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The Numerial Solution of Linear Multi-termFrational Di�erential Equations: Systems ofEquationsJohn T. Edwards, Neville J. Ford 1 and A. Charles SimpsonMathematis Department, Chester College, Parkgate Road, Chester, CH1 4BJ,UK.John Edwards and Neville Ford are members of the Manhester Centre forComputational Mathematis.AbstratIn this paper we show how the numerial approximation of the solution of a linearmulti-term frational di�erential equation an be alulated by redution of theproblem to a system of ordinary and frational di�erential equations eah of orderat most unity. We begin by showing how our method applies to a simple lass ofproblems and we give a onvergene result. We solve the Bagley Torvik equation asan example. We show how the method an be applied to a general linear multi-termequation and give two further examples.Keywords: Frational di�erential equations, multi-term equations, numerial meth-ods.AMS subjet lassi�ation: 65L05, 65L06
1 IntrodutionThe use of frational di�erential and integral operators in mathematial models has be-ome inreasingly widespread in reent years. Several forms of frational di�erential equa-tions have been proposed in standard models, and there has been signi�ant interest indeveloping numerial shemes for their solution. However, muh of the work publishedto date has been onerned with linear single term equations and, of these, equations oforder less than unity have been most often investigated. In this paper we fous on provid-ing numerial solutions to linear multi-term equations where the highest order derivativemay be greater than one. These problems arise, for instane, in the Basset equation [16℄and the Bagley Torvik equation [20℄. We are aware that one onstraint on their more1 orresponding author email: njford�hester.a.ukPreprint submitted to Elsevier Preprint 19 April 2002



widespread use in models is the lak of good quality numerial shemes for their solutionand this matter has been partially addressed in the reent papers [7,9℄.Our approah is to investigate how one an solve multi-term and high order linear fra-tional di�erential equations, of the form given by the equationnXi=0 biD�iy(t) = g(t); bi 2 R; bn 6= 0; �i � 0; (1)as a system of mixed frational and ordinary di�erential equations of order � 1. We willalways assume, for onveniene, that i > j =) �i > �j.2 BakgroundFrational Derivatives We follow the developing onvention in appliations of usingthe Caputo version of the frational derivative in preferene to the Riemann-Liouvilleversion found in the urrent generation of texts.Thus, in our work, Dq� denotes the frational di�erential operator of order q =2 N denotedand de�ned by (f., e.g., [11, eq. (1.17)℄)Dq�y(t) := Jm�qy(m)(t);where m is the integer de�ned by the relation m � 1 < q < m and J� is the frationalintegral operator, J�g(t) := 1�(�) Z t0 (t� u)��1g(u)du:The reason for this preferene is as follows: when we interpret the frational di�erentialoperators in (1) as Caputo frational derivatives then, with suitable onditions on theforing funtion g and with the initial values y(i)(0) = yi0; i = 0; : : : ; m� 1 spei�ed, thesystem has a unique solution. If we were to interpret the frational di�erential operatorsas Riemann-Liouville frational derivatives we would have to speify our initial onditionsin terms of frational integrals and their derivatives. The initial onditions required bythe Caputo de�nition oinide with identi�able physial states, and this leads to thepreferene, amongst modellers, for the Caputo de�nition. 2 It also proves more onvenientin our analysis to use the Caputo derivative.The basi analytial results on existene and uniqueness of solutions to frational di�er-ential equations are given in Samko et al [19℄ and Podlubny [18℄. For equations de�nedin terms of the Caputo frational di�erential operator further disussion of these mattersis ontained (for example) in the reent papers by Diethelm and Ford [6{8℄.2 For multiterm equations suh as those we onsider, the Riemann Liouville de�nition of thefrational derivative would require initial onditions orresponding to eah frational order ofderivative that appears in the equations. The Caputo version merely requires us to speify theinitial onditions for integer order derivatives. 2



Established Methods (Analytial and Numerial) In [15℄ Miller and Ross gave amethod for alulating the analyti solution to a multi-term frational di�erential equationof the form [Dn� + a1D(n�1)� + � � �+ an�1D� + anD0℄y(t) = 0; � = 1q ; q 2 N : (2)They interpret the frational operatorDi� asD� applied i-times. Under this interpretationthey desribe the multi-term frational di�erential equation as a sequential frationaldi�erential equation. In [7,8℄ Diethelm and Ford showed that this intepretation arisesnaturally when using the Caputo frational derivative, and thus developed a numerialalgorithm. Given the density of the rational numbers any frational di�erential equationan be approximated arbitrarily well by this method sine the �nite preision arithmetiof the omputer means that all frational derivatives must, in any ase, be approximatedto mahine preision in any numerial sheme. This approah may result in a very largesystem of equations.In [9℄ Luhko and Diethelm gave an algorithm for alulating the approximate numerialsolution of multi-term linear frational di�erential equations based on [13℄. This methodmay require a large amount of omputational e�ort to alulate its weights.In this paper we give a numerial method for solving frational di�erential equations basedon treating the frational di�erential equation as a system of equations. Our approahis to use a system where the equations do not all have the same order. This avoids theproblems of order blow up (seen, for example, in [7,8℄), and also some of the osts ofomputation of quadrature weights. We draw attention to the fat that solving frationaldi�erential equations may, in general, be a very omputationally intensive problem andwe refer the interested reader to our reent paper [10℄ where this matter is disussed inrather greater detail.3 Disretisation of DerivativesThere are of ourse many variants on how to disretise derivatives, both of integer and offrational order, see for example Lambert [12℄ and Lubih [13℄. To failiate our expositionwe have hosen to use simple disretisations so that the important points introdued hereare not onfused with other mathematial details. We will need to approximate derivativesof both integer and frational order.To solve a �rst order di�erential equation we will use the trapezium rule:Dy = f ) yi = yi�1 + 12h(fi + fi�1):To disretise the frational derivative we will use Diethelm's method:3



D�y = 1�i ( iXk=0 �!k;iyi�k + y0� ); (3)where �i = (ih)��(��) and �!k;0 : : : ;� !k;i are onvolution weights derived from the fatthat the frational operator is de�ned in terms of a onvolution integral. For this methodthe weights are easily alulated (see Diethelm [3℄).It should be noted that D and D� are operators and so their appearane in matries is anotational devie.Systems of equations We reall that to solve the integer-order equationDny + � � �+ b1y = f;y(i)(0) = y(i)0 ; i = 0; : : : ; n� 1;as a system of �rst order equations we let1Y = yi+1Y =Diy; i = 1; : : : ; n:Expressed in matrix notation this gives0BBBB�D : : : 0... . . . ...0 : : : D1CCCCA0BBBB�1Y...nY1CCCCA=0BBBB� 2Y...�Pni=1 bi iY + f1CCCCA :One may then proeed to disretise the derivative and solve the resulting matrix systemto obtain an approximation to the solution y.Suppose now that we wish to to disretise the equationDy + a1D�2y + a2D�1 + a3y = f; 1 > �2 > �1 > 0; (4)then we an identify two natural alternative ways to write this (formally) as a systemafter setting 1Y = y. We ould write2Y =D�1 1Y3Y =D�2 1Y4Y =D 1Yor 4



2Y =D�1 1Y3Y =D�2��1 2Y4Y =D1��2 3Y:We hoose the former sine it requires the weights for one fewer frational derivative tobe alulated (and therefore one fewer onvolution sum per iteration) and has less prop-agation of rounding error. We onsider the mathematial justi�ation for this approahbriey in the next setion (see also [7℄).4 Our numerial sheme in pratieLater we shall solve an arbitrary multi-term linear frational di�erential equation butto make our method lear and to avoid ompliated notation, for the moment we willonsider a smaller lass of problems. We onsider equations (suh as the Bagley-Torvikequation) where the highest order of derivative is an integer and where there is at mostone non-integer order derivative between suessive integer orders.Consider, for example, the equationD2y + b3D�3y + b2Dy + b1D�1y + b0y = f; �3 = 1 + �; �1 = �; �; � 2 (0; 1); bi 2 R:(5)We write equation (5) as the system1Y = y2Y =D�y = D� 1Y3Y =Dy = D1 1Y (6)4Y =D� Dy = D� 3Y5Y =D 2y = D1 3Ywhih in matrix form is0BBBBBBB�D� 0 0 0D 0 0 00 0 D� 00 0 D 0
1CCCCCCCA0BBBBBBB�1Y2Y3Y4Y

1CCCCCCCA = 0BBBBBBB� 2Y3Y4Yf �P4j=1 bj�1 jY
1CCCCCCCA :

In the paper [7℄ a formal proof is given that equation (5) is equivalent to (6) in the sensethat a funtion y satis�es (5) if and only if it is the �rst omponent of a vetor solutionof (6). 5



Consider the equation D� 1Y = 2Y . We set our approximations iYj � iY (jh) for some�xed h > 0 and we disretise this �rst omponent as1�i ( iXk=0 �!k;i 1Yi�k + 1Y0� ) = 2Yi; (7)and put 1Si = iXk=1 �!k;i 1Yi�k + 1Y0� ; (8)so we have �!0;i 1Yi + 1Si = �i 2Yi; (9)and it follows that ��!0;i 1Yi + �i 2Yi = 1Si: (10)We proeed similarly to obtain the third row in the disrete sheme. Now for the �nalrow, we put 3Yi = 3Yi�1 + h2(fi + fi�1 � 4Xj=1 bj�1( jYi + jYi�1)) (11)so with Fi = (fi + fi�1)h=2 and4Si = 3Yi�1 + Fi � h2 4Xj=1 bj�1 jYi�1; (12)we have h2 b0 1Yi + h2 b1 2Yi + (1 + h2 b2) 3Yi + h2 b3 4Yi = 4Si: (13)This leads to the matrix form:0BBBBBBB���!0;i �i 0 01 0 �h2 00 0 ��!o;i �ihb02 hb12 1 + hb22 hb32
1CCCCCCCA0BBBBBBB�1Yi2Yi3Yi4Yi

1CCCCCCCA = 0BBBBBBB�1Si2Si3Si4Si
1CCCCCCCA ; (14)

where 6



1Si= iXk=1 �!k;i 1Yi�k + 1Y0=�2Si= 1Yi�1 + h2 3Yi�1;3Si= iXk=1 �!k;i 3Yi�k + 3Y0=�; (15)4Si= 3Yi�1 + Fi � h2 4Xj=1 bj�1 jYi�1:and Fi = h(fi + fi�1)=2, fi = f(ih).It is quite straightforward to show:Theorem 4.1 The order of onvergene of the resulting method is equal to the lowestorder of the methods that it omprises.Proof: First we remark that eah of the matries on the left hand side of the system (14)has determinant that is O(1) as h! 0: It follows that the entries in the inverse matriesare also O(1) as h! 0:Now assume that, for eah i; j the values i�j are de�ned by iY (jh) = iYj + i�j. Sine westart with the exat initial onditions, it follows that eah value i�0 = 0.By linearity of the numerial method in (14) and sine the ausal sums in (15) are bounded(see [3℄, p5) it follows that eah iYj+1 satis�esiYj+1 = iY ((j + 1)h) +O(hsi) + Lmaxi=1;::: ;4;k=1;:::;jji�kj (16)Here hsi is the order of the numerial method applied in row i of the sheme (14) whenthe right hand side of (15) is evaluated using exat funtion values iY (kh). The �nal termin (16) takes aount of the umulative e�et of the errors i�k; i = 1; : : : ; 4; k = 1; : : : ; j.The (�nite) onstant L is determined by taking the largest element of the inverses of thematries in (14) and multiplying by a bound on the oeÆients on the right hand side of(15).Now we an omplete the proof by indution. As we remarked earlier, the values i�0 arezero. Therefore the values i�1 given by (16) are O(hsi ). Now let s = min(s1; s2; s3; s4) andit is easy to see that for j � 2 the last term in (16) dominates and i�j = O(hs). �To apply the method in pratie we need initial onditions for equation (6) whih involvesgiving initial onditions for eah of the omponents iY . As desribed in the reent paper[7℄, sine we are using the Caputo de�nition for the frational derivative, one simply putsthe non-integer order initial onditions as 0 and uses the integer order initial onditionsas given in the original problem.We have alulated the solutions to the equations:7
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Fig. 1. D2y +D0:5y + y = 0;D2y +Dy + y = 0; y0 = 1; y00 = 0
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Fig. 2. D2y +D1:5y + y = 0; y0 = 1; y00 = 0D2y+D0:5y + y = 0; (17)D2y+Dy + y = 0; (18)D2y+D1:5y + y = 0; (19)subjet to the initial onditions y(0) = 1; y0(0) = 0. In these and later examples we usestep size h = 0:01. We show the approximate solutions in Figures 1 and 2.The �gures are onsistent with those we have seen elsewhere depiting frational gener-alisations of veloity damping.5 Solution of the Bagley Torvik equationAs an example that arises in appliations, we solve the Bagley Torvik equation whiharises, for instane, in modelling the motion of a rigid plate immersed in a Newtonianuid. It is a partiularly interesting example for us to onsider beause it was solved inthe paper [7℄. 8
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Fig. 3. � = 0:5; � = 0:25; y0 = 1; y00 = 0D2y + b2D�1y + b1y = f; (20)y(0) = y0; y0(0) = y00; �1 = 1 + �; � 2 (0; 1):D and D� are linear operators so, as before, we an rewrite this as1Y = y; 2Y = Dy;3Y = D�Dy; 4Y = D2y;whih written in matrix notation is0BBBB�D 0 00 D� 00 D 01CCCCA0BBBB�1Y2Y3Y1CCCCA = 0BBBB� 2Y3Yf � b2 3Y � b1 1Y 1CCCCA :Disretising as above this results in the matrix system0BBBB� 1 �h2 00 �!0;i i�1 1 �21CCCCA0BBBB�1Yi2Yi3Yi1CCCCA = 0BBBB� 1Yi�1 + h2 2Yi�12SiFi � �1 1Yi�1 + 2Yi�1 � �2 3Yi�11CCCCA :where Fi = h(fi + fi�1)=2, �1 = hb1=2, and �2 = hb2=2.We have alulated the solutions in Figures 3 and 4 to the example Bagley Torvik equation:D2y +D1+�y + y = 0; y(0) = 1; y0(0) = 0 (21)for � = 0:5; 0:25; 0:75 respetively. Notie that, when � = 0:5, (19) oinides with (21).9
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Fig. 4. � = 0:75; y0 = 1; y00 = 06 Numerial solution of general multi-term linear equationsFor a general linear multi-term frational equation we onsiderpXs=0 sD�sy = f; (22)where 0 � �0 < �r < �r+1 < �p; p = 1; s 2 R. Note that the highest order �p neednot be an integer. However we need to regard every whole number derivative as beingpresent in our equation, (if neessary with oeÆient zero) so as to use all the initialonditions. To emphasise how suh an equation needs to be solved we suggest that onemight use a notation that emphasises this: we ollet all the orders within eah interval(j; j + 1℄; j 2 Z+ = N [ f0g and so we shall use the formb0;0y + mXj=0 njXr=1 br;jDj+�r;jy = f; (23)where, for j = 1; 2; : : : ; m� 1; we have 0 < �1;j < �2;j < : : : < �nj ;j = 1 and 0 < �1:m <�2;m < : : : ; < �nm;m � 1 and bi;j 2 R. Also, n0 + � � �+ nm = p and we let pk = Pk�1j=0 nj.We write equation (23) as the system1Y = y2Y =D�1;0y...1+n0Y =Dy2+n0Y =D�1;1Dy...p+1Y =D�nm;mDm�1y 10



whih in matrix form is
DY = 0BBBB�D1 0 : : : 0... . . . . . . ...0 : : : : : : Dm1CCCCA

0BBBBBBBBBBB�
1Y...1+n0Y...pY

1CCCCCCCCCCCA = 0BBBBBBBBBBB�
2Y...2+n0Y...f �Pp�1k=0 k kY

1CCCCCCCCCCCAwhere for k = 1; : : : ; m� 1; Dk is an nk by nk matrix of di�erential operators of the form0BBBBBBBB�D�1;k 0 . . . 0D�2;k 0 . . . 0... . . . . . . ...D 0 : : : 0
1CCCCCCCCAThe orresponding expression holds for k = m if �nm;m = 1, whih we shall all ase 1. If�nm;m 6= 1 whih we shall all ase 2, we have

Dm = 0BBBBBBBB� D�1;m 0 . . . 0D�2;m 0 . . . 0... . . . . . . ...D�nm;m 0 : : : 0
1CCCCCCCCA

We disretise the derivatives inD to produe �D: The matrix �D will onsist of square matrixbloks �Dk along the diagonal whih are the disrete analogues of Dk for k = 1; : : : ; m� 1.The bottom horizontal band of the matrix onsists of the matries �Dm;1; : : : ; �Dm;m:This means we will write the disretised system as�DYi = Si (24)11



where
�D = 0BBBBBBBBBBB�

�D1 0 : : : : : : : : : 00 �D2 0 . . . . . . ...... . . . . . . . . . . . . ...0 . . . . . . 0 �Dm�1 0�Dm;1 : : : : : : : : : : : : �Dm;m
1CCCCCCCCCCCA (25)

and
�Dk = 0BBBBBBBBBBB�

�1;k!0;i 1;ki 0 : : : : : : 0�2;k!0;i 0 2;ki 0 . . . ...... . . . . . . . . . . . . ...�nk�1;k!0;i 0 . . . 0 nk�1;ki 01 0 : : : : : : 0 �h2
1CCCCCCCCCCCAand onsequently by impliation we also have

k �Yi = 0BBBBBBBB�1+pkYi......pk+1Yi
1CCCCCCCCAand

k �Si = 0BBBBBBBB�1+pkSi......pk+1Si
1CCCCCCCCA ;

where 12



j+pkSi= i�1Xr=0 j+pk!i�r;j+pk��(k�1) 1+pkYr + 1+pkY0j+pk� ; j = 1; : : : ; nk � 1pk+1Si= 1+pkYi�1 + h2 pk+1Yi�1:Disretising for k = m and olleting terms together gives the �rst nm � 1 rows of �Dm;mas 0BBBBBBBB� �1;m!0;i 1;mi 0 : : : 0�2;m!0;i 0 2;mi 0 ...... . . . . . . . . . ...�nm�1;m!0;i 0 : : : nm�1;mi 0
1CCCCCCCCA :

For the last row, analytially, we have (for �nm;m 6= 1)D�nm;m 1+pmYi = f � pXs=1 s�1 sYi (26)whih on disretisation beomes1nm;mi ( iXk=0 nm;m!i;k 1+pmYi�k + 1+pmY0�nm;m ) = fi � pXs=1 s�1 sYi: (27)Rearranging this gives�nm;m!i;0 1+pmYi + nm;mi pXs=1 s�1 sYi = nm;mSi; (28)where nm;mSi = nm;mifi � i�1Xk=0 nm;m!i;k 1+pmYi�k � 1+pmY0�nm;m : (29)Then for k = 1; : : : ; m� 1; �Dm;k has all zero entries for the �rst nm� 1 rows and the lastrow is given by, for �Dm;1 (nm;mi0 : : : nm;min0); (30)13



and for �Dm;k (for k = 2; : : : ; m� 1)(nm;mipk+1 : : : nm;mipk+1); (31)and the last row of �Dm;m is given by(nm;mipm+1 � nm;m!i;0 : : : nm;mip): (32)In the ase where �nm;m = 1 we haveD 1+pmY = f � pXs=1 s�1 sY; (33)whih on disretisation yields1+pmYi = 1+pmYi�1 + h2(fi + fi�1 � pXs=1 s�1 s(Yi + Yi�1)) (34)and on rearranging gives 1+pmYi + h2 pXs=1 s�1 sYi;= nm;mSi: (35)where nm;mSi = 1+pmYi�1 + Fi � h2 pXs=1 s�1 sYi�1: (36)Then for k = 1; : : : ; m� 1 �Dm;k has all zero entries for the �rst nm � 1 rows and the lastrow is given by, for �Dm;1 (h2 0 : : : h2 n0) (37)and for �Dm;k (for k = 2; : : : ; m� 1)(h2 pk+1 : : : h2 pk+1) (38)and the last row of �Dm;m is given by(1 + h2 pm+1 h2pm+2 : : : h2p): (39)In the next two setions we onsider the solution of two partiular types of example. Weonsidered before the Bagley Torvik equation. Here we had a highest order of derivative14



equal to 2 (an integer) and frational derivative greater than unity. The frational osil-lation equation has highest order of derivative 1 + � whih is non-integral. The Bassetequation has highest order derivative unity and a non-integer derivative of lower order.Thus eah of these equations represents a distintive lass of problems.7 Solution of the Frational Osillation EquationBy way of example, we apply the above tehniques to the frational osillation equationD1+�y(t) + by(t) = f(t); y(0) = y0; y0(0) = y00; (40)where � 2 (0; 1), t 2 [0;1), and f satis�es a Lipshitz ondition in t.We an represent (40), sine D and D� are linear operators, as the system1Y = y2Y =Dy3Y =D�Dywhih in matrix form is0B�D 00 D�1CA0B�1Y2Y1CA = 0B� 2Y�b 1Y + f(t)1CA :We then disretise the derivatives by the shemes previously desribed. For the �rst equa-tion, using the trapezium method, we have1Yi = 1Yi�1 + ( 2Yi + 2Yi�1)h=2:For the seond equation by Diethelm's method we have�b 1Yi + fi = 1i (!0;i 2Yi + 2Si);where 2Si = Pik=1 !k;i 2Yi�k + 2Y0=�.Rearranging gives 15
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Fig. 5. D1:3y = �y; y0 = 1;D1:5y = �y; y0 = 1; y00 = 0

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 6. D1:8y = �y; y0 = 1; y00 = 0;D1:95y = �y; y0 = 1; y00 = 00B� 1 �h2ib !0;i1CA0B�1Yi2Yi1CA = 0B�1Yi�1 + h 2Yi�12ifi � 2Si 1CA :Remark 7.1 By exatly the same argument as before, we an dedue that the order ofour method is the lowest order (2� �) of the numerial methods whih are used.We give diagrams of approximate solutions for some example frational osillation equa-tions in Figures 5 and 6 (with h = 0:1). These equations were previously studied by Blankin [1℄ and our �gures show that the method we have used gives solutions onsistent withthose found by olloation tehniques. 16



8 Solution of the Basset EquationConsider the linear frational di�erential equation (41) whih arises, for instane, in thestudy of the generalised Basset fore ouring when a sphere sinks in a (relatively lessdense) visous uid (see Mainardi [16℄),Dy + b2D�y + b1y = f; (41)y(0) = y0; � 2 (0; 1):We an rewrite this as1Y = y2Y =D�y3Y =Dywhih expressed in matrix notation gives0B�D� 0D 01CA0B�1Y2Y 1CA = 0B� 2Yf � b2 2Y � b1 1Y 1CA :On disretisation this results in the system0B��!0;i i�1 �31CA0B�1Yi2Yi1CA = 0B� 1SiFi + �2 1Yi�1 � �3 2Yi�11CA ;where Fi = h2 (fi+fi�1), �1 = (1+hb12 ), �2 = (1�hb12 ), �3 = (hb22 ), and 1Si = Pik=1 !k;i 1Yi�k+1Y0=�.Using the formulation of the problem given by Mainardi in [16℄ we let � = 9=(1+2�), and� = 0:5; 2; 10; 100. Our alulated approximate solutions (with h = 0:1) to the Bassetequation are given in Figures 7 and 8.As before, we have analysed the onvergene of the method, whih equals that of thelowest order method (2 � �) employed here. We have ompared our plots with thosegiven by Mainardi [16℄ (obtained by an unspei�ed method) and there is a strong level ofagreement in our solutions. 17
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Fig. 7. � = 0:5; � = 0:25; y0 = 0
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Fig. 8. � = 0:75; y0 = 09 ConlusionWe have shown that the use of systems of frational di�erential equations of di�erentdegrees an provide a onvergent method for the solution of multi-term equations. Ourmethod an lead to numerial shemes of arbitrarily high order: we an apply, for example,high order frational linear multistep methods, subjet to the overhead of alulating thestarting weights. We ould also apply olloation methods suessfully (see [1℄). Howeverthe key feature of the approah we have introdued in this paper is the fat that theomputational omplexity of the alulation is kept under ontrol. Our approah avoidsthe onstrution of exessively large systems of equations whih an be needed in themethods desribed in [7,8℄. 18
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