Bayesian framework we obtain the distribution over y∗ con-
ditioned on the training data, which is a normal distribution
with predictive mean and variance given by

µGP(x∗) = kᵀ
∗(K + σ2

nIn)−1y,

σ2
GP(x∗) = c∗ − kᵀ

∗(K + σ2
nIn)−1k∗.

(2)

One of the most interesting things about GPs is that they yield
not only predictions µGP∗ for test data, but also the uncer-
tainty of the mean prediction, σGP∗. Model hyperparameters
θ = [σ, σn] determine, respectively, the width of the SE ker-
nel function and the noise on the observations, and they are
usually obtained by maximizing the marginal likelihood.

2.2. Coregionalization for GPs

One the problems with the standard GPR formulation is that
it applies only to scalar functions, i.e., we can predict only
one variable. A straightforward strategy to deal with several
target variables is to develop as may individual GP models as
variables. While generally good performance is attained in
practice, the approach has a clear shortcoming: the obtained
models are independent and they do not take into account the
relationships between the output variables. In order to handle
this problem, we propose a multi-output GP model based on
the linear model of coregionalization (LMC) [15], also known
as co-kriging in the field of geostatistics [17].

In the multi-output GP model we have a vector function,
f : X → RD, where D is the number of outputs. Given a
reproducing kernel, defined as a positive definite symmetric
function K : X × X → RN×N , where N is the number of
samples of each output. In the following, and in order to sim-
plify the equations that follows, we assume that all outputs
have the same number of training samples, N . The formula-
tion where each output has a different number of sources can
be straightforwardly obtained. We can express f(x) as

f(x) =

N∑
i=1

K(xi,x)ci, (3)

for some coefficients ci ∈ RN . These coefficients can be
obtained by solving the linear system, obtaining

c̄ = (K(X,X) + λNI)−1ȳ, (4)

where c̄, ȳ are ND vectors obtained by concatenating the
coefficients and outputs, respectively, and K(X,X) is an
ND × ND matrix with entries (K(xi,xj))d,d′ for i, j =
1, . . . , N and d, d′ = 1, . . . , D. The blocks of this matrix are
(K(Xi,Xj))i,j N ×N matrices. Predictions are given by

f(x∗) = K>x∗ c̄, (5)

with Kx∗ ∈ RD×ND composed by blocks (K(x∗,xj))d,d′ .
When the training kernel matrix K(X,X) is block diag-

onal, that is, (K(Xi,Xj))i,j = 0 for all i 6= j, then each
output is independent of the others, and we have individual
GP models. The non-diagonal matrices establish relation-
ships among the outputs.

In the linear model of coregionalization (LMC) each out-
put is expressed as a linear combination of independent latent
functions [17],

fd(x) =

Q∑
q=1

ad,quq(x), (6)

where ad,q are scalar coefficients, and uq(x) are latent func-
tions with zero mean and covariance kq(x,x′). It can be
shown [15] that the full covariance (matrix) of this model can
be expressed as

K(X,X) =

Q∑
q=1

Bq ⊗ kq(X,X), (7)

where ⊗ is the Kronecker product. Here each Bq ∈ RD×D

is a positive definite matrix known as coregionalization ma-
trix,and it encodes the relationships between outputs.

3. DATA COLLECTION AND EXPERIMENTAL
RESULTS

3.1. Data collection

In this study, we focus on the LAI and fAPAR biophysical
variables from the Moderate Resolution Imaging Spectrora-
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Fig. 1. Individual (SO, green) and multi-output (MO, blue)
predictions for LAI (top) and fAPAR (bottom).

diometer (MODIS) products. In particular, both variables
were obtained from the Collection-5 MOD15A2 1-kilometer
resolution product on a sinusoidal grid. The temporal resolu-
tion of LAI/fAPAR is eight days based on a daily composi-
tion, which allows to obtain 46 estimates every year. Specif-
ically, we focused on inter-annual variability of rice areas
located in the València rice district (Mediterranean coast in
Iberian peninsula) from 2003 to 2014. Typical rice plant phe-
nology exhibits LAI values varying from zero (seeding) up to
6-7 (flowering), whereas fAPAR ranges from 0 to 1.

3.2. Experimental setup

For the experiments, we simulate an scenario where we have
missing data at the two ends of both time series. For LAI,
the missing data is during the first years while for fAPAR is
during the last years. Our goal is to obtain a model able to
predict the missing parts in one variable using the information
available from the other. The experiment was repeated with
different number of missing years.

We compared two GP models. First, we trained individ-
ual, single-output (SO-GP) models for each variable. The ra-
tional behind this first experiment is to assess how well SO
models predict the variables in the regions with gaps, i.e.,
those without training samples. In the second experiment,
we used MO-GP models. In this case, these models should
be able to make better predictions on ‘gap’ regions using the
information inferred from the second, correlated variable.

3.3. Qualitative evaluation

Figure 1 shows the predictions obtained with SO and MO
GPs. For improved visualization, we focus in the missing
years period only. The SO models (green line) are unable
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Fig. 2. Evolution of the coefficient R2 for both LAI (left) and
fAPAR (right) w.r.t. number of missing years.

to make predictions where training data are missing, while
the MO GPs (blue line) can predict efficiently the variables
in those regions, performing a sort of transfer learning across
variables.

3.4. Performance in missing data regimes

Table 1 shows the determination coefficient R2 and the root
mean square error (RMSE) in the test set for both models
and different number of missing years (gaps). SO-GP mod-
els achieves an R2 lower than 0.90, whereas MO-GP obtain
much better results, close to 1. When comparing the RMSE,
SO results are three times bigger than MO for both variables.

Table 1. Results in terms of R2 and RMSE for different gaps.
LAI fAPAR

Model # miss. years R2 RMSE R2 RMSE
SO-GP 1 0.914 0.553 0.894 0.089
MO-GP 1 0.992 0.174 0.986 0.033
SO-GP 2 0.830 0.779 0.827 0.113
MO-GP 2 0.987 0.231 0.978 0.042
SO-GP 3 0.737 0.968 0.744 0.138
MO-GP 3 0.982 0.289 0.971 0.049
SO-GP 4 0.652 1.113 0.647 0.162
MO-GP 4 0.978 0.332 0.964 0.056
SO-GP 5 0.559 1.253 0.549 0.183
MO-GP 5 0.966 0.387 0.955 0.063

We repeated the experiments with an increasing number
of full missing years. Figure 2 shows how the coefficient R2

decreases as the number of missing years increases. In all
tests, the coefficient R2 for MO is greater than SO for both
variables, but for SO it gradually decreases, while for MO it
drops more abruptly. The decrease in the error of the MO-GP
happens when more than five years are removed, therefore not
having a common period in both time series.

3.5. Capturing time structure

In Fig. 3 we show the autocorrelation functions (ACFs) of
the actual time series, and their SO and MO predictions. The



function gives us a summary about the time structure cap-
tured by the models. For both variables, the MO model (blue
curve) shows a closer ACF to the actual time series ACF
(black curve) than SO does (green curve).
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Fig. 3. Autocorrelation curves for both LAI (left) and fAPAR
(right) w.r.t. number of weeks. This curves show how differ-
ent models capture the series time structure.

4. CONCLUSIONS

We have shown in this work how estimating several biophys-
ical parameters simultaneously helps to attain consistent pre-
dictions and for gap filling scenarios where the missing infor-
mation in one variable can be complemented by another one.
Multi-output regression is also convenient because only one
model is needed, which reduces the computational workload.

We evaluated a multiple-output GP model based on lin-
ear co-regionalization to solve a time series gap filling prob-
lem. We used MODIS LAI and fAPAR times series of 11
years. Results showed that the presented model is able to
successfully predict both variables simultaneously in regions
where no training samples are available by intrinsically ex-
ploiting the relationships between the considered output vari-
ables, LAI and fAPAR. Future work will consider more so-
phisticated methods of variable coupling and sparse GPs.
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