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A B S T R A C T

Muscle mass and strength are very important for exercise performance. Training-induced musculoskeletal injuries usually require periods of complete immobilization
to prevent any muscle contraction of the affected muscle groups. Disuse muscle wasting will likely affect every sport practitioner in his or her lifetime. Even short
periods of disuse results in significant declines in muscle size, fiber cross sectional area, and strength. To understand the molecular signaling pathways involved in
disuse muscle atrophy is of the utmost importance to develop more effective countermeasures in sport science research.

We have divided our review in four different sections. In the first one we discuss the molecular mechanisms involved in muscle atrophy including the main protein
synthesis and protein breakdown signaling pathways. In the second section of the review we deal with the main cellular, animal, and human atrophy models. The
sources of reactive oxygen species in disuse muscle atrophy and the mechanism through which they regulate protein synthesis and proteolysis are reviewed in the
third section of this review. The last section is devoted to the potential interventions to prevent muscle disuse atrophy with especial consideration to studies on which
the levels of endogenous antioxidants enzymes or dietary antioxidants have been tested.

1. Introduction

Plasticity describes the ability of muscle to adapt to variations in
activity and in working demand. The expression became popular since
its introduction by the German researcher, Dirk Pette, in 1979. The
adaptive event involves the whole muscle fiber structure from myofi-
brils to mitochondria, membranes, extracellular matrix, as well as ca-
pillaries surrounding the muscle fiber [1].

The absence or a reduction in mechanical load results in skeletal
muscle atrophy. Atrophy has been defined as a decrease in the size of a
tissue or organ due to cellular shrinkage [2]. The decrease in cell size is
caused by the loss of organelles, proteins, and cytoplasm. A “normal”
mechanical loading pattern is essential to maintain baseline muscle
mass [3] and skeletal muscle adapts to a prolonged physical inactivity
by decreasing muscle fiber size. On the contrary, mechanically over-
loaded muscles through synergists ablation, tenotomy or resistance
exercise results in skeletal muscle hypertrophy [3].

Mechanosensors allow muscle fibers to sense mechanical forces and
trigger the signals involved in the regulation of skeletal muscle mass
[4]. There are several identified mechanosensors in the skeletal muscle.
Most prominent among them are costameres (dystrophin-glycoprotein
and the vinculin-talin-integrin complexes), titin, filamin-C, and Bag3
[3]. It is hypothesized that the activation of these mechanosensitive

proteins regulate protein turnover through interaction with the main
proteolytic pathways: the proteasome and the autophagic-lysosomal
systems, and even with the mammalian target of rapamycin complex 1
(mTORC1), the main nutrient energy sensor controlling protein synth-
esis (See section 2) [3].

Atrophy is a debilitating response, not only to inactivity [5], but
also to many systemic diseases such as hyperuremia [6], chronic ob-
structive pulmonary disease [7], diabetes [8], sepsis [9], obesity [10],
aids [11], cancer [12], and heart failure [13]. Loss of muscle mass,
including the loss of muscle fibers, is a common feature in these
pathologies in which an activation of the immune and inflammatory
response has been widely described [14]. The loss of muscle mass is
accompanied by a loss of muscle function and quality in many of the
previously mentioned disorders. Muscle quality, is defined as the force
generated by each volumetric unit of muscle tissue [15].

Aging is the greatest risk factor for the major chronic musculoske-
letal disorders, osteoarthritis, osteoporosis, and sarcopenia [16]. Sar-
copenia is a geriatric syndrome, recently considered as a disease, which
is associated with low muscle strength, low muscle quantity, and low
physical performance [17].

Muscle mass depends on protein turnover and cell turnover that are
under the control of different pathways [18]. Cellular turnover plays a
major role during muscle development in embryo and in postnatal
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muscle growth; while protein turnover is dominant over cellular turn-
over during acute phases of muscle wasting when sarcomeric proteins
are rapidly lost i.e. fasting, disuse, and denervation [14]. Satellite cells-
mediated myonuclear accretion have a major role during maturational
skeletal muscle growth that persist into late adolescence [19] and
during acute injury-induced skeletal muscle regeneration [20]. How-
ever, the contribution of cellular turnover and of satellite cells to the
homeostasis of adult fibers is minor, and its role in the regulation of
muscle mass has been questioned by several experimental evidences
[14,19].

Loss- and gain-of function studies that include the development of
conditional satellite cell specific Knock-Out (KO) mice [21–24], have
shown that satellite cells are not required for the homeostatic main-
tenance of muscle fiber size in adult or old mice under non stressed
conditions [19]. Short term deletion of satellite cells in adult mice does
not result in muscle fiber atrophy and sarcopenia is generally not ex-
acerbated. Moreover, satellite cells depletion does not cause or worsen
muscle fiber atrophy during unloading neither hampers regrowth
during reloading [19,25]. On the contrary, genetic modifications that
interfere with embryonic and postnatal growth result in smaller muscles
in adults. But this reduction in muscle size is caused by failure/in-
hibition of growth and not by a real atrophy process [14].

2. Molecular mechanisms involved in muscle atrophy

Disuse muscle atrophy is due to both a decrease in protein synthesis
and an increase in protein breakdown [26,27]. Muscle protein synthesis
declines within 6 h following muscle inactivity and it is accompanied
with a large increase in muscle protein breakdown [28].

As mentioned in the introduction, the turnover of contractile pro-
teins depends on mechanical stress, nutrients availability, hormones,
and growth factors. Thus, aging, physical inactivity, and systemic dis-
eases are well-known modulators of this balance [14,29].

Muscle atrophy is an active process controlled by transcriptional
programs [14]. In this section we will review the main molecular me-
chanism and specific signaling pathways involved in the process.

2.1. IGF1-Akt-FoxO signaling pathway

The main pathway involved in protein synthesis and in the regula-
tion of skeletal muscle mass is the highly conserved signaling pathway
initiated by IGF1-PI3K-Akt [29]. The binding of insulin, growth factors
or amino acids to IGF1 receptor results in the activation of PI3K. It
consequently increases Akt activity which stimulates protein synthesis
via mTOR [30]. Final targets of mTOR as 4E-BP1, S6K1 or eukaryotic
initiation factors (eIF3F, eIF2α) allow ribosomal biogenesis and protein
translation [31]. Besides its ability to stimulate protein synthesis, Akt
can depress protein degradation through the inhibition of class O type
of forkhead transcription factors (FoxO) family [32]. Indeed, Akt-
mediated phosphorylation of FoxO1, FoxO3a, and FoxO4 inhibits FoxO-
dependent transcription responsible of various cellular process such as
autophagy and protein breakdown [32]. Disuse muscle atrophy is
characterized by lower rates of protein synthesis due to a down-
regulation of some mTOR actors, such as Akt, S6K1 or eIF2-α [33,34].
Moreover, four distinct pathways involved in protein degradation are
usually up-regulated in disuse muscle atrophy: the calpain system,
apoptosis, the autophagic-lysosomal system, and the ubiquitine pro-
teasome pathway. They will be reviewed in the following sections.

2.2. Calpain system

Calpains are calcium-dependent, non-lysosomal cysteine proteases,
located in the Z disks in skeletal muscle [35]. Desmin, tropomyosin,
troponin T, troponin I, and titin are among the myofibrillar proteins
digested by the two types of calpains identified in the muscle (type I
and type II) [36]. Calpain-mediated proteolysis of myofibrillar

components is activated in muscle wasting conditions contributing to
the loss of skeletal muscle mass [35].

2.3. Mitochondria as a source of catabolic signals

Mitochondria are critical in regulating myofiber metabolism and
play a key role in apoptosis [37]. Apoptosis, both intrinsic (involving
mitochondria) and extrinsic (involving for instance TNF-α) increases
dramatically during the early phase of atrophy [38,39]. Mitochondria
releases pro-apoptotic factors into the cytosol, such as the B-cell lym-
phoma (Bcl)-2 family proteins or cytochrome c [37]. These mitochon-
drial proteins activate numerous caspases [40]. Caspases are thought to
be the main proteins involved in both the triggering (caspase-8, -9, -12)
and execution of apoptosis (caspase-3, -6, -7) [41]. Their enzymatic
action let cleavage of target proteins of the nuclear envelope and DNA
[41]. More specifically, mitochondrial protein-induced caspase-3 acti-
vation has been identified as a critical event in apoptosis [42] an in
myofiber's atrophy, through the degradation of actomyosin complexes
[43]. Interestingly, mitochondria also regulate apoptosis through a
caspases-independent mechanism, which relies on the release of mi-
tochondrial proteins into the nucleus, especially apoptosis-inducing
factor (AIF) and endonuclease G (EndoG) [41].

2.4. Autophagy-mediated protein breakdown

The autophagic-lysosomal system is a catabolic process emerging as
a major regulator of muscle mass. It recycles damaged organelles and
generates metabolic substrates necessary to the maintenance of basal
cellular activity [44]. Autophagy is the only pathway able to massively
degrade macromolecules and organelles [45]. It relies on the action of
two vesicles, the autophagosome, which captures the substrates, and
the lysosome, that fuse with the autophagosome and degrades it with its
constituents [46]. The complex Ulk1-Atg13-FIP200 plays a key role in
the initiation of autophagy. Ulk1 can be phosphorylated by AMPK on
ser777 and ser757, leading to its activation, whereas its phosphorylation
by mTORC1 leads to its inhibition [47]. AMPK acts as the sensor of
energy balance and is a key factor in the regulation of myofiber size
[14]. Indeed treating muscle cell cultures with an activator of AMPK
(AICAR) causes an increase in proteolysis and in the expression of
MuRF-1 and MAFbx via the FoxO family [48]. Autophagosome for-
mation involves the action of various Atgs (autophagy related genes)
and especially LC3, essential for the elongation and formation of a
mature autophagosome [49]. Autophagy is essential in muscle home-
ostasis maintenance. Its deficit triggers damaged proteins accumulation
leading to muscle atrophy and in some cases, myopathies [44]. How-
ever, the overactivity of the autophagic system can also lead to amyo-
trophy and muscular pathologies [50]. To summarize, both excessive
and defective autophagy are highly associated with skeletal muscle loss.

2.5. Ubiquitin-proteasome system

The ubiquitin-proteasome system is a protein degradation pathway
that plays a key role is skeletal muscle atrophy [27]. This ATP-depen-
dent system involves the binding of ubiquitin on proteins’ lysine re-
sidues. These poly-ubiquitinated substrates are directed to the protea-
some, which will be in charge of their degradation into peptides [51].
This pathway includes three critical atrogenic muscle-specific E3 ubi-
quitin ligases: muscle RING Finger 1 (MuRF-1), muscle atrophy F-box
(MAFbx), and Casitas B-lineage lymphoma b (Cbl-b) [52,53]. They
regulate the degradation of skeletal muscle proteins such as calcineurin,
myoD, troponin-I, titin, myosin heavy and light chains, and the IGF-1
signaling intermediate insulin receptor substrate-1 (IRS-1) [54]. The
ubiquitin-proteasome system that is constitutively operative in normal
skeletal muscle, is responsible for the turnover of most soluble and
myofibrillar muscle proteins due to changes in muscle contraction [55].
The activity of this pathway is markedly increased in atrophying muscle
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due to transcriptional activation of ubiquitin, of several proteasomal
subunit genes, and of the ubiquitin ligases [26]. Importantly, the rate of
muscle atrophy is markedly reduced by targeted inactivation of these
gene products [53].

2.6. Inflammatory cytokines and NF-κB signaling

Inflammation and oxidative stress are two common mechanisms in
disuse muscle atrophy [56,57]. Pro-inflammatory factors favor protein
breakdown through the activation of MuRF-1 and MAFbx, via NF-κB,
Fox O, and p38MAPK signaling pathways [58].

NF-κΒ is considered as one of the main inflammatory pathways
influenced by plenty of cytokines, chemokines, and adhesion molecules
[59]. More precisely, IL-1 and TNFα pro-inflammatory cytokines sti-
mulate NF-κB by the intermediate of IKKβ/α activation [60]. Moreover,
chronic increase of circulating IL-6 levels induce the activation of JAK/
STAT catabolic pathway and also downregulate S6 kinase phosphor-
ylation, both contributing to muscular atrophy [61]. Since the begin-
ning of this century, research has provided evidence that inflammation
has a synergistic link with oxidative stress, controlling skeletal muscle
mass and function particularly in a great number of chronic diseases, as
well as in cancer [62]. Literature abounds of studies demonstrating an
association between oxidative stress and muscular atrophy [63–66].
The molecular mechanisms involved will be described in Section 3.

2.7. Myostatin and muscle atrophy

An important negative regulator of muscle growth is myostatin, also
known as Growth Differentiation Factor-8 (GDF-8). Myostatin is ex-
pressed in developing skeletal muscles in the embryogenesis to regulate
the number of muscle cells. During adulthood its production by skeletal
muscle limits fiber hypertrophy [67].

Myostatin KO mice exhibit an hypertrophic phenotype due to an
increase in muscle fiber size and number [68]. Despite of their in-
creased muscle mass, these animals have an alteration in their myofi-
bers’ contractile properties which results in a low force and power
generation [69] and a higher muscle fatigue [70]. Consistent with these
results, it has been shown that myostatin reduces the Akt/TORC1/
p70S6K signaling, inhibiting myoblast differentiation and myotube size
[71]. Although the molecular mechanism of myostatin-mediated cel-
lular effects are not totally elucidated, the involvement of the tran-
scription factors Smad2 and Smad3 [71] and of the FoxO family of
proteins has been suggested [14]. As a summary, myostatin inhibition
induces muscle hypertrophy while local administration of myostatin
triggers muscle atrophy and decreases skeletal muscle force generation
[69, 71].

3. Skeletal muscle atrophy models

3.1. Cellular models

To investigate the molecular pathways involved in muscle atrophy,
several cell culture models have been developed (See Fig. 1). Starvation
of cultured cells is a very common experimental method to trigger
atrophy in myotubes [29]. In this model, cells are deprived of nutrients
by replacing their culture media by Phosphate-Buffered Saline leading
to a severe atrophy [18]. In such cultured myotubes, Akt is inhibited
and FoxO and MAFbx gene expression, severely activated [32].

Pro-inflammatory cytokines (such as TNF-α or IFN-γ) [72] and
glucocorticoids (such as dexamethasone and corticosterone) [73], are
also able to induce in vitro atrophy through an increase in proteolytic
and apoptotic signals.

3.2. Animal models of skeletal muscle atrophy

Rodents, predominantly rats and mice, are widely used models to

study disuse muscle atrophy. Mechanical ventilation (MV), denerva-
tion, casting, and hindlimb unloading (HU) are the four main models to
induce muscle wasting [74] (See Fig. 1).

One of the most widely studied models of disuse in animals, but also
in humans [75], is mechanical ventilation. MV is a widely used model
for its importance in clinical practice [66]. It induces, in a matter of
hours, a significant diaphragm atrophy and loss of force that is ac-
companied by an increase in oxidative stress [76]. Briefly in the MV
model the animals are tracheostomized and the diaphragm is com-
pletely inactive because a mechanical ventilator delivers all breaths
[77].

Denervation consists on the removal of nerve supply leading to the
loss of muscle contraction's capacity due to the lack of nervous stimu-
lation. It triggers rapid deleterious effects on muscle tissue associated
with an activation of multiple proteolytic systems [78]. Reductions in
the cross-sectional area (CSA) of the fibers accompanied by a loss of
maximal strength have been reported in denervated muscles [79,80].

Another model used to study muscle atrophy is the casting protocol.
Usually, one hindlimb is casted to induce atrophy and the contralateral
acts as control [81].

In the mid-seventies, the National Aeronautics and Space
Administration started using the HU model. Its use in numerous pro-
jects confirmed its relevance in the study of weightlessness in muscle
deconditioning [82,83]. The HU model consists of a slight head-down
inclination of the animal (about 30%) using tail or pelvic suspension.
Thus, hindlimb do not reach the ground but animals are free to move,
eat, and groom with their forelimbs [82]. Besides inducing a cephalad
fluid shift typical of microgravity conditions, this model results in the
loss of muscle mass [84,85]. Soleus muscles are especially affected by
HU-induced atrophy, with a decrease in muscle force, together with a
slow-to fast transition characterized by an overexpression of the fast
Myosin Heavy Chain (MHC) isoforms [86]. A novel hindlimb partial
gravity quadrupedal unloading model in rats has been recently sug-
gested for investigating the physiological alterations occurring in par-
tial gravity environments [87]. More research is needed to stablish
whether this method improves the existing ones.

3.3. Skeletal muscle atrophy in humans

Although cellular and animal models are useful to understand
muscle wasting mechanisms, the development of experimental models
in humans is of the utmost importance. Four models are validated by
the scientific community to study disuse muscle atrophy in humans:
unilateral lower limb suspension (ULLS), head-down bed rest (HDBR),
dry immersion (DI), and microgravity experiments (See Fig. 1).

The first study using ULLS was published 30 years ago [88]. Briefly,
one of the legs is maintained in suspension thanks to an elevated sole of
a shoe, which eliminates ground contact on the adjacent foot. It unloads
the lower limb but allows ankle, knee, and hip joint mobility. This
model is closely linked to clinical aspects of immobilization following
joint or skeletal injuries. The main features of ULLS are: loss of muscle
mass, loss of muscle strength [88,89] and increase in intermuscular
adipose tissue accumulation [90]. This is accompanied by an increase in
the proteolysis rates of unloaded muscles [91] and a selective decrease
in the CSA in both type I and IIa myofibers [92].

In the HDBR model, subjects are inclined by −6° in a supine posi-
tion to induce an upward fluid shift characteristic of microgravity
conditions. It is a reliable simulation model for most of the physiolo-
gical effects of spaceflight, and allows the study of countermeasure
interventions [93]. HDBR is characterized by i) muscle weakness and
low muscle power; ii) loss of muscle mass especially in knee and ankle
extensor muscles [94,95]; iii) a myotypologic shift from slow-to-fast
MHC; iv) a presence of hybrid fibers [96,97]; v) a reduction of myofi-
brillar protein content [98].

In the 70's, with the emerging of space programs, soviet researchers
introduced DI as a new weightlessness simulation method [99]. This
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experimental model consists in the immersion of a subject in a ther-
moneutral water covered with an elastic waterproof fabric. It faithfully
mimic spaceflight through centralization of body fluids, unloading,
hypokinesia, and the lack of a supporting structure under the body
[100]. DI reduces the mechanical stress in skeletal muscle leading to a
faster reduction in muscle tone and tension when compared to bed rest
[100]. Loss of muscle mass and force are evident after only few days of
DI in vastus lateralis and soleus muscle [101]. An increase of inter-
muscular adipose tissue and adipogenic markers have also been found
in short-term protocols of only 3 days duration [102].

Finally, real microgravity experiments largely contribute to data col-
lection and knowledge progress regarding muscle deconditioning. On-
board experiments with rodents in satellites, as well as experiments in
the orbital International Space Station, provide the opportunity to test
countermeasures, most of them based on exercise or nutritional inter-
ventions, to prevent disuse muscle atrophy [103].

4. Oxidative stress as a common mechanism in different atrophy
models

As mentioned in a previous section, inflammation and oxidative
stress are two common and interrelated mechanisms in disuse muscle
atrophy [56]. Several evidences indicate that the activation of redox-
sensitive transcription factors, such as NF-κB, may modulate the gene
expression of key players involved in the inflammatory response, IL-1β,
IL-6, (COX)-2, adhesion molecules, inducible nitric oxide (NO) synthase
(iNOS), and TNF-α [104]. The relationship between TNF-α and the
generation of reactive oxygen species (ROS) in skeletal muscle has been
well described (Reid & Moylan, 2011). TNF-α activates the TNF-1 re-
ceptor in the sarcolemma, initiating a signaling cascade that leads to an
increase in the mitochondrial production of superoxide ion. Moreover,
arachidonic acid, the main precursor of prostaglandins that play a key
role in the inflammatory response, increases ROS generation through
the activation of NADPH-oxidases (NOXs) and lipoxygenase [105].

In this section, we will mainly focus on the role of oxidative stress in
muscle atrophy and the potential countermeasures that, based on in its
implication have been tested.

First evidence showing that skeletal muscle contains free radicals
was reported in the 50's in Nature [106]. During the 80's researchers
identified the first link between muscle contraction and free radical
biology when Davies and co-workers showed, for the first time in vivo, a
3-fold increase in free radical content of skeletal muscle from rats run
until exhaustion [107].

The notion that increased ROS and disturbances in redox signaling
play a significant role in the promotion of disuse muscle atrophy was

proposed over 30 years ago by a Japanese group using hindlimb un-
loading in rats [108].

We now know that ROS production occurs at different extents in the
diverse atrophy models and muscle types [28]. For instance, the rate of
muscle atrophy is extremely fast in diaphragm in MV but slower in
soleus and gastrocnemius muscle in HU [109]. Shanely and co-workers
first showed, in a rat study, that MV induces an extremely rapid dia-
phragm atrophy and force loss and that the oxidative stress plays a
major role in the phenomenon. More specifically they found that MV
was associated with a rise in protein and lipid oxidation in the dia-
phragm [76]. Shortly afterwards, it was concluded that the primary
target of the MV-induced oxidative injury in diaphragmatic proteins
were insoluble proteins with molecular masses of 200, 120, 80, and
40 kDa [110]. Dr. Powers research group found that in the diaphragms
of MV animals the oxidative stress depends on both an increase in ROS
production and a decrease in total antioxidant capacity and in the
glutathione levels [111]. Lately, the role of oxidative stress in MV was
further refined with the development of antioxidant trials. Although it
will be discussed in a later section in the manuscript (See section 4) it
has been shown that the administration of a ROS scavenger, N-acet-
ylcysteine (NAC), that provides cysteine for the synthesis of the anti-
oxidant glutathione, prevents against MV-induced diaphragmatic oxi-
dative stress, proteolysis, and contractile dysfunction [112]. It has also
been reported that MV induces an increase in the expression in the
diaphragm of E3 ubiquitin ligases and autophagy genes and treatment
with NAC also prevents it [113]. Finally, a clinical trial in critically ill
patients found that the duration of mechanical ventilation in the in-
tensive care unit patients was reduced when they received enteral ad-
ministration of antioxidants [114].

Paradoxically, both skeletal muscle contraction and disuse or in-
activity are associated with an increase in ROS generation leading to
very different outcomes in the muscle cell. Contraction-induced ROS
are known to be critical in two main muscle adaptations to exercise
training in skeletal muscle i.e. mitochondrial biogenesis and the en-
dogenous antioxidant defense [115,116]. However, it has also clearly
being demonstrated that the chronic increase in ROS generation in
skeletal muscle in disuse models is involved in skeletal muscle atrophy
[75]. The mechanisms underlying the opposite effects of ROS on muscle
homeostasis in different conditions are still unclear [66].

The next sections will be devoted to summarize the mechanism
through which oxidative stress can cause skeletal muscle atrophy.

4.1. Sources of ROS in disuse muscle atrophy

Although some studies have failed to detect a link between

Fig. 1. Skeletal muscle atrophy models. C2C12
myotubes are the main cellular model used to study
atrophy in vitro. Among the main disuse muscle
atrophy animal models, we can highlight: denerva-
tion, casting, hindlimb unloading and mechanical
ventilation. Four models are validated by the scien-
tific community to study disuse muscle atrophy in
humans. Atrophy is a debilitating response, not only
to inactivity, but also to many systemic diseases such
as sepsis, HIV, cancer, chronic obstructive pul-
monary disease (COPD), diabetes mellitus, and heart
failure.
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oxidative stress and disuse muscle atrophy [64,109,117–119], many
research groups, including ours, have found that prolonged inactivity is
associated with oxidative stress in animal and human studies
[55,120–124]. ROS are generated in different intracellular and extra-
cellular locations in the muscle cell including the sarcolemma, the
sarcoplasmic reticulum, and mitochondria [125] (See Fig. 2).

4.1.1. Mitochondria
Prolonged immobilization is characterized by mitochondrial dete-

rioration and proteolysis [126]. The respiratory capacity of muscle
mitochondria is reduced during long periods of muscle inactivity [127]

while the ROS generation is increased [123]. Four major hypotheses
have been suggested to understand the role of mitochondria as a source
of ROS in muscle disuse. First, it has been proposed that the changes in
the cardiolipin content and composition in the mitochondria during
immobilization can increase ROS generation through the reduction in
the activity of cytochrome c oxidase [128–130]. The observation that
mitochondrial Ca2+ levels are increased during immobilization [131]
provides a second line of evidence to support the role of mitochondria
as a source of ROS in disuse muscle atrophy. Mitochondrion acts as a
sink for the increased cytosolic Ca2+ levels in unloaded muscles, due to
a leak of this ion caused by the oxidation of ryanodine receptor 1 in the
sarcoplasmic reticulum [131]. Once in the mitochondria Ca2+ stimu-
lates the proton motive force and increases ROS production [132].
Mitochondrial Ca2+ also activates ROS-generating enzymes such as α-
ketoglutarate dehydrogenases and glycerolphosphate dehydrogenase
[133]. A third line of evidence to support the role of mitochondria in
the generation of ROS during prolonged inactivity points to the trans-
location into the organelle of the signal transducer and activator of
transcription 3 (STAT3). When STAT3 is activated, it is able to bind to
the mitochondrial complex I subunit thus increasing mitochondrial ROS
generation [134]. Finally, transfecting experiments and the use of
transgenic animals provide the fourth line of logic to link mitochondrial
ROS and muscle atrophy. We and others have shown that preventing
the muscle wasting induced downregulation of PGC-1α, the master
regulator for mitochondrial biogenesis, protects skeletal muscle from
the atrophy induced by unloading [126,135], denervation, fasting or
FoxO3 overexpression [136] (See Fig. 2).

4.1.2. NADPH oxidases
Another source of ROS in skeletal muscle are the NADPH oxidases

(NOXs) family of enzymes [137]. Only Nox2 and Nox 4 are found in
skeletal muscle. They are located in the transverse tubule, mitochon-
dria, sarcolemma and sarcoplasmic reticulum and are able to attach to
proteins such as p22phox, p67phox, p47phox, and p40phox [138]. Nox2 and
Nox 4 generate mainly O2

·- and H2O2 respectively. ROS generated by
muscle NOXs enzymes are, at least, partially responsible of the oxida-
tive damage in muscle atrophy [139]. It has been shown that apocynin,
the inhibitor of NOX activity, attenuates diaphragm oxidative stress,
atrophy, and protease activation during prolonged mechanical venti-
lation [140]. Moreover, deletion of Nox2 prevents Angiotensin II-In-
duced skeletal muscle atrophy [141] (See Fig. 2).

4.1.3. Xanthine oxidoreductase
Xanthine oxidoreductase (XOR) is an enzyme involved in purine

catabolism [142]. This enzyme catalyzes the oxidation of hypoxanthine
to xanthine and can further catalyze the oxidation of xanthine to uric
acid [143]. XOR exists in two interconvertible forms. In the oxidase
form (XO), molecular oxygen is used as the electron acceptor and hy-
poxanthine and xanthine are oxidized to uric acid and superoxide ra-
dical [144]. First evidence showing an increase in XO activity and
oxidative damage in the soleus muscle of immobilized rats was pub-
lished in 1993 [145] (See Fig. 2). Since then, and by using allopurinol, a
well-known inhibitor of XOR, the role of XO as a source of ROS in
immobilized rats has been demonstrated [145] in hindlimb unloading
[52,146], in MV-induced diaphragmatic contractile dysfunction [147],
and in cancer cachexia [148] (See section 4).

4.2. Role of oxidative stress in the regulation of protein synthesis

ROS are able to modulate the insulin regulated protein synthesis
pathway through the PI3K-Akt-mTOR axis [105]. One of the earliest
connections between ROS and insulin was the documentation that
millimolar concentrations of H2O2 could induce the metabolic actions
of insulin by activating its signaling thought the modulation of the
tyrosine kinase-phosphatase balance [149]. Physiologically relevant
concentrations of H2O2 (< 0.1 mM) were found to enhance the cellular

Fig. 2. Sources of ROS in disuse muscle atrophy. ROS are generated in different
intracellular and extracellular locations in the muscle cell. They can be gener-
ated by NADPH oxidases (NOXs) in the sarcolemma and the sarcoplasmic re-
ticulum, by xanthine oxidase (XO) in the skeletal muscle extracellular space,
and by mitochondria. Oxidative stress is involved in both a decrease in protein
synthesis and an increase in protein breakdown in disuse muscle atrophy.
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response to insulin through the phosphorylation of specific tyrosine in
the insulin receptor beta subunit (IRβ), indicating a role of ROS in in-
sulin receptor activation [150].

In vivo studies have demonstrated that mitochondrial ROS produc-
tion, generated during muscle contraction, stimulates the glucose
transport into muscle cells during exercise [151]. More specifically and
using isolated muscles, it has been shown that an acute exposure of
exogenous H2O2 in the extensor digitorum longus increases glucose
transport at doses up to 1.2 mM but higher doses of H2O2 return glucose
transport to basal levels [152]. Consistent with these results Dr. Ristow
an co-workers found, in a human study, that an antioxidant cocktail
(the combination of vitamins E and C) prevented the exercise training
induction of molecular regulators of insulin sensitivity [153]. The au-
thors found that the exercise-induced oxidative stress ameliorated in-
sulin resistance and caused an adaptive response promoting en-
dogenous skeletal muscle antioxidant defense capacity. However, the
antioxidant supplementation precluded these health-promoting effects
of exercise in humans.

Collectively, these studies suggest that an optimal range of ROS
levels may result in the optimal regulation of their physiological func-
tions, including the protein synthesis pathways [149,154].

It has been suggested that ROS could interfere with protein synth-
esis through the following mechanism: i) inhibition of the mRNA
translation initiation process [155]; ii) inhibition of mTOR by 4E-BP1
and S6K1 phosphorylation [156]; iii) interference with the phosphor-
ylation of Akt [154]; iv) repression of mTORC1 through the accumu-
lation of oxidative DNA damage [157] (See Fig. 3A).

4.3. Role of ROS in the regulation of proteolysis

Oxidative stress has also a key role in proteolysis by regulating
protein degradation at different levels. We will review the main pro-
teolytic systems modulated by ROS in the following sections.

4.3.1. Redox modulation of the ubiquitin proteasome system
The ubiquitin proteasome system is up-regulated by ROS through

the increase in the gene expression of specific ubiquitin-activating en-
zymes that contribute to muscle protein breakdown such as MuRF-1
and MAFbx [63]. We have found a significant increase in the mRNA
levels of MuRF-1 and MAFbx in the soleus muscle of rats and mice after
two weeks of HU [55,120]. MAFbx and MuRF-1 expressions are regu-
lated by FoxO [158]. Akt inactivation triggers FoxO3 depho-
sphorylation and its translocation into the nucleus which is required for
MAFbx an MuRF-1 gene expression [29]. High levels of ROS inactivate
Akt favoring the expression of the atrogenic E3 ubiquitin ligases [159].

An alternative pathway to increase the proteasome activity by oxi-
dative stress include the allosteric activation of its core proteasome
subunit (20S) [63] that can be prevented with the vitamin E analog,
Trolox [77,160]. Moreover, oxidized proteins undergo a change in their
secondary and tertiary structure which make them more susceptible to
enzymatic hydrolysis by the ubiquitin proteasome system.

Finally, NF-κB as a transcription factor modulated by the thiol-dis-
ulfide balance [161] and highly inducible in the different disuse models
[14], regulates the expression of specific genes of the ubiquitin pro-
teasome system such as MuRF-1 [120,162]. Additionally, NF-κB in-
creases the expression of pro-inflammatory cytokines such IL-6 and
TNF-α which contribute to a higher ROS release and consequently a
higher activation of the ubiquitin proteasome system, creating a vicious

Fig. 3. Role of oxidative stress in the regulation of muscle atrophy. A. High levels of ROS downregulate the PI3K-Akt-mTORC1 axis by several mechanisms including
a decline of Akt phosphorylation, the repression of mTORC1 and the inhibition of 4E-BP1 and S6K1 phosphorylation which are essential for protein synthesis. B. ROS
activate caspase-3 through the activation of caspase-12 (extrinsic apoptotic pathway) or caspase 9 (intrinsic apoptotic pathway). Calpains also contribute to apoptosis
through caspase-12 activation and promoting EndoG pro-apoptotic factor release from mitochondria. C. ROS up-regulate the ubiquitin proteasome system by
increasing the gene expression of MuRF-1 and MAFbx by FoxO3 dephosphorylation and NF-κB activation. D. Oxidative stress promotes the activation of calpains by
cytosolic Ca+2 increase. E. Activation or inhibition of autophagy depends on the sub-cellular ROS localization. Nox2-derived ROS lead to the activation of SCR-PI3K-
Akt pathway and inhibit autophagy. However, mitochondrial ROS activate autophagy by i) inducing FoXO3 nuclear translocation, due to the Akt-mTOR pathway
inhibition, which leads to autophagy related genes expression; ii) repressing mTORC1 by ATM activation which increases ULK activity; iii) inducing p38/p53; iv)
inactivating ATG4 which prevents the premature cleavage of LC3.
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cycle [163,164] (See Fig. 3C).

4.3.2. Redox modulation of autophagy
First direct evidence showing the regulation of autophagy by ROS

was reported in 2008 [165]. The authors found that an increase in the
skeletal muscle H2O2 levels, originated by a mutant form of superoxide
dismutase 1 (SOD1), resulted in an autophagy mediated weakness and
muscle atrophy in mice [165]. In vitro experiments performed in C2C12
myotubes treated with H2O2 also confirm an autophagy activation
[166]. Inhibition of autophagy, in Atg7 KO mice, is accompanied by an
increase in ROS generation [44,63]. Thus, the exact crosstalk between
autophagy and oxidative stress needs further study [167].

Mitochondrial ROS play a major role in the activation of autophagy
during atrophy through inhibition of the Akt-mTOR pathway [165,168]
(See Fig. 3E). However, it has also been shown that Nox2-derived ROS
lead to the activation of SCR-PI3K-Akt pathway leading to an inhibition
of autophagy in a dystrophic mice model [167]. This shows the im-
portance of the sub-cellular ROS localization in the activation or in-
hibition of autophagy [167]. Other pathway described to induce au-
tophagy includes the ATM activation by ROS, which in turn activates
AMPK [169] that represses mTORC1 [170]. This last step is required for
the induction of autophagy.

Further, mitochondrial ROS have been shown to induce autophagy
in a p38 MAPK dependent manner [166]. It seems that p38/p53 not
only activates autophagy, but also are involved in a positive feed-back
response, because they increase ROS production in cardiomyocytes
[171].

Finally, ROS inactivate ATG4 which prevents the premature clea-
vage of LC3 during autophagosome formation, an essential step in the
process of autophagy [172].

It is clear that basal autophagy is needed for the maintenance of the
metabolic homeostasis, while oxidative stress and their subsequent
activation of autophagy seems to led to weakness and muscle atrophy
(See Fig. 3E).

4.3.3. Redox modulation of calpain proteases
Oxidative stress promotes the activation of calpains in several cell

types including skeletal muscle [36,173,174] (See Fig. 3D). Treating
C2C12 or human myoblasts with H2O2 activates calpain 1 and calpain 2
[166] due to an increase in cytosolic free-calcium levels [36]. Although
the mechanism is not completely elucidated it is considered that ROS
could either mediate the formation of reactive aldehydes and inhibit
Ca2+-ATPasa activity hampering the removal of cytosolic Ca+2 [175],
or they could oxidize the ryanodine receptor leading to a leak of Ca+2

from the sarcoplasmic reticulum to the cytosol [176]. Calpain-depen-
dent proteolysis have also been involved in age-associated loss of ske-
letal muscle mass [177]. EndoG pro-apoptotic factor can be released
from mitochondria by calpain activity [41] (See Fig. 3D). Therefore,
since oxidative stress increases the activity of calpains, indirectly,
apoptosis may also be increased.

4.3.4. Redox modulation of caspases
Caspase-3 is activated in skeletal muscle under disuse conditions

and in C2C12 myotubes treated with H2O2 [36,178,179]. Caspase-3 is
the effector in which converge the extrinsic (mediated by TNF-α or
Ang-II) and the intrinsic (mitochondria-dependent) apoptotic path-
ways. The latter triggers an imbalance between antiapoptotic factors
such as Bcl-2 and apoptotic factors such as Bax. In disuse muscle
atrophy, Caspase-3 can be activated by Caspase-12 as a result of cal-
cium release from the sarcoplasmic reticulum or by the activation of
caspase 9 (through the mitochondrial pathway) [65,180]. In an ex-
perimental model of cancer cachexia, it has been shown that by in-
creasing ROS, the expression and mitochondrial translocation of the
proapoptotic factor Bax leads to the formation of the mitochondrial
transition pore [181] (See Fig. 3B).

5. Redox imbalance and disuse muscle atrophy. Potential
countermeasures

The role attributed to oxidative stress in regulating the protein
synthesis and degradation balance in disuse muscle atrophy open up
room for intervention. The main corollary of the ROS hypothesis of
skeletal muscle atrophy is that by up-regulating the antioxidants en-
zymes or by giving antioxidants (vitamin E, vitamin C, carotenoids, α-
lipoic acid, polyphenols, N-acetylcysteine, the soybean-derived
Bowman-Birk inhibitor, allopurinol or even SS-31) one could prevent
disuse muscle atrophy [28]. Regarding the first approach, studies of
tissue specific molecular models lacking antioxidant enzymes, have
highlighted the potential role that disrupted redox pathways can play in
muscle loss and weakness [182]. More specifically, it has been shown
that a whole body deletion of SOD1, localized in the cytosol and mi-
tochondrial intermembrane space, plays a role in muscle loss, weak-
ness, and in sarcopenia in mice [183]. Very interestingly, a muscle-
specific expression of a mutant SOD1 protein causes muscle atrophy, a
decrease in muscle strength and an increase in oxidative stress [165].
These results have led to the consideration of the SOD1 KO mice, as a
model of frailty [184]. These mice exhibit skeletal muscle weakness
that is accompanied with inflammation, mitochondrial dysfunction,
and oxidative stress [184]. On the contrary, a significant number of
studies in transgenic mice overexpressing antioxidant enzymes show
enhanced health span, reporting the majority of the studies improve-
ments in the cardiovascular and lung function, in neurodegeneration, in
cancer, and in diabetes [182]. On this regards, we have shown that the
overexpression of the antioxidant enzyme Glucose 6-Phosphate Dehy-
drogenase (G6PD) in mice, protects from the age-associated oxidative
damage in different tissues and improve the animals’ health span [185].
Moreover, we have found that G6PD transgenic mice have a larger
muscle fiber size compared to the wild-type, while they age (manuscript
under review). All these data highlight the importance that increasing
the endogenous antioxidant defense has as a countermeasure to prevent
disuse muscle atrophy.

Regarding the second approach, evidence exists both for and against
the notion that by using antioxidants we can prevent disuse muscle
atrophy. In 1991, a pioneering study that was subsequently confirmed
[186,187], demonstrated for the first time that administration of vi-
tamin E to rats protected against HU-induced muscle atrophy [108].
However, the vitamin E protection against disuse muscle atrophy,
seemed to be achieved by the down-regulation of muscle proteolytic-
related gene expression, rather than by its antioxidant properties [188].
The water-soluble analogue of vitamin E, Trolox, has also been widely
used in research to counteract disuse muscle atrophy. It is generally
considered that treatment of animals with Trolox protects the MV-in-
duced diaphragmatic atrophy [77,160,189] and the loss of structural
integrity in HDAC4mKO muscles following denervation [190] by de-
creasing oxidative stress. However, Trolox does not seem to protect
against HU-induced muscle wasting [119].

Conflicting results have been published on the ability of NAC to
protect against disuse muscle atrophy. NAC seems to be the most ef-
fective antioxidant in preventing respiratory muscle weakness and fa-
tigue following exposure to chronic sustained hypoxia [191] and
chronic intermittent hypoxia [192]. NAC also prevents MV-induced
oxidative stress and protects the diaphragm against disuse-induced
atrophy [112,113] (See section 3 for details). However, as in the case of
Trolox, treatment with NAC does not protect against HU-induced
muscle atrophy [193].

Mitochondrial targeted therapeutics are a promising tool in the
prevention of inactivity-induced oxidative stress and in the protection
of skeletal muscles against atrophy. Elamipretide (SS-31) is a synthetic
peptide that concentrates in the inner mitochondrial membrane and
selectively scavenges mitochondrial ROS [28]. Treatment of animals
with SS-31 protects against MV-induced diaphragm disuse in rats
[123,194] and HU-induced atrophy [195,196]. The mechanism of
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protection involves the prevention of protease activation (calpain and
caspase-3) as well as a reduction in oxidative stress [28].

The Bowman-Birk inhibitor concentrate (soy protein with anti-
oxidant properties) [197], resveratrol [198,199], and carotenoids (such
as astaxanthin and β-carotene) [200–202] also exhibit protective effects
against oxidative damage and muscle atrophy in muscle disuse models
(including HU and denervation).

Allopurinol is a purine analogue and a very well-known inhibitor of
XO widely used in the clinical practice for the management of gout and
hyperuricemia [203]. In the early 90's it was found that the XO activity
increase in immobilized muscle leading to oxidative stress and elevated
antioxidant enzymes activity [145]. The efficacy of allopurinol in les-
sening the contractile dysfunction caused by HU in mice was reported
by professor Reid's research group [146]. We observed that treatment
with allopurinol prevents soleus muscle atrophy in hindlimb unloaded
rats [55] but only partially protects against atrophy in HU mice and in
lower leg immobilization following ankle sprain in humans [120]. The
inhibition of XO activity with febuxostat [204] or allopurinol [181] in
cancer cachexia also results in the conservation of skeletal muscle mass.

The synergistic effects of complex antioxidant cocktails on protec-
tion against disuse muscle atrophy have also been studied in rodents
and in humans [205]. In a rodent study, an antioxidant cocktail (vi-
tamin E, vitamin C and β-carotene) did not protect against hindlimb
unloading-induced muscle atrophy [205]. We have recently tested the
protective effect on the maintenance of muscle mass of a daily cocktail
supplementation with Omega 3, selenium, polyphenols, and Vitamin E
in healthy young subjects maintained for two months in HDBR at the
MEDES space clinic in Toulouse [206]. We collected muscle biopsies
before and after bedrest, and 10 days after remobilization. We did not
find any protection in the loss of muscle mass and strength in the
supplemented subjects.

These results underline the complexity of redox mechanisms and
raise interrogations regarding the appropriate nutritional interventions
to fight against muscle deconditioning. The redox modulation of muscle
mass and function in disuse studies is dependent on muscle type,
atrophy models, and even species (humans vs rodents). There is clear
evidence in the literature showing that oxidative damage plays a causal
role in diaphragm atrophy and dysfunction following MV. Accordingly,
supplementation with antioxidants in this model have shown positive
results. However, it is less clear whether oxidative stress is a cause of
disuse atrophy in soleus or gastrocnemius muscle in HU mice and the
literature reports conflicting results on the role of antioxidants on its
prevention. The possibility that ROS production occurs at different
extents and rates and that different mechanisms prevail in different
models and muscles is consistent with the very variable rate of muscle
atrophy [66]. Finally, limited evidence exists showing that adminis-
tration of antioxidants have a positive impact in the prevention of the
loss of muscle mass in ULLS, HDBR of DI in humans.

6. Conclusions

The mechanisms regulating muscle mass are relevant in several
fields: healthy aging, diseases and sports medicine. The role of oxidative
stress in disuse atrophy vary significantly through experimental con-
ditions: atrophy models, species, and muscles. ROS exert opposite ef-
fects on muscle homeostasis in different conditions. Paradoxically, both
skeletal muscle contraction and disuse or inactivity are associated with
an increase in ROS generation leading to very different outcomes in the
muscle cell. The amount of ROS, differences in the time course of ROS
production, its compartmentalization, transience and even the nature of
ROS can modulate their effects in muscle mass. The complexity of redox
balance may explain why several studies have shown that some anti-
oxidants can prevent inactivity-induced atrophy while others have been
ineffective.

Targeting specifically the sources of skeletal muscle ROS generation
with mitochondrial targeted scavengers or XOR inhibitors have shown

promising results in the prevention of muscle atrophy. The experi-
mental evidence provides molecular bases for interventions that by
increasing the endogenous antioxidant defence (i.e G6PD) will delay
the onset of disuse muscle atrophy, sarcopenia, and frailty.
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