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Abstract

Physical interpretations of astrophysical observations of hot plasmas are made with

models based on atomic data, being most of this from theoretical calculations of atomic

structure and collisional processes. Recently, discrepancies have been arising between

observations, laboratory experiments and the theoretical models.

Among the several collision processes included in these theoretical plasma models,

Dielectronic Recombination (DR) constitutes an essential process for the plasma ionic

balance. In this work, measurements of DR of Fe XVII and Kr XXVII from EBIT, as well

as charge state dynamics simulations of the experiments and new FAC, MBPT and MCDF

cross section calculations, are presented. Moreover, experimental DR rates were extracted

and compared with widely used atomic databases.

Several discrepancies between the experimental data, the new calculations and ex-

isting atomic databases were found and discussed. This dissertation provides new DR

atomic data for Fe XVII that is relevant for charge state balance calculations and spectral

simulation of astrophysical plasmas. Furthermore, new data of DR of Kr XXVII is also

presented, which can have future implications for the development of diagnostic tools

that are currently in need for the development of future fusion reactors.

Keywords: Atomic data, Atomic processes, Highly charged ions, spectroscopy, Labora-

tory astrophysics, Plasmas, X-ray.
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Resumo

Interpretações físicas de observações astronómicas de plasmas de alta temperatura

recorrem a modelos baseados em dados atómicos, sendo que a maior parte provem de

cálculos teóricos de estrutura atómica e processos de colisão. Recentemente, têm sido

verificadas discrepâncias entre observações, experiências laboratoriais e modelos teóricos.

Dentro dos processos de colisão incluídos nestes modelos teóricos, a Recombinação

Dielectrónica (DR) tem um papel essencial no balanço iónico do plasma. Neste trabalho

foram apresentadas medições de DR de Fe XVII e Kr XXVII em EBIT, bem como simula-

ções da dinâmica dos estados de carga nas experiências e novos cálculos de secção eficaz

de DR feitos com FAC, MBPT e MCDF. Foram também extraídos valores experimentais

de taxas de DR para comparar com valores de bases de dados amplamente usadas em

astrofísica.

Foram encontradas e discutidas diversas discrepâncias entre os dados experimentais,

os novos cálculos teóricos e as bases de dados existentes. Esta dissertação fornece novos

dados de DR do Fe que são relevantes em cálculos de balanço de estados de carga e si-

mulação do espectro de plasmas astrofísicos. As medições de Kr podem ter implicações

no desenvolvimento de ferramentas de diagnostico que são necessárias para o desenvol-

vimento de futuros reatores de fusão.

Palavras-chave: Dados atómicos, Processos atómicos, Iões altamente carregados, Espec-

troscopia, Astrofísica em laboratório, Plasmas, Raios-X.
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1
Introduction

1.1 X-ray astronomy

Optical astronomy has had a rich history over the last centuries. Observations by

primordial telescopes developed by Galileu provided vast and detailed information of

the observable cosmos, such as the phases on Venus and the moons of Jupiter, both

discovered in 1610 [1]. With technological advances in optics and increasing size of

telescopes even allowed observation of distant and faint objects, like the GN-z11 galaxy in

2016 (currently the furthest galaxy observed) [2]. However, observation of certain regions

of the electromagnetic spectrum was only possible after the middle of the 20th century.

Planet Earth’s atmosphere is optically thick to x-ray radiation, which means that most

x-rays coming from space are scattered and absorbed before reaching the surface. Before

the start of space exploration, even without observations, the sun was already theorized

to be a source of x-ray radiation, being the possible culprit for the strong ionization of

the ionosphere [3]. In the end of 1940’s, a photographic plate attached to a V-2 rocket

(protected by a Be window) was able to detect x-rays beyond the atmosphere [4]. Later,

another V-2 rocket with the ability to roll around its flight axis confirmed that the x-ray

source was the sun [5]. These discoveries, and the advancement of space technology,

allowed the beginning of the x-ray astronomy. In 1962, the first x-rays coming from

outside the solar system were detected by an Aerobee 150 rocket [6], which its source

is a low mass x-ray binary. While a few more sources were discovered by the use of

rockets, the development of x-ray space observatories made possible to catalog more than

200000 sources by the end of the century [7]. The advancement of this technology made

possible not only to spatial imaging of the sources of x-ray, but also to make analysis of the

respective spectrum, which provided more tools to investigate the nature and behavior

of the celestial bodies.

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Observations of the Crab nebula in the visible, ultra-violet (UV) and x-ray
energy range. The images were acquired by the Hubble, XMM-Newton and Chandra
space observatories, respectively. Images adapted from [17].

Nowadays, most of the x-ray observations are made in on-going missions of the

satellites XMM-Newton [8] and Chandra [9], both launched in 1999, and NuSTAR [10],

launched in 2012. The first has a low-energy reflection grating detector with an energy

range of 0.35 to 2.5 keV, while Chandra has both a low and high-energy transmission

grating detector, with ranges of 0.08 to 6 keV and 0.5 to 10 keV. Both also have CCD

detectors for x-ray imaging purposes. Figure 1.1 shows observations of the Crab Nebula

made by the Hubble, XMM-Newton and Chandra telescopes for the visible, ultra-violet

and x-ray energy ranges, respectively. In this case, x-ray imaging allowed direct observa-

tion of behaviour of a pulsar (rapidly spinning neutron star) that lies in the heart of the

nebula [11]. The mentioned observatories have been used extensively to study extreme

astrophysical systems, like binary systems, supermassive black holes and pulsars [12–14].

These satellites originated many discoveries in astrophysics, but their grating spectrome-

ters are impractical for very faint sources. The NuSTAR telescope uses x-ray optics with a

10.14 m focal length to focus x-rays on a solid-state detector. This observatory is comple-

mentary to the previous ones, as it is designed to study hard x-rays, with an energy range

of 3 to 79 keV. The next generation satellites, XRISM [15] (planned to launch in 2022)

and Athena [16] (planned to launch in 2031) will overcome this problem by employing

2



1.2. ASTROPHYSICAL PLASMAS IN LABORATORY

detectors with higher sensitivity and resolution, and a bigger aperture.

Cosmic sources that exhibit high energy process, like stars, binary systems, pulsars

and black holes, generate high temperature plasmas (MK) composed of Highly Charged

Ions (HCI). The x-ray spectra of these objects contains signatures of the most astrophys-

ically abundant elements, usually with atomic number Z ≤ 30. Astrophysical plasmas

are usually classified as either photoionized plasmas or coronal plasmas. In the first

type, there is a strong source of continuum photon radiation that is responsible for the

ionization of the gas, and consequently for the charge balance of the ion populations

[18]. The electron temperature is normally low and does not have to exceed a certain

ionization potential for the dominant ion species to appear. These plasmas are usually

found near powerful radiation sources, such as active galactic nuclei and x-ray binaries

[18]. In coronal plasmas, the charge state balance is established by electron-ion collisions,

namely the ionization and recombination collisional processes [19]. Here, the electrons

have Maxwellian or quasi-Maxwellian energy distributions and their temperature is com-

parable to most of the ionic species temperatures. These plasmas are commonly found

in clusters of galaxies and stellar coronae. The electron densities are commonly found to

be in the order of ne ≈ 108 to 1013cm−3 [19]. Due to the low density in the coronal limit,

the radiative and Auger decay rates are much higher than the collision rates, which leads

to spectra dominated by emission lines of resonant processes, such as the Dielectronic

Recombination [18, 19]. Here, the ion density is sufficiently low for the absorption of the

radiative emissions by the plasma itself to be considered negligible. X-ray spectroscopy of

these plasmas provides a variety of information about the physical conditions of celestial

bodies. Since this kind of spectra are directly related to the electronic structure of the

HCI, quantities such as chemical composition, temperature and electronic density of the

plasma can be inferred through experimental data analysis and plasma modeling. As we

shall see in the next section and chapters 3 and 4, these plasma conditions are similar to

ones produced in artificial plasmas, in particular to the case of electron densities.

1.2 Astrophysical plasmas in laboratory

Unlike many other areas of physics, experimental data in astronomy can only be ob-

tained by observing the universe without control of the physical parameters of objects in

study. As such, there is no possibility to study the physical processes individually, as the

observed photons are produced by all the physical processes that happen simultaneously.

Therefore, to test new astrophysical theories, models that simulate the observed objects

have to be developed. These models rely heavily on several fields, namely molecular,

atomic and nuclear physics, and often with multidisciplinary approaches. This work is

focused on the atomic data regarding HCI predominantly present in hot astrophysical

plasmas.

With the development of experimental physics technology, it is nowadays possible

to emulate hot plasmas with similar conditions to the ones found in outer space. X-ray

3



CHAPTER 1. INTRODUCTION

sources with HCI, such as magnetic fusion plasma devices [20], laser-produced plasmas

[21] and ion traps (details in chapter 3) [22], have been used to extract experimental

atomic data with importance to astrophysics. There are many sources of HCI in labora-

tory, but the Electron Beam Ion Trap (EBIT), the tokamak and storage rings have been the

most used ones for laboratory measurements of astrophysical plasmas [19]. Both devices

produce low density plasmas in the coronal limit [19], with radiative and autoionization

processes being much faster than the electron-ion collision rates, which makes them ideal

to study recombination processes. They also provide spectroscopical data, similar to what

is observed in x-ray satellites. The EBIT is capable of producing and maintaining HCI

systems, which is the main experimental focus of this thesis. As this device is capable of

producing a plasma of any element up to bare uranium [23], it is ideal to study plasmas

with importance to astrophysics [24]. As described in detail in chapter 3, it also provides

methods to study ion-electron recombination processes that play a fundamental role in

hot plasma modeling. Apart from the ionic species, the electron energy and density can

be selected and controlled, thereby enabling the study of plasmas in a wide variety of

conditions. A fuller explanation of the functioning of the EBIT is presented in chapter 3.

The Tokamak is another device capable of generating and maintaining high temperature

plasmas. In this case, the plasma is magnetically confined in a device with toroidal ge-

ometry. The tokamak is generally less versatile than the EBIT, as its electron temperature

and density varies throughout the locations of the plasma, i.e. the plasma is generally

hotter and denser in its center [19]. The ions are constantly moving and experiencing the

different conditions, resulting in emission spectra more complex and difficult to analyse.

This downside can also be perceived as an advantage, as in real astrophysical plasmas the

ions also experience variations in temperature and density and are also subjected to in-

terplay of several different processes. As such, the tokamak can be used to make realistic

tests to the mentioned interplay and reproduce spectra comparable to real astrophysical

observations, while an EBIT is mostly used for careful tests of individual atomic processes.

Since the EBIT provides means to focus on specific atomic data and check experimen-

tally its accuracy, the EBIT can be the analogous of the "debug tool"of computer coding.

An example is the study of the 3C and 3D lines (explained in more detailed in the next

section). Figure 1.2 shows an astrophysical observation of the Capella star system with

the Chandra telescope, where the lines 3C and 3D produced by Ne-like Fe are identified

in the subfigure (b). These lines have been studied in more detail, as is the case of the

subfigure (a), where the two lines are observed individually in an EBIT.

Heavy ion storage rings, like the Heidelberg’s Test Storage Ring (TSR), are also exten-

sively used to study electron-ion collisional processes [27]. Instead of producing a plasma

in a trap, HCI are injected in a ring in the form of a beam that is redirected and refocused

to circulate there for extensive periods of time. Additionally, an electron beam is merged

with the ion beam with an adjustable relative ion-electron energy. As recombination and

ionisation processes occur, the ions with different charge states are selected and their

4



1.3. NEED FOR ATOMIC DATA

Figure 1.2: (a) Measurement of the 3C and 3D lines in an EBIT [25]. (b) Observation of
the 3C and 3D lines in the Capella x-rays [26].

respective current is measured. This enables the study of collisional ionization and re-

combination cross sections on the HCI charge state population of the beam. However,

due to technical restrictions no photon emission is observed. A description of the TSR

can also be found in chapter 3.

1.3 Need for atomic data

1.3.1 Astrophysics

Astrophysical models that predict plasma characteristics from astrophysical obser-

vations rely on atomic data that can explain the structures present in the experimental

spectra. The case of iron (Fe) is of special importance in x-ray astronomy: this element is

the most abundant heavy element in the universe due to its high nuclear binding energy

per nuclear particle, with addition that its HCI form has atomic transitions in the x-ray

region. Intensity ratios of Fe HCI emission lines depend on the local plasma conditions,

and are important candidates for astrophysical diagnostic tools [28, 29]. For example, the

degree of polarization of the K-shell emissions of Fe XVII can be used to measure plasma

anisotropies, such as electron and ion beam orientations or magnetic field orientations

[30]. K-shell line ratios for Fe and Ni have also been used to determine the temperature

of galaxies [31].

Another example are the L-shell emission in Fe, in particular for Fe XVII (Ne-like,

Fe16+) in the 700 to 950 eV photon energy range. Given the closed-shell structure of this

ion, the presence of LM x-ray emissions is predominant in the observations [29]. Con-

sequently, several experiments have been performed over the years to provide accurate

values of the wavelengths and relative transition intensities for L-shell transition of Fe

XV-XIX [21], Fe XVI [32], Fe XVII [28, 33–37], Fe XVIII-XXIV [38, 39], Fe XXI-XXIV [40],

Fe XXIV [41, 42] and Fe XXI-XXIV [43]. In these works, many discrepancies between

experimental results and theory have been found and are yet to be solved, such as the

3C/3D problem, that is going to be discussed later, and the iron plasma L-shell opac-

ity discrepancies found in systematic measurements at stellar interior temperatures [44].
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Several other studies have found that in some situations plasma models match better with

astrophysical observations under the assumption that the currently known theoretical

atomic data is not entirely correct and must be revised to achieve good results [27, 45].

Moreover, updated atomic data of the L-shell Fe may solve differences in models that are

used to predict Fe abundance in low-temperature elliptical galaxies [46].

One notable example is the problem of the 3C/3D line ratio. Collisional excitation

of the 3d→ 2p and 3s→ 2p transitions in Fe XVII produces the strongest lines observed

in x-ray spectra. Such an example of the strongest Ne-like Fe lines are the, usually la-

beled as, 3C and 3D, defined by (2p5
1/23d3/2)J=1→ (2p6)J=0 and (2p5

3/23d5/2)J=1→ (2p6)J=0,

with energies around 826 eV and 812 eV. Both lines have low contribution from cas-

cades and their intensity is almost only dependent on electron collisional excitation (CE)

and dielectronic recombination (DR), processes which respective strength varies as a

function of electron temperature and density, making the 3C/3D ratio a possible diag-

nostic tool [28]. However, the use of this tool has been hampered due to discrepancies

between theoretical predictions and experimental observations [47–49]. Several EBIT

experiments probing Ne-like Fe agreed with each other for the experimental value of

3C/3D, but all of them appear to deviate between 10 and 35% of the state-of-the-art

theoretical predictions. In 2012, a novel x-ray spectroscopy measurement was performed

at the LCLS free-electron laser facility [50]. A low value of 3C/3D oscillator-strength

ratio was reported, reinforcing the mentioned discrepancy. One possible explanation

for these results may have been an Na-like contamination which produces a so-called

C line ((2p3
3/22p1/23s3d5/2)J=3/2 → (2p62s1/2)J=1/2) with an energy value close to the 3D

line. A possible mixture of the C and 3D would result in an apparent lower ratio closer

to the experimental results. This theory was recently disproved, as new measurements

performed at the PETRA III synchrotron with the PolarX-EBIT had enough resolution to

resolve both 3C, 3D and C lines and a lower 3C/3D ratio still persists [25]. The results

from this reference paper are shown in figure 1.3, where a clear deviation is demonstrated

between the old and newer calculations and all the recent experiments, as well as most

astrophysical observations. These two examples show that atomic data for astrophysics

needs experimental benchmark besides theoretical reverification.

Among the various atomic processes that lead to the x-ray emission of the previ-

ous cases, dielectronic recommbination is an important process due to its high resonant

strenght. It is a recombination process, thus chaging the charge state of the ion. As such,

it plays an important role in charge state balance dynamics, that only depends on the

possible ionization and recombination processes [51]. Furthermore, it produces x-ray

emissions that closely accompany the main excitation lines. The dielectronic recombina-

tion (more details can be found in chapter 2) is a process where an ion captures a free

electron in a resonant way, with a simultaneous excitation of a bound electron, leaving

the ion in a doubly excited state. The excited ion may either autoionize or radiatively

decay. The latter option concludes the DR process. For example, in the case of Fe XVII,

DR-LMM means a resonant capture of an electron in the M-shell with an excitation of a
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Figure 1.3: Experimental and theoretical (blue) values of the 3C/3D oscillation strength
ratio for Fe XVII. The experimental values include astrophysical observations, tokamak
measurements and experiments in several EBIT systems. The blue open circles represent
the value from existing databases and blue crosses represent several past theoretical
predictions. The blue closed circles represent the most recent calculations and the green
diamonds represent EBIT experiments. Adapted from [25].

bound electron from the L-shell to the M-shell,

Fe16+ (1s22s22p6) + e−

↓

Fe15+∗∗ (1s22s2p63l′3l′′) or Fe15+∗∗ (1s22s22p53l′3l′′) (1.1)

↓

Fe15+∗ (1s22s22p63l) + hν .

This process produces strong emissions that are close to the main Fe XVII LM lines,

deviated only by the perturbation caused the spectator electron (the electron that didn’t

decay in the last step of the DR process). Due to this proximity to the main lines, they

are often referred to as satellite lines, since they always accompany the main excitation

lines [52]. These type of lines have already been observed with Chandra in spectra from

stellar coronae like Capella and Procyon and used for temperature diagnostics [53, 54].

The relative intensity of these lines depend on the temperature and electron density,

and can also be used as plasma diagnostic tools. Thus, is it imperative to know the

resonant strengths of this process accurately when using collision-radiative models, such

as AtomDB [55] and SPEX [56], to diagnose temperatures. The atomic data used for such

models can also be obtained in databases like CHIANTI [57] and OPEN-ADAS. Apart

from DR 3l5l′ and 3l6l′ satellite lines for Fe XVII-XXIV [43], no laboratory measurements

of wavelength and relative intensity of DR satellite lines are available [58]. Recently,

DR cross sections for the 3lnl′ sequence were published with the intent to investigate
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Figure 1.4: 3D model of the future International Thermonuclear Experimental Reactor
(ITER). Adapted from [59].

3d→ 2p and 3s→ 2p line ratios above the collisions excitation threshold [37]. One of the

main objectives of this thesis is to continue the investigation of the last reference, with

an analysis of the data published in the last paper, with an emphasis on the DR-LMM

structure. The extracted experimental values of the DR-LMMM structure were compared

to new theoretical calculations performed with several codes and the values available in

multiple databases. This study is given in chapter 4.

1.3.2 Fusion reactors

Besides investigating the details of astrophysical plasmas in laboratory, the tokamak

are mainly design to study the feasibility of nuclear fusion as a promising source of

clean energy [20]. In these plasmas, it is intended to promote a self-sustained fusion

reaction between deuterium and tritium to produced energy. The International Tokamak

Experimental Reactor (ITER) aims to achieve a steady state plasma with an output fusion

energy of around ten times the heating energy required to maintain the reaction [60]. The

design choice for the plasma-facing material for this device is tungsten (W), due to its high

melting point, low sputtering yield, high-energy sputtering threshold and low tritium

retention [52]. As W sputtering is expected, plasma diagnostic tools are being developed

based on W HCI x-ray emissions, similar to the aforementioned astrophysical plasma

diagnostic tools [61]. Several instruments will be used on ITER to observe W radiation to

determine local plasma conditions. As such, there is a growing need for reliable highly

charged tungsten emission experimental data as well as dependable ionization balance

calculations.

Another element that can have an important role in the tokamak plasma is krypton
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(Kr). Some calculations suggest that the neutral hydrogen losses are not large enough

to limit the heat load on plasma facing materials [62], namely the divertor and blanket.

Additional impurities are then needed to dissipate the heat at the borders of the plasma.

One proposed element is Kr. It is expected that it can provide radiative cooling in the

edge region at a rate of around 100 MW without perturbing the plasma core [63]. Some

experiments of injection of Kr in tokamaks successfully yielded plasmas with lower elec-

tron density and temperature around the edges [64]. Furthermore, this element can also

by used for x-ray diagnostics of the core region [64, 65]. The expected electron energy

range of the region is between 10 and 30 keV. At these energies, the Kr is not fully

stripped and K-shell transitions can be observed under high temperatures. Temperature

diagnostics can work in a similar manner as the ones used is astrophysical plasmas. It is

then important to understand all the atomic processes involving these element for several

charge states to model the behaviour of the Kr plasma under the different temperature

regimes. The cooling rates for the KLnDR series and K-shell, L-shell and M-shell electron

impact excitation have been measured in the past in EBIT systems [65, 66]. Within this

thesis we explore new measurements of the DR-LMM structure of Kr XVII obtained in an

EBIT system.

1.4 Organisation of the thesis

This thesis has the main objectives of providing theorectical and experimental atomic

data important for the modeling and diagnostics of high-temperature plasmas, with an

emphasis on measurements of dielectronic recombination cross sections and DR rate

coefficients.

As stated before, there is a lack of experimental atomic data for Fe XVII. This thesis

aims to continue the investigations made on Fe XVII in the 0.3 to 1.1 keV energy range

with an EBIT (FLASH-EBIT, at Max-Planck-Institut für Kernphysik in Heidelberg [37]).

The DR-LMM region, between 300 and 500 eV was analysed and compared with new

calculation performed with several theoretical methods, which are described in chapter

2. New measurements made in another EBIT, namely Polar-X EBIT (details in chapter

3), were also analysed in this work. The latter are focused on the DR-LMM region and

were made in a different scheme that allows the study of the charge state dynamics in

the several electron beam energy conditions. Charge state simulations were also made to

study the effects of the EBIT experimental conditions in the results. The extracted results

were compared to old DR measurements made in the TSR, as well as theoretical values

from several atomic databases.

Similarly, atomic data of Kr is also essential for fusion reactor plasma modeling and

diagnostics. This work presents new measurements of Kr made on the FLASH-EBIT in

the 400 to 2500 eV region. It is expected to observe the Kr XXVII DR LMn series, as well

as the direct impact excitation of the L-shell and M-shell.

This thesis is organized a follows:
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• Chapter 2 describes the theorectical background to perform atomic structure calcu-

lations, as well as well as electron-ion collision processes. It begins by introducing

the basic equation for one-electron systems and moves to the descripton of methods

to compute the structure of multi-electron systems. It then makes a brief introduc-

tion to the collisional processes relevant to plasma charge state modeling, describing

the principal processes of ionization and recombination. An introductory descrip-

tion of the angular distribution and polarization of the photons emitted in and EBIT

is also presented.

• Chapter 3 describes the main components and general operation of an electron

beam ion trap. The FLASH-EBIT and PolarX-EBIT characteristics and schemes of

operation relevant to this work are then presented. A concise description of the TSR

is also included.

• Chapter 4 details the theoretical atomic data calculations made in the course of this

work. The application of these calculations to simulate the charge dynamics in the

experimental conditions is also presented.

• Chapter 5 overviews the experimental analysis and comparison with theoretical cal-

culations. It displays the final tabulated results of measured DR resonant strengths

and respective DR rate coefficients of the Fe XVII DR-LMM structure. The measure-

ments of Kr XXVII (Ne-like) are also briefly overviewed.

• Chapter 6 draws the conclusion regarding the calculations and analysis made in

this work. It also discusses future prospects of this investigation.
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Theory

In the following chapter, the theoretical framework underlying this work will be

described in detail. Firstly, the basis of atomic structure calculations will be covered,

starting with one-electron systems and evolving into multi-electron systems. Several

types of methods to approximate solutions to the multi-electron system problems will be

briefly presented. As it is an essential part of the dynamics of a plasma, the most relevant

ion-electron collision processes will be described, as well as the mathematical framework

to compute their respective cross section values. The charge exchange process will also be

briefly covered due to its importance in electron beam ion traps. In the end of the chapter,

the polarity and anisotropy of the photon emissions at an EBIT will be discussed.

In order to understand the behaviour of a hot plasma, it is required to know all the

atomic processes present in the system as well as the atomic structure of the ions involved.

As a plasma is composed essentially of ions and electrons, most of the present processes

are based on ion-electron collisions. Some of these processes result in the emission of

x-ray radiation, which is usually measured to probe the system. Processes such as recom-

bination and ionization result in a change of the ion charge, thus resulting in dynamical

charge state populations. The study of the charge state dynamics is essential to create

a realistic model of the plasma and can help the understanding of several phenomena

observed in the laboratory experiments. Apart from the DR process and radiative tran-

sitions, all the theory in this work will be presented in atomic units. More details about

the theoretical descriptions can be found in [18, 27, 67–69].

Some widely used codes dedicated to the calculation of atomic energy structure and

transition probabilities will be briefly presented in the end of the chapter.
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2.1 Atomic structure

In order to obtain the atomic structure consisted of energy states and wavefunctions of

a HCI, the Hamiltonian equation must be solved [68–70]:

HΨ = EΨ , (2.1)

where H , Ψ and E are the Hamiltonian, wavefunction and energy of a bound state.

Since HCI atomic systems are usually subjected to relativistic effects, due to the high

Coulomb field, it is necessary to solve the previous equation with the fully relativistic

Dirac-Coulomb Hamiltonian [71]. For N electrons, the Hamiltonian is

H =
N∑
i

hi +
N∑
i<j

V e−eij , (2.2)

where V e−eij are all the electron-electron interaction potentials that include both Coulomb

and Breit interaction. The Dirac-Coulomb Hamiltonian of a single electron is given by

hi = cααα ·ppp+ βc2 +VC(ri), (2.3)

where c is the light speed, ppp is the linear momentum operator, VC(r) is the nuclear

Coulomb radial potential and ααα and β are the Dirac 4× 4 matrices

ααα =

0 σσσ

σσσ 0

 and β =

1 0

0 −1

 , (2.4)

where σσσ are the Pauli spin matrices.

2.1.1 One-electron systems

For one-electron systems, the equation (2.1) is reduced to[
cααα ·ppp+ βc2 +VC(r)

]
Ψnκ = EnΨnκ. (2.5)

This equation has analytical solutions in the form of

φnκm(r, r̂) =
1
r

 iPnκ(r)χκm(r̂)

Qnκ(r)χ−κm(r̂)

 . (2.6)

These solutions are known as the Dirac spinors. Here, n is the principal quantum number,

m is the z-component of the total angular momentum j and κ is the relativistic angular

momentum, related to the orbital (glsl) and total angular momentum by κ = (l − j)(2j + 1).

The quantities r and r̂ represent the the electron radius and unitary position vector, both

in spherical coordinates. The function χκm(r) is the spherical spinor consisting of angular

coupling of spherical harmonics and 1/2-spinors. The radial functions Pnκ(r) and Qnκ(r)

are the two components of the relativistic radial wavefunction, usually referred to as the

large and small components. By inserting the solution (2.6) in the equation (2.5), one can
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obtain the radial coupled functions Pnκ(r) and Qnκ(r) by solving the resulting coupled

differential equations [67, 69]

(
VC(r) + c2

)
Pnκ(r) + c

(
d
dr
− κ
r

)
Qnκ(r) = EnPnκ(r), (2.7)

− c
(
d
dr
− κ
r

)
Pnκ(r) +

(
VC(r)− c2

)
Qnκ(r) = EnQnκ(r), (2.8)

where E is the energy eigenvalue corresponding to the Pnκ(r)(r) and Qnκ(r)(r) eigenfun-

tions. While these equations have an analytical solution for a Coulomb potential, for most

cases of other potentials, such as finite nuclear size, numerical methods are required, such

as Numerov method [67] or finite basis set [72, 73].

2.1.2 Multi-electron systems

With the introduction of one or more electrons, the Hamiltonian equation becomes a

three-body problem with no known analytical solutions in both classical and quantum

physics. Although the angular part of the solutions is analytical due to the spherical

symmetry of the atomic system, the radial part can only be obtained numerically. Many

procedures have been employed over the years for solving the radial solutions of each

electron and the composed N-electron wavefuction, which ones mentioned in this work

are described bellow.

The simplest way to approximate the solutions is to consider an independent-particle

model, where the electron-electron interaction potentials are replaced by a central poten-

tial in which the electrons move independently [18, 69], i.e.∑
i,j

V e−eij ∼ V
C
i (r). (2.9)

This potential can be defined to mimic the screening of the nucleus electrostatic attraction

by the rest of the electrons. In this model, the atomic wavefunction Ψ is the product of

N atomic orbitals ψi that are solution of the single electron N equations

[
hi +V Ci (r)

]
ψi = εiψi , (2.10)

where εi is an eigenvalue of the eigenfunction ψi . These equations are simply the equation

(2.5) with the addition screening central potential. The form of this screening potential

depends upon the individual orbitals. In these cases, the potential is updated after the

calculation of initial trial orbitals, which can be one-electron orbitals from previous

section 2.1.1 or Thomas-Fermi orbitals [69], and the procedure is repeated iteratively.

This is known as a self-consistent-field procedure.
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2.1.3 Hartree-Fock method

A better approximation can be obtained by applying the variational principle to equa-

tion (2.1). A first approximation is taken by defining a trial wavefunction as

ΦS(r1, ..., rN ) = (N !)−1/2

∣∣∣∣∣∣∣∣∣∣
φ(nκm)1(r1) . . . φ(nκm)1(rN )

...
. . .

...

φ(nκm)N (r1) . . . φ(nκm)N (rN )

∣∣∣∣∣∣∣∣∣∣ , (2.11)

where ri is the electron space coordinates (r, r̂) and φ(ri) are Dirac spinors defined in (2.6).

The function, known as the Slater determinant, is totally antisymmetric and independent

of the ordering of the labels i, therefore ensuring that the Pauli exclusion principle is

obeyed. According to the variational principle, the Slater determinant that best describes

the system is such that the energy expectation value is stationary in regard to small

variations of the radial part of the orbitals φi [18],

δ

〈
ΦS(r1, ..., rN )

∣∣∣∣∣∣∣∣
N∑
i

hi +
N∑
i<j

V e−eij

∣∣∣∣∣∣∣∣ΦS(r1, ..., rN )
〉

= 0. (2.12)

This leads to the Hartree-Fock equations [74] (Dirac-Fock for the relativistic case), a

system of N nonhomogeneus coupled integro-differential equations that can be solved

iteratively in a self-consistent-field manner. This method takes into account the electron

correlation within an electron configuration.

2.1.4 Configuration Interaction

A better approximation can be made by considering the interaction between config-

urations. The Configuration State Function (CSF) for an N electron atomic system is

defined as a mixture of Slater determinants,

Φ(r1, ..., rN ) =
∑
i

di

∣∣∣∣∣∣∣∣∣∣
φ(nκm)1(r1) . . . φ(nκm)1(rN )

...
. . .

...

φ(nκm)N (r1) . . . φ(nκm)N (rN )

∣∣∣∣∣∣∣∣∣∣ , (2.13)

where di are coefficients determined by imposing that the Φ remains an eigenfuntion of

the operators Ĵz and Ĵ2. To include correlation effects between the configurations, a final

atomic state can be obtained by a linear combination of configuration state functions,

Ψ =
∑
k

ckΦk(r1, ..., rN ), (2.14)

where ck are the configuration mixing coefficients. In this case, the atomic wavefunction

is given by a superposition of CSFs. These coefficients can be determined with several

methods, namely the multiconfiguration Dirac-Fock, where a variational method is ap-

plied (explained in 2.1.5). The inclusion of multiple configurations in the same atomic
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wavefunction, extending the total wavefunction to reflect electron correlation between

configuration, leads to the method known as Configuration Interaction (CI). A complete

basis of CSFs cannot be used, as the total number of possible configuration states grows

to infinity. Assuming a combination of a finite number of configurations, an arbitrary

level of accuracy can be achieved by adding more configuration state functions into the

mixture [18].

2.1.5 Multiconfiguration Dirac-Fock

The use of the CI wavefunction as a trial function in the Hartree-Fock and Dirac-Fock

methods leads to the Multiconfiguration Hartree-Fock (MCHF) and Multiconfiguration

Dirac-Fock (MCDF) methods. The total energy of the atomic wavefunction is given by

E =
〈Ψ |H |Ψ 〉
〈Ψ |Ψ 〉

. (2.15)

Using the variational method, the CI wavefunction that better describes the system is

such that the energy f the system is stationary in regard to small variations of the mixing

coefficients ck defined in the equation (2.14), i.e.

∂〈Ψ |H |Ψ 〉
∂ck 〈Ψ |Ψ 〉

= 0. (2.16)

The minimization of this quantity determines the atomic wavefunction that better ap-

proximates the system in the configuration basis chosen for the calculation. The result

can be improved by increasing the number of configuration states included in the atomic

wave function. For a given set of mixing coefficients, the system energy is evaluated

using the standard Hartree-Fock or Dirac-Fock methods. In the MCDF case, the radial

Dirac-Fock equations are obtained by minimizing the energy variation in respect to small

variations of radial functions Pnκ(r) and Qnκ(r)

∂
(
E[H]−

∑
ij εij

〈
φi

∣∣∣φj〉)
∂Pnκ(r)

, (2.17)

∂
(
E[H]−

∑
ij εij

〈
φi

∣∣∣φj〉)
∂Qnκ(r)

, (2.18)

where εij are the Lagrange parameters, introduced to insure the orthonormality of the

wavefunction. The Dirac-Fock set of equations for a particular radial wavefunction (Pi ,Qi)

are given by

d
dr

 Pi(r)Qi(r)

 =

 −κir 2c+
εij−Vi (r)

c

− εij−Vi (r)c
κi
r


 Pi(r)Qi(r)

+

XPi (r)

XQi (r)

 , (2.19)

where Vi(r) is the sum of the nuclear potential with the direct part of the Coulomb repul-

sion and XP or Q
i (r) are the generalized exchange potentials.
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2.1.6 Many Body Perturbation Theory

An alternate approach to the variational principle is the use of perturbation theory.

The Many Body Perturbation Theory (MBPT) [18] treats the single electron Hamiltonian

as the unperturbed state and the electron-electron interactions as a perturbation. To

make this approximation, the hamiltonian in the equation (2.2) is expanded in the form

H =H0 +Hpert, (2.20)

where H0 is defined by

H0 =
N∑
i

hi +V Ci (r) (2.21)

and

Hpert =
N∑
i<j

V e−eij −
N∑
i

V Ci (r). (2.22)

Here, the unperturbed sates can be calculated beforehand with several methods, like the

ones presented in 2.1.2 and 2.1.3. Let Ψ be the eigenstate of the Hamiltonian H with

a corresponding eigenvalue E. The eigenstate can be decomposed into a unperturbed

wavefunction Ψ (0) that satisfies

H0Ψ
(0) = E0Ψ (0) (2.23)

and a perturbation ∆Ψ . The resulting wavefunction is normalized by the intermediate

normalization contidition
〈
Ψ 0

∣∣∣Ψ 〉
= 1. If Ψ = Ψ (0) +∆Ψ and E = E0 +∆E, the eigenvalue

equation of the problem may be rewriten as

(H0 −E0)∆Ψ = (∆E −Hpert)Ψ . (2.24)

From this equations follows that

∆E =
〈
Ψ 0

∣∣∣Hpert

∣∣∣Ψ 〉
. (2.25)

By expanding the wavefunction and the respective energy in the forms

Ψ = Ψ (0) +∆Ψ = Ψ (0) +Ψ (1) +Ψ (2) + ...,

E = E(0) +∆E = E(0) +E(1) +E(2) + ...,
(2.26)

where ∆Ψ and ∆E are the wavefunction and energy corrections to the unperturbed sys-

tem, the equation (2.1) can be expended in a set of inhomogeneous equations with the

form of [69]

(H (0) −E(0))Ψ (1) = (E(1) −Hpert)Ψ
(0),

(H (0) −E(0))Ψ (2) = (E(1) −Hpert)Ψ
(1) −E(1)Ψ (0),

(H (0) −E(0))Ψ (3) = (E(1) −Hpert)Ψ
(2) −E(2)Ψ (2) −E(3)Ψ (0),

...

(2.27)
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The indices of the correction terms indicate the correction order of the wavefunction and

energy. This equations can be solved progressively to achieve a perturbation correction

to any arbitrary order. Each order of the correction has a smaller impact on the overall

correction value. The complexity of the solutions grow with the order of the equation, so

the corrections to the wavefunctions and energies are usually made to the first or second

order, depending on the application and accuracy requirements. As an example for a non

degenerate system, the first order correction of the energy is given by

E(1) =
〈
Ψ0

∣∣∣Hpert

∣∣∣Ψ0

〉
, (2.28)

while the first order of the eave function correction is given by

∣∣∣Ψ (1)
〉

= −
∑
k,n

〈
Ψ

(0)
k

∣∣∣∣Hpert

∣∣∣∣Ψ (0)
n

〉
E

(0)
k −E

(0)
n

∣∣∣∣Ψ (0)
k

〉
. (2.29)

Here, the indices k and n indicate distinct atomic states. The first correction of the

wavefunction is defined as a linear combination of the rest of the wavefunctions of the

system. Although this is an infinite series, the energy difference between states in the

denominator ensures that it converges, and a finite, sufficiently high, number of atomic

states can be used to make a good approximation.

2.1.7 Continuum atomic wavefunction

Calculations of atomic processes involving electrons in the continuum, like ioniza-

tion and recombination processes, require the knowledge of the atomic continuum state

functions, defined as

Ψ c(ε) =
∑
k

Φk(r1, ..., rN )φfk (ε), (2.30)

where ε is the free electron energy, φf k are the free electron orbitals and χk are the atomic

state wavefunctions. The free electron orbitals are solutions of the Dirac equations[
hKα + ε

]
φ
f
α =

∑
α′
Uαα′φ

f
α′ . (2.31)

The quantity hKα are the one-electron kinetic hamiltonians. The matrix potential Uαα′ is

defined by

Uαα′ =
∫
dr1 . . .drNΦα(r1 . . . rN )U (r1 . . . rN rN+1)Φα′ (r1 . . . rN ), (2.32)

where U is the sum of nuclear and electron-electron potentials acting on the N + 1 elec-

trons of the target-plus-free-electron system. Neglecting the interaction between different

bound states, and consequently different continuum states

Uαα′ = 0, α , α′ , (2.33)

gives the widely used Distorted Wave (DW) [18] approximation is obtained. This way, the

set of equations (2.31) become decoupled and can be solved with previously mentioned

methods, such as the central field approximation.
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2.2 Decay processes

Once an atom is in an excited sate, it can decay either radiatively, via photon emis-

sion, or decay non radiatively, via auger electron emission. The rate of decay for both

processes is important to fully describe processes with an excited intermediate state, like

dielectronic recombination, colisional excitation and excitation with subsequent autoion-

ization.

2.2.1 Radiative decay

An atomic system can absorb or emit radiation, usually causing transitions of electrons

between atomic states in such a way that the total energy of the system is conserved.

These situations can be studied by analysing the interaction between an atom and the

radiation and the time evolution of the system. to be composed of electromagnetic plane

waves, radiation propagating in the direction k̂ is described by the transverse-gauge vector

potential [69]

A±(r,ω) = ε̂λe
±ik·r, (2.34)

where ω, ε̂ and k are the radiation frequency, the polarization vector and the propaga-

tion vector, respectively. The polarization vector describes the direction of the electric

field of the plane wave. The vector potential and the propagation potential are always

orthogonal. ε̂λ represent the two unit vector orthogonal between each other and with the

propagation vector (λ = ±1). The general solution to the time-dependent wave equation

in the transverse gauge is a superposition of plane wavefunctions in the form

A(r, t) =
∑
i

(
ci ε̂λe

ik·r−iωt + c∗i ε̂λ
∗e−ik·r+iωt

)
, (2.35)

where i is the set of parameters (ω, k̂, ε̂λ) and ci are the Fourier expansion coefficients.

By considering a closed box of volume V , the number of possible vectors k the allow

the electromagnetic field to respect certain boundary conditions on the surface of the box

is finite. If the coefficients ci and c∗i are interpreted as quantum mechanical operators, the

electromagnetic field becomes quantized. This way a photon is described by the operator

Ai(r, t) =

√
~

2ε0ωV

(
ci ε̂λe

ik·r−iωt + c†i ε̂λ
∗e−ik·r+iωt

)
. (2.36)

The coefficients ci and c†i are the photon annihilation and creation operators. The coeffi-

cient of the equation permits the energy of the radiation to be expressed in terms of the

number o photons. Similarly to (2.35), the general expression for the vector potential is a

superposition of the photon potentials (2.36),

A(r, t) =
∑
i

Ai(r, t). (2.37)
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The Hamiltonian of the electromagnetic field is given by [69]

HEM =
ε0

2

∫
d3rE(r,t) ·E(r,t) +

1
2µ0

∫
d3rB(r,t) ·B(r,t)

=
∑
i

~ω
(
Ni +

1
2

)
,

(2.38)

where Ni = c†i ci is the photon number operator. With this relation, one can show that the

vacuum state is an eigenstate of HEM with energy

E0 =
1
2

∑
i

~ωi . (2.39)

This energy is referred to as the zero-point energy of the electromagnetic field. Since it is

not measurable, the electromagnetic field Hamiltonian is modified to be

HEM =
∑
i

~ωNi . (2.40)

The interaction between an electron and an external electromagnetic field is given by

hI (r, t) = −ecα ·A(r, t)

=
∑
i

[
hI (r,ω)cie

−iωt + h†I (r,ω)c†i e
iωt

]
, (2.41)

with

hI (r,ω) = −ec
√

~

2ε0ωV
α · ε̂λeik·r, (2.42)

where e is the fundamental charge constant and c is the speed of ligth. The many-electron

interaction Hamiltonias in the Heisenberg rerpresentation becomes

HI (t) =
∑
k

[
HI (ω)cke

−iωt +H†I (ω)c†ke
iωt

]
, (2.43)

where HI (ω) is the sum N one-electron terms,

HI (ω) =
N∑
i=1

hI (r,ω). (2.44)

To study the time evolution of a system composed of an atom and an external elec-

tromagnetic field, one must consider the effect of adding the interaction Hamiltonian to

the sum of the many-electron Hamiltonian H0 +VI and the electromagnetic Hamiltonian

HEM . The eigenvalue equations of the last two hamiltonians are

(H0 +VI )Ψk = EkΨk (2.45)

and

HEM |nk〉 = nk~ω |nk〉 . (2.46)
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Ψk and Ek are the eigenfunctions and eigenvalues of H0 + VI , while |nk〉 and nk are the

eigenfunctions and eigenvalues of HEM . If the total hamiltonian is represented by H =

H0 +VI +HEM , the eigenfunctions of H are given by

Φk = Ψk |nk〉 , (2.47)

with eigenvalues Ek +nk~ω. Let S be the unitary operator that transforms states prepared

at t = −∞, when there is no interaction of the form HI (t), into states in the time t = ∞,

where the interaction is once again assumed to vanish. This operator is expressed as

S =U (−∞,∞). It becomes

S = I +
∞∑
n=1

S(n), (2.48)

where

S(n) =
(−i)n

~
n

∫ ∞
−∞
dt1ĤI (t1)

∫ ∞
−∞
dt2ĤI (t2)...

∫ ∞
−∞
dtnĤI (tn). (2.49)

and I is the identity matrix.

By retaining only the first order in HI (n = 1), the transition amplitude for a state Φi

in the past to evolve into the state Φf in the future is given by

S
(1)
f i =

〈
Φf

∣∣∣S(1) |Φi〉

= − i
~

∫ ∞
−∞
dt

〈
Φf

∣∣∣ĤI (t)∣∣∣Φi〉 . (2.50)

The probability of transition from the initial to the final stationary state is given by the

square of S(1)
f i . The transition probability per unit time can be evaluated for both emission

and absorption of a photon to give

Wf i =
2π
~

|Tf i |2
 ni
ni + 1

δ(Ef −Ei ∓ ~ω), (2.51)

where |Tf i |2 is the transition amplitude is defined by

Tf i =


〈
Ψf

∣∣∣HI ∣∣∣Ψi〉 , for absorption of a photon〈
Ψf

∣∣∣H†I ∣∣∣Ψi〉 , for emission of a photon
. (2.52)

The interaction Hamiltonian depends on ek·r. Since k · r << 1, this quantity can be

approximated as ek·r = 1+i(k·r)+ ..., were each term refers to a different multipole approx-

imation of the electromagnetic field (e.g. taking the first order approximation ek·r ≈ 1

leads to the electric dipole transition, while taking the next approximation ek·r ≈ 1+i(k ·r)

leads to the magnetic dipole transition). For this reason, this operator is sometimes re-

ferred to as the multipole operator. In this thesis, the multipole operator of the order L

will be referred to as OL.

In a given interval of wave numbers d3k, the number of photons of a particular polar-

ization is

d3ni =
V

(2π)3d
3k =

V

(2πc)3ω
2dωdΩk (2.53)
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where Ωk represents a solid angle in the wave number space. The number o transitions

per second for this interval of wave number can be evaluated by the relation d3wf i =

Wf id
3ni . By integrating over ω, and considering that the spectral density can be defined

as ρ(ω) = ~ω3/π2c3, the photon emission probability per second of an excited state Ψi

into a lower energy state Ψf can be defined as [69]

Artotalif =
(
1 +

π2c3

~ω3 ρ(ω)
)
α

2π

∑
λ

∫
dΩk |Tf i |2. (2.54)

From this equation, it is apparent that that only one of the two terms depends on

the spectral density (stimulated emission). As such, the spontaneous emission (emission

without the need for a prior spectral density) rate is

Ar if =
α

2π

∑
λ

∫
dΩk |Tf i |2. (2.55)

In the electric dipole approximation, where ek·r ≈ 1, the transition amplitude is given

by

Tf i =
〈
Ψf (r)

∣∣∣α · ε̂∣∣∣Ψi(r)
〉
. (2.56)

This quantity can also be expressed as

Tf i = i
ωf i
c

〈
Ψf (r)

∣∣∣r∣∣∣Ψi(r)
〉
· ε̂, (2.57)

with

ωf i =
Wf −Wi

~

. (2.58)

Here, the quantity W = E − c2 in atomic units, where E is the energy of a state given by

the Dirac equation.

2.2.2 Auger decay

If the transition energy of an excited electron surpasses the binding energy of another

bound electron, the excited one can decay with the ejection of the other electron without

the emission of radiation. The ejected electron is known as an Auger electron. Analo-

gously to the radiate decay, the auger (or autoionization) decay rate can be expressed as

[67]

Aaif = 2
∑
κ

∣∣∣∣∣∣∣ 〈Ψf ,κ; JTMT

∣∣∣∑
k<l

1
rkl

∣∣∣Ψi〉
∣∣∣∣∣∣∣
2

, (2.59)

where Ψi and Ψf are the excited state and the final state with one less electron, respec-

tively, and κ is the total relativistic angular momentum. The time inversed process is the

dielectronic capture, where a free electron recombines with an ion with simultaneous

excitation of another bound electron. The resonant strength (integral of the cross section)

of this process, given in atomic units, is defined as

SDC =
gi

2gf

π2

Eif
Aaif , (2.60)
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Figure 2.1: Schematic of several atomic processes: collisional and resonant excitation,
excitation and autoionization, collisional ionization, dielectronic recombination and ra-
diative recombination. In every individual scheme, each horizontal line represents an
atomic shell (K, L and M) bellow the continuum. The black dots represent an electron
(free if above the continuum threshold) and the curvy line represents a photon. Every
scheme is represented in either 2 or 3 moments in time and the circles with a dotted
outline represent the previous position of an electron.

where gi and gf are the statistical weights of the initial and final states, given by g = 2J+1,

and Eif is the resonant energy.

2.3 Electron-ion collision processes

The most important electron-ion collisional processes are represented in figure 2.1.
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2.3.1 Collisional excitation and ionization

Some of the most common processes in collisions of HCI with electrons are the colli-

sional excitation (CE) and collisional ionization (CI) processes. The process of excitation

take place when the kinetic energy of an incident electron is above the required threshold

energy to excite the ion. If the kinetic energy is transferred to the ion, it becomes excited

and can stabilize by either emitting a photon, or cascade of photons, or by emitting an

electron through an Auger process. Schematically, the first case is described as

CE: Aq+ + e−→
[
Aq+]∗ + e−→ Aq+ + e− + hν, (2.61)

where Aq+ denotes an ion of charge q+, e− represents a free electron, hν a photon and the

superscript ∗ denotes an excited state. The cross section of CE, σCE , with the collisional

excitation from an initial state Ψ0 to a final state Ψ1 is related to the quantity collisional

strength Ω01 by [75]

σCE =
π

k2
0g0

Ω01, (2.62)

where g0 is the statistical weight of the initial state, k0 is the kinetic momentum of the

incident electron, related to its kinetic energy ε0 by

k2
0 = 2ε0

(
1 +

α2

2
ε0

)
, (2.63)

with α corresponding to the fine structure constant. Being the JT and MT as the total

angular momentum and its z-projection when the target state is coupled to the continuum

orbital, the collisional strength is written as

Ω01 = 2
∑
κ0κ1

∑
JT

(2JT + 1)

∣∣∣∣∣∣∣∣ 〈Ψ c
0 (ε0)κ0, JTMT

∣∣∣∑
i<j

1
rij

∣∣∣Ψ c
1 (ε1)κ1, JTMT

〉∣∣∣∣∣∣∣∣
2

. (2.64)

Since the excited state has both the possibility to decay to a lower energy state or

autoionize, the cross section associated to the process described in (2.61) must take into

account the probability of radiative decay rather then Auger transition. The final cross

section of CE from a state 0 into a state 1, leading to a radiative transition from state 1 to

state 2 is

σ0→2
CE′ = σ0→1

CE

Ar12∑
f A

r
1f +

∑
f ′ A

a
1f ′
, (2.65)

where f and f ′ represent all the possible states to where the electron in the state 1 can

decay into.

In the case of a subsequent Auger decay (EA), the process is represented by

EA: Aq+ + e−→
[
Aq+]∗ + e−→ A(q+1)+ + 2e−. (2.66)

This process leads to a variation of charge state that can be much greater than direct CI

and thus must be taken into account when modeling a plasma. Similarly to the previous
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case, the EA cross section can be defined as

σ0→2
EA = σ0→1

CE

Aa12∑
f A

r
1f +

∑
f ′ A

a
1f ′
. (2.67)

If the kinetic energy of the incident electron surpasses the binding energy of a bound

electron, the ion might be ionized in the collision, leading to the CI process

CI: Aq+ + e−→ A(q+1)+ + 2e−. (2.68)

This process can be calculated by an expression analogous to the equation (2.64), where

the final state wavefunction is substituted with the continuum atomic wavefunction with

the ejected electron in the DW approximation. The cross section of this process for

few-electron ion systems can be estimated with the semi-empirical Lotz formula [76],

which has proven to be sufficiently accurate when compared to experimental results. For

electron energies Ee much larger than the binding energy Pi of an electron within the

suborbital i, the Lotz formula is

σi = aiqi
ln(Ee/Pi)
Ee/Pi

, (2.69)

where ai = 4.5× 10−14 cm2 eV2 is an empirical constant an qi is the number of equivalent

electrons in the subshell i.

Both CI and EA processes have been studied for HCI in ion storage rings, such as the

Test Storage Ring (TSR) in Heidelberg [47, 77, 78]. In multielectron systems, the EA can

dominate the ionization process, particularly near the threshold of autoionizing states.

TSR measurements and calculations of EA in this work are be presented in chapter 4.

2.3.2 Electron-ion recombination

X-ray spectra of these systems are also dominated by structures originated by electron-

ion recombination processes. These processes are divided in non resonant, namely radia-

tive recombination (RR), and resonant, like the often mentioned DR.

2.3.2.1 Radiative Recombination

The radiative recombination process is a non resonant process and can happen with

any initial free electron with kinetic energy ε. A free electron can approach an ion and

recombine in a state with binding energy Eb. As a result of the recombination, there is an

emission of a photon with energy ω = Eb + ε (conservation of energy principle),

RR: Aq+ + e−→ A(q−1)+ + hν. (2.70)

Since this is a non resonant process, the resulting radiation can contribute to the back-

ground of the experimental spectra. The associated cross section σRR is related to the
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photoionization (PI) cross section by the Milne relation [79],

σRR =
α2

2
gi
gf

ω2

ε(1 + 1
2α

2ε)
σP I and σP I = 2πα

df

dE
. (2.71)

Here, gi and gf are statistical weights of the respective states, ω is the photon energy in

atomic units and ε is the energy of the free electron. The quantity df /dE is the differential

oscillator strength and can be computed by

df

dE
=
ω
gi

(αω)2L−2

2L+ 1

∑
κJT

∣∣∣∣〈Ψf ,κ; JT
∣∣∣ |OL| |Ψi〉∣∣∣∣2 . (2.72)

The operator OL is the multiple operator of rank L which induces the transition and Ψi

and Ψf are the wavefunctions before and after the photoionization.

2.3.2.2 Dielectronic Recombination

The DR is a two-step process in which, similarly to the RR process, an incident electron

recombines with an ion. A free electron is captured by an ion via a non radiative process

with simultaneous excitation of a bound electron, leaving the ion in a doubly excited

state. This can only happen when the kinetic energy of the incident electron equals the

excitation energy of the bound electron, thus being a resonant process. Afterwards, the

excited electrons can either decay radiatively or autoinize, the former corresponding to

the DR process and the latter to the resonant excitation process (RE):

DR: Aq+ + e−→
[
A(q−1)+

]∗
→ A(q−1)+ + hν (cascade). (2.73)

This process has a relatively high cross section and can dominate the spectra of these ion

systems. It has an important role in the charge state balance and, with a good understand-

ing of its underlying theory, can become an important diagnostic tool for astrophysical

and fusion plasmas. It is usual to apply a nomenclature similar to the one found in the

auger electron emission process to identify the DR process. It consists of three letters

indicating the atomic shells where the bound electron belongs before and after the ex-

citation and the shell where the free electron is captured, respectively. As an example,

the KLL DR process corresponds to the capture of a free electron to the L-shell with an

excitation of a bound electron from the K to the L-shell. This example is represented in

figure 2.1.

The DR cross section can be expressed as [80]

σDRidf (Ee) =
π2

~
3

meEe

gd
2gi

Aadiωdf Ld(Ee), (2.74)

where Ee is the free electron energy, Aadi is the autoionization rate from an intermediate

state d to an initial state i, ωdf is the fluorescence yield of the intermediate excited state

d to a final state f and Ld(Ee) is the Lorentzian profile of the resonance. The quantities
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gd and gi are the statistical weights of the states after and before recombination. Here, J

is the total angular momentum of a given state.

The Lorentzian profile is defined by

Ld(Ee) =
Γd/2π

(Ee −Eid)2 + Γ 2
d /4

, (2.75)

where Eid = Ed−Ei . Γd is the width of the resonance, defined by the sum of all the possible

autoionizing and radiative decays stating with the state d, i.e. Γd = ~

(∑
nA

a
dn +

∑
mA

r
dm

)
.

The fluorescence yield is given by

ωdf =
Ardf∑

nA
a
dn +

∑
mA

r
dm

, (2.76)

where Ardf is the rate of radiative decay between the states d and f . It determines the

probability of decaying radiatively after a dielectronic capture.

The width of the resonance is often much smaller than the experimental width, so the

Lorentzian profile can be approximated to a Dirac delta function δ(Ee −Edi). With this in

mind, the final cross section becomes

σDRidf (Ee) =
π2

~
3

meEe

gd
2gi

AadiA
r
df∑

nA
a
dn +

∑
mA

r
dm

Γd/2π

(Ee −Eid)2 + Γ 2
d /4

≈ π
2
~

3

meEe

gd
2gi

AadiA
r
df∑

nA
a
dn +

∑
mA

r
dm

δ(Ee −Edi).

(2.77)

With this last approximation, the resonant strength can be easily computed, resulting

in the relation

SDRidf =
∫ ∞

0
σDRidf (Ee)dEe

=
π2

~
3

meEe

gd
2gi

AadiA
r
df∑

nA
a
dn +

∑
mA

r
dm

.

(2.78)

This quantity is often used to make comparisons between different atomic theories and

experimental result, as also done in this work and described in chapters 4 and 5.

In thermal plasmas, such as those studied in astrophysics and nuclear reactors, the

free electron energy follow a Maxwellian distribution characterized by an electron tem-

perature T e. The modeling of this kind of plasmas is not related directly to the DR cross

section, but by the convolution of the former with a Maxwellian distribution. The integral

of this quantity constitutes the DR rate coefficient, and it is used in several plasma mod-

eling codes, such as CLOUDY [81], XSTAR [82] and CHIANTI [83], to simulate charge

state dynamics and also determine ion populations in steady-state conditions. The DR

rate coefficient becomes

αDRif =
me√
π~3

(
4Ey
KBTe

)3/2

a3
0

∑
d

EidS
DR
idf exp

{
− Eid
KBTe

}
, (2.79)
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where Ey is the Rydberg constant, KB is the Boltzmann constant and a0 is the Bohr radius.

This equation depends on the resonant strengths of the resonances, while in most refer-

ences (e.g. [84]) it depends on the cross sections. This allows the possibility of measuring

these values experimentally through the integral of the DR peaks of the spectra.

The RE process is calculated in a similar manner. In this case, if the final state has the

same number of bound electrons as the initial state, the fluorescence yield is replaced by

ωdf =
Aadf∑

nA
a
dn +

∑
mA

r
dm

., (2.80)

so the final cross section becomes

σDRidf (Ee) =
π2

~
3

meEe

gd
2gi

AadiA
a
df∑

nA
a
dn +

∑
mA

r
dm

Γd/2π

(Ee −Eid)2 + Γ 2
d /4

. (2.81)

As is the case for the DR process, the RE is a resonant process. While the DR happens

when the electron energy is below the CE threshold, the RE is only possible above this

threshold (a practical example of RE will be seen in chapter 5).

2.4 Charge exchange

Ion-atom and ion-ion collisions can lead to charge transfer between projectile and

target. This is effective with slow atoms or molecules approaching HCI. Therefore, if one

goal is to achieve a dominant population of a certain ion species, the chamber of an EBIT

must be maintained at an Ultra High Vacuum (UHV), typically around 10−12 mBar. At

these pressures, the residual gas is mainly hydrogen due to the degassing of the chamber.

Therefore, a charge exchange process of interest is

Aq+ + H→ A(Z−1)+ +H+. (2.82)

It was theoretically shown that the cross section of this process depends mainly on the

atomic number Z and the collision velocity v for ions with Z ≥ 16 and 0.04 ≤ v ≤ 1.8

(values in ×108cm/s) [85]. A valid fit from the theoretical results for this cross section (in

cm2) is given by

σCX = 2.25× 10−16Z ln
(15
v

)
. (2.83)

Since the cross section varies with v (108cm/s), different pressures yield different cross

sections.

2.5 Polarization and anisotropy

The electron in an ion occupy atomic orbitals identified by the quantum numbers

njmj , where mj in the magnetic sublevel, with mj = −j,−j + 1,−j + 2, ..., j −2, j −1, j. When

the ions are excited by randomly oriented electrons, the populations of magnetic sublevel
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Figure 2.2: Axis of the electron beam and axis of the photon with direction k. The
direction of the photon is defined by the angles θ and φ and the radiation polarization is
defined in the directions x′ and y′. The beam direction is align with the z axis.

follows a statistical distribution that corresponds to the statistical weights g(m) of the

respective levels (
∑
m g(m) = 1). The deexcitation of these levels leads to the emission of

isotropic and unpolarized radiation.

However, the EBIT has an unidirectional electron beam that interacts with the ion

cloud (more details in chapter 3). The electron beam populates magnetic sublevels such

that the magnetic dipole between −mj andmj are align with the beam. For that reason, the

distribution of populations no longer follow the regular statistical weights, thus leading to

emission of polarized and anisotropic radiation. The measurements at EBITs are generally

done with a small solid angle at round 90° with respect to the electron beam, so the

intensity distributionW (θ,φ) must be determined to infer the correct flux of the radiation.

The representations Ji and Jf will be used to identify the total angular momentum of the

ion excited by the collision with an electron and the ion after a radiative decay. The

degree of polarization varies with the meridional and azimutal angles θ and φ of the

emitted photon. The polarization axis of the photon will be identified as x′ and y′ and

their respective polarization components are the Wx′ and Wy′ . For the case of an electron

beam with cylindrical symmetry, the distribution of the emitted radiation depends only

on the θ value.

The degree of polarization is defined as [86]

P (θ) =
Wx′ (θ)−Wy′ (θ)

Wx′ (θ) +Wy′ (θ)
. (2.84)

The destribution seen by an instrument insensitive to the polarization is given by W (θ) =

Wx′ (θ) +Wy′ (θ).
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The electromagnetic interaction operator can be expanded in a set of electromagnetic

multipoles. By tracing the initial atomic wavefunction with free electron to the final

state with no free electrons, the polarization components for a cylindrical source can by

obtained:

Wx′ (θ) =
W0

8π

∑
λ=even

(
1 +Bλ(Ji)

[
Aλ(γ)Pλ(cosθ) +A⊥λ2Pλ2(cosθ)

])
, (2.85)

Wy′ (θ) =
W0

8π

∑
λ=even

(
1 +Bλ(Ji)

[
Aλ(γ)Pλ(cosθ)−A⊥λ2Pλ2(cosθ)

])
. (2.86)

In these expressions, W0 is the total probability of photon emission, Pλ(cosθ) are the

Legendre polynomials and Pλ2(cosθ) are the associated Legendre polynomials. The pa-

rameters Bλ, Aλ and A⊥λ2 are the orientation parameter, angular distribution coefficient

and the linear polarization parameter. The values of λ are even to describe linear polar-

ization, while odd numbers are for describing circular polarization. The total angular

distribution is given by [87]

W (θ) =
W0

4π

∑
λ=even

[1 +Bλ(Ji)Aλ(γ)Pλ(cosθ)] . (2.87)

The orientation parameter only depends on the initial state, thus being described by

the variables Ji , mi and g(mi). For a cylindrical symmetry, the simplest approximation of

the EBIT system at the trap region, this parameter is given by [86]

Bλ(Ji) =
∑
m

(−1)Ji+m [(2λ+ 1)(2Ji + 1)]1/2

Ji Ji λ

m −m 0

g(m). (2.88)

The quantity in big parentheses is the Wigner 3-j symbol. This parameter describes the

distribution of the nonstatistical magnetic sublevel population of the intermediate state

after a resonant capture.

The parameters Aλ and A⊥λ2 are related to the radiative decay of the ion, and both

depend on the angular momentum of the initial and final state Ji and Jf . They also

depend on the multipole operator used to describe the transition. The expressions of

these parameters can be simplified by neglecting high-order multipoles. Considering

only a single multipole transition, there is a dependence on the overlap between the

initial and final orientation,

Fλ(LL′Jf Ji) = (−1)Jf +Ji−1 [(2λ+ 1)(2L+ 1)(2L′ + 1)(2Ji + 1)
]1/2

L L′ λ

1 −1 0


L L′ λ

Ji Ji Jf

 .
(2.89)

The quantity in big brackets is Wigner 6-j symbol, an analogous quantity to the Wigner

3-j symbol but used to do a summation of 3 angular momenta. The values L and L′ denote

the order of the multipole. The parameters then become

Aλ = Fλ(LL′Jf Ji), (2.90)
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Figure 2.3: Representation of the relative value of W (θ) in the electron beam frame of
reference for several values of A2B2. All the cases are invariant to φ. The vector k is the
direction of the photon.

A⊥λ2 = −Λ(κ)fλ(L)Aλ, (2.91)

where Λ(κ) is a signal factor, where κ is the type of multipole, i. e. Λ(E) = 1 for electric

multipoles and Λ(M) = −1 for magnetic multipoles. The quantity fλ(L) id defined as

fλ(L) = −
[

(λ− 2)!
(λ+ 2)!

]1/2

L L′ λ

1 −1 0

L L′ λ

1 −1 0


. (2.92)

With this definitions, the degree of polarization can be rewriten as

P (θ) =

∑
λ=even

[
Bλ(Ji)A

⊥
λ2Pλ2(cosθ)

]∑
λ=even [1 +Bλ(Ji)Aλ(γ)Pλ(cosθ)]

. (2.93)

2.5.1 E1 and M1 transitions

The most commonly observed radiation in the EBIT is provided by electric dipole (E1)

and occasionally by magnetic dipole (M1) transitions. For these transitions, A4 and higher

order parameters vanish, thus there is only a dependence in A2 and B2. The order of the
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2.5. POLARIZATION AND ANISOTROPY

multipole is L = 1 and f2(L = 1) = −1/2. With this values, the polarization components

become

Wx′ (θ) =
W0

8π

[
1 +A2B2(3cos2θ − 2)

]
(2.94)

Wy′ (θ) =
W0

8π
[1 +A2B2] . (2.95)

Note that the y′ component of the radiation is isotropic, while the x′ component varies

with θ. As a result, the degree of polarization and total distribution for a E1 transition

are given by [88]

P E1(θ) =
−3A2B2 sin2θ

2−A2B2(1− 3cos2θ)
, (2.96)

W E1(θ) ∝ 1 +
1
2
A2B2(3cos2θ − 1). (2.97)

The figure 2.3 shows examples of the relative distribution seen by an instrument

insensitive to the polarization, W (θ), for various values of A2B2. The value of A2B2 is

specific for each transition.

Using these expressions, and considering that the observation is made at 90°, the

degree of polarization and total relative distribution are given by

P E1(90°) =
−3A2B2

2−A2B2
(2.98)

W E1(90°) ∝ 1− 1
2
A2B2. (2.99)

By mixing these two equations, the polarization factor correction becomes

W E1(90°) ∝ 3
3− P E1(90°)

. (2.100)

For the case of the M1 transitions, only the factor Λ(κ), with Λ(M) = −1 = −Λ(E).

Thus, the polarization factor correction becomes

WM1(90°) ∝ 3
3 + PM1(90°)

. (2.101)

In the DR process, an intermediate state can radiatively decay to several close-lying

different final states, all with distinct values of degree of polarization. EBIT measure-

ments are usually done with silicon-based x-ray detectors, which do not have a sufficient

resolution to resolve those transitions. To compensate for this effect, the TheA2 parameter

used in equation (2.93) can be replaced by [88]

A2 =

∑
f A2A

r
df∑

f A
r
df

, (2.102)

where Ardf is the radiative transition rate from an intermediate state d into a final state

f . This new parameter represents the effective anisotropy of the photon emission in

the region. Note that for high-Z ions, higher multipoles can contribute to significant

deviations from the electric dipole approximation presented for the calculation of the

polarization degree and anisotropy of the photon emissions.
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2.6 Atomic codes

2.6.1 Flexible Atomic Code

Several codes were developed over the last decades, but most of the atomic structure

calculations necessary to this work were performed using the Flexible Atomic Code (FAC)

[67]. This code makes use of the fully relativistic Dirac-Coulomb Hamiltonian and a mod-

ified electron-electron central potential to approximate the atomic radial wave functions,

and their respective energy is obtained with eigenvalues with the standard Numerov

integration method. This code has the advantages of being open source and freely avail-

able to use, its relatively high computational efficiency and an optional Python interface

facilitates the integration of this code in custom projects such as the present work.

Similarly to multi-configuration methods, the atomic state functions are defined as a

mixing of basis of states as described in the equation (2.13). This code solves the Dirac

equation for a local central field defined by the sum of the nuclear potential V N (r) and the

electron-electron interaction V ee(r). To make the wavefunctions more accurate, the finite

size of the nucleus has to be taken into account. The nuclear potential can be written as

[67]

V N (r) =


Z
2

(
r
RN

)[
3−

(
r
RN

)2
]
, r ≤ RN

Z/r, r > RN
, (2.103)

where RN is the nuclear radius. In the code, this radius takes the value of RN = 2.2667×
10−5A1/3. The electron-electron potential is approximated with a central field that de-

pends upon the occupation numbers and respective wavefunctions themselves. As is the

case of the previously mentioned self consistent field methods, the potential is obtained

iteratively.

Moreover, this framework uses the previous energies and wavefuctions to calculate

bound-bound (like collisional excitation and radiative transitions) and bound-free atomic

processes (like ionizations and recombinations), both convenient to the modeling of the

plasmas. To calculate processes with an interaction between a free electron and an ion,

this code uses the Distorted Wave Born approximation. Comparisons between the theo-

retical values obtained from this code and experimental results show an accuracy of few

eV at ∼ 1240 eV for the energy levels and 10-20% for transition rates and cross sections

[67].

Besides the use of the Configuration Interaction method to calculate the relevant

energy states, the same framework was used to increase the precision of the calculations

with the Many Body Perturbation Theory method. Results from the FAC calculations, as

well as an example of the application of the FAC-MBPT correction, will be presented in

chapter 4.
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2.6.2 Multiconfiguration Dirac-Fock codes

Several codes leveraging the MCDF method to calculate atomic structure have been

developed over the years. One of the most relevant is the Multiconfiguration Dirac-Fock

and General Matrix Elements (MCDFGME) [89, 90]. As the name sugests, the code utilizes

the MCDF method to calculate wavefunctions and their respective energy. In this case, the

code uses a self-consistent field approach with the equations described in the subsection

2.1.5, and makes afterwards detailed Quantum Electrodynamic (QED) corrections in a

perturbative way. This code was developed by P. Desclaux and P. Indelicato at Université

Pierre et Marie Curie (now Sorbonne Université) and is mostly focused on high-accuracy

determination of energy levels with QED, hyperfine and nuclear finite size effects. It is

written in FORTRAN95. Results for the calculation of the DR-LMM structure of Fe XVII

with this code were included in this work.

Another known MCDF code that is widely used is the General-Purpose Relativistic

Atomic Structure Program (GRASP) [91]. It was developed by the I. P. Grant group at

University of Oxford to make large-scale relativistic CI calculations. As is the case with

MCDFGME, high order QED corrections are treated perturbatively. The GRASP2K [92]

is an improved version of the initial GRASP92 code, developed by Jönsson et al.. This

code was recently updated again by C. Froese Fischer et al., and released in the form of

GRASP2018 [93].

Other examples of popular codes used to calculate atomic structure and transition

probabilities are the RELAC [94], HULLAC [95] and RMBPT [96]. In contrast with the

previous programs, these codes are not available publicly.
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3
Experimental Setup

In order to investigate the proprieties of HCI, it is necessary to produce and maintain

them long enough to be studied. During the decades of the 1970′s and 1980′s, experi-

ments with merged beams were limited to the production of ions with charge q < 6 [97],

while experiments with tokamaks were only capable of producing highly charged ions

with high ion temperature [98]. The radiation emitted from a moving source suffers a

shift in frequency according to the Doppler effect, which means that radiation emitted

by high temperature ions suffers an energy broadening that is a limiting factor in ex-

periments. At the time, Electron Beam Ion Sources (EBIS) were used to provide ions to

accelerators [99]. The concept of this device was adapted to create the Electron Beam Ion

Trap (EBIT) [98], a device not only capable of producing ions with any positive charged

state but also to trap them in a small ion cloud that can be probed with both photons and

electrons. The resulting emitted radiation can also be observed on a side port.

In the present experiments, the FLASH-EBIT was used (at the Max-Planck-Institut

für Kernphysik, in Heidelber) to study Fe XVII and Kr XXVIII (both Ne-like) and the

PolarX-EBIT (at PETRA III Deutsches Elektronen-Synchrotron) was use to study Fe XVII,

as well as the population dynamics. The basic functioning of EBIT systems is described,

as well as specific characteristics of the FLASH-EBIT and PolarX-EBIT. The operations

schemes of each experiment will also be presented. A small description of the Test Storage

Ring will also be presented to give context to the TSR measurements also analysed in this

work.

3.1 The Electron Beam Ion Trap

The EBIT is a device capable of producing highly charged ion plasmas. Inside it,

an almost monoenergetic focused electron beam is used to interact with an injected gas
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Figure 3.1: General representation of an electron beam ion trap. An electron gun pro-
duces an electron beam that is accelerated towards the drift tubes, where it is compresses
by the Helmotz coils and produces an ion cloud. The electron beam is stopped in the col-
lector. The observation port allows the collection o the radiative emissions of the plasma.
The electric potential along the system is represented below.

of the element to ionize it. This beam multi-ionizes the atoms with both CI and EA

mentioned previously in chapter 2. The focused beam also produces a negative space-

charge potential that confines the ions radially. The ions are further electrostatically

confined along the beam axis with a set of drift tubes that can be adjusted according to

the experiment needs. The electron beam can also be used to probe the system by doing

energy scans periodically with any duty cycle. Different schemes of energy duty cycles

were used to obtain the results of these work.

The electron beam is produced with an Pierce-type electron gun. This gun is usually

shielded from the magnetic field of the trap by a Bucking coil to provide the electrons in

a field free environment.

The ionization rate is proportional to the current density. To maximize this value, the

electron beam is compressed in the central region of the drift tubes by a strong magnetic

field generated either superconductive Helmholtz coils or arrangements of permanent

magnets. Although the superconducting coils offer stronger magnetic fields, the perma-

nent magnets may be sufficient for certain applications, while also being cheaper and

easier to operate. These strong magnetic fields are enough to operate with electron beams

with typical currents in the order of tens of mA with a beam diameter in the order of tens
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of µm.

3.1.1 Electron beam dynamics

The electron beam is an essential part of the EBIT system. It is responsible for produc-

ing and trapping the ions and can be using to probe them in various schemes. The most

important characteristics for the experiments are the electric current, electron kinectic

energy and radial distribution. These proprieties are important to evaluate the interac-

tion between the beam and the ion cloud. The electron gun is composed of a cathode,

that emits electrons via termionic emission when an high voltage is applyed, electrodes

to focus the beam and an anode to further accelerate the electron beam. The current of

the beam can be estimated by

Ie = pV 3/2
cathode, (3.1)

where p is the perveance, a value that characteristic to each electron gun. The voltage of

the cathode V 3/2
cathode can be adjusted.

To make a realistic evaluation of the radius of the electron beam, the non-laminar flow

of the electrons and the finite temperature of the cathode have to be taken into account. In

the theory by Herrmann [100], for an electron beam passing through a uniform magnetic

field B, the beam has a Gaussian profile in the radial plane. Here, 80 % of the electrons

are confined in a radius given by [101]

rH = rB

√√√
1
2

+
1
2

√
1 + 4

(
8meKBTcr

2
c

e2B2r4
B

+
B2
c r

4
c

B2r4
B

)
. (3.2)

where Tc, Bc and rc are the electron temperature and magnetic field at the cathode and

the cathode radius. This radius is smaller for lower values of Bc. This is usually achieved

by adjusting a bucking coil in the electron gun, compensating the magnetic field of the

trap. This equation corrects the radius rB obtained from the simplistic, where is assumed

laminar flow, no electron temperature and a zero magnetic field at the cathode:

rB[µm] =
150
B[T]

√
Ie[A]
Ee[keV]

. (3.3)

The radius is important o evaluate the current density je = Ie/(πr
2
H ), the value that is

desirable to maximise to improve the ionization rate. The EBIT systems usually operate

with an electron beam radius around 35 µm.

The interaction between the electron beam and the ions only occurs in the region were

the electron beam and the ion cloud overlap. Since the ion cloud mean radius is bigger

than the beam radius, the effective electron density is smaller than the current density

with the previous radius. Figure 3.2 shows an artistic 3D representation of the overlap

volume, while the figure 3.3 represents a simulation of an ion trajectory in an EBIT,

which corresponds to elliptical orbits. Studies have been done in the past to measure
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Figure 3.2: 3D artistic representation of the
ion cloud expanding beyond the electron
beam. The bright white glow in the center
represents the overlap between the ion cloud
and the electron beam.

Figure 3.3: Cross sectional view along the
electron beam axis of a simulation of the
trajectory of an ion influenced by the elec-
tron beam in the EBIT environment. Figure
adapted from [22].

experimentally the overlap factor my measuring UV forbidden and allowed transitions.

In the current work, the effective electron density was evaluated by adjusting this value

as an free input parameter in simulations. This value was also estimated by fitting the

spectral time evolution of the data obtained in the polarX-EBIT. The details about the

EBIT energy schemes will be described in the next sections.

The electrons leave the cathode with a finite thermal energy transverse to the electron

beam direction. Therefore, the interaction of the electron beam with magnetic field

results in a gyromagnetic motion and a helical motion along the magnetic lines. The

energy of the perpendicular motion can have systematic effects [41, 88]. These effects

were not accounted in the current work.

The energy of the electron beam is defined by

Ee ≈ |Vcathode|+
∣∣∣Vplatform

∣∣∣+
∣∣∣Vtrap

∣∣∣− ∣∣∣Vspace

∣∣∣. (3.4)

In this context, Vcathode is the bias voltage given to the cathode, Vtrap is the voltage given

to the central drift tube, Vplatform is the additional bias given to the other tubes and the

space charge is the potential generated by the electrons of the beam and trapped ions. The

space charge potential counteracts the external positive potentials and the acceleration

of the beam, trapping the ions radially. This potential varies through the radius of the

beam. For a beam with a radius of 35 µm, the variation of the potential across the beam

is between 20 V and 50 V.
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Figure 3.4: Cross-sectional view from the FLASH-EBIT. The numbers in the figure indi-
cate: (1) the electron gun, (2) the ion trap surrounded by the drift tubes and de Helmholtz
coils, (3) the electron beam collector. Figure adapted from [88].

3.2 FLASH-EBIT

3.2.1 Specifications

Most of the experimental data analysed in this work was obtained in the FLASH-

EBIT (mechanical representation in figure 3.4) at the Max-Planck-Institut für Kernphysik,

in Heidelberg [102]. This device is design for interactions of external high-brightness

x-ray sources with HCI. Although it has a length of approximately 3 m and weights

roughly 1 Ton, it is still movable and was already used in several x-ray source facilities,

like synchrotrons and free electron lasers. Figure 3.4 illustrates the configuration of

the device, basically composed of an electron gun, a set of drift tubes, superconducting

magnetic coils and an electron collector. The electron gun is capable of producing an

electron beam with several hundreds of mA that is further compressed to a diameter

below 50 µm at the trap region by a 6 T magnetic flux density. In order to avoid charge

exchange of the ions with hydrogen atoms during operation, the trap is kept in ultra

high-vacuum, with a pressure of around 10−11 mbar.

The electron gun is represented in the Figure 3.5 (a). The cathode is made of a tung-

sten filament coated with Barium Oxide. The low work function of the surface matrix

ΦW,BaO = 2 eV leads to a low operating temperature, between 1300 and 1500 K, which

increases the lifetime of the cathode. The cathode is encapsulated in the focus electrode,

that helps extract the electrons from the cathode. Adjusting the potential of this electrode

also allows to control the electron beam current. The anode provides the extraction filed.
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The electron beam energy is roughly defined by the potential difference between the cath-

ode and the drift tube assembly. All this setup is surrounded by the trimming coil and

bucking coil. Adjusting the current of these coils allow to compensate the magnetic field

generated superconducting magnets at the electron gun region. Having a low magnetic

field on the cathode is important to reduce the beam diameter at the trap region.

The collector is represented in the figure 3.5 (b). After the electron beam has passed

through the trap, it goes into the collector. The collector has a magnetic coil that de-

creases the residual magnetic field generated by the superconduction magnets. As the

magnetic field decreases, the beam radius increases and the electrons repel each other,

being deposited in the collector walls. The extraction electrode has an high voltage com-

pared to the electron gun cathode, ensuring that most electrons cannot pass the collector.

The excess energy deposited in the walls is carried way by a water cooling system. Ions

that enter the collector can sputter the inner face of the electrodes and eject secondary

electrons. The suppressor electrode prevents them from escaping back to the trap. Fur-

thermore, this electrode can also be used to separate incoming ions from the trap from

the electrons, giving the EBIT the ability to extract the produced ions for experiments

that are made externally.

Figure 3.5: Cross-sectional view of the electron gun (a) and collector (b) of the FLASH-
EBIT. Figure adapted from [88].

3.2.2 Fe XVII measurement

This EBIT was used to produce and study an high purity plasma of Fe XVII. A beam

of iron pentacarbonyl was used to introduce the iron in the trap. In order to make mea-

surements in a high-purity Fe XVII plasma, the electron beam energy scan was comprised

of a 0.5 s breeding time (an periode of constant electron beam energy to produce the Fe

XVII plasma) at 1.15 keV and 40 ms linear down-scan from 1.1 to 0.5 keV and a time

symmetric linear up-scan relative to the down-scan (represented i figure 3.6). As the Fe

XVII ionization threshold is about 1.26 keV, a high population of this ion is expected
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Figure 3.6: Energy scheme of the electron beam used in the FLASH-EBIT measurements.
It is composed of a 1 s breeding period of 1.2 keV followed by a 40 ms long linear sweep
to 300 eV and another 40 ms linear sweep back to 1.2 keV. This scheme was repeated in
loop, with typical measurements of several hours.

to be produced during the breeding time. The energy scans are performed repeatedly

during a small fraction of time to ensure a low depletion of the population of interest

during the recombination processes present at this period, the latter being compensated

afterwards during the next breeding time. The electron current Ie was measured at high

energies to be around 20 mA during the experiment. This current was adjusted according

to ne ∝ Ie/
√
E to keep the electronic density ne constant, where E is the electron beam

energy. The x-ray emission were measured with a Silicon Drift Detector (SDD), position

at 90° in respect to the electron beam axis. The photon energy-resolution of the SDD

was around 120 eV at 6 keV and the electron beam has an energy spread of around 5 eV

at 800 eV. The down-scan and up-scan were recorded as separate data. This gives the

possibility to analyse the potential differences between the spectra in these two stages. If

there is a population depletion due to the DR process during the downwards scan, i.e. DR

recombination of Ne-like into Na-like ions, it is expected that the upwards scan present

a spectrum that indicates an higher presence of lines of Fe Na-like ions. A comparison

between these two spectra is presented in the next chapter.

A very similar scheme was used to record the Kr XXVII spectra. In this case, the

breading energy was around 2500 eV (the ionization threshold of this ion is around

2929 eV). The scan was made between 2500 eV and 40 eV.
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Figure 3.7: Cross-sectional view from the Heidelberg compact EBIT design. Apart from
the gas chamber design, the NdFeB magnet assembly is visible with superimposed mag-
netic lines. The electron gun and the collector are visible right besides the left and right of
the central trap, where radiation emission is indicated with curly arrows. Figure adapted
from [103].

3.3 PolarX-EBIT

3.3.1 Specifications

Additional data of Fe XVII, recorded at the PolarX-EBIT, was also analysed in this work.

The PolarX-EBIT is one of several systems built at the Max-Planck-Institut für Kernphysik

in Heidelberg with the Heidelberg Compact EBIT (HC-EBIT) design [103]. This design

allows the construction of portable EBITs with a compact footprint that operate at room-

temperature without superconducting magnets. Figure 3.7 shows a representation of the

HC-EBIT design. Similarly to the FLASH-EBIT design, it has an electron gun, a drift tube

assembly and an electron collector. Instead of a pair of superconducting Helmoltz coils,

this design utilizes 8 3× 3 arrays of NdFeB permanent magnets (magnetic flux diagram

in the figure) that achieve a magnetic density flux of 0.86 T at the center of the trap.

The electron gun of the PolarX is represented in the figure 3.8 (a). In contrast with

the original, the PolarX-EBIT features an off-axis electron gun. This configuration has the

advantage of giving an unobstructed path to photon beams that maximizes the overlap

volume between the beam and the ion cloud. This, in conjunction with the compact

profile, makes this device ideal to take to high intensity x-ray source facilities, like syn-

crothrons and free electron lasers. In case of previous measurements in FLASH-EBIT,

the photon beam is slightly misaligned with the electron beam in order to not hit the

cathode, but still having overlap at the trap. Like the FLASH-EBIT, the cathode is made

of tungsten impregnated with barium. The rear anode defines the extraction potential
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Figure 3.8: Cross-sectional view of the electron gun (a) and collector (b) of the PolarX-
EBIT. The off-axis cathode allows the positioning of photon beams in the same axis as the
electron beam. Figure adapted from [103]

and the front anode steers the electron beam to the central trap. The focus cathodes are

used to compensate the electron motion due to the residual magnetic field. These two

cathodes are split in two halves to adjust the compensating potential. These electrons are

also used to regulate the electron emission current.

The collector is represented in the figure 3.8 (b). The magnetic field diminishes inside

the collector, so the radius of the beam increases and the electrons are collected in the

walls. The extraction tubes are used to prevent the passage of electrons and extract

positive ions. The collector is connected to an ampere-meter to evaluate the electron beam

transmission, which is around 99 %. This measurement is used during the adjustment

of the voltages of the drift tube assembly to evaluate the quality of the beam and detect

possible undesired current losses. The heat from the collected electrons is once again

extracted with a water cooling system.

3.3.2 Fe XVII measurement

The Fe XVII photon emission was also studied in this EBIT system. The operation of

the Electron beam energy scheme is fundamentally different from the case of the FLASH-

EBIT. A slow triangle signal (40 min period) with an energy between 300 eV and 500 eV,

that was used for the probing of the ion cloud, was superimposed with a fast square wave

(4 s period with a 50 % duty cycle) with energies of 1.5 keV and 0.3 keV (represented in

figure 3.9). This was accomplished with a fast behlke switch1 between a power supply

with constant voltage for the breeding energy and a slow scanning power supply for

the probing energy. Effectively, the net result is an approximate square wave, where

the low energy varies slowly. With this configuration, not only the photon emission for

each electron energy is registered, but also the evolution of this emission for a specific

electron energy in a time axis. With this scheme, there is the possibility to obtain the

1http://www.behlke.com/
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Figure 3.9: Energy scheme of the electron beam used in the PolarX-EBIT measurements.
It is composed of a 2 s breeding period of 1.2 keV followed by a 2 s period o constant
low energy (probing period). The low energy varied between 500 eV and 300 eV with a
slow triangular function with a period of 40 min. The blue dashed line represents the
low energy moving with time. This scheme was repeated in loop for a very long time.

time evolution of the spectrum thus observing the DR-LMM process of the Fe XVII and

the subsequent decay of this population for the Na-like, Mg-like and Al-like ions. The

x-ray photons were measured with a SDD similar to the one used in the FLASH-EBIT.

Furthermore, PolarX-EBIT measurements were made with a lower electron current of

around 2 mA, resulting in an energy spread of around 3.5 eV at 400 eV.

3.4 Test Storage Ring

The Test Storage Ring (TSR) is an heavy ion storage ring constructed at the Max-

Planck-Institut für Kernphysik, in Heidelberg. The ring was designed for investigations

in atomic and molecular physics by holding a beam of cold ions and molecules for large

intervals of time. A scheme of the device is represented in Figure 3.10. It stores the

beam by redirecting and refocusing it in a series of dipole and quadrupole magnets. This

device can store ions in periods up to hours. This is an important feature, as it guarantees

that most of the ions analysed in the experiments are in the ground state, as opposed to

possible metastable states that can have an unwanted presence in another experimental

setups. High purity of a given charge state is also always present.

After injecting the highly charged ions for storage, the ion beam is cooled by electron

cooling to reduce transversal and longitudinal temperatures that thus reducing Doppler

broadening in spectroscopy observations. In this process, the beam is merged with a

cold dense electron beam. The ion beam energy spread is dissipated by the coulomb

interactions with the electron beam. A second merged electron beam, placed in another

location of the TSR, is used as an electron target. By tuning the energy of the ion beam
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Figure 3.10: Scheme of the Heidelberg heavy ion Test Storage Ring. The ion beam in
injected at the top left corner (blue arrow) and travels clockwise in the ring. On the
bottom linear section, there is the electron cooler that attenuates the energy spread of the
ion beam. On the left linear section, there is an electron beam that interacts directly with
the ion beam as a collision target. Products of the collision with a different charge state
are collected at the end of the same linear section, separated by a dipole magnet. Figure
adapted from [27].

and this second electron beam, ionization and recombination processes can be induced

with electron-ion collisions. Ions with different charge states can then be selected with a

magnetic dipole into a charge-plate detector. By measuring the rate of ionization/recom-

bination and the ion beam current simultaneously, the absolute values of the ionization

or recombination rates can be obtained. This technique has been used extensively to mea-

sure several the cross sections of recombination and ionization of various highly charged

ions [27].

In order to improve the reliability of the plasma simulations developed in this work,

the ionization cross sections for the Na-like, Mg-like and Al-like ions were compared with

previous TSR measurements [47, 78, 104]. In contrast to the recombination processes,

the ionization processes were not fully calculated theoretically due to their complexity in

the energy region due to EA ionization. In the next chapter, we provide calculations of

these processes obtained with FAC.

Measurements of the DR structure of Ne-like iron have been done in the past in
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the TSR [105]. The experiment has an high ion-electron collision energy resolution,

with an energy spread below 0.63 eV. The measured recombination rate coefficient had

an uncertainty of around 20%, higher than usual due to the use of a continuous ion

injection scheme, that led to an higher uncertainty in the current measurement. In the

more typical setups, the ions are accumulated and cooled in the storage ring before the

recombination starts. Furthermore, the presented DR cross sections were also subjected

to a background removal that also increased the said uncertainty. The background was

composed mostly of RR and charge exchange with residual gas. This data was broadened

to the experimental energy resolution of the EBIT experiments and was used in this work

to make comparisons with theory and between experimental setups.
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Computational calculations and

simulations

In this chapter, the atomic data calculations performed during this work are presented.

The Flexible Atomic Code calculations are detailed and the methods used for the relevant

calculations are specified. The method for simulating the charge state dynamics of an

EBIT plasma, with atomic processes calculations mentioned in chapter 2, is presented, as

well as specific results regarding the simulation of the experimental conditions. As the

charge state dynamics of the plasma was directly recorded at the PolarX-EBIT, the time

dynamic spectrum is compared to a simulated one. Further studies of preliminary results

for Kr measurements are also overviewed.

4.1 Cross section calculations

In order to aid the identification of all the structures present in the experimental

spectra, the most of the relevant experimental features were simulated. To simulate an

experimental spectrum, one of the most important steps is to determine the population

of each charge state. To this end, all the important cross sections of dielectronic and

radiative recombination, collisional ionization and charge exchange were calculated. For

this work, all of these cross-sections were performed using the FAC and FAC-MBPT. All

the physical theory involved in these atomic processes was already discussed in chapter

2.
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Figure 4.1: Top plot: theoretical resonant strengths obtained from FAC. Abscissa: elec-
tron beam energy; ordinate: emitted wavelength. Experimentally resolved spectral lines
are labelled as s1, s2, p1, p2, d1, d2, d3 and d4, where the first letter is the l of the spec-
tator electron in the 2p53l3d→ 2p63l transition. The circle diameter shows the relative
resonance strength of the channels contributing to these spectral lines. Projection onto
both axes are displayed in bottom left (b) and right (c) plots, respectively, and compared
with our (MCDF) and Nilsen’s calculations [106].

4.1.1 LMM DR calculations

In the context of this work, the DR LMM structure of Fe XVII had to be calculated

to compare to the experimental results, since this process was the focus of the experi-

mental analysis. FAC was used to calculate the atomic structure of the ion, the respec-

tive radiative transition rates and auger rates. For this case, taking as atomic number

Z = 26, structure calculations were performed for the configurations 1s22s22p6 (initial

states), 1s22s2p63l3l′ and 1s22s22p53l3l′ (intermediate states) and 1s22s22p63l (final

states), where l and l′ can be any valid orbital quantum number. 236 individual in-

termediate atomic states were calculated. The possible DR channels are given by the

combinations of autoionizing transitions from the initial to intermediate states (around

236 individual resonances, most with multiple radiative decay channels). The radiative

transition rates from the intermediate to the final states were calculated and used, com-

bined with the auger rates, to calculate the resonant strength of each DR resonance. The

same results were used to calculate the resonance width and an histogram was filled

with the resonances in a Lorentzian shape, where the electron beam energy position is
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given by the energy difference of the respective initial and intermediate states and the

photon energy is given by the energy difference between the respective intermediate and

final state. The widths of the resonances are usually very small. When these values were

smaller then the bin width of the histogram, the respective bin was filled with the value

of the resonant strength divided by the bin width. The results of these calculations are

highlighted in the figure 4.1. In the subfigure (a), 3 diagonal lines are distinguishable in

the histogram. These lines correspond to the five possible final states (1s22s22p63s)J=1/2,

(1s22s22p63p)J=1/2,3/2 and (1s22s22p63d)J=3/2,5/2 (each of the two latter lines are actually

two lines very close two each other, corresponding to the several J values). Within those

lines, resonances with a radiative transition of an electron from a 3d orbital into a 2l

orbital were found to be dominant. Seven clearly distinguishable structures were identi-

fied and, from now on, will be referred to by their spectator electron orbital and order of

appearance in the electron beam energy axis (s1, s2, p1, p2, d1, d2, d3). Each structure is

observed as only one peak at the experimental spectra due to the electron beam energy

spread being much larger than the DR resonant width. Subfigure (b) shows a projection

on the electron beam axis. Atomic structure, auger rates and radiative transition rates

calculated with MCDF were provided to compare with FAC and the experimental results.

A similar procedure to the FAC calculations was applied to obtain the MCDF DR resonant

strengths. The results are also present in this subfigure. Subfigure (c) is a projection of

(a) in the photon wavelength axis. Here, a comparison is made between FAC, MCDF and

values from Nilsen [106]. The latter are relatively old tabulated results of DR calculations

for Ne-like ions that are still used in some databases.

The FAC also includes methods to refine atomic structure calculations with Many

Body Perturbation Theory. As seen in chapter 2, the wavefunction corrections depend

upon all the other possible unperturbed wavefunctions of the system. Due to the time

consumption of this method, it was only applied to calculate the DR LMM structure of Fe

XVII. For the final calculation virtual states with principal quantum number until n = 32

were included. As an example of this application, the figure 4.2 (left) shows the energy

of the first excited state of Fe XVII in relation to the energy of the respective ground state,

as a function of the maximum principal quantum number of the virtual state. Figure 4.2

(right) shows, for the same set of calculations, the difference between the energy with a

maximum principal quantum number of n and n−1. For n = 32, the energy change is less

than 0.001 eV, a value well under the experimental uncertainty.

The most important results of the DR-LMM calculations are represented throughout

the tables 4.1 to 4.4. To make the results more readable, only the resonances with a reso-

nant strength (given by FAC) above 10% of the value of the most intense resonance were

tabulated. Note that in the simulations and experimental analysis, all the resonances

were considered. They are organized by the resonant energy given by the FAC and linked

to the resolved spectral lines mentioned early. All the resonances came from an initial

state (1s22s22p6)J=0. The intermediate and final states, given in jj notation, derives from

the FAC-MBPT calculation, with the corresponding LSJ term coming from the MCDF.
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Figure 4.2: Energy of the first excited state of Fe XVII calculated with FAC-MBPT. The
several results are represented as a function of the maximum allowed principal quantum
number n in the virtual states. Left figure represents the value of the energy in relation
to the ground state, while the right figure represents the relative difference between
consecutive calculations in a logarithmic scale.

The tables 4.1 and 4.2 show the resonant free electron energy of each resonance, as well

as the respective resonant strength. A general shift in energy is present when going from

FAC to FAC-MBPT. Apart from that, there is a good agreement between all the calcula-

tions within mostly less then 5 eV. Although without an expected big resonant strength,

the resonance with intermediate state [(2s1/22p2
1/22p4

3/2)1/23s21/2]1/2 was not found in the

MCDF calculations. The resonances that mostly contributed to the resolved peaks have

as intermediate state:

• [((2p1/22p4
3/2)1/23s1/2)13d5/2]3/2 for the s1 structure;

• [((2p1/22p4
3/2)1/23s1/2)13d3/2]3/2 for the s2 structure;

• [((2p1/22p4
3/2)1/23p1/2)13d3/2]3/2 and [((2p2

1/22p3
3/2)3/23p3/2)23d5/2]5/2 for the p1 struc-

ture;

• [((2p1/22p4
3/2)1/23d2

3/2]5/2 for the d2 structure

• [((2p1/22p4
3/2)1/23d3/2)13d5/2]7/2 for the d3 structure.

The peaks p2 and d1 do not have a dominant resonance, and are instead formed by a

mixture of resonances with relatively low intensity. All the mentioned resonances com-

plete the DR process with an electric dipole transition (∆J = ±1). This translates into

high fluorescence yields, as the radiative rate becomes much higher than the auger rate,

therefore resulting in high resonant strengths relative to the remaining resonances. The

MCDF calculation reveals an unexpectedly low resonant strength for the s1 resonance

in comparison with other theories, while the opposite situation is apparent for the reso-

nances forming the p2 structure. On the other hand, FAC and MCDF suggests that the d2

structure is dominated mainly by a single resonance, while the FAC-MBPT calculations
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Figure 4.3: Projection of the DR LMn structure for Ne-like Fe calculated with FAC.

have this structure being composed by several resonances with resonant strengths more

evenly distributed. Another noteworthy feature is that all the dominant resonances have

an intermediate state with at least one electron in the 3d orbital, being this the one who

always decays radiatively while the second excited one is always a spectator.

The tables 4.3 and 4.4 list the wavelength of the radiative transitions of the resonances

presented in the previous tables. Besides the FAC, FAC-MBPT and MCDF, results from

Nilsen [106] and Beiersdorfer [58] are also presented. Beiersdorfer’s paper provided a

limited number of resonances, so the respective column lacks values for some transitions.

There is a good agreement between theories regarding the wavelengths all across the

board.

4.1.2 Collisional cross-section calculations

To make a reliable simulation of the EBIT plasma, which is one of the goals of this

work, all the recombination and ionization processes of the important ionic species need

to be calculated. A similar process to the DR described above was used to calculate the

DR LMn sequence, with n = M, N, O, ..., T, for the Ne-like and Na-like ions. The figure

4.3 shows a projection in the electron beam energy axis of the DR LMn structure for

Ne-like Fe. The results in this figure have been broadened to facilitate the comparison

with the experimental results. For the Mg-like and Al-like ions, only the LMM, LMN

and LMO structures were calculated, since it is expected residual population of these

charge states. Furthermore, as the number of electrons increases, the number of possible

resonances and time of computation also increases significantly, making impractical large

scale calculations beyond the ones mentioned.

The FAC includes packages to calculate the cross sections of RR and CI. RR cross sec-

tions for Ne-like, Na-like, Mg-like and Al-like ions were calculated, with the recombining

ion resting on all possible shells, from n = 3 to n = 15. The figure 4.5 shows the FAC
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Figure 4.4: Cross section of electron impact ionization for: (a) Na-like iron, (b) Mg-like
iron. The dashed red line represents the result given by the Lotz formula, dashed green is
the FAC colisional ionization calculation, dashed blue is the Lotz result with the addition
of the excitation and autoionization process calculated with FAC and the black dotted
line is a TSR measurement [47, 104].

calculation of the RR cross section for Fe Ne-like. The CI for this four ion species were

calculated with the standard FAC procedure. However, the EA process plays a prominent

roll on the ionization, specially on the breeding energy chosen in the experimental setup.

The EA cross section was calculated based on the collisional excitation cross section and

the autoionization channels from the intermediate states, as in equation 2.67. Results

comparable to experimental cross sections from TSR measurements [47, 78, 104] were

obtained (figure 4.4). Nevertheless, the resonant excitation with double autoionization

(REDA) process was not taken into account and final results still have room for improve-

ment. This last process is characterized by dielectronic capture followed by an ejection

of two electrons. This process is resonant and is responsible for the peaks visible in

the TSR measurements after the excitation threshold. The overestimation in the case of

the Na-like ion may also be attributed to possible decay paths that were not taken into

account. Since this was not the main scope on this work, the experimental data from

the TSR measurements was used directly in the plasma simulations as ionization cross

sections. The rest of the ion species do not play an important role in the plasma dynamics,

so their respective cross sections of ionization and recombination were calculated with

the semi-empirical formulas presented in chapter 2.

4.2 Charge state dynamics simulations

The acquired spectra in an EBIT depends on the different populations of ionic species

present in the plasma. Although the conditions of the plasma environment are stationary

during the breeding stage, there is a big variation in the electron beam energy during

the probing stage, possibly resulting in a non negligible variation of populations. This
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4.2. CHARGE STATE DYNAMICS SIMULATIONS

Figure 4.5: FAC cross section of radiative recombination as a function of electron beam
energy and photon energy for Fe Ne-like. The calculation included the recombination of
an electron in all the available shells, from n = 3 to n = 15. The cross sections have been
broadened for viewing purposes.

variation results in spectra where each charge state population may have a different con-

tribution throughout the all the electron energy range, therefore distorting the structures

that are object of study. To account for these systematics, the plasmas from all the experi-

ments present in this work were modeled computationally.

The populations of the different charge states in a plasma have a certain distribution

that varies through time as a function of all atomic processes of ion rate formation and

destruction, as described in chapter 2. These rates depend on the cross-sections, current

density, initial population distribution and temperature of the free electrons. As such,

the dynamics of this system in an EBIT, where an incident almost monoenergetic electron

beam interacts with an ionized gas of elements with atomic number Z, can be modeled

with Z coupled differential equations given by

dNq
dt

=
Je
e

[
Nq−1

(
σCIq−1 + σEAq−1

)
+Nq+1

(
σRRq+1 + σDRq+1

)
−Nq

(
σCIq + σEAq

)
−Nq

(
σRRq + σDRq

)]
−N0Nqσ

CX
q vq +N0Nq+1σ

CX
q+1vq+1,

(4.1)

where Nq is the population of of ions with charge q, Je is the electric current density and

e is the elementary electric charge. The variables σXXq denote the cross section associated

to a atomic process XX and a charge state q. As the values of the cross sections depend on

the energy of the incident electron (see figures 4.1 and 4.4), their values are dependent on

the energy of the electron beam that can be set to be dynamic, i.e. it may have different

values over time. Therefore, the integration over time is solved numerically. During this

work, all the dynamical calculations were performed with a Python code which loads

pre-calculated theoretical atomic data of the relevant cross sections and solves the Z

equations iteratively with the Runge-Kutta of 4th order method.
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Firstly, the code loads the the appropriate CI, EA, DR and RR cross section files

previously calculated corresponding to the main ionic species present during the probing

stage. To take into account the rest of the possible ions in the initial stage of the simulation,

their corresponding ionization and recombination cross sections are calculated on the fly

with well known semi-empirical formulas mentioned in chapter 2. These cross section

values are then converted into rate values in units of s−1 by the relation

R =
Je
e
σ , (4.2)

where σ and R are a given cross section value and the corresponding rate value. DR lines

have a very thin profile and experimentally are usually broadened by the energy width of

the quasi monoenergetic electron beam of the EBIT. Therefore, the DR cross sections are

convoluted with a Gaussian function (the usual profile of the energy of an electron beam)

to better approximate the experimental results. As previously mentioned, the Runge

Kutta method is used to solve the Z coupled equations numerically. The 4th order of this

method is described as follows: for a given differential equation of the form

dy

dx
= f (x,y) , y(0) = y0, (4.3)

each iteration of an x, separated by a step h, can be approximated by

yi+1 = yi +
1
6

(k1 + 2k2 + 2K3 + k4)h, (4.4)

where

k1 = f (xi , yi),

k2 = f (xi +
1
2
h,yi +

1
2
hk1),

k3 = f (xi +
1
2
h,yi +

1
2
hk2),

k4 = f (xi + h,yi + hk3).

(4.5)

This general procedure is adapted to calculate the variation of the population of each

ion according to equation (4.1), value which is calculated every time step. Since this

simulation can be performed across several different orders of magnitude of time, the

time step of the simulation is dynamic. It starts as a very small value. Each iteration, the

sum of the population variations is checked against a certain threshold. If the variation is

sufficiently small, the time step is increased by a user definable percentage, allowing the

simulation to carry on faster during the time intervals where the population derivatives

are negligible.

As an example for this type of simulations, figure 4.7 shows the simulation of an

Fe plasma in an EBIT system for several electric current and pressure conditions. It

is important to note that the ionization energy threshold of the ground state of an ion

increases as the number of electrons of a specific element decreases. This is partially due
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Figure 4.6: Ionization energy threshold for every positive Fe (blue) and Kr (red) ion in the
ground state. The values were retrieved from the NIST ionization database [107].

to the fact that the higher the number o electrons for the same nucleus, the greater is the

screening potential that the most outer electron feels. Figure 4.6 represents the ionization

energy threshold for the Fe and Kr electrons, according to the NIST database [107]. Apart

from the increasing energy of the ionization thresholds with charge state, the energy

jumps are due to close-shell configurations. These gaps are more apparent between the

15+ and 16+, and 23+ and 24+ charge states for the Fe case. The same gaps are present

in the Kr case for the charge states that correspond to the same number o electrons as the

charge states mentioned for iron. The first energy gap is related to Fe XVII (16+) where

both the K and L shells are fully closed, while the second gap refers to the case of Fe XXV

(24+), where only the K shell is fully closed. The ionization energies of Fe XVI and Fe

XVII are around 489 eV and 1263 eV. In the simulations of figure 4.7, the electron beam

energy is set to either 1150 eV or 490 eV. These simulations show the dependence of the

population purity on the electron beam energy and pressure values. The objective is to

maximize the Fe XVII population. In every case, the simulation started with only neutral

Fe ions. Each simulation represents the population fraction of charge state at a given

time. By setting a constant electron energy beam between the ionization energies of the

Na-like and Ne-like ions, each charge state population raises and falls through time, each

being converted to the next charge state until an equilibrium is reached. The Ne-like ions

cannot be ionized, thereby an high level of purity of this species is found in the ion cloud

when the equilibrium is reached.

As seen in the figure 4.7, when the pressure is low enough and the electron beam

energy is just below the Fe XVII threshold, the purity of the population is almost 100 %.

When the electron beam energy is lowered, but still above the Na-like threshold, some

purity is lost, as the Na-like ions represent round 20 % of the total population. This is

expected, as the collisional direct ionization cross section increases with the incident free
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Figure 4.7: Populations of charge states of Fe as a function of time. The top and bottom
figures correspond to beam energies of 1.15 keV and 0.49 keV, respectively. Left and
right figures correspond to pressure conditions of Pmin and P20%.

electron kinetic energy, thus the process being more efficient with high energies. On the

other hand, increasing the pressure conditions also increases the charge change between

Ne-like ions and hydrogen atoms, leading to a smaller population purity as well. Since

the charge exchange process affects all the ion species, the Na-like population not only

increases from Ne-like ions with CX, but also transfer ions to the Mg-like population.

This effect is apparent in this figure, as the simulation with 1150 eV and high pressure

presents a small, but non negligible, amount of Mg-like ions in equilibrium conditions.

4.2.1 EBIT plasma and spectra simulations

During the probing stage of the EBIT experiments, the DR process dominates the

resulting spectra. The DR process is a recombination process, so the population of the

ion that is being studied decreases during the time that the electron beam spends with

the respective energy near the DR resonant energy. If this time is too long, the popula-

tion of the ion charge state in study may decrease significantly, compromising the DR

measurements, since the DR emissions collected in the EBIT are proportional to the ion

population. This effect is known as dielectronic recombination depletion, and has to be

accounted for to make an accurate analysis of the results. The charge state dynamics

simulations are a useful tool to study the impact this effect on the ion populations and
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Figure 4.8: (a) Spectral maps observed at FLASH-EBIT by scanning upwards and down-
wards the electron beam energy. Simulations of Fe charge-state distributions as a function
of the electron beam energy for effective electron densities of (b) 2.8× 1012 cm−3 and (c)
2.8×1010 cm−3. (d) Experimental ratio between downwards and upwards scans compared
with simulations for different effective electron densities.
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evaluate the impact of each experimental parameters in the resulting spectra. Figure

4.8 represents the results from several simulations of the population dynamics for the

measurements of Fe Ne-like in the FLASH-EBIT. Subfigure (a) contains the experimental

results obtain during the downwards and upwards scanning. The two types of measure-

ment seem to be visually very similar, but the ratio between them was taken as a metric to

evaluate the population depletion. Since both spectra were obtain in the same conditions,

and the cross section of the atomic processes is the same, the ratio is only dependent on

differences in the populations. In the subfigure (d), this ratio is very close to 1 in all the

spectra structures, deviating only in the regions were there is only background in the

spectra. This deviations can be attributed to variations in the background noise and may

not be related to any difference in population. According to the equation (4.3), the rate of

the DR process is proportional to the electron current density Je/e. Although the electron

beam current is measured in the experiment, from which the electron density can be

derived, several works demonstrated that the effective electron density affecting the ions

is usually a few orders of magnitude below the one measured experimentally through

the current [22, 108, 109]. This phenomenon is explained by the fact that the ion cloud is

much bigger than the electron beam volume and the effective interaction volume is given

by the overlap between the cloud and the beam. The previously mentioned simulations

were performed for several electron densities. High values lead to noticeable population

depletions, as is the case present in the subfigure (b). The case present in the subfigure

(c) represents the maximum electron density that results in DR depletion sufficiently low

to be comparable to experimental results. This is apparent on the last subfigure, where

only the ratio of the latter case can accommodate the experimental results. As such, not

only there were no observable DR depletion, as the simulations demonstrated that the

effective experimental electron density of the plasma was less than 2.8× 109 cm−3.

Another important parameter to the model of the plasma is the pressure and the

respective charge exchange cross section. The simulations output a simulated spectra

by multiplying the population by all the radiative emission cross sections. Since all the

charge states have different DR spectral lines, the relative intensities of every line can

be used to evaluate the relative population in equilibrium and by knowing the electron

density and doing multiple simulations, the pressure value can be estimated. In this case,

several pressure values were used to simulate the experimental spectrum. Figure 4.9

shows the experimental spectrum in the LMM region, two simulations with different val-

ues of pressure and the relative resonant strengths for every line of the DR LMM process

for Ne-like, Na-like and Mg-like ions. One of the most intense DR lines of the Na-like ion

is located around the 380 eV region. This line is not resolved in the experimental results.

With this is mind, several simulations with progressively lower values of pressure were

performed until the resulting spectrum peaks of Ne-like and Na-like LMM DR matched

the ones observed experimentally. This procedure allowed to infer that the experimental

pressure conditions were such that the corresponding Ne-like charge exchange rate was

less than 0.046 s−1.
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Figure 4.9: Theoretical resonant strengths for Ne-like, Na-like and Mg-like Fe ions and
simulated fluorescence yield under charge-exchange rates of 0.229 s−1 and 0.046 s−1 in
comparison with FLASH-EBIT data.

These simulations and procedures allow to derive all the important experimental

parameters of the experiment and produce a realistic plasma model, capable of producing

theoretical spectra comparable to experimental results.

4.2.2 Spectral time evolution simulations

The experimental setup of the PolarX experiment opens the door to study the charge

state dynamics directly from the obtained spectra, as its evolution is recorded as a func-

tion of time. When the electron beam energy is stationary in a DR resonant energy, the

population of Ne-like ions decays due to the recombination process. By approximating

the rate of population change to a value only dependent on the DR process,

dNNe
dt
≈ − Je

e
σDRNe NNe. (4.6)

In this case, this approximation is reasonable because in the LMM region, there is no

Ne-like population loss due to ionization, so only the recombination and charge exchange

terms of the equation (4.1), in respect to the Ne-like population, are non-zero. Further-

more, there are no F-like ions and the population of Na-like ions at t = 0s is relatively

small. Moreover, the DR cross section, in the respective resonances, is much greater

than the RR and CX cross section. This approximation can only be done for initial small

periods, as the recombination of Ne-like ions produces Na-like ions that have x-ray emis-

sions not acounted for in equation (4.7). The population, and consequently the radiative
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Figure 4.10: Example of the projection of 3 of the
most intense DR peaks of the PolarX-EBIT experi-
ment over time with exponential fits (red).
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Figure 4.11: Effective current extracted
from each of the exponential fits of the
several resonant structures.

emission, decays in an exponential manner:

I ≈ I0 exp
[
− Je
e
σDRNe t

]
, (4.7)

where I and I0 are the radiative emissions at a time t and at a time t = 0. An exponential

fit was adjusted to the decay of every major Ne-like LMM DR peak of the experimental

data.

Figure 4.10 shows the projections of the decay of the 7 most intense peaks of the

experimental data along the time axis. As the evolution of the Ne population can only be

approximated by the equation (4.6) when the ion cloud purity is high, the exponential fits

were only applied to the first 100 ms of the decay. The red curves represent the result of

the fitted functions. Using the relation (4.7), the effective electron current was determined

for each peak. For this calculation, the cross section values were calculated with FAC. The

obtained effective currents are represented in figure 4.11, where the uncertainty is derived

from the uncertainty of the fit procedure. The values corresponding to the peaks with a

more intense DR cross section seem to agree with each other, while the remaining appear

to deviate. As the uncertainty varies greatly between measurements, a weighted average

was taken to get an overall electric current value. The mean value was defined as

Ī =

∑
i
I2
i

µ2
i∑

i
1
µ2
i

, (4.8)

where Ī is the average electric current and Ii and µi are the individual values of electric

current and the respective uncertainty. The uncertainty of the weighted average is given

by

µ̄ =

√
1∑
i

1
µ2
i

. (4.9)
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The obtained value of electric current is

Ī = (0.27± 0.02) mA.

For an electron beam with a radius of 30 µm with a mean energy of 400 eV, this value of

current corresponds to an electron density of 5.02× 1010cm−3.

The previous simulations were modified to attend the experimental conditions of the

PolarX measurements. After achieving equilibrium with the breeding energy at 1.2 keV,

the energy was set to a probing energy during 2 s to record the charge state dynamics and

the corresponding radiative emissions. This setup was repeated to cover all the electron

beam energy from 300 to 500 eV with a 1 eV resolution. The resulting two-dimensional

map of the emission in function of electron beam energy and time is compared in the

Figure 4.12 to the experimental results (a). This new simulation was performed with

different values of pressure until the population decay was similar in both cases. To make

these results more accurate, the DR-LMM process of the Al-like iron were also included.

The results of this simulation demonstrate that this kind of simulations are capable of

producing realistic plasma models with spectra comparable to the experimental measure-

ments. All the 7 Ne-like peaks have a realistic decay, with a decay time of around 100 ms.

After this time, the Na-like emissions have a growth until around 600 ms, beginning to

decay afterwards. At the higher end of the energy spectrum, there is a steady growth

of emissions from Mg-like and Al-like ions, also observed in the experimental spectrum.

The experimental results have an initial background that also decays over time. This

characteristic is not present in the simulations, and there is no clear explanation for this

phenomenon.

4.3 Preliminary Kr charge state simulations

Preliminary calculations and simulations were also performed for the Kr plasma. This

included CI, EA and RR calculations for Kr Ne-like, Na-like, Mg-like and Al-like. The

DR process was also calculated for this set of ions. For the Ne-line, these calculations

extended from LMM to LMT, while for the rest was only LMM, LMN and LMO.

The experimental scheme of the FLASH-EBIT was simulated, with an energy breeding

of 2500 eV and a scan from 2500 eV to 400 eV. In the experimental results in the next

chapter, there is no significant difference between the uppwards and downwars scans,

thus the electric current in the simulations was such that there was no DR depletion

(0.2 mA). Figure 4.13 shows four simulations of the Kr plasma, with the population

fraction evolving from neutral to mostly composed of Ne-like, Na-like and Mg-like ions.

The only difference between the several simulations was the pressure and, consequently,

the CX rates.
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Figure 4.12: Simulation of the DR emission at the experimental conditions of the PolarX-
EBIT for (a) Ne-like, (b) Na-like, (c) Mg-like, (d) Al-like Fe. (e) represents the simulations
of the total emission and (f) is the measured experimental spectrum over time. The
simulations confirmed the identification of lines caused by Na-like, Mg-like and Al-like
Fe ions that appeared as the Ne-like ions decayed over time.
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Figure 4.13: Simulation of the several charge state populations o Kr over time in the
FLASH-EBIT conditions. The subfigures (a), (b) (c) and (d) correspond to simulations
with pressures of 2.5×10−10 mBar, 2.5×10−8 mBar, 1.0×10−7 mBar and 2.0×10−7 mBar,
respectively.
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5
Experimental results and discussion

In this chapter, the methods to analyse the spectra obtained from both the FLASH-

EBIT and PolarX-EBIT are presented, as well as to the previously-obtained data at the

TSR.

Partial results were already presented in the last chapter to compare to the time-

dynamic simulations of the plasma at the PolarX experiment. Given that the SDD is

sensitive to photon energy, 2d spectra of the emission as a function of the electron beam

energy and the photon energy were also available. Figures 5.1 and 5.2 represent these

maps obtained in the FLASH and PolarX EBITs, respectively.

In the first case, resonant structures are visible in the region between 300 eV and

1000 eV of beam energy and between 600 eV and 1400 eV of photon energy. At the

photon energies between 700 eV and 900 eV, the DR-LMn (with n = 1,2,3, ...) spans

until around 800 eV of beam energy. In particular, the LMM structure is isolated and

clearly resolved between 300 eV and 500 eV. The energy difference between consecutive

LMn structures diminishes for each n until several structures cannot be resolved as the

binding energy of the n shell approaches the continuum. At this energy, the CE threshold

is reached.

This threshold is represented by the right diagonal line in figure 5.1. At this line,

the incident electron has a kinetic energy that is equal to the excitation energy of a

bound electron. Therefore, the second one can excite with kinetic energy being totally

transferred and barely above electron recombination. The excited electron then emits a

photon with the same energy as the initial kinetic energy. It is observed in the figure that

at the CE threshold the photon energy is the same as the kinetic energy. From this point

onwards, the incident electron has always higher and enough energy to directly excite a

bound electron. In this case, the scattered electron carries the remaining energy. As the

deexcitation path of the bound electron remains the same, the direct excitation process
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CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 5.1: Experimental results from the FLASH-EBIT experiment. It is displayed in the
form of a 2D map of the fluorescence yield as a function o the electron beam energy and
photon energy. The top plot shows the complete measurements, while the bottom plot is
an amplification of the DR-LMM region.

creates a band of emission on the right side of the CE threshold line. Here, it corresponds

to the n = 3 to n = 2 transitions in the photon energy region (750 to 850 eV).

The direct CE has a non-resonant cross section, yet some resonant structures are

superimposed in this band in the 2D map. Those structures are given by the resonant

excitation process. In this process, the free electron is recombined by dielectronic capture,

but the resulting ion subsequently autoionizes into an excited state instead of a radiatively

decay, as in DR process. The net result is the excitation of the initial ion in a resonant

manner, resulting in resonant structures with photon emissions superimposed on the CE

structure.

The bottom subfigure is an enlargement of the FLASH-EBIT measurements on the

DR-LMM region. The seven peaks mentioned in the last chapter are clearly resolved

and labeled in the figure. Figure 5.3 shows the FAC calculation broadened to the FLASH-

EBIT experimental widths. A first look shows a good agreement between them and a deep

analysis was made with a fit procedure. More peaks with lower intensity are present in
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Figure 5.2: Experimental results from the PolarX-EBIT experiment, displayed in the form
of a 2D map of the fluorescence yield as a function o the electron beam energy and photon
energy. It only contains the first 50 ms of the probing period to maintain an high Ne-like
pure population spectrum

Figure 5.3: FAC calculations presented in the same format as the results from the PolarX-
EBIT experiment. The 2D histogram as been broadened to match the experimental spread
of the photon energy and electron beam energy.
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Figure 5.4: Original TSR measurement on the LMM region, plotted against the FAC-MBPT
calculation broadened to a similar energy spread. Note that the TSR values retained the
original calibration and broadening.

the theoretical results. However, the measured statistics and resolution were not enough

to resolve them, e.g. the ones between 300 eV and 320 eV. These measurements have

an electron beam energy spread with a FWHM (Full-Width-Half-Maximum) of around

5.4 eV. The SDD had a photon energy spread around 100 eV, which precludes a precise

analysis in this axis.

Figure 5.2 shows the DR-LMM measurements performed at the PolarX-EBIT, where

the electron beam energy spread was smaller than the FLASH-EBIT counterpart. In this

case, the FWHM of the electron beam energy was around 3.5 eV. The photon energy

resolution was similar to the FLASH-EBIT case. The same structures are present in this

case. It is worth noting that in this case the p2 and d1 structures are more clearly resolved.

Nevertheless, the energy scheme of this experiment resulted in higher content of Na-

like ions overall. The scheme was more focused on the dynamics of the charge state

populations over time, so an increase of Na-like ions is expected over time. To have a

spectrum corresponding only to the Ne-like Fe, the time of acquisition has to be cut

short to exclude the presence of other types of ions. Consequently, there is a compromise

between the amount of data used to have a good statistical measurement and the time at

which the data acquisition is restricted. For this case, only the events registered in the

first 50 ms of the probing time were considered.

Due to the directionality of the electron beam, a correction factor had to be taken into

account. As explained in chapter 2, the emitted radiation is polarized and anisotropic,

thus the correction factor W (90°) = 3/(3− P ) was applied, were P is the polarization for a

specific radiative transition. The total cross section was then obtained by

σ = 4π
I90°

W (90°)
, (5.1)

where I90° is the observed DR intensity. The calculated values of P were taken from the

paper preciding this work [37], which are in agreement with the measurements made by
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Chen et al. [110].

Previous measurements of the DR in Fe XVII taken by [105] in the TSR were also in-

cluded in this analysis. Figure 5.4 shows the TSR data with the original energy calibration

compared to the FAC-MBPT calculations (broadened accordingly). This figure presents

a reasonable agreement between the new calculations and the old measurements, apart

from the energy shift present across all the spectrum. To make these results more com-

parable to the EBIT ones, the spectrum was broadened to have a similar energy spread,

resulting in a spectrum where, similarly to the rest of the results, only 7 resonances are

clearly resolved.

5.1 Fit procedure

To analyse the LMM region, the 2D spectra were projected in the electron beam energy

axis. Only the region of interest of this region on the photon energy axis was considered.

The resulting 1D spectra were fitted with linear combination of Gaussian functions,

ffit =
∑
i

Ai exp
{
−1

2
(Ee −µi)2

σ2

}
. (5.2)

The subscript i identifies a specific Gaussian and Ai and µi are the respective amplitude

and mean value. Although the DR process has a Lorentzian profile, the electron beam

energy has a gaussian distribution. For this cases, a Voigt profile, which is defined by the

convolution of the Lorentz distribution and the Gaussian distribution, would be suitable

for the fit function. Nevertheless, the electron beam energy spread is several orders of

magnitude greater then DR natural width, resulting in a profile close to the Gaussian.

To simplify the fit procedure, only Gaussian profiles were used. From now on, these

Gaussians will be referred to as peaks or lines. The quantity σ is the same for all the

constituents, as it is defined by the standard deviation of the electron energy profile.

Due to the high number of resonances present in the region (more than 300), the

number of lines can be determined with the help of the FAC calculations. For each

spectrum, the theoretical histogram is rebinned in such way that the bin width is equal to

the FWHM of the experimental peaks. The number of bins corresponds to the number of

Gaussian functions included in the fit function. The number of free parameters is high,

and certain constraints have to be applied to avoid unrealistic results. The well resolved

experimental peaks were considered as free lines, and the rest were considered as fixed

energies. For the case of the free lines, their respective position was a free parameter

restricted to the respective theoretical bin limits. As for the other lines, their position

was fixed at a random position inside their respective bin. The fit procedure was applied

several times, generating random positions for the fixed lines for every fit. It was taken

as the final fit the result that yielded the smallest χ2. On both the EBIT’s measurements,

a small linear background was removed before the fit procedure was applied.
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In past works, the RR theoretical cross section was used to calibrate the intensity of

experimental spectra [111, 112]. In this case, this was not possible, as RR cross section is

too negligible to be measured. The spectra intensities were thereby calibrated with the

most intense theoretical DR-LMM resonance. The energy calibration was also made with

those calculations. As a result, there were multiple possible calibrations for each of the

theoretical calculations.

The best fit for each of the experimental spectra is represented in Figure 5.5. Note

that the different data was obtained with different electron energy spread, so the number

of resonances varies between subfigures. The green lines represent the peaks with a free

positional parameter, labeled in the subfigure (b). To simplify the extracted data, only

the values for these lines were tabulated. The red lines represent the peaks with a fixed

position in the fit procedure.

5.2 DR resonant energy and strengths

As stated previously, calculations of the DR-LMM structure were made with FAC, as

well as FAC-MBPT and MCDF. The best fits of the experimental data were calibrated

with these three calculations. The intensity was always calibrated by the d3 peak and the

electron energy axis was calibrated with the p1 and d3 lines. For each of the experimental

measurements, all the theoretical results were broadened with a width corresponding to

the respective experimental data. The same fit procedure was applied to the theoretical

results. This was made to facilitate the comparison between theory and experiment. Due

to the energy spread of the electron beam, the resolved lines are actually composed by

the corresponding free line and several fixed lines. The fit of the broadened theoretical

calculations ensures that the same mixing of lines is present in both theoretical and

experimental results, enabling a fair comparison between them. Figure 5.5 represents the

fit results for the measurements in the FLASH-EBIT, PolarX-EBIT and TSR. The green

lines are the free peaks and the red lines are the fixed peaks.

Table 5.1 displays the energy positions of the resonances in all the experiments, as

well as the ones obtained by fitting the theoretical calculations of FAC, FAC-MBPT and

MCDF. The term Combined Energy (CE) was used to refer to the energy of the resonance

after broadening, which is affected by all the surrounding small resonances. In these last

columns, the percentage values inside the parentheses indicate the relative difference

between the experimental and theoretical resonant energy, i.e. (Eexp −CEtheo)/Eexp. The

Nilsen calculation data was not included in this table because the resonance energy was

not provided in the original reference work [106]. Since the measurements need an energy

calibration before the fit, and the peak positions are different for every type of calculation,

the experimental results were calibrated with every theory presented. After each calibra-

tion and fit process, the values of the different experiments for each peak were average

weighted by the uncertainty and the respective relative difference from the respective

theory was calculated. The peaks p1 and d3 have no relative difference, as they were
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Figure 5.5: Experimental results from (a) FLASH-EBIT, (b) PolarX-EBIT, and (c) TSR
measurements, respectively. Black curves represent the experimental spectra, the fitting
model is shown in blue. Vertical lines mark position and amplitude of each DR LMM
resonance (red: fixed energies, green: free energies in the fitting procedure).
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CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION

the reference for the calibration, therefore implying a 0% expected relative difference.

The experimental values displayed in the table correspond to the ones calibrated with

FAC-MBPT. The TSR spectrum was not recalibrated. This provides experimental results

with an independent energy and intensity calibration. In general, all theories presented

appear to be in good agreement with the experimental results, with the absolute value

of most of the relative differences always within 1%. The MCDF calculations seems to

describe better the positions of the d −manifold, while both FAC and FAC-MBPT show

improvements on the s −manifold structure, region where MCDF presents the biggest

differences. The experimental uncertainties were based on the error of the parameters

that resulted from the fitting procedure.

Table 5.2 completes the analysis of the same resonances by describing the results of

the resonant strengths. The integral of a gaussian function takes the general form∫ ∞
−∞
Aexp

{
−1

2
(Ee −µ)2

σ2

}
dEe = Aσ

√
2π, (5.3)

with which the value of resonant strength and the respective uncertainty can be extracted

from the parameters of the fit function and the propagation of their respective uncertain-

ties. The column Sexp corresponds to the average of the experimental values weighted

by the uncertainty. The FLASH-EBIT resonant strengths uncertainties were estimated

to be on the level of around 20%, 17% for the case of the PolarX-EBIT. Once again, the

TSR values retained the original calibration, and the respective uncertainties correspond

to the 20% uncertainty in cross section quoted by the authors. In the combined experi-

mental values, the uncertainty was on the level of ∼ 10%. Similarly to the last case, the

FLASH-EBIT and PolarX-EBIT results were calibrated for each of the theoretical results

in order to compute the relative difference expressed in side the parentheses. In this

case, the accuracy of the calculation varies significantly between them. This aspect is

important, since the resonant strengths dictates the dielectronic recombination rate of

an ion in a plasma, therefore playing an important roll in plasma modeling. The Nilsen

calculation has the greater differences across the board, having most of the values in the

order of tens per cent. There seems to be a tendency where the less intense lines are in

less agreement with experiments then the rest of the resonances. The FAC calculations

present a small improvement in all resonances except s2. Intense lines, namely p1 and

d2, have a relative difference below 10%. FAC-MBPT shows improvements to the FAC

overall. The s1 and s2 present less then half of the difference relative to the last case, the

p1 resonance has nos a difference of just 2% and the d1 and d2 lines are now much closer

to the experimental results. Meanwhile, the p2 resonance persists to be not well described.

As for the MCDF case, there seems to be a reasonable agreement between experiment

and theory, except for the s1 and p2 lines, where the absolute relative difference, for both

cases, surpasses 70%. The reason for the problems of the MCDF calculations might reside

in the MCDFGME package used not being able to generate reliable Auger rates to other

configurations beyond single coupling, something that would be necessary to improve
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5.3. DR RATES

both the centroid positions and the DR resonant strengths.

Figure 5.6 summarizes all the results. The first subfigure represents the relative

difference values of every peak for each of the theoretical calculations, where the error

bars represent the relative uncertainty of the theoretical fits, as a function of the electron

beam energy. The blue transparent rectangles that vertically align with the horizontal axis

represent the experimental results, i.e. vertically represent the relative uncertainty of the

resonant strength and horizontally the peak position uncertainty. Note that the widths

were multiplied by a constant to be more clear, the real position uncertainties are much

smaller, as seen in the table 5.1. It appears that all the theories overestimate the strengths

of all the sn resonances, but underestimate the pn resonances, while mostly agree with

experiment in the pn resonance region. The subsequent 4 subfigures represent the PolarX

data calibrated by the FAC, FAC-MBPT, MCDF and Nilsen results. The cross section

of each of the respective theories is also present, as well as the TSR measurements (not

recalibrated in any way). In general, all theories fail to represent the p2 line adequately,

always underestimating the respective strength. In addition, both the EBIT experiments

disagree with the TSR measurements in this resonance. As the simulations exclude

possible population dynamics influencing the observed spectra, there is no available

explanation for this problem at the moment. In the transition from FAC to FAC-MBPT,

the d1 line, which initially is poorly described, reaches a reasonable level of agreement.

The MCDF subfigure reveals some problems embedded in the previously mentioned

calculation. Firstly, the s1 and s2 lines are closer than expected, and the s1 line has an

amplitude much lower then the experimental one. Secondly, the resonances that form the

p2 peak appear to be divided into two separate peaks rather then one, as is the case for

the remaining theories. In this case, the tabulated relative difference for the p2 peak was

calculated using the sum of these two new peaks, hence the large −83% difference present

in the table. Finally, the p1 and d2 lines are greatly underestimated, which contrasts with

the fairly good agreement achieved in the FAC and FAC-MBPT calculations. There is also

a resonance around 430 eV present in all the experiments and theoretical calculations

that is absent in the MCDF cross section. The FAC-MBPT calculations are the ones that

better describe the experimental results, giving resonant strengths that are within the

error bars of the experimental measurements.

5.3 DR rates

The resonant strengths, combined with the resonant energies, were used to extract

experimental DR rate coefficients with the aid of the expression (2.81). The experimental

energies and strengths have been calibrated with FAC-MBPT. Three different electron

temperatures (T e = 100, 300, 2000 eV) were chosen to calculate the the DR rate co-

efficients at several typical conditions (temperature below, close to and above the DR

resonant energy). All the rate coefficients were summed, as individual resonances are

blended and cannot be adequately distinguished. Table 5.3 summarizes the results. The
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Figure 5.6: PolarX-EBIT and TSR measurements and theoretical total DR cross sections
obtained using FAC, FAC-MBPT, MCDF, as well as literature values from [106]. Calcu-
lations were convolved with a Gaussian of 4.5 eV FWHM for the comparison. The top
scatter plot compares theory and experiment.
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Figure 5.7: Experimental results from the FLASH-EBIT experiment with Kr, displayed in
the form of a 2D map of the photon emission as a function of the electron beam energy
and photon energy.

experimental values were compared with theoretical rate coefficients given by FAC-MBPT

and MCDF, as well as the values available at the OPEN-ADAS1 and AtomDB 2 databases.

Calculations obtained with the AUTOSTRUCTURE [113] code were also included. To

make a more in depth comparison, the theoretical calculations and database values were

combined by the respective final-state configuration of the Na-like ion (3s, 3p and 3d).

The total DR coefficient rates, resulting from the sum of all the resonances, are presented

at the end of the table. The AUTOSTRUCTURE code calculations only provided the total

values, instead of the separation by final-state configuration available at the AtomDB and

OPEN-ADAS databases.

The MCDF and FAC-MBPT calculations agree with the experimental results within

3 to 8%. Discrepancies, however, have been found between OPEN-ADAS and the ex-

perimental results. The OPEN-ADAS overestimates the total value by as much as 40%

compared to the experimental results. Comparing to the theoretical calculations, this

overestimation is apparent for the p and d resonances, particularly in the temperature

near the resonance energies. The AtomDB spectral modeling database also presents some

significant discrepancies, showing as much as 49% of underestimation in respect to the

experiments. Once again, this discrepancy is valid for both the p and d resonances. The

calculations given by the AUTOSTRUCTURE code are more in line with FAC-MBPT and

MCDF, giving relative differences around 10%.
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Figure 5.8: (a) Projection of the Kr spectra onto the electron beam axis. The subfigures
(b), (c), (e) and (e) correspond to the FAC calculation of DR-LMM for Ne-like, Na-like,
Mg-like and Al-like Kr, respectively.
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5.4 Preliminary Kr results

Although no full analysis was done in the Kr case, the experimental results are pre-

sented as preliminary results. Figure 5.7 show the photon emission as function of the

electron beam energy and and photon energy (the spectrum is not calibrated). On the

left end side, a resonant structure is clearly distinguishable. This structure should cor-

respond to the DR-LMM structure. It was expected that, as was the case for the iron,

the entire LMn would by visible. Instead, low intensity peaks are visible throughout the

n = 3 − 2 transition band, far smaller than what is expected from the DR structures of

the Kr DR process. On the left end side of the spectrum, a non resonant structure is

apparent, possibly attributed to the CE and RE of the Kr ions. Additionally, there is a

faint diagonal line that crosses the LMM structure, corresponding to the RR band for the

M-shell recombinations.

Figure 5.8 shows the projection of the experimental measurements on the electron

beam energy axis (subfigure (a)). The subfigures (b), (c), (d) and (e) correspond to the FAC

calculations of the DR-LMM for the Ne-like, Na-like, Mg-like and Al-like ions. There is

no good match between the experimental results and the Ne-like calculations. Moreover,

some peaks appeared to align correctly with the Na-like results, so they were used to

calibrate the electron beam energy of (a). Furthermore, none of the calculations describe

the experiment correctly, but all seem to have resonances that are represented in the

experimental result to some degree, being the Na-like the dominant ion, followed by the

Ne-like and having small contributions from Mg-like and Al-like.

As such, the plasma of Kr does not appear to be dominated by Kr XXVII. To make

a good simulated spectrum comparable to the one in the experiment, the population

distribution has to be simulated at several pressure conditions and more charge state

calculations should be included to improve the results.

As discussed before, there was no appreciable DR depletion, as there is no significant

difference between the upwards and downwards scan. Given the calculation presented in

the figure 5.8, the population of Na-like appears to be higher than the Ne-like population.

The CX, due to high pressure, could be a possible explanation for this mixing of popu-

lations, the simulations presented in the last chapter show that the Ne-like population

remains higher than the Na-like population, even for high pressures. Furthermore, When

the Ne-like is no longer dominant, other species beyond Ne-like, Na-like, Mg-like and

Al-like are expected to appear at quantities comparable to the motioned charge sates,

something that is not observed experimentally.

1https://open.adas.ac.uk/
2http://www.atomdb.org/
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6
Conclusions and future prospects

In this thesis, the DR-LMM structure for Fe XVII was measured in two different EBIT

systems and the obtained data was analysed and compared to previous measurements

made in the Test Storage Ring. These measurements were made and compared with

newly calculated FAC, FAC-MBPT and MCDF cross sections, as well as with atomic data

available in widely used databases. The charge state destribution of the EBIT plasmas

were simulated in a time-dependant manner to investigate the effects of the several EBIT

experimental conditions and evaluate the presence of unwanted charge states during

the probing stage or undesirable DR depletions of the Ne-like population. To make this

possible, calculations of DR, RR, CI and EA were performed using FAC (and FAC-MBPT

for DR-LMM) for several charge states.

The simulations allowed the estimation of the effective electron density of the exper-

iments, which was in agreement with order of magnitude of the values found in EBIT

experiments made by other groups. The role of charge exchange in the EBIT environment

was also explored, highliting the importance of the ultra-high vacuum needed for these

experiments, as a high pressure ultimately translates into the loss the ions that are re-

quired in the chamber. No significant DR depletion was found for any of the experiments.

The PolarX-EBIT allows the measurement of the time dynamics of the spectrum itself,

so the same setup was also simulated. The comparison between the experimental time-

dependent spectrum and the simulation result showed an excellent agreement all across

the board, with the exception of a constant background for smaller times, serving as a

validation for this type of simulations as a method to realistically study EBIT plasmas.

The experimental results were fitted to obtain values for the resonant energies and

resonant strengths of the structures of the DR-LMM for Fe XVII. The experimental re-

sults were in general in good agreement with the new calculations. The FAC-MBPT

was the method that showed more promising results. In this case, the MCDF energy
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CHAPTER 6. CONCLUSIONS AND FUTURE PROSPECTS

of some resonances in disagreement with the experimental results, leading to the ap-

parent lack or existence of extra peaks that differed from experiments. These resulting

resonant strengths were used to provide DR rate coefficients, the values that are directly

used in astrophysical plasma models. The coefficient rates were provided in 3 different

temperatures and were divided by the final state of the Na-like ion, as well as the total

rate coefficient for the entire DR-LMM process. These values were compared to what

is available in frequently used databases for astrophysical plasma diagnostics, such as

OPEN-ADAS and AtomDB.

Several significant discrepancies were found between the database values and the

experimental values. These discrepancies are important, as the values given by the

databases may result in biased diagnostics and erroneous evaluations of the astrophysi-

cal plasma conditions. This is of special importance given the proximity of future x-ray

satellite missions XRISM and Athena, that will use x-ray microcalorimeters. In addition,

these values are of special importance to interpret the currently available high-resolution

spectra from Chandra and XMM-Newton. Furthermore, these inconsistencies highlight

the importance of laboratory measurements of atomic data, specially of HCI, for the test

and development of astrophysical models.

Future work might include the analysis of the rest of the LMn DR structure, perhaps

using the fitting procedure developed in this work. Preliminary results of Kr measure-

ments and theoretical calculations and simulations were also presented. Further simula-

tions with more atomic processes need to be performed in the future to model the spectra

observed experimentally. These spectra appear to be more complex than the case of iron

because there seems to the a high mixture of charge states constituting to the emissions

at the same time. Several measurements were made and all resulted in similar spectra.

After a good modeling is achieved, the extracted atomic data might be useful for plasma

modeling in fusion reactors, namely for the evaluation of the radiative cooling at the

edges of the plasma with the collisional excitation and resonant excitation. Furthermore,

EBIT spectra of highly charged tungsten is also available to analyse, leaving room for the

extraction of useful atomic data for another element that may play a fundamental role in

future fusion reactor plasma diagnostics.
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ABSTRACT

We investigate experimentally and theoretically dielectronic recombination (DR) populating doubly excited
configurations 3l3l′ (LMM) in Fe XVII, the strongest channel for soft x-ray line formation in this ubiquitous
species. We used two different electron beam ion traps and two complementary measurement schemes for
preparing the Fe XVII samples and evaluating their purity, observing negligible contamination effects. This al-
lowed us to diagnose the electron density in both EBITs. We compare our experimental resonance energies and
strengths with a previous independent work at a storage ring as well as configuration-interaction, multiconfig-
uration Dirac-Fock calculations and many-body perturbation theory. The latter showed outstanding predictive
power in comparison with the combined independent experimental results. From these we also infer DR rate co-
efficients, unveiling significant discrepancies from those compiled in the OPEN-ADAS and AtomDB databases.

Keywords: atomic data — atomic processes — line: formation — methods: laboratory: atomic — plasmas —
X-rays: general

1. INTRODUCTION

Iron, the heaviest among the abundant chemical elements,
has strong L-shell transitions that dominate the X-ray spec-
tra of astrophysical hot (MK temperature regime) plasmas in
the range of 15-18 Å. Due to its closed-shell configuration
with a high ionization potential of 1260 eV, Fe XVII (Ne-like
Fe+16) is a very stable and abundant species under those con-
ditions. Collisional excitation of the 3d → 2p and 3s→ 2p
transitions in this ion generates the strongest observed lines
in the X-ray spectra (for an overview, see (Brown 2008) and
references therein). These, together with less intense L-shell
transitions from Fe in other charge states, e. g., Fe XVI (Na-

Corresponding author: Chintan Shah; Pedro Amaro
chintan@mpi-hd.mpg.de; pdamaro@fct.unl.pt

like Fe+15), provide means for diagnosing the physical con-
ditions of those plasmas (Paerels & Kahn 2003). Therefore,
over many years numerous laboratory measurements have
aimed at providing accurate values of the wavelengths and
relative intensities of L-shell transitions in Fe XV-XIX (May
et al. 2005), Fe XVI (Graf et al. 2009), Fe XVII (Laming et al.
2000; Gillaspy et al. 2011; Beiersdorfer et al. 2002, 2004;
Brown et al. 2006; Shah et al. 2019), Fe XVIII-XXIV (Brown
et al. 2002; Chen et al. 2006), Fe XXI − Fe XXIV (Chen
et al. 2005), Fe XXIV (Gu et al. 1999; Chen et al. 2002), and
Fe XXI-XXIV (Gu et al. 2001). These works have revealed
significant discrepancies with theory; well-known problems
are the 3C/3D line ratio in Fe XVII (Bernitt et al. 2012; Kühn
et al. 2020) and the Fe solar opacity issue (Nagayama et al.
2019). Moreover, it is expected that updated atomic data on
Fe L-shell could resolve disparities among collision mod-
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els used for predicting the Fe abundance (Mao et al. 2019)
in low-temperature (and low-mass) elliptical galaxies (Yates
et al. 2017; Mernier et al. 2018). A recent review of astro-
physical diagnostics of Fe-L lines can be found in Refs. (Gu
et al. 2019; Gu et al. 2020).

Dielectronic recombination (DR) is the dominant photore-
combination channel for Fe XVII in such plasmas. In case
of DR-LMM this means the capture of an electron into a va-
cancy of the M shell with a simultaneous, energetically res-
onant electron L-M excitation. The resulting doubly excited
state can either autoionize, resulting in resonant excitation
((Shah et al. 2019) and (Tsuda et al. 2017) for Fe XVII and
Fe XV-XVII), or radiatively decay, completing the recombi-
nation:

Fe16+(1s22s22p6) + e−

↓
Fe15+∗∗(1s22l53l′3l′′) (1)

↓
Fe15+∗(1s22s22p63l) + hν .

Among the various processes exciting LM emission, DR
produces strong ’satellite’ transitions very close to the main
lines due to the perturbation caused by the added specta-
tor electron (Clementson & Beiersdorfer 2013). Such lines
were seen with the Chandra X-Ray Observatory in spec-
tra from stellar coronae, like Capella and Procyon, and
are used for plasma temperature determination (Beiersdor-
fer et al. 2018; Gu et al. 2020). DR also strongly influ-
ences plasma-ionization equilibrium. It is thus crucial to
accurately know these dielectronic satellites when diagnos-
ing temperatures using collision-radiative models (Savin &
Laming 2002; Dudík et al. 2019), such as AtomDB (Foster
et al. 2012), SPEX (Kaastra et al. 1996), or with the help
of atomic databases like CHIANTI (Dere et al. 2019) and
OPEN-ADAS 1.

Except for direct observation of DR 3l5l′ and 3l6l′ satel-
lites in Fe XXII-XXIV (Gu et al. 2001), no laboratory wave-
lengths and intensities of Fe DR L-shell satellites are avail-
able, as mention in Beiersdorfer et al. (2014). Only recently,
DR cross sections for the 3lnl′ series for Fe XVII were pub-
lished, with the purpose of investigating the 3d → 2p and
3s→ 2p line ratios above collision excitation threshold (Shah
et al. 2019). These data benchmark the SPEX model and
provide constraints on the global fit of Capella spectra (Gu
et al. 2020). Continuing those works, we focus on the DR
3l3l′ (LMM) satellites of Fe XVII, and provide experimental
resonance strengths and rate coefficients. Similar measure-

1 https://open.adas.ac.uk
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Figure 1. (Color online) Time pattern of the electron beam energy
sweeping at (a) FLASH-EBIT (Epp et al. 2010) and (b) PolarX-
EBIT (Micke et al. 2018). The dashed blue lines indicate slow en-
ergy scans between 300 eV and 500 eV with a period of 40 minutes.

ments were previously done for Au (Schneider et al. 1992),
Xe (DeWitt et al. 1992) and more recently for Si (Lindroth
et al. 2020).

In this work, we remeasured previously studied Fe XVII

LMM region by our group (see (Shah et al. 2019)) with
another electron beam ion trap (EBIT), PolarX-EBIT (de-
scribed in (Micke et al. 2018)). By using a modified mea-
surement scheme, we obtained higher electron collision en-
ergy resolution and yielded more accurate values on reso-
nance energies and strengths, compared to previous works.
We also simulated the dynamical charge-state distribution for
the present experimental conditions in order to exclude a pos-
sible large depletion of Fe XVII ions due to DR. Furthermore,
we inferred the electron beam density for both devices, ob-
tained experimental energies and resonance strengths from
the two different measurement schemes, and compared them
with earlier photorecombination studies at the Heidelberg
Test Storage Ring (TSR) (Schmidt et al. 2009).

In addition, our new calculations based on multiconfig-
uration Dirac-Fock and our previous ones based on Flexi-
ble Atomic Code (FAC) are compared with configuration-
interaction predictions by Nilsen (1989) that are compiled
in AtomDB (Foster et al. 2012), spectral modeling code
widely used in the X-ray astrophysics community. Finally,
our experimental and theoretical resonance strengths were
converted to DR rate coefficients and compared with the ones
in OPEN-ADAS dataset and in Zatsarinny et al. (2004) for a
few electron temperatures.
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2. EXPERIMENT

For accurate values of DR intensities, we rely on two
complementary measurements made on two different EBITs.
Previous work with FLASH-EBIT at Max-Planck-Institut
für Kernphysik in Heidelberg is reported in detail in Shah
et al. (2019). We summarize here the method and emphasize
the differences with the new measurements performed with
PolarX-EBIT. In both devices, Fe atoms are injected into the
trap and ionized by a magnetically compressed monoener-
getic electron beam with a radius of tens of micrometers. Its
negative space-charge potential confines the ions, allowing
high stages of ionization to be reached.

The DR-LMM resonances appear at electron energies be-
low the Na-like ionization threshold into Ne-like. This re-
quires to first produce (breed) the Fe XVII of interest before
quickly changing the interaction energy to the values to be
probed, as described below. Since DR recombination de-
pletes the Ne-like population into Na-like if the probe time is
too long, we quantify this small effect in Sec. 4. Our recorded
signal, X-ray emission including the contribution from DR
was observed at 90◦ to the beam axis with a silicon-drift de-
tector (SDD) at both EBITs. Its photon energy-resolution
was around 120 eV full-width-half-maxima (FWHM) at 6
keV.

2.1. FLASH-EBIT measurements

The electron beam energy was at 1.15 keV for a 1 s breed-
ing time, followed by a linear ramp-down from 1.15 to 0.3
keV within 40 ms and a symmetric ramp-up, as shown in
Fig. 1 (a) (Shah et al. 2019), a procedure introduced by
Knapp et al. (1989, 1993) also used in many other experi-
ments, e. g. the recent Refs. (Yao et al. 2010; Xiong et al.
2013; Hu et al. 2013). For such scans, simulations of the ion
population predict a negligible DR depletion of the Fe XVII

population (seen Sec. 4).
Every 40 s the ion inventory of the trap was dumped and

regenerated to avoid contamination by W and Ba ions that
take typically few minutes to accumulate. FLASH-EBIT
uses superconductive coils inducing a magnetic field up to
6 T (Epp et al. 2010) that strongly compresses the electron
beam. This beam efficiently produces ions up to the high-
est charge state allowed by the ionization threshold, in this
case Ne-like Fe XVII. The residual pressure at the trap cen-
ter stays below 10−12 mbar, making charge-exchange with
residual gas negligible. Therefore, a high-purity sample of
Fe xvii ions is prepared (Shah et al. 2019). The beam current
was adjusted according to ne ∝ Ie/

√
E to keep the electronic

density ne constant, having 20 mA at the breeding energy.
The measured electron-energy spread was ∼5 eV.

2.2. PolarX-EBIT measurements

New measurements used PolarX-EBIT, operating at PE-
TRA III, Deutsches Elektronen-Synchrotron (DESY), Ham-
burg. It uses an off-axis electron gun and a magnetic field
at trap up to 0.86 T (Micke et al. 2018) produced by an as-
sembly of permanent magnets. It operates at room tempera-
ture and had at the time of these measurements a rather poor
vacuum (10−8 mbar) which could increase the recombina-
tion from Ne-like to Na-like ions through charge exchange
process. As observed in Sec. 4, the presence of Na-like
ions is not significant. PolarX-EBIT was also run at low
beam current, in the present case 2 mA, and thus reached
a lower (3.5 eV FWHM at 400 eV) electron-energy spread
than FLASH-EBIT. The measurement scheme is different
(see Fig. 1 (b)): here, the electron beam varies according to
a square-wave scan, instead of a saw-tooth scan. A breeding
time of 0.4 s at 1 keV is sufficient to reach Fe XVII popu-
lation equilibrium, according to both prospective measure-
ments and simulations. The probe energy was maintained for
1 s and varies slowly (minutes) between 300 eV and 500 eV.
The electron energy is changed between breeding (constant)
and probing values (slowly scanned) by means of a fast (tens
of nanoseconds) high-voltage switch. The time evolution of
the ion population can thus be observed directly.

3. CALCULATIONS

Dielectronic recombination (DR) is a resonant process in-
volving two steps. At first, a dielectronic capture of a free
electron into an initial ionic state i excites a bound elec-
tron and forms a doubly excited (or intermediate) state d.
Then, this state may radiatively decay into a final state f ,
thereby completing the DR process. Following our previ-
ous works (Shah et al. 2019; Amaro et al. 2017; Shah et al.
2018), we calculate cross sections and resonant strengths in
the isolated-resonance approximation, i. e. no quantum in-
terference between DR resonances (Pindzola et al. 1992),
or with non-resonant recombination channels is considered
(Zatsarinny et al. 2006; González Martínez et al. 2005;
Tu et al. 2015, 2016). This contribution only influences
weak resonances as been previously shown in Pindzola et al.
(1992); Zatsarinny et al. (2006). In this approximation, the
DR strength is given by

SDR
id f =

∫ ∞

0
σDR

id f (Ee)dEe

=
π2h̄3

meEid

gd

2gi

Aa
diA

r
d f∑

i′ A
a
di′ +

∑
f ′ A

r
d f ′
, (2)

where σDR
id f (Ee) is the DR cross section as function of the free

electron kinetic energy Ee. Eid is the resonant energy of the
electron-ion recombination between state i and d, with re-
spective statistical weights gi and gd , and me is the electron
mass. The autoionization rates Aa

di and radiative Ar
d f were
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Figure 2. Top plot: theoretical resonant strengths obtained from FAC. Abscissa: electron beam energy; ordinate: emitted wavelength. Ex-
perimentally resolved spectral lines are labelled as s1, s2, p1, p2, d1, d2, d3 and d4, where the first letter is the l of the spectator electron in
the 2p53l3d→ 2p63l transition. The circle diameter shows the relative resonance strength of the channels contributing to these spectral lines.
Projection onto both axes are displayed in bottom left (b) and right (c) plots, respectively, and compared with our (MCDF) and Nilsen’s (Nilsen
1989) calculations.

calculated with both Flexible Atomic Code (FAC) and multi-
configuration Dirac-Fock (MCDF) methods.

The details of the FAC calculation are given in (Shah et al.
2019). FAC (Gu 2008) provides atomic radial wave func-
tions and respective eigenvalues obtained in a configuration-
interaction method with orbitals from a modified electron-
electron central potential. This code uses the Distorted Wave
(DW) Born approximation for calculating the autoionization
rates. Besides the standard configuration-interaction module
of FAC, we also considered the many-body perturbation the-
ory (MBPT) (Gu et al. 2006) option of FAC for predicting
energies and rates.

Calculations of the energies for the initial, intermediate
and final states as well as their respective transition and au-
toionization rates were also obtained with the Multiconfig-
uration Dirak Fock General Matrix Elements (MCDFGME)
code of Desclaux and Indelicato (Desclaux 1975; Indelicato
et al. 1987; Indelicato & Desclaux 1990). Details of the
method, including the Hamiltonian and the variational pro-
cesses employed for retrieving wavefunctions can be found
in (Desclaux 1993; Indelicato 1995). In the present cal-
culations, the electronic correlation was restricted to mix-

ing all states of a given j within an intermediate coupling
scheme. Autoionization rates were evaluated using Fano’s
single-channel discrete-continuous expansion, which allows
for non-orthogonal basis sets between the initial and fi-
nal states (see Howat et al. (1978) for details). Figure 2
shows our calculations of DR resonant strengths obtained us-
ing FAC and the MCDF method, as well as a comparison
with Nilsen (1989) values. In the case of DR LMM, most
resonances decay through only one strong radiative channel
(2p53l3d → 2p63l), see Fig. 2 (a). We predicted with FAC
the main spectral features that can be experimentally resolved
in both EBITs. We found eight spectral lines that have either
a single resonance contribution, like s1, or a blend of reso-
nances, such as p1 or d1. Note that in our line nomenclature
we use the l of the 3l spectator electron for labeling. The
observed line energies and strengths are compared with all
theoretical predictions and available literature. Details are
given in Appendix A.

For spectral modeling, DR rate coefficients are convenient
parameters. They can be obtained by integrating the corre-
sponding DR resonance strengths over a Maxwellian velocity
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distribution of the electrons (Gu 2003),

αDR
i f =

me√
πh̄3

(
4Ey

KBTe

)3/2

a3
0

∑

d

EidSDR
id f e
− Eid

KBTe , (3)

where Ey is the Rydberg constant in energy units, a0 the Bohr
radius, KB the Boltzmann constant, and Te the electron tem-
perature. A comparison between the present rate coefficients
and those available in OPEN-ADAS database is shown in
Sec. 5.

4. SIMULATIONS OF THE CHARGE-STATE
DISTRIBUTION

To measure DR resonance strengths for a given ionic
species, it is necessary to know the charge state distribu-
tion of the ions trapped in the EBIT. This is mostly deter-
mined by the following charge-changing: collisional ioniza-
tion (CI), radiative recombination (RR), dielectronic recom-
bination (DR), and charge exchange (CX). Their competi-
tion, depending on the measurement conditions and methods
determines the overall charge-state distribution. Here, we
simulate them following the work of Penetrante et al. (1991)
for computing the time evolution of the ion population in the
different charged states in an EBIT by using Z + 1 steady-
state rate equations,

dNq

dt
=neve

[
Nq−1σ

CI
q−1 + Nq+1

(
σRR

q+1 +σDR
q+1

)

−Nqσ
CI
q −Nq

(
σRR

q +σDR
q

)]

−N0Nqσ
CX
q vq + N0Nq+1σ

CX
q+1vq+1.

(4)

Here, Nq denotes the population of charge state q, ne the elec-
tron density, ve the free-electron velocity, σ the cross sec-
tion associated to a specific atomic process and v̄q the mean
(Maxwellian) velocity of an ion with charge q. The RR total
cross sections for Mg-like, Na-like, and Ne-like Fe ions un-
der the present experimental conditions were obtained using
FAC, taking into account the principal quantum numbers up
to n = 15. For other Fe charge states, we used the analyti-
cal equation of Kim & Pratt (1983) to obtain RR cross sec-
tions. CI cross sections from the measurements performed
at TSR (Linkemann et al. 1995; Hahn et al. 2013; Bernhardt
et al. 2014) for Mg-like, Na-like, and Ne-like Fe ions are also
used. These include, apart from the usual direct CI chan-
nel, also resonant ionization processes, such as excitation
and subsequent autoionization, which become strong starting
from the collision excitation threshold (∼750 eV). For the re-
maining charge states, CI cross sections were estimated using
the Lotz formula (Lotz 1968). As for the CX cross sections
used in our simulations, we applied the analytical expression
from Janev et al. (1983) to obtain them. The CX rate is pro-
portional to the residual gas density within the trap region.
Thus, by reducing the flow of the iron pentacarbonyl molec-
ular beam in our experiment, we can enhance the population
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Figure 3. (Color online) (a) Spectral maps observed at FLASH-
EBIT by scanning upwards and downwards the electron beam en-
ergy (see Fig. 1 (a) for timing pattern). Simulations of Fe charge-
state distributions as a function of the electron beam energy for
effective electron densities of (b) 2.8× 1012 cm−3 and (c) 2.8×
109 cm−3. (d) Experimental ratio between downwards and up-
wards scans compared with simulations for different effective elec-
tron densities.

of Fe in higher charge states. For these experiments, it is very
important to choose the ratio of ionization time to recombi-
nation time appropriately to the simulation parameters. DR is
a very strong resonant process; within the resonance width it
has cross sections orders of magnitude higher than other col-
lisional processes. This means for our measurement scheme
that the Ne-like population in the trap should not be signif-
icantly depleted towards lower charge states by the required
electron beam energy across the DR resonances. Therefore,
we perform simulations for quantifying this depletion. We
calculate the corresponding DR rates for Mg-like, Na-like,
and Ne-like Fe ions using FAC. Principal quantum numbers
of the recombined state up to n = 30 for Ne-like Fe and up
to n = 10 for all other relevant ions are taken into account in
our calculations, as well as radiative cascades for all relevant
atomic processes. With these calculations we then generate
synthetic X-ray emission spectra.

4.1. FLASH-EBIT: Simulated charge-state distributions

Using Eq. 4 and scanning parameters presented in Fig. 1,
we simulated the time evolution of the charge state distri-
bution during the upward and downward electron beam en-
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Figure 4. (Color online) Theoretical resonant strengths for Ne-like,
Na-like and Mg-like Fe ions and simulated fluorescence yield under
charge-exchange rates of 0.229 s−1 and 0.046 s−1 in comparison
with FLASH-EBIT data.

ergy scans in our FLASH-EBIT measurements (Shah et al.
2019), see Fig. 3(a). First, we investigated the effect of the
electron-beam density on the Ne-like, Na-like, and Mg-like
Fe trapped-ion populations. The panel (b) of Fig. 3 shows an
extreme case of electron densities of ne ∼ 1012 cm−3, where
the Ne-like population is drastically depleted into the Na-like
and Mg-like ones due to strong DR resonances. In contrast,
at ne ∼ 109 cm−3, this effect found to be negligible (panel
(c)). In panel (d) of Fig. 3, we display the experimental ra-
tio of the rapid upward and downward energy scans, which
shows a negligible effect of the scanning direction on Fe xvii
ion density in the trap. This stands in contrast with other
experiments using slow scans, where the two scanning di-
rections show clear differences in the distribution of charge
states. We compared our present experimental ratio with sim-
ulations for different electron densities and found out that
below 5×109 cm−3 only a negligible charge-state depletion
due to LMM DR resonances takes place.

Second, we investigated the influence of CX on the Fe xvii
ion population distibution. FLASH-EBIT has a four-stage
differential pumping system for injecting an atomic or molec-
ular beam into the trap, where the ions are generated. The
first two stages operate at room temperature at pressures of
∼ 8× 10−9 mbar. Two additional stages operate cryogeni-
cally at 45 K and 4 K, and further constrain the gas flow into
the trap region. This brings the residual gas pressure well
below ≤ 10−11 mbar at the trap center and tremendously re-
duces the CX rates. For the study of a possible influence
of CX in our measurements, we simulated the ion popula-
tion and generated synthetic X-ray spectra for CX rates of
0.23 s−1 and 0.05 s−1, see Fig. 4. When Fe XVI and Fe XV
ions are produced by CX, distinct DR resonances of these
ions appear at beam energies of 380 eV and 440 eV. Since
those resonances were not observed, we conclude that un-
der the present conditions the dominant Ne-like Fe ion pop-
ulation was maintained during the FLASH-EBIT measure-
ments (Shah et al. 2019).

Figure 5. (Color online) (a) Measured fluorescence yield as a
function of electron beam energy and probing time at Polar-X EBIT.
(b) Simulation of the DR emission at the experimental conditions.

4.2. PolarX-EBIT: Simulated charge-state distributions

We also simulated the time evolution of the charge state
distribution and its effect on the observed LMM DR X-ray
emission for PolarX-EBIT conditions. With the technique
shown in Fig. 1 (b), we can also measure these quantities
while scanning the electron beam energy. We compare mea-
surement and simulation in Fig. 5. For probing times of less
than 100 ms, we observe a dominant population of Ne-like
ions with a small population of Na-like and Mg-like Fe ions.
Slightly higher intensities of Na-like and Mg-like LMM reso-
nances are seen in Fig. 5 (also see Fig. 4 for resonance energy
positions). Simulations yield populations of 0.922, 0.075,
and 0.003 for Ne-like, Na-like, and Mg-like Fe ions, respec-
tively, at the breeding electron beam energy of 1.2 keV. The
most intense Ne-like resonances exhibit decay times between
0.07 and 0.13 s in our experiment, while Na-like resonances
(e.g. at 345 eV, 380 eV, and 435 eV beam energies) reach
their maxima between 0.2 and 0.4 s as the Ne-like population
starts to deplete. For probing times longer than 1 s, the spec-
tra are dominated by DR emission from Mg-like and Al-like
Fe populations. We also observe a constant x-ray emission
background in our experiment, which cannot be explained by
simulations under any conditions of electron density and CX
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Figure 6. Experimental results from (a) FLASH-EBIT, (b) PolarX-
EBIT, and (c) TSR measurements, respectively. Black curves rep-
resent the experimental spectra, the fitting model is shown in blue.
Vertical lines mark position and amplitude of each DR LMM reso-
nance (red: fixed energies, green: free energies in the fitting proce-
dure).

rate. It might be attributed to the delayed photon emission
from metastable states. However, no exponential decay of
the signal was found in FLASH-EBIT data. Another possi-
ble source could be electronic ADC noise caused by switch-
ing between power supplies.

Finally, when considering various recombination data ei-
ther from FAC or MCDF or from TSR measurements in
the charge state distribution simulations, we did not see any
change in the final synthetic spectrum. Also, this does not
change our conclusion that neither spurious charge states
other than Ne-like Fe nor charge-state depletion due to DR
significantly affect any of the two measurements.

5. DATA ANALYSIS

Experimental spectra observed in FLASH-EBIT, PolarX-
EBIT, and TSR measurements are shown in Fig. 6. In the
case of PolarX-EBIT, as explained in Sec. 4, we have only

selected the first 50 ms of data in order to avoid possible
charge state depletion due to the DR and CX processes, see
Fig. 5. The strong and well-isolated DR resonances were
identified in Sec. 3, which are clearly resolved with an ex-
cellent collision energy resolution provided by both EBITs.
The TSR data have a significantly better resolution than the
EBIT results. However, for this comparison purpose, we con-
volved them with a Gaussian to match the EBIT resolution
(for a complete data set, see (Schmidt et al. 2009; Shah et al.
2019)). First, we calibrated the electron beam energy axis
using the theoretical values of the p1 and d3 resonances ob-
tained from FAC and MCDF. The experimental spectra were
then fitted with a linear combination of Gaussian functions
with widths given by the apparative resolution, as the nat-
ural widths of LMM DR resonances are much smaller than
the electron beam energy spread. We assumed a linear back-
ground from RR continua in our fitting procedure. An elec-
tron beam energy resolution of 5.4 eV and 3.5 eV was ob-
tained from the well-isolated p1 resonance at a beam en-
ergy of 360 eV for FLASH-EBIT and PolarX-EBIT, respec-
tively. According to our calculations, there are more than
∼200 LMM DR resonances within the experimental scan-
ning range. Therefore, to simplify the fit, (i) only resonances
separated by more than half the full-width at half maximum
(FWHM) of the electron beam energy spread were individu-
ally considered, (ii) the centroids of the eight strongest res-
onances were set as free parameters, (iii) the positions of
weak and blended resonances were fixed and bundled into
a single one, and (iv) the widths for all resonances were
fixed to the respective electron beam energy spread. Weak
and blended resonances near strong ones can influence their
fitted positions and amplitudes. To estimate this effect, we
randomly varied positions of such weak features within half
the FWHM of a DR resonance, and fitted the spectrum again
with the procedure described above. These results were then
compared with those of previous fits, and the differences be-
tween them were quadratically added to final uncertainties
presented in Table 1 and 2.

The DR resonance strengths were calibrated against the
DR resonance d3 at 412 eV beam energy in both EBIT spec-
tra. A cross section calibration using the RR emission, as
in works of (Schneider et al. 1992; Brown et al. 2006; Chen
2008), was not possible in any of two measurements due to
insufficient detector resolution, pileup, and contamination of
the RR band (cf. Fig. 1 of Shah et al. (2019)). Details of
calibration are explained in our previous work (Shah et al.
2019). In EBITs, the unidirectional electron beam causes
anisotropic and polarized x-ray emission. We observed pho-
tons at 90◦ with respect to the electron beam. We thus apply
a correction factor defined as W (90◦) = 3/(3− P), where
P is the polarization for a specific radiative transition (Shah
et al. 2018). The calculated polarization values are taken
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Figure 7. PolarX-EBIT and TSR measurements and theoretical to-
tal DR cross sections obtained using FAC, FAC-MBPT, MCDF, as
well as literature values from Nilsen (1989). Calculations were con-
volved with a Gaussian of 4.5 eV FWHM for the comparison. The
top scatter plot compares theory and experiment.

from Shah et al. (2019), which also agree with measurements
performed by Chen et al. (2004). With this correction we
obtain the total cross sections using Stotal = 4π I90◦/W (90◦)
relation, where I90◦ is the observed DR intensity.

6. RESULTS AND DISCUSSION

Table 1 lists the resonant energies inferred from each mea-
surement. For the comparison in Fig. 7, we also fitted the
synthetic spectra from FAC, FAC-MBPT, and MCDF with
the same procedure that was applied to the experimental

spectra. Typically, FAC and FAC-MBPT energy positions
show less than ∼0.3% relative departures from the experi-
mental values, while MCDF values only agree within ∼1%.
Distinct disagreements of MCDF predictions are visible for
the s1, s2 and p2 resonances. DR resonances from these fea-
tures show a larger energy splitting in the MCDF predic-
tions than in FAC and FAC-MBPT ones. The opposite ef-
fect was seen in other two distinct features, s1 and s2, where
energy separations predicted by MCDF were smaller than
the FAC, FAC-MBPT, and experimental values. Moreover,
a clear resonance next to the d3 line at 425 eV is not pre-
dicted by MCDF. Overall, it can be stated that FAC and FAC-
MBPT energy predictions provide better agreement with ex-
periments than MCDF. The reason behind this might be that
the MCDFGME package we have used in the present work
could not generate reliable Auger rates with correlation to
other configurations beyond minimal coupling, which would
be necessary to improve the energy centroids.

Table 2 presents experimentally inferred total resonant
strengths. For the resonance strengths determinations with
FLASH-EBIT and PolarX-EBIT, we estimate total uncer-
tainties on the level of ∼20% and ∼17%, respectively. The
largest contributions to the error budget arise from the influ-
ence of blended weak DR features. For the TSR results, we
assume the quoted uncertainty of 20% from the original work
by Schmidt et al. (2009). By combining the three indepen-
dent measurements, we obtain final values for the resonance
strengths SEXP and their respective uncertainties, found to be
at the level of ∼10%. Fig. 7 shows a comparison with pre-
dictions by FAC, FAC-MBPT, MCDF, and by Nilsen (1989).
Overall, the resonance strength predictions are in good agree-
ment with the measurements. However, s1, s2, and p2 dis-
agree with MCDF theory, as noted earlier. Furthermore, no
calculations can effectively predict the resonance strength of
the p2 feature. EBIT and TSR data also disagree here; since
simulations seem to exclude spurious features at this energy
in EBITs, at present we do not have an explanation for this.

In addition to DR resonance strengths, we also obtained
DR rate coefficients using Eq. (3) for different plasma elec-
tron temperatures. Table 3 lists our experimentally inferred
and theoretical DR rate coefficients from SEXP together with
those available in the OPEN-ADAS and AtomDB databases.

As usual in OPEN-ADAS, we identified and compared our
DR rates by the respective final-state configuration of the Na-
like Fe ion. Combined total rates for the 3s, 3p, and 3d final
configurations are presented in Tab. 3. Since some minor
final-state configurations are shared by the main experimen-
tal spectral features only experimental total rates are given in
Table 3. Our experimental rate coefficients generally agree
within ∼3–8% with the theoretical FAC-MBPT and MCDF
rates. However, we found discrepancies with the correspond-
ing DR rates in the OPEN-ADAS database. It overestimates
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Table 1. Experimental and theoretical (FAC-CI, FAC-MBPT, and MCDF) DR resonance energies. Round brackets: relative difference in
percent between measured and theoretical energy positions, where each measurement is independently calibrated with p1 and d3 values from
respective theories. CE stands for combined energy values obtained by fitting the synthetic spectra (all energies given in eV).

Label EFLASH EPolarX ETSR CEFAC CEFAC-MBPT CEMCDF

s1 322.8±0.9 321.5±0.03 323.2±0.2 325.64 (-0.15%) 322.24 (-0.23%)

s2 330.7±0.3 330±0.03 331.2±0.1 334.75 (-0.31%) 330.65 (-0.18%)

p1 358.3±0 361.52 357.8 359.60

p2 364.1±0.3 364.7±0.02 364.73±0.1 369.18 (-0.2%) 365.31 (-0.17%) 364.93 (0.62%)

371.52

d1 395.7±0.4 394.1±0.03 394.7±0.03 397.71 (0.05%) 394.44 (-0.08%) 395.95 (0.005%)

d2 401.9±0.3 401.6±0.02 402.6±0.1 404.87 (0.13%) 401.32 (0.06%) 402.95 (0.01%)

d3 409.14±0.04 412.37 408.55 410.18

Table 2. Experimental resonant strengths (10−20cm2eV) compared to values obtained with FAC, MCDF (this work) and reported by Nilsen
(1989). Listed experimental cross sections were calibrated with the FAC-MBPT theoretical value of the d3 feature. Round brackets: relative
difference in percent between measured and theoretical resonant strengths, where each measurement is independently calibrated with the d3

value from respective theories.

Label SFLASH SPolarX STSR SEXP SFAC SFAC-MBPT SMCDF Nilsen (1989)

s1 23±5 26±4 28±6 25±3 33.99 (-31%) 28.72 (-13%) 8.17 (71%) 36.95 (-35%)

s2 18±4 21±4 25±5 21±2 27.87 (-31%) 23.28 (-12%) 26.27 (-10%) 24.24 (-7%)

p1 87±16 82±13 98±20 87±9 96.62 (-8%) 85.18 (2%) 84.4 (15%) 73.58 (22%)

p2 34±7 41±8 35±7 37±4 29.53 (21%) 24.12 (34%) 73.94 (-83%) 17.95 (54%)

d1 53±10 48±8 54±11 50±5 41.67 (20%) 47.29 (7%) 53.63 (6%) 21.68 (60%)

d2 76±14 63±11 64±13 67±7 74.29 (-9%) 68.44 (-3%) 60.2 (19%) 56.85 (20%)

d3 90±18 87±9 88.76 (0.3%) 86.14 (1%) 101.96 (-4%) 95.84 (-2%)

rates by as much as ∼7–60% for the total rates, in compar-
ison with our experimental and theoretical results. Similar
discrepancies were found with rates from the AtomDB spec-
tral modeling database (taken from Nilsen (1989)), which are
∼30% lower than the experimental values. The total DR rates
obtained with AUTOSTRUCTURE code (Zatsarinny et al.
2004) show slightly lesser overestimation (∼10%).

7. SUMMARY AND CONCLUSIONS

The DR LMM resonances for Fe xvii ions have been mea-
sured using two different EBITs and compared with results
obtained at the Test Storage Ring (Schmidt et al. 2009). We
simulated the time-dependent charge-state distribution to rule
out systematic effects due to the presence of spurious charge
states and depletion of charge states due to DR that may af-
fect our resonance strength measurements. The results ex-
tracted from all three experiments were compared with cal-

culations performed using FAC, FAC-MBPT, and MCDF
codes. Among them, FAC-MBPT shows the best agreement
with the experiments. We also derive LMM DR rate coeffi-
cients from our experimental data for several temperatures.
Our experimental rates show significant discrepancies with
the OPEN-ADAS database and the AtomDB spectral mod-
eling package, which are frequently used for the analysis of
astrophysical spectra. Such discrepancies highlight how cru-
cial laboratory measurements are for testing spectral mod-
els. This not only important in the perspective of upcom-
ing X-ray satellite missions XRISM (Tashiro et al. 2018) and
Athena (Barret et al. 2016), which will soon provide high-
resolution spectra using X-ray microcalorimeters (Durkin
et al. 2019), but also for interpreting available high-resolution
spectra from the operating Chandra and XMM-Newton obser-
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Table 3. Experimental DR rate coefficients (×10−13cm3s−1) for a few electron temperatures Te (eV) compared to values obtained with OPEN-
ADAS, FAC-MBPT, MCDF, by Nilsen (1989) and by Zatsarinny et al. (2004). The label indicates the orbital of the decoupled electron in the
final state after DR emission.

Label Te Exp OPEN-ADAS FAC-MBPT MCDF Nilsen (1989) Zatsarinny et al. (2004) a

s 100 5.88 7.69 5.45 5.65

300 11.7 12.8 9.71 9.51

2000 1.97 1.89 1.48 1.39

p 100 14.0 15.7 14.2 8.97

300 42.8 31.9 30.0 19.1

2000 9.11 5.12 4.86 3.08

d 100 13.5 15.4 13.4 8.94

300 52.6 41.3 37.5 25.9

2000 12.2 7.46 6.86 4.75

total 100 36±2 33.4 38.8 33.1 23.6 38.0

300 81±5 107.1 86.0 77.2 54.5 90.3

2000 14±1 23.3 14.5 13.2 9.22 15.3

a Only total DR rates are provided.

vatories (Gu et al. 2020) needed for reliably plasma diagnos-
tics (Beiersdorfer et al. 2014, 2018).
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APPENDIX

A. DR CALCULATIONS FOR F e XVII

Table 4 contains the resonance energies, strengths for the main spectral features, which were benchmarked within this work.
The emitted wavelengths of the decay channels are listed in Table 5 with additional data provided by Nilsen (1989) and Beiers-
dorfer et al. (2014).

The complete set of resonance energies, strengths, and emitted wavelengths used for the synthetic spectra shown in Fig. 7, as
well as for calculation of DR rates listed in Table 3, are available online as machine-readable tables.
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Table 4. Theoretical values of the peak resonant energies E (eV) and strengths S (10−20cm2eV) obtained in this work with FAC, FAC-MBPT
and MCDF. The resonant and final states are given in j-j and LSJ notations.

Label Intermediate state Final state EFAC EMBPT EMCDF SFAC SMBPT SMCDF

[((2p2
1/22p3

3/2)3/23s1/2)23d5/2]1/2
4D1/2 3s1/2

2S1/2 313.06 310.23 313.08 6.04 6.42 2.74

s1 [((2p1/22p4
3/2)1/23s1/2)13d5/2]3/2

2D3/2 3s1/2
2S1/2 325.70 322.21 321.98 31.91 29.54 7.34

s2 [((2p1/22p4
3/2)1/23s1/2)13d3/2]3/2

2P3/2 3s1/2
2S1/2 334.62 330.72 328.60 25.89 23.22 20.61

[((2p2
1/22p3

3/2)3/23p1/2)23d5/2]3/2
4P3/2 3p1/2

2P1/2 341.50 338.94 339.95 1.04 1.11 0.24

[((2p2
1/22p3

3/2)3/23p3/2)03d5/2]5/2
2D5/2 3p3/2

2P3/2 354.47 351.41 352.30 6.16 7.99 4.59

[((2p1/22p4
3/2)1/23p1/2)13d5/2]5/2

4F5/2 3p3/2
2P3/2 355.8 353.04 354.05 5.14 4.95 0.04

p1 [((2p1/22p4
3/2)1/23p1/2)13d3/2]3/2

4F3/2 3p1/2
2P1/2 353.65 355.05 352.28 1.06 9.70 0.16

[((2p1/22p4
3/2)1/23p1/2)13d3/2]3/2

4F3/2 3p3/2
2P3/2 353.65 355.05 352.28 0.008 0.22 0.32

[((2p1/22p4
3/2)1/23p3/2)23d5/2]5/2

2D5/2 3p3/2
2P3/2 358.36 355.09 356.22 0.03 0.61 0.48

[((2p1/22p4
3/2)1/23p1/2)13d3/2]3/2

2D3/2 3p1/2
2P1/2 361.25 357.38 358.83 48.50 47.02 38.59

[((2p2
1/22p3

3/2)3/23p3/2)23d5/2]5/2
2D5/2 3p3/2

2P3/2 361.67 358.04 359.77 35.26 34.74 30.35

[((2p1/22p4
3/2)1/23p1/2)13d3/2]1/2

2S1/2 3p1/2
2P1/2 361.71 358.42 367.70 12.90 12.36 12.68

p2 [(2s1/22p2
1/22p4

3/2)1/23s2
1/2]1/2 3p3/2

2P3/2 364.85 361.80 5.56 4.45

[((2p1/22p4
3/2)1/23p3/2)23d3/2]1/2

2P1/2 3p3/2
2P3/2 367.42 363.36 364.06 10.77 11.87 19.61

[((2p1/22p4
3/2)1/23p3/2)13d3/2]5/2

2D5/2 3p3/2
2P3/2 368.99 364.74 371.33 8.69 4.43 29.69

[((2p1/22p4
3/2)1/23p3/2)13d5/2]3/2

2D3/2 3p3/2
2P3/2 369.50 365.35 366.12 12.17 11.39 16.64

d1 [((2p2
1/22p3

3/2)3/23d3/2)23d5/2]5/2
4G5/2 3d3/2

2D3/2 396.39 393.3 396.73 9.42 11.46 11.37

[((2p2
1/22p3

3/2)3/23d2
5/2]7/2

4D7/2 3d5/2
2D5/2 397.93 394.65 396.22 11.89 13.96 12.55

d2 [((2p1/22p4
3/2)1/23d2

5/2]7/2
2G7/2 3d5/2

2D5/2 404.14 400.95 402.46 13.45 12.08 11.92

[((2p1/22p4
3/2)1/23d3/2)23d5/2]5/2

2F5/2 3d3/2
2D3/2 404.45 401.05 402.21 10.19 24.19 1.33

[((2p1/22p4
3/2)1/23d3/2)23d5/2]5/2

2F5/2 3d5/2
2D5/2 404.45 401.05 402.21 7.00 6.27 1.78

[((2p1/22p4
3/2)1/23d2

3/2]5/2
2F5/2 3d3/2

2D3/2 405.22 401.98 403.14 41.48 23.62 35.91

d3 [((2p1/22p4
3/2)1/23d2

5/2]1/2
2P1/2 3d3/2

2D3/2 411.16 407.57 408.61 6.25 7.53 9.59

[((2p1/22p4
3/2)1/23d3/2)13d5/2]7/2

2F7/2 3d5/2
2D5/2 411.90 407.96 410.07 60.63 58.13 52.73

[((2p1/22p4
3/2)1/23d3/2)13d5/2]5/2

2D5/2 3d5/2
2D5/2 412.85 408.75 410.29 14.74 13.79 16.84

[((2p1/22p4
3/2)1/23d3/2)13d5/2]3/2

2P3/2 3d3/2
2D3/2 415.20 411.12 412.39 12.26 12.66 17.84

[((2p1/22p4
3/2)1/23d3/2)13d5/2]3/2

2P3/2 3d5/2
2D5/2 415.20 411.12 412.39 15.55 16.92 18.24

[((2p1/22p4
3/2)1/23d2

3/2]1/2
2P1/2 3d3/2

2D3/2 420.27 416.73 415.67 6.01 5.39 7.49
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Table 5. Theoretical values of emitted wavelengths (Å) obtained in this work with FAC, FAC-MBPT, and MCDF. The resonant and final states
are given in j- j and LSJ notations. Respective data provided by Nilsen (1989) and by Beiersdorfer et al. (2014) are also listed for comparison.

Label Intermediate state Final state WFAC WFAC-MBPT WMCDF Nilsen (1989) Beiersdorfer et al. (2014)

[((2p2
1/22p3

3/2)3/23s1/2)23d5/2]1/2
4D1/2 3s1/2

2S1/2 15.47 15.52 15.46 15.52 15.49

s1 [((2p1/22p4
3/2)1/23s1/2)13d5/2]3/2

2D3/2 3s1/2
2S1/2 15.23 15.29 15.29 15.28 15.27

s2 [((2p1/22p4
3/2)1/23s1/2)13d3/2]3/2

2P3/2 3s1/2
2S1/2 15.06 15.13 15.17 15.12 15.11

[((2p2
1/22p3

3/2)3/23p1/2)23d5/2]3/2
4P3/2 3p1/2

2P1/2 15.59 15.63 15.61 15.58

[((2p2
1/22p3

3/2)3/23p3/2)03d5/2]5/2
2D5/2 3p3/2

2P3/2 15.38 15.44 15.42 15.63

[((2p1/22p4
3/2)1/23p1/2)13d5/2]5/2

4F5/2 3p3/2
2P3/2 15.36 15.41 15.39 15.41 15.41

p1 [((2p1/22p4
3/2)1/23p1/2)13d3/2]3/2

4F3/2 3p1/2
2P1/2 15.35 15.32 15.37 15.40 15.30

[((2p1/22p4
3/2)1/23p1/2)13d3/2]3/2

4F3/2 3p3/2
2P3/2 15.40 15.38 15.42 15.45

[((2p1/22p4
3/2)1/23p3/2)23d5/2]5/2

2D5/2 3p3/2
2P3/2 15.26 15.37 15.35 15.37

[((2p1/22p4
3/2)1/23p1/2)13d3/2]3/2

2D3/2 3p1/2
2P1/2 15.21 15.27 15.25 15.26 15.26

[((2p2
1/22p3

3/2)3/23p3/2)23d5/2]5/2
2D5/2 3p3/2

2P3/2 15.25 15.31 15.28 15.55 15.29

[((2p1/22p4
3/2)1/23p1/2)13d3/2]1/2

2S1/2 3p1/2
2P1/2 15.20 15.26 15.08 15.25 15.07

p2 [(2s1/22p2
1/22p4

3/2)1/23s2
1/2]1/2 3p3/2

2P3/2 15.19 15.24 15.23 15.24

[((2p1/22p4
3/2)1/23p3/2)23d3/2]1/2

2P1/2 3p3/2
2P3/2 15.14 15.21 15.20 15.19 15.19

[((2p1/22p4
3/2)1/23p3/2)13d3/2]5/2

2D5/2 3p3/2
2P3/2 15.11 15.18 15.07 15.17

[((2p1/22p4
3/2)1/23p3/2)13d5/2]3/2

2D3/2 3p3/2
2P3/2 15.10 15.17 15.16 15.20 15.16

d1 [((2p2
1/22p3

3/2)3/23d3/2)23d5/2]5/2
4G5/2 3d3/2

2D3/2 15.48 15.53 15.47 15.54 15.50

[((2p2
1/22p3

3/2)3/23d2
5/2]7/2

4D7/2 3d5/2
2D5/2 15.45 15.51 15.49 15.52 15.49

d2 [((2p1/22p4
3/2)1/23d2

5/2]7/2
2G7/2 3d5/2

2D5/2 15.34 15.39 15.37 15.40 15.37

[((2p1/22p4
3/2)1/23d3/2)23d5/2]5/2

2F5/2 3d3/2
2D3/2 15.32 15.38 15.36 15.38

[((2p1/22p4
3/2)1/23d3/2)23d5/2]5/2

2F5/2 3d5/2
2D5/2 15.33 15.39 15.37 15.39

[((2p1/22p4
3/2)1/23d2

3/2]5/2
2F5/2 3d3/2

2D3/2 15.31 15.36 15.35 15.37 15.35

d3 [((2p1/22p4
3/2)1/23d2

5/2]1/2
2P1/2 3d3/2

2D3/2 15.20 15.26 15.24 15.26 15.24

[((2p1/22p4
3/2)1/23d3/2)13d5/2]7/2

2F7/2 3d5/2
2D5/2 15.19 15.26 15.22 15.25 15.23

[((2p1/22p4
3/2)1/23d3/2)13d5/2]5/2

2D5/2 3d5/2
2D5/2 15.17 15.24 15.22 15.23 15.22

[((2p1/22p4
3/2)1/23d3/2)13d5/2]3/2

2P3/2 3d3/2
2D3/2 15.12 15.19 15.17 15.35 15.18

[((2p1/22p4
3/2)1/23d3/2)13d5/2]3/2

2P3/2 3d5/2
2D5/2 15.13 15.20 15.18 15.36 15.18

[((2p1/22p4
3/2)1/23d2

3/2]1/2
2P1/2 3d3/2

2D3/2 15.03 15.09 15.11 15.09 15.08
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