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Abstract—The fourth industrial revolution promotes Industrial
Cyber Physical Systems (ICPS) as the key to achieve smart,
efficient, flexible and self-organizing production plants. In a
shop floor there are heterogeneous physical and logical assets
that form the ICPS. But without proper communication and
composition techniques the integration of these assets in ICPS is
compromised. Component Based Software Engineering (CBSE)
is a discipline of growing relevance for ICPS because integration
and composition issues have been extensively researched in the
software domain. Under the Reference Architecture for Industry
4.0 (RAMI 4.0), the Industry 4.0 Component Model inherits
aspects of CBSE to specify how several industrial plant assets
can form an ICPS. The technological aspects for physical assets
digitalization and integration have been explored, but the I4.0
Component model lacks proposals and use cases for dealing
with industrial software components. In this work we discuss
the development of the Smart Component Model as a proposal
for integration of software components in ICPS. Furthermore,
we focus on how prediction and monitoring applications could
be converted in I4.0 Components and integrated in ICPS. To
sustain our proposals, we describe a real industrial case study
where these developments are being applied.

Index Terms—Component Based Software Engineering; Com-
ponent I4.0; Smart Component; Cyber Physical Systems; Pre-
dictive Maintenance; Condition Monitoring

I. INTRODUCTION

The assets in a traditional production line are strongly

coupled in sub-systems to accomplish specific physical pro-

cesses. The combination of these sub-processes results in

production of one or several final products. Each asset can be

characterized by a different level of abstraction; a lower level

asset could be a proportional-integral-derivative (PID) peace of

software or a sensor feeding the PID instance, while a higher

level asset could be an entire manufacturing execution system

(MES) or a whole production cell. Components can also be

characterized, among other properties, by their granularity; a

lower level component like the sensor can be considered as

atomic, while a higher level component like the production

cell can be considered as a composite component due to high

amount of sub-systems that compose it. One of the Industry

4.0 objectives is to transport this view of the factory and

apply it to realize the vision of reconfigurable manufacturing

systems. Components with various degrees of abstraction and

granularity could then be quickly composed to respond to new

necessities, among other positive outcomes [1].

This discrete view of systems has been extensively explored

in the software domain for decades, the reader should refer

to [2], where several aspects of component-based software

systems are allready discussed. One objective of CBSE is

to create applications with heterogeneous components in a

plug&play fashion [3], therefore, standardized abstractions and

architectures are needed to support this paradigm. In industry

the same composition problem is known as plug&produce [4],

[5]. This concept deals with integrating production line assets

in a automatic way and has been explored in several research

works [6]. The Component I4.0 model [7], [8] is essentially a

standardized proposal to address plug&produce in the context

of Industry 4.0. This proposal builds on top of several consoli-

dated standards to create a component-based ICPS transversal

to physical and digital assets.

A component model is a set of rules that dictate how

components can be built and composed to form a system [9].

These rules include, at least the definition of syntax and

semantics that allows the components be interfaced. An ICPS

can be considered a component model. The components of

a CPS need to be integrated and able to understand each

other, otherwise the ICPS could not be established. As in

a component model, the elements of an ICPS must follow

certain communication and integration rules to be able to

cooperate. Several works [10], [11] explore this perspective

to suggest a component models for CPS. Other component

model approaches regarding embedded systems and industrial

applications are surveyed in [12]. In this work we describe

the first steps towards a component model whose objective

is to constitute a solution for digital assets in industrial

environments.

The rest of the paper is organized as follows: Section II

introduces the Component I4.0, a Component Model applied

to Industry 4.0 components. In Section III, addresses how the

Smart Component Model, joins the Component Based Soft-

ware Engineeing theory and the Component I4.0 requirements

to realize a component model for Industry 4.0. Section IV,

describes the case study and details the problems of a company

with old machines. We also address how each machine, sensor
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and actuator considered is mapped in a component abstracted

by the Smart Component. In Section V, we discuss future work

plans to process data from these machines and how to make

it useful for other components in the company ICPS.

II. COMPONENT I4.0

One example of how a component model can be applied

to several disciplines is the concept of Component I4.0,

proposed by German Electrical and Electronic Manufacturers

Association’s (ZVEI’s) and Plattform Industrie 4.0 [7]. In this

vision, an Asset Administration Shell (AAS) abstracts one or

several assets, by being able to map the asset properties to

different information models. An asset abstracted by an AAS

becomes a I4.0 Component, because all its properties and

functions are mapped into standardized information models

and the interfaces between i4.0 Components are standardized.

Therefore, all AAS share standardized communication stacks

and semantics, which makes it possible to integrate all I4.0

Components in a ICPS.

If we consider a 3D Printer as an example of a physical

asset, we can describe it according different properties. Each

property can be mapped in specific technical domain, e.g.

mechanical, electrical and software domains. In [13], there are

several examples of how properties, data and functions from

several machines can be mapped in standardized information

models, according with its technical domains. In [8], Ye and

Hong present and describe in detail the steps to convert assets

of lab scale manufacturing system in Components I4.0; and

how to integrate them in a CPS. This component model tra-

verses several technical domains to create an ICPS composed

of I4.0 Components.

III. SMART COMPONENT MODEL

The Component I4.0 concept established itself as a reference

component model for the realization of Industry 4.0, under

the scope of RAMI 4.0. While ZVEI’s and Platform Insdutrie

4.0 published several technical specification documents [7],

[13]–[15], and the academia is also addressing this research

topic [16], [17]. The Smart Component model that we propose

addresses some aspects related with the software domain that

we consider are still missing.

ZVEI released in October 2018 a position paper involving

an use case for I4.0 software components [18]. This posi-

tion paper states some of the common issues of software

components models, such as standardization of interfaces

and dependency problems. The document also barely details

the use case and does not describe technical proposals. In

section IV, we present a case study of a real industrial

scenario that highlights some aspects related with software

components in ICPS. We think the problems described in

the case study, and the Smart Component model proposal to

those problems, might constitute a more concrete contribute

for software integration in the Component I4.0.

• The shop floor is composed of software and machines

from different vendors and generations, therefore is not

straightforward to acquire data from these assets, to

integrate software components to process this data, and to

convert these software components in I4.0 Components.

• There exists a growing trend, that we also tried to

address in this case study, to introduce machine learning

techniques for condition monitoring [19], [20], process

parameter optimization [21]. These techniques are de-

veloped in high level programming languages, such as

python. This contrasts with the typically low level lan-

guages used to program for field devices and industrial

communication protocols. To integrate these techniques

with low level systems requires a considerable effort.

• When dealing with industrial machine controllers, soft-

ware is typically closed source and provides scarce in-

terfaces, information is hard to extract and integrate with

other systems.

The Smart Component is a on-development component

model and framework that addresses these problems and tries

to constitute an AS for inclusion of software in Industry 4.0

based CPS. The problem with language independence is that

a lot of scientific and open source machine learning code

is produced in languages that are not exactly tailored for

embedded systems. In this work we address mainly how the

Smart Component Model (SCM) provides a way to integrate

such OTS (of the shelf) software components.

In Fig. 1 a functional block diagram of the Smart Com-

ponent is illustrated. The right side of the figure shows the

Component Repository, it contains all components that can be

instantiated by the Component Infrastructure. This repository

is local and can be updated with new components. The

component runtime, was running on top of a Java Virtual

Machine (JVM) in previous versions of the Smart Compo-

nent [22], [23]. The JVM approach has a portability advantage,

but it lacked performance and it proved very difficult to

integrate components built in other programming languages.

To tackle these issues, the Linux Kernel is now used as runtime

environment. This approach allows to integrate components

built in different programming languages, due to the Kernel

inter-process communication (IPC) mechanisms based on files,

pipes and shared memory pages. The Smart Component block

that allows to manage the running components is built as

a Linux Kernel module. This allows to extend any Linux

based distribution with the proposed Smart Component Model

capabilities.

The Smart Component interfaces, illustrated in Fig. 2, spec-

ifies the access points to a component. These interfaces data

types are standardized to enable reuse and allow components

to inter-operate locally and remotely. The data types used by

the interfaced are OPC UA Data Types, specified in the OPC

UA Base Model [24]. It is important to note that an interface

offers no implementation of any of its operations. Instead,

it merely names a collection of operations and provides the

descriptions and protocols for these. Components can import

and export interfaces; imports declare what a component needs

form the environment, exports declare what a component

offers to the environment.



Fig. 1. Functional block diagram of SmartComponent (Adapted from [2])

A. Smart Component Kernel Module

As previously discussed, the decision change the runtime

environment of the Smart Component Framework (SCF) from

a JVM to a Linux Kernel brings some advantages. In this

subsection we discuss how the Smart Component Kernel

Module (SCKM) complies with the Smart Object Compo-

nent Model (SOCM), how it keeps track of executing com-

ponents and how component interfaces are managed. The

SCKM maintains a Smart Object Self Description (SOSD)

structure that describes all components and their relations.

SOSD:Device objects are data structures which hold asset

properties. SOSD:ServiceInstance objects, are instances of

components, for the Linux Kernel, they are regular pro-

cesses. The data structure that holds SOSD related info also

contains pointers to the kernel process descriptor structure.

This way, the SCKM keeps track of the running compo-

nents, and because it resides in the kernel space, it can

access the component memory regions. This is fundamental

to establish the relationships between components that are

specified by the SOSD structure. This characteristic also

makes it possible to develop a component compliant with

the SOCM specification with minimal intervention from the

developers. Each compliant component must have a correspon-

dent SOSD:ServiceDescription object, where all interfaces and

properties (see Fig. 2 must be declared. A set of functions

will be available for the developers to register the program

variables within the SCKM. Each of the declared component

interfaces must be mapped into a program variable by the

developer. This way, with minimal effort, the programmer can

read/write data directly from/to regular program variables, as

if the other components were part of the same package and

written in the same programming language. The restriction

imposed so far is that the component interfaces must only

adhere to the OPC UA Data Types, specified in the OPC UA

Base Model [24]. Sometimes it happens that a closed piece

of software (e.g. a device driver or database connector) must

be integrated into the design. One way to achieve this, using

the SCF, would be to create a simple interface component,

which would connect to closed software using the available

interfaces, and then, to map those channels into variables

described in a SOSD:ServiceDescription.

Fig. 2. Component interfaces.

Each interface between components is handled by a

SOSD:Subscription structure, see Fig. 2. This structure cor-

responds to a shared memory region that is attached to the

participating processes address space. As illustrated in Fig. 2,

the subscription structure can hold: a scalar, a linked list, a

vector or a queue/stack. The Port blocks are illustrative, these

encode information such as the read/write permissions and

synchronization mechanisms. The SOSD:Subscription class

properties are used to encode all information related with

Ports.

B. SOSD

The Smart Object Self Description information model was

created to describe the software components available to

instantiate, or running, in a certain Smart Component; to relate



these components with other assets; and also design applica-

tions based on the relation of components themselves [25].

It works like an Architecture Description Language, because

the SOSD:Device class purpose is to give context and hold

properties of the assets. In terms of the CPS, this allows

to identify what software components are associated to other

assets. In terms of software components, these can read the

associated SOSD:Device structure to get/set specific parame-

ters useful for its service. As an example, the Inductive object

in Fig. 3 - which corresponds to the inductive sensor in the

case study architecture (Fig 4) - includes properties such as

the digital pin number, that keep the address associated with

the pin to which the sensor is attached. This property can

be retrieved by the Digital Signal Acquisition component, so

it knows what address must be read to retrieve the sensor

reading. A SOSD:ServiceInstance class, correspond to an

instance of a SOSD:ServiceDescription class, running in a

certain SmartBox. In Fig. 3, are illustrated two instances of

the Digital Signal Acquisition component, these are sampling

the Inductive Sensor and the Light Tower signals, which map

the respective assets in physical architecture of the case study,

Fig. IV. A component instance is identified by an unique ID,

and the details of that component can be obtained through a

DID (Description ID), which establishes the correspondence

between SOSD:ServiceInstance and SOSD:ServiceDescription

classes. The ServiceDescription class describes the software

components and respective interfaces. This class is also useful

to manage components in the repository (Fig. 1), the properties

declared can be used to compare versions and query for certain

types of components.

Fig. 3. Map of the case study in SOSD classes.

C. OPC UA

So far we discussed the SCM and some technical aspects

of how the SCKM manages components. In this subsection

we address how a remote SmartBox - running a component

design on top a Linux Kernel with the SCKM - is managed.

As the Component I4.0 technical documents specify, OPC

UA is the standard architecture for communication between

I4.0 Components. This was the major reason to establish a

tight integration between this architecture and the SCF, but

there are other advantages, as described in [6]. The OPC UA

address space is based in a very rich information model and

applies an object oriented approach to how information is

structured, encoded and related. An information model can

be added to an OPC UA server if its objects are built on top

of OPC UA models. This allows for any OPC UA Client to

be able understand and de-serialize information of a node in

OPC UA Server without prior knowledge. The SOSD model,

as previously stated, was built on top of the OPC UA Base

Model, so it can be mapped in a OPC UA Server address space.

Because of this integration, the SOSD structure held by the

SOKM is tightly integrated with an OPC UA Server. Changes

made in the design by an OPC UA Client are reflected in a

remote Smart Component Runtime, which is a straightforward

way to create new applications or to reconfigure the design in

execution. Another possible advantage of this tight coupling,

is that a certain design can request or subscribe information of

another OPC UA Server. If that server is also integrated with

a SCKM, this would constitute a transparent way of building

distributed applications, taking full advantage of a CPS based

in I4.0 Components.

IV. CASE STUDY

This case study was explored in the context of the Por-

tuguese research project PRODUTECH-SIF [26]. The vali-

dation of the SmartComponent is being performed on the

shop floor of a textile unit that produces clothing labels. This

factory in its industrial plant has machines with different levels

of technology, old without any type of sensing and modern

with some sensors, PLCs for control, local data processing

and communication with the MES / ERP. The old machines

are operational, fulfill their production functions, but are not

as efficient as desired due to unexpected outages related to

failures. In addition do not have the ability to communicate and

produce the desired KPIs for the production and maintenance

teams. Based on this, the installation of sensors and intelligent

controllers (SmartBoxes) for data acquisition and processing

is essential to allow the Smart Component to perform its

functions. The next section details the SmartBox that executes

the Smart Component.

A first phase of the case study consisted in retrofitting one

of the older looms with several sensors in order to gather

production data. The set of sensors was selected with the help

of the maintenance team, that provided insights for typical

breakdown problems and maintenance routines. Figure 4

illustrates the physical architecture for the case study. The

Jacquard, which is a complex electromechanic component of

the loom, was equipped with: 1) a triple axis accelerometer,

connected to the analog pins of the SmartBox, to measure

mechanical vibrations; 2) a microphone, connected to an

analog pin, to capture mechanical noise; 3) an inductive sensor,

connected to a digital pin, facing one of the gears, allowing to

count pulses, therefore being able to extract the production

speed and quantity; 4) the light tower, connected to three



Fig. 4. Physical assets architecture.

digital pins, to detect the machine states, which are encoded

by specific pulse sequences.

A. Smart Box

The SmartBox is a modular hardware controller devel-

oped over a Programmable Automation Controller (PAC)

CompactRIO 9040 from National Instruments [27] that runs

the Smart Component at the shop floor level. The Com-

pactRIO system was chosen by the combination of a real-time

controller, Reconfigurable IO (RIO) modules and an FPGA

module in the same chassis. This combination allows the

controller for multitasking in data acquisition, processing and

implementation of control algorithms, with a wide range of

sampling frequencies. The modularity of the SmartBox allows

scalability for different industrial scenarios, also allowing the

Smart Component to be scalable and adaptable to different

realities. Another advantage of using the CompactRIO is that

by running a patched Linux Kernel, it allowed to deploy

and validate several SCKM aspects. The most important, the

data acquisition software is developed in LabView, while the

OPC UA server used is implemented in Java. The SCKM

allowed to easily interconnect these components to form a

data monitoring application.

The SmartBox works as an OPC UA server, collects data

from sensors, implements data signal conditioning and cal-

ibration by software. It has resources to communicate with

machine controllers via different industrial communication

protocols, converging them into a unified communication

architecture enabling link to higher hierarchical levels in

the automation pyramid. The Functional block diagram of

SmartBox is illustrated in Fig. 5.

Fig. 5. Functional block diagram of SmartBox.

B. Results

In the IDEPA scenario, one SmartBox was installed for edge

computing of one legacy loom, but is in process the installation

of more SmartBoxes with capabilities to integrate groups of 4

machines by controller in all factory plant. The connections

between machines and the controller are done by remote I/Os

under EtherCAT communications.

Older looms are being upgraded with additional devices

(rotary encoders and environmental sensors) to enable the

collection of operational information already available on

new looms. Predictive maintenance functionalities based on

information such as temperature, humidity, noise and vibration

will also be implemented.

At the time of writing this paper, the SmartBox has been

collecting sensor data from the first loom equipped with

sensors for roughly 3 months. The plot of Fig. 6 shows an

excerpt of sensor data during operation. The Acceleration in

X, Y and Z components, Microphone and Lights (Red, Orange

and Green) are plotted against the left vertical axis in Volts.

The Inductive series is in fact the output of Impulse to Meters

component depicted in Fig.3. This series is plotted against

the right vertical axis in meters and represents the production

length.

As can be observed in this excerpt, the loom was operating

normally, as the Inductive series indicates, when the Red light

started to pulse indicating a breakdown. After this, it is clear

that the machine stopped, as can be deduced from the lower

peak to peak amplitude of the vibration and acoustic sensors;

and also from the flat line of the Inductive series.

V. FUTURE WORK

As future work, data from sensors and machine signaling

will be used to implement supervised learning algorithms

for predictive maintenance and condition monitoring. Datasets

of acoustic sensors and accelerometers will be processed by

the SmartBox, in order to identify and classify the different

frequencies, helping decision support systems to identify prob-

lems on the looms. One of the main future goals will be to

assess how the Smart Component will ease the process of



Fig. 6. Operation data an old loom equipped with external sensors.

feeding the algorithms and integrating their predictions with

other components.

The currently developed component description techniques

do not qualify attributes such as accuracy, availability, la-

tency and security, which are fundamental to deterministic

applications. In future iterations of the SOSD language, these

characteristics must be revised and incorporated. In the same

domain, a real time patch for the Linux Kernel will be included

to see how well the SCF handles soft real-time components.
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