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Abstract

This note describes some quasi-analytical solutions for wave propagation in free
surface Euler equations and linearized Euler equations. The obtained solutions vary
from a sinusoidal form to a form with singularities. They allow a numerical validation
of the free-surface Euler codes.

Résumé

Solutions quasi-analytiques d’ondes propagatives dans les équations d’Euler
à surface libre Cette note décrit des solutions quasi-analytiques correspondant
à la propagation d’ondes dans les équations d’Euler et d’Euler linéarisées à surface
libre. Les solutions obtenues varient d’une forme sinusöıdale à une forme présentant
des singularités. Elles permettent de valider numériquement les codes de simulation
des équations d’Euler à surface libre.
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1 Introduction

The water wave problem described by the Euler equations with a free surface
has been widely studied in the literature, see e.g. [5,8,10–12]. This paper pro-
poses some quasi-analytical solution of these equations that allow, for example,
to validate the efficiency of the numerical tools. These analytical solutions ex-
hibit singularities of the free surface when the wave amplitude increases. As
far as the authors know, it is the first analytical solutions having such a be-
havior corresponding to an existence result given by W. Strauss, see [3,13]
and references therein. Some other explicit solutions have been presented in
the literature, for example by Boulanger et al. [2] and Daboussy et al. [6] for
the steady state. Following the methodology of Constantin and Strauss [3],
Kalimeris [9] proposes an asymptotic expansion of the Euler system reducing
the problem resolution to a cascade of ODEs. On the one hand, the result
of Kalimeris is not reduced to flows without vorticity, on the other hand the
proposed solutions – also exhibiting singularities of the free surface – are not
analytical because obtained through an iterative numerical process.

Solutions presented in Section 2 are solutions of the Euler linearized system
up to a negligible term. The proposed solutions are irrotationnal and are
compared in Section 3 to the solutions of Airy and third order Stokes waves.
In Section 4 this result is extended to the nonlinear Euler system through an
additional pressure term on the free surface. Same type of quasi-analytical
solutions are proposed in Section 5 for the stationnary waves.

We consider the Euler system and the linearized Euler system over a flat
bottom for x ∈ R and 0 ≤ z ≤ h(t, x) given respectively by (1)-(3) and (4)-
(6), where u(t, x, z), w(t, x, z) are the two components of the velocity in the
(x, z) domain, h(t, x) is the water depth, p(t, x, z) is the pressure and ρ0 is the
density assumed to be constant:

∂u

∂x
+
∂w

∂z
= 0, (1)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+

1

ρ0

∂p

∂x
= 0,

(2)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+

1

ρ0

∂p

∂z
= −g,

(3)

Euler system

∂u

∂x
+
∂w

∂z
= 0, (4)

∂u

∂t
+ u0

∂u

∂x
+

1

ρ0

∂p

∂x
= 0, (5)

∂w

∂t
+ u0

∂w

∂x
+

1

ρ0

∂p

∂z
= −g, (6)

Linearized Euler system

These systems are completed by initial conditions (u(0, x, z) = u0(x, z), w(0, x, z) =
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w0(x, z), p(0, x, z) = p0(x, z)), a dynamic boundary condition at the free sur-
face

ps = p(t, x, h(t, x)) = pa(t, x), (7)

a kinematic boundary condition at the free surface and a non-penetration
condition at the bottom

∂h

∂t
+ us

∂h

∂x
− ws = 0, wb = 0. (8)

where the subscript s (resp. b) denotes the considered quantity at the free
surface (resp. at the bottom).

Remark 1 For the sake of simplicity we have used the same notations for
the solution of the Euler and linearized Euler system but it is clear that they
correspond to different solutions.

The linearized Euler system (4)-(6) is obtained by assuming that the velocity
components u and w are such that u = u0 +O(ε), w = O(ε) with ε� 1 and
u0 = cst. Around the solution (u0, 0, pa + ρ0g(h − z)), the solution (u,w, p)
of (4)-(6) yields a remainder term of order O(ε2) in (1)-(3). It is important
to notice that in most cases the linearized Euler system does not admit any
energy balance. However, simple computations show that when the quantity

es,b =
|Us|2

2

∂η

∂t
+
|Us|2

2
u0
∂η

∂x
,

where U = (u,w) and |f |2 = |(f1, f2)|2 = f 2
1 + f 2

2 , can be written under the

conservative form es,b =
∂αs,b

∂x
, with αs,b = α(h, u0,Us), the linearized Euler

system (4)-(6) completed with (7) and (8) admits an energy balance of the
form

∂

∂t

∫ η

zb

(E + pa) dz +
∂

∂x

[∫ η

zb

(
u0E + u(p+ gz)

)
dz + αs,b

]
= h

∂pa
∂t

, (9)

with E defined by E = u2+w2

2
+ gz.

The water depth h(t, x) does not appear directly in systems (1)-(3) and (4)-(6),
it can be obtained by integrating equation (1) from z = 0 to z = h(t, x)

∂h

∂t
+

∂

∂x

(∫ h(t,x)

0
u(t, x, ξ)dξ

)
= 0. (10)
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2 Propagating waves for the linearized Euler system

We consider the linearized Euler system (4)-(6) completed by the boundary
conditions (7) and (8). A large part of the results are based on the properties of
the LambertW functions (LW). The LambertW functions is the main branch
of a set of functions corresponding to the inverse relation of the function
f(z) = zez where z is any complex number [4]. LW(x) is the unique real
solution of

LW(x)eLW(x) = x. (11)

For x ≥ −1/e and for x 6= 0 and x 6= −1/e we have LW′(x) =
LW(x)

x(1 + LW(x))
.

Moreover, LW (x) ∼
x→0

x.

Then the following proposition holds.

Proposition 2.1 Let (b, u0, h0, k, a, c, ω) ∈ R2 × R5
+ such that |a| < 1/e and

h0k/c > LW(−|a|) and

f : x 7→ − c
k

LW
(
a cos

(x
c

+ b
))
, (12)

where LW represents the LambertW function. Let pa(t) be any given function.

The functions h, u, w and p defined by

h(t, x) = h0 + f(kx− (ω + ku0)t), (13)

u(t, x, z) = u0 −
ωa

k
e

k
c
(z−h0) cos

(
kx− (ω + ku0)t

c
+ b

)
, (14)

w(t, x, z) = − c
k

∂u

∂x
, (15)

p(t, x, z) = pa(t) + ρ0g(h0 − z)− ρ0gca

k
e

k
c
(z−h0) cos

(
kx− (ω + ku0)t

c
+ b

)
,

(16)

are quasi-analytical solutions of the linearized Euler system (4)-(6) completed
by the boundary conditions (7) and (8) if and only if the following relation
holds

ω

k
=

√
gc

k
. (17)

More precisely, equations (4)-(6), dynamic pressure condition (7) and the kine-
matic free surface condition in equation (8) are verified exactly while. For
Eqs (8) and (10), we get:

wb = O
(
e−

h0k

c

)
and

∂h

∂t
+

∂

∂x

(∫ h(t,x)

0
u(t, x, ξ)dξ

)
= O

(
e−

h0k

c

)
.

(18)
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Sketch of proof

To make the proof more readable, we set u0 = 0, b = 0 and we take Y =
a cos ((kx− ωt)/c).

From (4) and using the definition of u given in (14) we obtain easily the
expression of w. From (14)-(16), by simple derivation of u and p, equation (5)
gives (

−ω
2a

k
+ ga

)
e

k
c
(z−h0) sin(Y ) = 0.

This equation is verified for all Y only if the relation (17) holds. This relation is
similar to the dispersion relation in the Airy theory when kh0 � 1. Expression
of p is obtained by integrating (6) from z to h. It is easy to verify a posteriori
that (6) is verified by taking the derivative of w and p appearing in this
equation. From (16), we observe that

p(t, x, h(t, x)) = pa(t)− gf(kx− ωt))− gc

k
e

k
c
f(kx−ωt))Y,

= pa(t) +
gc

k
LW(Y )− gc

k
e−LW(Y )Y = pa(t).

The main difficulty is to verify the surface evolution equation (10). From (13)
we obtain

∂h

∂t
=
(
ωa

k

)
sin

(
kx− ωt

c

)
LW(Y )

Y (1 + LW(Y ))
. (19)

With the expression of u given in (14) we deduce using (11) that

∫ h(t,x)

0
u(t, x, ξ)dξ = −ω

k
Y
∫ h(t,x)

0
e

k
c
(ξ−h0)dξ,

= −ωc
k2
Y
(
e−

k
c
(h(t,x)−h0) − e

k
c
h0
)
,

=
ωc

k2

(
Y e−

k
c
h0 − LW(Y )

)
.

Then, using the same expression of the derivative of the LW function, we have

∂

∂x

(∫ h(t,x)

0
u(t, x, ξ)dξ

)
= −ωa

k
sin

(
kx− ωt

c
+ b

)(
e−

k
c
h0 +

LW(Y )

Y (1 + LW(Y ))

)
.

(20)

We deduce that equation (10) is verified up to a term ωa
k

sin
(
kx−ωt
c

+ b
)
e−

k
c
h0 .

In the same way, vertical velocity at the bottom is given by wb = −ωa
c
e−

k
c
h0 .

The solutions proposed in prop. 2.1 for the linearized Euler system are not

exactly analytical solutions in the sense that additional terms in O(e−
h0k

c )
appear. But when h0k � 1, considering e.g. h0 = 100 m, k = 0.2 m−1 and
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c = 1 gives e−
h0k

c ≈ 10−9 � 1. These solutions satisfy the energy balance (9)
with

αs,b = −gω
4k

c2LW
(
a cos

(
kx−(ω+ku0)t

c
+ b

))2

k2 cos
(
kx−(ω+ku0)t

c
+ b

)2 .

3 Comparison with the Airy and Stokes wave theories

The form of the free surface of our quasi-analytical solution depends of the
parameter a. When a is small, surface elevation is close to a sinusoidal function
since we have seen that LW (x) ∼

x→0
x. When |a| is near to 1/e, the top of the

wave is narrower than its bottom. This property is presented in Figure 1 with
parameters (c = 1, k = 1, t = 0 and b = 0). For |a| = 1/e, the function f is
not differentiable in (2m + 1)π, ∀m ∈ Z. The non-differentiable character of
the solution was studied from a theoretical point of view by Strauss [3]. Here
we give an explicit expression of this solution.

In the literature, some analytical solutions of free surface simplified models
have been proposed [5]. The most known are the Airy wave and the third-
order Stokes wave, and we propose here some numerical comparisons.

By setting θ = (k0x− ω0t + b0), in the Airy wave theory, surface elevation is
given by

h(t, x) = h0 + a0 cos(θ), (21)

and in the third-order Stokes wave on deep water, surface elevation is given
by [7]

h(t, x) = h0+a0

((
1− 1

16
(k0a0)

2
)

cos(θ) +
1

2
k0a0 cos(2θ) +

3

8
(k0a0)

2 cos(3θ)
)
.

(22)
To make a comparison with water depth given by equation (13), we have to
set a = a0k0 (using again LW (x) ∼

x→0
x), k = ck0, b = b0 and ω = cω0. We

have plotted in Figure 2 a comparison between the free surface obtained by
Airy theory, third order Stokes theory and equation (13) for the given set of
parameters (a = 1/e, k = 1, c = 1, t = 0, b = 0). With this value of a we
observe numerically the maximum of differences between the three waves. Of
course, for small value of a, solution of (13) can be very close to the two other
waves.
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Fig. 1. Free surface given by the function
f : x 7→ −LW(a cos(x)) for three val-
ues of the parameter a : 0.10 (dot line),
0.30 (dash-dot line), 1/e (dash line), and
comparison with function (−1/e) cos(x)
(solid line).

Fig. 2. Free surface given by Airy the-
ory (solid line), third order Stokes theory
(dash-dot line) and equation (13) (dot
line) for the given set of parameters :
(a = 1/e, k = 1, c = 1, t = 0, b = 0).

4 Propagating waves for the Euler system

We consider the Euler system (1)-(3) completed by the boundary condi-
tions (7) and (8). The previous solution can be extended by considering a
small pressure term at the free surface and the following proposition holds.

Proposition 4.1 Under the same conditions of the proposition 2.1 the func-
tions h, u, w and p defined by

h(t, x) = h0 + f(kx− (ω + ku0)t),

u(t, x, z) = u0 −
ωa

c
e

k
c
(z−h0) cos

(
kx− (ω + ku0)t

c
+ b

)
,

w(t, x, z) = − c
k

∂u

∂x
,

p(t, x, z) = g(h0 − z) +
ga2c

2k

(
1− e

2k
c
(z−h0)

)
− gca

k
e

k
c
(z−h0) cos

(
kx− (ω + ku0)t

c
+ b

)
,

are quasi-analytical solutions of the Euler system (1)-(3) completed by the
boundary conditions (7) and (8) iff the relation (17) holds. At the free surface,
the pressure p is such that ps = pa(t, x) with

pa(t, x) =
ga2c

2k

(
1− e

2k
c
(h(t,x)−h0)

)
. (23)

More precisely, equations (4)-(6), dynamic pressure condition (7) and the kine-
matic free surface condition in equation (8) are verified exactly. For Eqs. (8)
and (10), we get

wb = O
(
e−

h0k

c

)
and

∂h

∂t
+

∂

∂x

(∫ h(t,x)

0
u(t, x, ξ)dξ

)
= O

(
e−

h0k

c

)
.

(24)
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Pressure at the surface is equal to zero when h(t, x) = h0. If h(t, x) − h0 is
small, this pressure is of the order a3. The proof is similar to the one given in
prop. 2.1 but is more tedious due to the nonlinearity.

Remark 2 The solutions proposed in props. 2.1 and 4.1 are irrotational. In
[1], C. J. Amick proved that for any irrotational wave, the angle of inclination
of the free surface with respect to the horizontal must be less than 31.15˚. In
our analytical solutions, the angle of inclination is less or equal to 45˚, but
we have an additional source term (23) that can justify this inclination.

5 Standing waves

Now we consider the situation of standing waves that occur when two progres-
sive waves of same amplitude travel in opposite direction. The results depicted
in this paragraph are based on the following remark: for small values of the
parameter a, one has the Taylor expansion

LW
(
a cos

(
kx− ωt

c

))
= a cos

(
kx− ωt

c

)
− a2 cos2

(
kx− ωt

c

)
+O(a3).

Proposition 5.1 Under the same conditions as in proposition 2.1 the func-
tions h, u, w and p defined by

h(t, x) = h0 + f(kx− ωt) + f(kx+ ωt), (25)

u(t, x, z) =
ω

c
e

k
c
(z−h(t,x))

(
f(kx− ωt)− f(kx+ ωt)

)
, (26)

w(t, x, z) = − c
k

∂u

∂x
, (27)

p(t, x, z) = pa(t) + g(h− z) +
∫ h(t,x)

z

∂w

∂t
dz, (28)

are quasi-analytical solutions of the linearized Euler system (4)-(6) completed
by the boundary conditions (7) and (8) iff the relation (17) holds. At the free
surface, the pressure p is such that ps = pa(t, x) with

pa(t, x) =
ga2c

2k

(
1− e

2k
c
(h(t,x)−h0)

)
. (29)

More precisely, equations (4) and (6), dynamic pressure condition (7) and
the kinematic free surface condition in equation (8) are verified exactly. For
Eqs. (5), (8) and (10), we get

∂u

∂t
+ u0

∂u

∂x
+

1

ρ0

∂p

∂x
= O

(
a3
)
, (30)
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wb = O
(
ae−

h0k

c

)
and

∂h

∂t
+

∂

∂x

(∫ h(t,x)

0
u(t, x, ξ)dξ

)
= O

(
ae−

h0k

c

)
.

(31)

Since a Taylor expansion of Eq. (25) gives h(t, x) = h0− 2ac
k

cos
(
kx
c

)
cos
(
ωt
c

)
+

O
(
a2

k

)
, the proposed solution corresponds, up to terms in O

(
a2

k

)
, to a standing

wave.

The proofs rely on simple but tedious computations similar to those performed
in the proof of prop. 2.1.

Proposition 5.2 Under the same conditions as in proposition 4.1 the func-
tions h, u, w and p defined by

h(t, x) = h0 + f(kx− ωt) + f(kx+ ωt), (32)

u(t, x, z) =
ω

c
e

k
c
(z−h(t,x))

(
f(kx− ωt)− f(kx+ ωt)

)
, (33)

w(t, x, z) = − c
k

∂u

∂x
, (34)

p(t, x, z) = g(h− z) +
ga2c

2k

(
1− e

2k
c
(z−h0)

)
+ g(h− z) +

∫ h(t,x)

z

∂w

∂t
dz, (35)

are quasi-analytical solutions of the Euler system (1)-(3) completed by the
boundary conditions (7) and (8) iff the relation (17) holds. At the free surface,
the pressure p is such that ps = pa(t, x) with

pa(t, x) =
ga2c

k
cos

(
2kx

n

)
. (36)

More precisely, equations (1) and (3), dynamic pressure condition (7) and
the kinematic free surface condition in equation (8) are verified exactly. For
Eqs. (1), (8) and (10), we get

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+

1

ρ0

∂p

∂x
= O

(
a3
)
, (37)

wb = O
(
ae−

h0k

c

)
and

∂h

∂t
+

∂

∂x

(∫ h(t,x)

0
u(t, x, ξ)dξ

)
= O

(
a2e−

h0k

c

)
.

(38)

Since a Taylor expansion of Eq. (25) gives h(t, x) = h0− 2ac
k

cos
(
kx
c

)
cos
(
ωt
c

)
+

O
(
a2

k

)
, the proposed solution corresponds, up to terms in O

(
a
k

)
, to a standing

wave.
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The proofs rely on simple but tedious computations similar to those performed
in the proof of prop. 2.1.
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