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Abstract

Resistance to insecticide is considered nowadays one of the major threats to insect control, as its
occurrence reduces drastically the efficiency of chemical control campaigns, and may also perturb the
application of other control methods, like biological and genetic control. In order to account for the
emergence and spread of such phenomenon as an effect of exposition to larvicide and/or adulticide, we
develop in this paper a general time-continuous population model with two life phases, subsequently
simplified through slow manifold theory. The derived models present density-dependent recruitment
and mortality rates in a non-conventional way. We show that in absence of selection, they evolve
in compliance with Hardy-Weinberg law; while in presence of selection and in the dominant or
codominant cases, convergence to the fittest genotype occurs. The proposed mathematical models
should allow for the study of several issues of importance related to the use of insecticides and other
adaptive phenomena.

Keywords: Adaptive evolution, Insecticide resistance, Slow manifold theory, Stability, Hardy-
Weinberg Law.

1 Introduction

1.1 Insect pests and insecticide use

A tiny insect is one of the deadliest animals for human: the mosquitoes. Nearly 700 million people
contract diseases transmitted by mosquito every year [1]. Just for the transmission of malaria, almost
a million people die every year [2], and 3.4 billion people are at risk worldwide [3]. Amongst the 150
arboviruses that cause diseases in humans, about 20 that are transmitted by mosquitoes are of primary
medical importance [4]. In particular dengue, transmitted by the primary vector Aedes aegypti and whose
human and economic costs are staggering, is ranked as the most important mosquito-borne viral disease
with epidemic potential in the world [5, 6]. On the whole, vector-borne diseases generate a heavy public
health problem and high economic cost in many world regions.

Besides, it has been suggested that insects destroy about 20% of the annual production of crops
worldwide [7]. The agricultural damage caused by insects may be direct, as well as indirect, through the
transmission of plant diseases [8]. Two factors contribute to the importance of insects as agricultural
pests: their diversity —two thirds of known species, around 600,000, are phytophagous—, and the fact
that practically all plant species are consumed by at least one species of phytophagous insect— even
some agricultural pests can hit many species of plants [9]. The issues induced by agricultural pests are
therefore a challenge for global food production.

The most commonly used methods to suppress or reduce insect populations are based on chemical
treatment. Conventional control strategy of mosquito populations use larvicides and/or adulticides [10].
However, this strategy is affected by the evolution of resistance [11] which reduces the efficiency of the
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chemical control campaigns and their lifespan [12]. Nowadays, in addition to an alarming propagation of
vectors, most of the species involved are showing resistance to many kinds of insecticides [13]. Resistance
not only reduces the efficiency of chemical control methods, but may also perturb the application of
other control methods, like biological and genetic controls, through the undesired fitness advantage that
it provides to the local mosquito species [14].

1.2 Modelling of insecticide resistance evolution

Resistance to insecticides is a man-made example of selection [15]. This occurs when the environment is
changed artificially by impregnation with an insecticide that increases the mortality of a target species,
in such a way that some genetic variants survive better than others.

The issue of insecticide resistance provides a contemporary natural model to study how new adap-
tations evolve by selection: the selection agent is known —as an example a given insecticide—, the
evolution is recent and rapid —few years after the application—, and the biological and genetic mecha-
nisms are often known —many insect genes that code the targets for insecticides have been identified and
cloned [16]. In this regard, due to the cost, risk and logistical difficulties in the field study of resistance
evolution, mathematical models may help to improve management strategies of insecticides, apart from
allowing to learn more about adaptive evolution in the context of complex life history.

Literature related to models of evolution by selection is quite extensive. For an overview of the state
of knowledge, the reader is referred to the following classical texts [17, 18, 19, 20, 21]. Reproduction and
natural selection involve inherently stochastic effects, and a typical modeling approach includes stochastic
time-discrete processes [22], which may however present considerable mathematical complexity [21]. In
classical population genetics selection models, it is common to appeal to the law of large numbers and
assume an infinite population size, to omit the effect of stochasticity and to focus the mathematical
analysis on the evolution of the allelic and genotypic relative frequencies by selection. This is the case of
Fisher selection equation (see [23, 24, 17]), generally framed in evolutionary game theory as a replicator
equation, to describe the allelic or genotype evolution of relative frequencies [19, 23]. In this context,
[17] provides models and analytical results of selection for some game dynamics equations, including
continuous selection dynamics models such as: independent and density-dependent Malthusian fitness,
additive and multiplicative fertility, and Mendelian populations.

For simplicity, it is common in population genetics, that the elementary mechanisms by which fitness
is reduced are not specified [25, 26]. On the other hand, the use of larvicides and/or adulticides for the
control of mosquitoes affects the viability differently in the pre-reproductive and reproductive phases.
In addition, viability may decrease in a growing population due to the limitation of some resources by
competition, and may depend on density, which in turn may affect different classes of individuals in the
population in a non-homogeneous way.

Several approaches have been proposed in the literature to model insecticide resistance, with several
objectives. In [27] a time-discrete model is presented for three genotypes that considers a resistance
allele with intermediate dominance in an autosomal locus. A time-discrete model of insecticide resistance
is developed in [28] that includes migration, in order to understand variations in the time required for
insects to develop resistance. Likewise, [29] explored a model proposed in [30] to quantify changes in gene
frequency between zygotes in each generation. The model in question is time-discrete, with intermediate
dominance alleles in an autosomal locus, and assumes migration and a density-dependent growth of the
population. On the other hand, [31] and [32] used time-discrete models classical in populations genetics
to show the essential characteristics of the selection dynamics for resistance by one or two insecticides on
two autosomal locus. More recently, this line of research was explored again [26, 33]. Also, [25] developed
genetic models to predict changes in the fitness and frequency of resistance alleles in synergistic scenarios.
All these models consider Mendelian inheritance, but do not take into account the existence of several
stages of life, and different selective pressure for each phase.

Furthermore, models have been proposed to develop new approaches, such as the idea of evolution-
proof insecticides [12, 34, 35]. In particular, these models were developed to explore the control of
malaria vector mosquito. Since the malaria parasite requires a mosquito with a long life expectancy,
these authors explore strategies to slow down the evolution of resistance using combinations of larvicides
and late-life-acting insecticides. In this regard a classical population genetics model is used in [34] to
quantify the change in relative frequency of a resistant allele, assuming a constant population of adults.
A population genetics model that considers the change in relative frequency of a resistance allele in
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different age classes is considered in [12]. The two works cited above differ from [35], in which an aged-
structured population of variable size is modeled by delay differential equations. However, this model
does not possess inheritance mechanism for autosomal genes.

A non-conventional approach to resistance models was given in [36]. Inspired by the study of herbicide
resistant weed, this paper proposed a continuous-time deterministic model that combines the logistic
growth in a population with the rearrangement of alleles in the genotypes given by inheritance. In
addition, the model applies to cases of multiple loci using tensor product, and extends to polyploid and
other numbers of alleles. However, it does not allow to model the several life phases, which present
different selective pressures in their respective ecological niches.

In [37] a compartmental model with age-structure was proposed to quantify the time required to
reverse resistance in a dengue vector mosquito. A model of dimension 15, with five life stages for three
genotypes, was introduced, and numerical simulations were conducted, in order to evaluate the loss of
resistance, assuming that in absence of insecticide the resistant genotype has lower fitness.

Finally, some recent studies have emphasized the need for models to have an integrated analysis
of various control strategies simultaneously. For example, [38] proposed a model for control mosquito-
borne diseases including insecticides and Wolbachia, a maternally inherited bacterium with the potential
to reduce vector competence. However, the model proposed is limited to an insecticide susceptible
mosquito population. Based on empirical evidence, models have been proposed that analyze the synergy
between insecticide resistance in chemical control strategies for mosquito epidemics with the use of
Wolbachia [14].

1.3 The proposed modeling approach

Our goal in the present paper is to provide a class of simple models able to account for the evolution
of resistance to larvicides and/or adulticides on an autosomal gene for an insect population, taking
into account the life history complexity, and to show that the latter possess key properties that we are
entitled to expect from such models. This work is viewed as paving the way towards the construction
of more complex ad hoc models, describing more involved situations and useful for various situations
involving biological control of vectors. A typical example is the release of Wolbachia infected mosquitoes
in presence of, possibly undesired, insecticide. Elaborating and analyzing release strategies for such
situations requires a mix of population dynamics, population genetics and control theory. Work built up
upon the models and analysis provided here, will be presented in a forthcoming paper.

Insects are diploid organisms with sexual reproduction and usually with several phases of life. In
many cases the genes involved in insecticides resistance are autosomal and follow principles of Mendelian
inheritance. Furthermore, they have a pre-reproductive and a reproductive phases and quite frequently,
like for holometabolism, the immature stages are well differentiated from the mature stages. In such
cases the larvae do not compete with adults, since they are found in different ecological niches, and
are consequently subjected to different selective pressures —e.g. larvicides and adulticides factors. In
response to the aforementioned, we propose:

• a continuous-time compartmental model based on a life history with two leading phases, a pre-
reproductive and reproductive;

• a reproductive phase that includes a heredity function for Mendelian inheritance given by an
autosomal gene;

• and selective pressures of larvicides and/or adulticides for each genotype that may affect fertility
and density-dependent viability in each life phase.

The life cycle of an insect may be seen analogously to a sequence of chemical modifications that
a sustenance goes through. Like in a chemical reaction network [39], some stages of life are slower
than others. This last feature opens up the possibility of using slow manifold theory to deduce simpler
inheritance models. The modelling framework presented below is based on this principle. More precisely,
according to whether the reproductive phase is fast or slow with respect to the pre-reproductive one,
we obtain two distinct class of models. This simplification, achieved via slow manifold theory, yields
two different classes of Mendelian inheritance models, which present density-dependent recruitment and
mortality rates in a non-conventional way.
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We show that these models fulfil several fundamental properties. Most importantly, in the absence
of selection they evolve in compliance with Hardy-Weinberg law; while in presence of selection and in
the dominant or codominant cases, they globally converge towards the disappearance of all genotypes
except the fittest homozygous one. Mendelian inheritance is easily incorporated into population dynamics
in the modeling framework proposed here. This is achieved through inheritance matrices deduced from
probability principles, allowing for modeling and analysis of the evolution in more complicated situations.

The paper is organized as follows. The modeling framework is presented in Section 2, departing from
a general two life phase model. A single locus trait heredity function that formalizes Mendel’s first law is
described in Section 2.1. In Sections 2.2.1 and 2.2.2, slow manifold theory is used to deduce two classes
of models describing the evolution of three genotypes of a population having inheritable attributes and
density-dependent recruitment and mortality rates. These two classes correspond respectively to the
limit of fast and slow reproductive phase. We extend in Section 3 the latter to two general classes of
models, namely (F) (Fast) and (S) (Slow), which are studied afterwards. The assumptions necessary to
this study are given in Section 3.1, and useful technical results are put in Section 3.2. Their proofs are
in Appendix A. Well-posedness of these models and other qualitative results are considered in Section 4.

The asymptotic behavior is then studied. The case where no fitness difference exists between the
different genotypes is considered in Section 5. In this case, Hardy-Weinberg law is shown to hold for the
considered classes of models (Theorem 13). In Section 6 is studied the case of dominant and codominant
selection regimes. Asymptotic convergence to the homozygote with highest fitness is demonstrated in
such conditions for models (F) and (S) (Theorem 14). Last, concluding remarks are made in Section 7.

2 Modelling

In this section is introduced the approach leading to the models. The latter are introduced in Section
3 and studied afterwards. We begin by listing some of the main constitutive hypotheses made to ob-
tain these models of life history for a diploid population obeying the Mendel’s laws of inheritance and
submitted to selection.

• No distinction is made between male and female individuals. In particular the fertility and mortality
are considered identical for males and females. It is possible to consider this abstraction when the
sex ratio is constant and absolute fitness is independent of sex.

• The mortality rates in each life phase are increasing functions of the population density.

• The fertility rates are constant, i.e. they are independent of the population density.

• The differences in fertility or mortality between different genotypes result from an artificial, sta-
tionary, modification of the environment e.g. by a constant lethal dose application of an insecticide.

• The differences in inheritable attributes that modify the fitness with respect to natality and mor-
tality are determined by a unique autosomal locus.

• There exist two different types of alleles in this locus, namely s and r.

In chemical control, the applied lethal dose of insecticide can vary over time, affecting fertility and
mortality in different ways. In the models introduced in the sequel, we do not treat explicitly this
time-dependence, and assume that to every given insecticide lethal dose density correspond fixed charac-
teristic fertility and mortality. Once this dependence is modelled, describing intermittent application of
insecticide is done by introducing time-dependence of the insecticide density. This aspect is not explored
further in this paper, which instead focuses on asymptotic properties in stationary environment.

As a consequence of the setting of two alleles in a single locus of a diploid population, we have three
different genotypes, namely:

{r, s} × {r, s} = {(r, r), (s, r), (s, s)}

as no difference exists between the genotypes (s, r) and (r, s). In the sequel, the index i = 1, 2, 3 will be
used to identify the genotypes, while generally speaking the index j = r, s will refer to the alleles. The
latter are designated r, s as resistant and susceptible.
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As mentioned before, we are interested in the representation of a population with two life phases.
This distinction is quite simplistic for insects with complex life cycles, but covers broad distinctions
like pre-reproductive phase, subject to food and space limitation, and reproductive phase with different
niches and potential selective pressures. As a starting point to represent such life history, we begin with
the following compartmental models:

L̇i = αi(FÂ(t))− µi(v
TL(t))Li(t)− νiLi(t) (1a)

˙̂
Ai = νiLi(t)− µ̂i(ŵ

TÂ(t))Âi(t), (1b)

for i = 1, 2, 3. The quantities Li (Larvae) represent the density of genotypes (i = 1, 2, 3), in pre-
reproductive phase, and Âi (Adults) the corresponding density of reproductive individuals. The param-
eters involved in (1) have the following meaning.

• The mortality functions µi and µ̂i depend upon the density, through the use by a population of
certain recourse, typically food or space. We assume that these mortality rates are all increasing
functions of the density. On the other hand, we wish to allow each genotype to have its proper
consumption needs. This is done by introducing weighted sums vTL and ŵTÂ as argument of the
functions µi and µ̂i, for given positive vectors v, ŵ.

• The functions αi account for the mechanism of Mendelian inheritance, presented in detail in Section
2.1; while, for positive fi, i = 1, 2, 3, the diagonal matrix F := diag{fi} represents multiplicative
symmetry fertility rates of genotypes [40]. The “symmetry” here refers to the fact that the numbers
of births resulting from a given genotypic crossing i × i′ are identical whether females carry the
genotype i and males the genotype i′ or the opposite. Modeling of non-symmetric fertilities of
mating pairs in one-locus genetics yields quite complicated models [17].

• Last, the νi describe constant maturation rates from pre-reproductive to reproductive phase.

Defining A := FÂ, that is Ai := fiÂi, system (1) rewrites as

L̇i = αi(A(t))− µi(v
TL(t))Li(t)− νiLi(t) (2a)

Ȧi = ν̂iLi(t)− µ̂i(w
TA(t))Ai(t), (2b)

for i = 1, 2, 3, where by definition
ν̂i := fiνi, wi = f−1

i ŵi. (3)

2.1 Single locus trait inheritance

We present in this section the heredity functions αi used to model Mendelian inheritance. As already
said, in this paper we consider a general diploid population composed of three genotypes and assume no
distinction between male and female individuals.

We associate in the sequel to A1(t) (resp. A2(t), resp. A3(t)) the density of individuals with genotype
(r, r) (resp. (r, s), resp. (s, s)) at time t in the population: the two homozygous genotypes are represented
by A1 and A3, while A2 represents the heterozygous genotype.

Considering all possible crosses given random mating, the expected frequency of two allele combina-
tions in a diploid population is obtained from a Punnett Square [41] and is represented in the following
table:

Offspring ♂ \ ♀ A1 (r, r) A2 (r, s) A3 (s, s)
A1 1 1/2 0

(r, r) A2 1/2 1/4 0
A3 0 0 0
A1 0 1/2 1

(r, s) A2 1/2 1/2 1/2
A3 1 1/2 0
A1 0 0 0

(s, s) A2 0 1/4 1/2
A3 0 1/2 1
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Defining the vectors

ur :=





1
1
2
0



 , us :=





0
1
2
1



 , 1 :=





1
1
1



 = ur + us, (4)

the relative frequency of the genotype i, i = 1, 2, 3, in the offspring produced by the population density
A is given by

(uT

rA)
2

(1TA)2
, 2

(uT

rA)(u
T

sA)

(1TA)2
,

(uT

sA)
2

(1TA)2
.

Making the normalization hypothesis that the total density of offsprings (of all genotypes) hatched by
time unit equals the total density of adults of all genotypes, that is α1(A)+α2(A)+α3(A) = A1+A2+A3

for any A ∈ R
3
+, their genotypic density repartition is therefore given by:

α1(A) :=
(uT

rA)
2

1TA
, α2(A) := 2

(uT

rA)(u
T

sA)

1TA
, α3(A) :=

(uT

sA)
2

1TA
, (5)

or equivalently

αi(A) :=
1

1TA
ATGiA, i = 1, 2, 3, (6)

with inheritance matrices Gi, i = 1, 2, 3, defined by

G1 = uru
T

r =





1 1/2 0
1/2 1/4 0
0 0 0



 , G2 = uru
T

s +usu
T

r =





0 1/2 1
1/2 1/2 1/2
1 1/2 0



 , G3 = usu
T

s =





0 0 0
0 1/4 1/2
0 1/2 1



 .

We also define the operator α : R
3
+ \ {03} → R

3
+ \ {03} as

α(A) :=





α1(A)
α2(A)
α3(A)



 . (7)

Coming back to the initial setting of (2a), one sees that the expected frequency of the zygotes depend
upon the crossings, through the diagonal matrix F multiplying the unnormalized vector of adult densities
Â. This setting represents indeed symmetric multiplicative fertility [40].

A quite similar matrix setting was introduced by Langemann et al. [36] to model the evolution of
herbicide resistance, in the case of single and multiple loci. It is well fitted to this purpose, with the Gi

matrix materializing the inheritance mechanisms expressed by the first Mendel’s Law (Law of Segregation
of genes). Notice also that the outer product between the probability vectors uju

T

j′ corresponds to the
encounters of a sex with the opposite. Other inheritance mechanisms may be modelled in this framework,
including mechanisms that involve multiple loci [36].

2.2 Fast-slow models of population dynamics

The life history of organisms in general and insect in particular is quite different from one to the other.
Some mature early and reproduce quickly, while others mature late and reproduce slowly. An extreme
example is the arachnids Adactylidium sp., which are born mature and, having hatched inside their
mother, mate with their brothers [42, 43]. The insects Ephemeroptera constitute another extreme case:
the life of an adult Mayfly is very short and has essentially the primary function of reproduction [44].

We consider in the sequel the cases where one of the life phases is sensibly faster than the other one,
in other words that a fast dynamics and a slow dynamics are present in (2). In such conditions, it is
reasonable to expect that the fast variable in (2) should evolve rapidly and reach a unique equilibrium
value, depending upon the value of the slow variable, as if the latter was frozen; and that the global
evolution could be described by the evolution of the slow variable alone, taking for the fast one the
previous equilibrium value. This heuristic, consisting in approximating the initial fast-slow system by a
smaller slow system, may indeed be firmly justified, by applying singular perturbation methods [45]. The
latter simplifies the dimension of the system analyzed and preserves the parameters and properties of
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the original system. Under adequate assumptions, when the equilibrium value is asymptotically stable,
then the approximation holds on any finite time interval, and even on infinite time intervals when the
slow system has an asymptotically stable equilibrium, see e.g. [46, 47] for details.

Depending on which of the phases is faster, applying singular perturbation yields two different classes
of models. We show in Sections 2.2.1 (fast reproductive phase) and 2.2.2 (slow reproductive phase) how
these two classes are obtained.

2.2.1 Fast reproductive phase population dynamics

We consider here the case of an organism with a reproductive phase faster than the pre-reproductive
phase. As said before, the mortality rates are increasing, and this is specially true for µ̂i in (2b).
Therefore, for any fixed L, equation (2b) possesses a unique, globally asymptotically stable, equilibrium
A(L), given implicitly by

0 = ν̂iLi − µ̂i(w
TA)Ai, i = 1, 2, 3 . (8)

Equation (8) yields the following algebraic relationship between Li and Ai:

Ai =
ν̂i

µ̂i(wTA)
Li, i = 1, 2, 3

which necessarily implies that b := wTA fulfills the identity

b =

3
∑

i=1

wiν̂i
µ̂i(b)

Li (9)

Now, the mortality µ̂i is increasing with the total population, so for all L ∈ R
3
+ \ {0}, the map

b 7→

3
∑

i=1

wiν̂i
µ̂i(b)

Li (10)

is decreasing and may be inverted, providing a unique solution, denoted b∗(L), to equation (9). For any
given nonnegative vector L, the unique solution of (8) is then given as

Ai =
ν̂i

µ̂i(b∗(L))
Li, i = 1, 2, 3 . (11)

In the limiting case where the duration of the mature phase is sensibly faster than the immature one,
one may approximate equation (2) through slow manifold theory [45], and the asymptotic evolution is
then expressed by the algebro-differential system

L̇i = αi(A)− µi(v
TL)Li − νiLi, Ai =

ν̂i
µ̂i(b∗(L))

Li, i = 1, 2, 3 . (12)

Defining for any nonnegative scalar b, mi(b) :=
ν̂i

µ̂i(b)
, one then ends up with the system

L̇i = αi (diag{mi(b
∗(L))}L)− (νi + µi(v

TL))Li, i = 1, 2, 3 (13a)

where, for any L ∈ R
3
+, b

∗(L) is defined implicitly by the identity:

b∗(L) =
3
∑

i=1

wimi(b
∗(L))Li . (13b)

In (13a), diag{mi(b
∗(L))} denotes the diagonal matrix formed with the scalar coefficients mi(b

∗(L)),
i = 1, 2, 3. Notice that by construction the functions mi present in (13) are decreasing. The scalar
b∗(L) represents the weighted density of adults wTA corresponding to steady-state population L in pre-
reproductive stage. There is no difficulty in expressing the functions and coefficients of system (13) in
terms of the initial problem (1), through the above formulas and the identities in (3).
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2.2.2 Slow reproductive phase population dynamics

Consider now the opposite situation, of an reproductive phase comparatively much slow than the pre-
reproductive one. In this case, the same argument than before leads similarly to consider instead of
system (2) the algebro-differential model:

0 = αi(A)− µi(v
TL)Li − νiLi, Ȧi = ν̂iLi − µ̂i(w

TA)Ai, i = 1, 2, 3 (14)

The algebraic relationship in equation (14) provides the identities

Li =
1

νi + µi(vTL)
αi(A), i = 1, 2, 3 (15)

and thus b := vTL necessarily fulfils the condition:

b =

3
∑

i=1

vi
νi + µi(b)

αi(A) (16)

From the increasingness of the mortality functions, one deduces as before that, for all A ∈ R
3
+ \ {0},

the right-hand side of (16) is decreasing, and this relation may thus be inverted. This operation yields a
unique solution to equation (16), which is denoted b∗(α(A)), using α defined in (7). With this, for any
nonnegative A, (15) has a unique solution L(A), which writes

Li =
1

νi + µi(b∗(α(A)))
αi(A), i = 1, 2, 3 .

Defining here for any nonnegative scalar b, (decreasing) functions mi(b) :=
ν̂i

νi + µi(b)
, one obtains finally

the model:
Ȧi = αi(A)mi(b

∗(α(A))) − µ̂i(w
TA)Ai, i = 1, 2, 3 (17a)

where, for any A ∈ R
3
+, b

∗(A) is defined implicitly by

b∗(A) =
3
∑

i=1

vi
ν̂i
mi(b

∗(A))Ai . (17b)

Equation (17) is quite similar to, but different from, equation (13) obtained in the case of a fast repro-
ductive phase. Here, the scalar b∗(A) is the weighted density wTL of individuals in the pre-reproductive
phase that corresponds to steady-state population A in reproductive stage. As in Section 2.2.1, there
is no specific difficulty here in expressing the functions and coefficients of system (17) in terms of the
initial problem (1), using the above transformations and the identities in (3).

As can be seen from the derivations of (13) and (17), monotonicity assumptions on the mortality
rates are necessary, in order to obtain the perturbed systems. For this reason, we postpone the formal
statement of the models studied in the sequel to Section 3, where all the assumptions are introduced.

3 Preliminaries

3.1 Assumptions

We now introduce the two general classes of equations studied in this paper. The latter extend in
particular the systems (13) and (17) obtained previously as models for fast and slow reproductive phase
populations. The notations are inspired from these preliminary examples and generalised.

We introduce first functions mi and µi to model recruitment and mortality rates, and v, w two vectors
permitting to define their arguments. The following series of assumptions will be made on these objects.

Assumption 1. For any i = 1, 2, 3, the functions mi : R+ → R+ are locally Lipschitz decreasing

functions; the functions µi : R+ → R+ are locally Lipschitz increasing functions. The vectors v, w ∈ R
3

have positive components.
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Assumption 1 assumes that the recruitment rates are decreasing functions, while the mortality rates
are increasing functions, as is the case for the Verhulst logistic equation and other conventional population
dynamics models. As a central consequence, this allows to give sense to the function b∗ that naturally
appeared in Sections 2.2.1 and 2.2.2, as shown by the following result, whose proof is in Appendix A.1.
The values vi that appear in the statement are the components of the vector v introduced in Assumption
1.

Lemma 1. Let Assumption 1 holds. Then, for any x ∈ R
3
+, there exists a unique solution b∗(x) ∈ R+,

to the scalar equation

b =
3
∑

i=1

vimi(b)xi. (18)

Moreover, b∗(x) > 0 if x ∈ R
3
+ \ {03}, b

∗(03) = 0 and b∗ : R3
+ → R+ has the same regularity than the

functions mi.

As explained in Sections 2.2.1 and 2.2.2, for any density x ∈ R
3
+ \ {03}, the scalar b∗(x) in Lemma 1

represents the total effective density of individuals present in the other life stage, reached here infinitely
fast. Notice that the map b∗ depends upon the vector v.

With this done, we are finally in position to introduce the two classes of models studied in this paper.
For any x ∈ R

3
+ and z ∈ R+, define the positive diagonal matrices M(x) and µ(z) by:

M(x) = diag{mi(b
∗(x))}, µ(z) = diag{µi(z)}.

The two classes of models we will be interested in are expressed as follows:

ẋ = α(M(x)x) − µ(wTx)x , (F)

ẋ = M(α(x))α(x) − µ(wTx)x . (S)

Equations (F) and (S) can be described as a class of inheritance models where population dynamics
is governed by density-dependent recruitment and mortality. The first terms in the right hand side of
these equations models recruitment, while the second term models mortality. Conventional population
dynamics models implicitly assume that all individuals have on average the same fertility and viability.
However, it is clear that this condition may vary according to heritable traits, e.g. resistance to an
insecticide. The class of inheritance models proposed generalizes a conventional population dynamics
system for the case of three genotypes governed by a locus, such that selective pressure can affect
recruitment or mortality.

Recall that the map α is defined in (7). In developed form, these equations write respectively

ẋ1 =
(uT

rM(x)x)2

1TM(x)x
− µ1(w

Tx)x1 (F.a)

ẋ2 = 2
(uT

rM(x)x)(uT

sM(x)x)

1TM(x)x
− µ2(w

Tx)x2 (F.b)

ẋ3 =
(uT

sM(x)x)2

1TM(x)x
− µ3(w

Tx)x3 (F.c)

and

ẋ1 =
(uT

rx)
2

1Tx
m1(b

∗(α(x))) − µ1(w
Tx)x1 (S.a)

ẋ2 = 2
(uT

rx)(u
T

sx)

1Tx
m2(b

∗(α(x))) − µ2(w
Tx)x2 (S.b)

ẋ3 =
(uT

sx)
2

1Tx
m3(b

∗(α(x))) − µ3(w
Tx)x3 . (S.c)

Manifestly, equations (F) and (S) contain as particular cases the equations (13) and (17), obtained by
applying singular perturbation to the normalized system (1). One shows easily that the system (13) that
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emerged in the case of fast reproductive phase (Section 2.2.1) is system (F) with the recruitment rates
mi and the mortality rates µi

fiνi
µ̂i(·)

and νi + µi(·) .

The variable x represents the pre-adult populations in the original model. On the other hand, system
(17) appeared in the slow reproductive phase (Section 2.2.2) corresponds to (S) with recruitment and
mortality rates

fiνi
νi + µi(·)

and µ̂i(·) ,

and x now represents the adult populations. Expressed in terms of the coefficients of the starting model
(1), the recruitment rate in systems (13) and (17) depends jointly upon the genotype fertility fi, the
maturation rate νi and the density-dependent mortality in the corresponding life phase.

The population dynamics under selective pressure (in adaptation) implies a difference in fitness
between genetically distinct individuals, either in the recruitment or mortality rate. The following
supplementary assumptions will be used to study adaptation.

Assumption 2. The functions mi, µi satisfy

∀x ∈ R
3
+, m1(b

∗(x)) ≥ m2(b
∗(x)) ≥ m3(b

∗(x)) and ∀z ≥ 0, µ1(z) ≤ µ2(z) ≤ µ3(z) (19)

Moreover, for any x ∈ R
3
+,

• m1(b
∗(x)) −m3(b

∗(x)) + µ3(w
Tx)− µ1(w

Tx) > 0 for system (F);

• m1(b
∗(α(x))) −m3(b

∗(α(x))) + µ3(w
Tx)− µ1(w

Tx) > 0 for system (S).

Assumption 3. The following inequality holds

m1(0) > µ1(0) (20)

Assumption 4. For any x ∈ R
3
+ \ {03}, the following limits exist and satisfy

0 ≤ lim
λ→+∞

mi(λx) < lim
λ→+∞

µi(λ) ≤ +∞, i = 1, 2, 3. (21)

Assumption 2 imposes a relative ordering of the fitnesses of the three genotypes, associated with cor-
responding increasing mortality rates or decreasing recruitment rates.Two distinct important situations
are covered: the cases of codominance or incomplete dominance, when the fitness of the two homozygotes
and of the heterozygote are strictly ordered according to (19) —e.g. m1 > m2 > m3 and µ1 < µ2 < µ3);
and the case of dominance, where the heterozygote has the same fitness than one of the two homozygotes
—e.g. m1 = m2 = m3, and µ1 < µ2 = µ3 or µ1 = µ2 < µ3; or µ1 = µ2 = µ3, and m1 > m2 = m3 or
m1 = m2 > m3. Notice that the selectively neutral case, where the fitness of all genotypes is equal, is
excluded by the positivity requirement contained in Assumption 2.

Assumption 3 ensures that at least genotype 1, with highest fitness, is viable. Last, Assumption 4
indicates that in any sufficiently large population, the mortality rates are greater than the recruitment
rates for each genotype, and this overpopulation effect will limit the population growth.

3.2 Technical lemmas

Before proceeding to the analysis results in Section 4, we state now two technical lemmas useful in the
sequel. By definition, ei, i = 1, 2, 3, represents the ith unit vector of R3.

Lemma 2. For any x ∈ R
3
+ \ {03} and any λ > 0, the following properties are fulfilled

1. uT

jα(x) = uT

jx, j = r, s;

2. 1Tα(x) = 1Tx;

3. α(λx) = λα(x);

4. α(ei) = ei, i = 1, 3.

10



Recall that the map α is defined in (7), and that the vectors ur, us and 1 come from (4). We explain
now the meaning of these properties. Point 1 manifests that the density of each allele hatched per time
unit is equal to its density, as a consequence of the mechanisms of Mendelian inheritance, and therefore
the same property holds for the global population (Point 2). This is a consequence of the normalization
exposed in Section 2.1. Point 3 indicates that the operator α is homogeneous of degree 1: the zygote
repartition in the offspring only depends upon the zygotic proportion of adults, while the offspring birth
density is proportional to the adult density. Last, Point 4 states that a homogeneous population of one
of the homozygotes only gives birth to homozygotes of the same genotype.

Lemma 3. Let x ∈ R
3
+ \ {0}.

1. The following properties are satisfied

lim
λ→+∞

b∗(λx) = +∞, (22)

lim
λ→+∞

mi(b
∗(λx)) < lim

λ→+∞

µi(λ), i = 1, 2, 3. (23)

Moreover, for both limits the convergence is uniform in the set {x ∈ R
3
+ : wTx = 1}.

2. The map λ 7→ b∗(λx) is increasing on [0,+∞).

Proofs of Lemmas 2 and 3 are given in Appendices A.2 and A.3. Point 1 indicates that, for any
population x of the slow phase, the population b∗(λx) of the fast phase grows unbounded when λ goes
to infinity; and that, the birth rate mi(b

∗(λx)) in the slow life stage i is smaller than the mortality
rate µi(λ) when λ goes to infinity. Both these properties are uniform with respect to the genotypic
repartition in the population x. Point 1 states that the map, for given slow phase population x, the
fast phase population b∗(λx) increases with λ. Notice however that the map x 7→ b∗(x) itself is not
increasing.

4 Well-posedness and qualitative results

We provide here the first results concerning the solutions of systems (F) and (S). At first, well-posedness
of these systems of nonlinear ordinary differential equations is proved in Section 4.1. The qualitative
properties that relate to the existence of monomorphic and polymorphic states, and trajectories are
studied in section 4.2. Last, we show in Section 4.3 that quite natural notions of mean allelic recruitment

rate and mean allelic mortality rate may be introduced for each system, which will prove quite useful in
establishing the forthcoming asymptotic results.

4.1 Well-posedness of the models

Well-posedness for the models (F) and (S) is supplied by the following statement.

Theorem 4 (Well-posedness and boundedness of the solutions). Assume Assumption 1 is fulfilled. Then,

for any nonnegative initial condition, there exists a unique solution x of (F), resp. (S), on [0,+∞),
continuous with respect to the initial condition. Its coordinates are nonnegative for any t ≥ 0.

If moreover Assumption 4 is fulfilled, then

0 ≤ lim inf
t→+∞

1Tx(t) ≤ lim sup
t→+∞

1Tx(t) ≤ c∗F, resp. c∗S (24)

where by definition c∗F, resp. c∗S, is the largest c ≥ 0 such that

max

{

max
i

mi(b
∗(cx))

µi(c)
: wTx = 1

}

≤ 1,

resp. max

{

max
i

mi(b
∗(cα(x)))

µi(c)
: wTx = 1

}

≤ 1 (25)

11



Formula (24) guarantees that the unique solution corresponding to a given initial condition, takes
on nonnegative values and is asymptotically bounded from above by a constant value, independent of
the trajectory. Inequality (25) provides an estimate of this bound. This differs from the conventional
dynamics for Mendelian populations continuous model —see Chapters 19 and 22 in [17], in which the
population is governed by a Malthusian fitness and goes exponentially towards infinity together with all
alleles of the gene pool.

Proof.

• The equations (F) and (S) are meaningful as soon as Assumption 1 holds, as the latter permits to
define b∗ (through Lemma 1). The well-posedness of both systems comes from the Lipschitzness of their
right-hand side. The fact that the trajectories do not escape the nonnegative quadrant comes from the
fact that ẋi(t) ≥ 0 whenever xi(t) = 0, i = 1, 2, 3.
• We first demonstrate that the definition of c∗F as stated in the statement is meaningful. Indeed, for

any x ∈ R
3
+ \ {03}, due to Lemma 3 the map

c 7→ max
i=1,2,3

mi(b
∗(cx))

µi(c)

is decreasing and, due to Assumption 4, it satisfies:

lim
c→+∞

max
i=1,2,3

mi(b
∗(cx))

µi(c)
< 1.

As the convergence of this limit is uniform in the set {x ∈ R
3
+ : wTx = 1}, the map

c 7→ max

{

max
i=1,2,3

mi(b
∗(cx))

µi(c)
: wTx = 1

}

admits values smaller than 1 for sufficiently large c > 0. Therefore, c∗F as given in the statement is well
defined, too.

Slight adaptation of the same argument demonstrates that c∗S too is well defined.

• Summing up the three equations in (F), we have

1Tẋ = 1Tα(M(x)x) − 1Tµ(wTx)x

= 1TM(x)x − 1Tµ(wTx)x (by Property 2 in Lemma 2)

=
3
∑

i=1

(mi(b
∗(x)) − µi(w

Tx))xi

≤
(

max
i

{mi(b
∗(x)) − µi(w

Tx)}
)

1Tx, i = 1, 2, 3.

The vector x
wTx

= 1 is normalised, in the sense that wT x
wTx

= 1. As mi(b
∗(x)) = mi(b

∗(wTx x
wTx

)), one
gets by definition of c∗F that maxi{mi(b

∗(x)) − µi(w
Tx)} < 0 whenever wTx > c∗F.

Essentially the same argument provides the corresponding result for system (S), and this proves (24)
and (25), and achieves the demonstration of Theorem 4.

4.2 Monomorphism and polymorphism

Variability is essential for the selection to operate in a population. With this in view, we introduce some
related notions.

Definition 5 (Monomorphic, polymorphic and “holomorphic” states). A nonzero population state x ∈
R

3
+ is called monomorphic if it consists of a single homozygous genotype, that is x = cei for i = 1 or

3 and a certain c > 0. Otherwise it is called polymorphic, and “holomorphic” if all the genotypes are

present.

We exhibit now the possible values of a homozygous equilibrium point.
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Lemma 6 (Monomorphic equilibria). Assume Assumptions 1 and 4 are fulfilled. For any i ∈ {1, 3},
c∗i ei is a monomorphic equilibrium, where

• If mi(0) > µi(0), c
∗
i ∈ R+ is the unique positive solution to the scalar equation

mi(b
∗(ciei)) = µi(ciwi) . (26)

• If mi(0) ≤ µi(0), we let c∗i := 0.

Recall that ei denotes the ith unit vector.

Proof. Notice that the functions defined on R
+ by c 7→ mi(b

∗(cei)), i = 1, 2, 3, are decreasing, due to
Assumption 1 and property 2 in Lemma 3, while the functions c 7→ µi(cwi), i = 1, 2, 3, are increasing.
Therefore for mi(0) > µi(0), (26) admits a unique, positive, solution.

The following lemma shows that the trajectories of (F) and (S) initially originated from a monomor-
phic population converge to the corresponding monomorphic equilibrium.

Lemma 7 (Monomorphic trajectories). Assume Assumptions 1 and 4 are fulfilled. Then any trajectory

originating from a monomorphic state, say of homozygote i ∈ {1, 3}, stays monomorphic and converges

towards the corresponding equilibrium point c∗i ei, with c∗i given by Lemma 6.

The positive numbers c∗i represent the carrying capacities corresponding to each monomorphic ho-
mozygous population.

Proof. Clearly when only one allele is initially present, i.e. when the heterozygous genotype and one of
the two homozygous ones are initially absent, this property remains true throughout time. The dynamics
of (F) or (S) then occurs in the one-dimensional space that corresponds to this homozygous genotype,
and it is easily shown that the evolution obeys the law:

ẋi =
(

mi(b
∗(xiei))− µi(wixi)

)

xi .

In the case where c∗i is such that mi(b
∗(c∗i ei)) − µi(wic

∗
i ) = 0, that is when i = 1, or when i = 3 and

m3(0) > µ3(0), then c∗i is the unique globally asymptotically stable equilibrium of this system.
When m3(0) ≤ µ3(0), all trajectories converge towards the globally asymptotically equilibrium 0 =

c∗3e3, as in this case c∗3 = 0.

We now consider trajectories of (F) and (S) such that uT

rx(0) 6= 0 and uT

sx(0) 6= 0. The following
result shows that in such cases all alleles, but also all genotypes, are present for positive times: extinction
of a genotype (in the selection case) may only occur asymptotically in time. In other words, polymorphic

trajectories are also “holomorphic” trajectories: immediately after the initial time, they contain all
genotypes.

Lemma 8 (Polymorphic trajectories). Assume Assumption 1 is fulfilled. Then for any trajectory such

that uT

rx(0) 6= 0 and uT

sx(0) 6= 0,

∀t > 0, xi(t) > 0, i = 1, 2, 3 . (27)

Proof of Lemma 8. If xi(0) = 0 for i = 1 or 3, and x2(0) > 0, then the corresponding derivative ẋi is
positive at time t = 0, and thus xi takes on positive values at the right of 0. Similarly, if xi(0) > 0 for
i = 1 and 3, and x2(0) = 0, the same occurs for the derivative ẋ2, and x2 is also positive at the right of
0.

On the other hand, one sees that, for any t ≥ 0 and i = 1, 2, 3,

ẋi ≥ −µi(w
Tx)xi .

Therefore

∀t ≥ t′ ≥ 0, xi(t) ≥ xi(t
′) exp

(

−

∫ t

t′
µi(w

Tx(s)) ds

)

which is positive whenever xi(t
′) > 0. This establishes the desired inequality.
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In view of Lemma 8, we put

Definition 9 (Polymorphic trajectories). Any trajectory such that uT

rx(0) 6= 0 and uT

sx(0) 6= 0 is called

a polymorphic trajectory.

Due to Lemma 8, any polymorphic trajectory is constituted of holomorphic states, except possibly
at its initial point.

4.3 Mean allelic mortality and recruitment rates

In order to study selection in Section 6, we associate here to each of the systems (F) and (S) two mean

allelic rates, which are defined at any polymorphic state. Due to Lemma 8 and property 1 in Lemma 2,
these rates are well defined along any polymorphic trajectory.

Definition 10 (Mean allelic mortality and recruitment rates).
• System (F). For any polymorphic state x ∈ R

3
+, define the mean allelic recruitment rates m̃F,j

(x):

m̃F,j
(x) :=

uT

jM(x)x

uT

jx
, j = r, s (28a)

and the mean allelic mortality rates µ̃F,j
(x):

µ̃F,j
(x) :=

uT

jµ(w
Tx)x

uT

jx
, j = r, s. (28b)

• System (S). For any polymorphic state x ∈ R
3
+, define the mean allelic recruitment rates m̃S,j

(x):

m̃S,j
(x) :=

uT

jM(α(x))α(x)

uT

jx
, j = r, s (29a)

and the mean allelic mortality rates µ̃S,j
(x):

µ̃S,j
(x) :=

uT

jµ(w
Tx)x

uT

jx
, j = r, s. (29b)

The fundamental interest of the previous definitions is to allow writing the evolution of the allelic
populations along any polymorphic trajectory as:

uT

j ẋ = uT

j (α(M(x)x) − µ(wTx)x) = uT

jM(x)− µ̃F,j
(x)uT

jx

=
(

m̃F,j
(x)− µ̃F,j

(x)
)

uT

jx, j = r, s (30a)

for system (F); and similarly for system (S):

uT

j ẋ = uT

j (M(α(x))α(x) − µ(wTx)x) =

(

uT

jM(α(x))α(x)

uT

jα(x)
− µ̃S,j

(x)

)

uT

jx

=
(

m̃S,j
(x) − µ̃S,j

(x)
)

uT

jx, j = r, s. (30b)

(Property 1 of Lemma 2 was used in the previous deductions).
A key characteristic of the mean rates introduced in Definition 10 is summarized in the following

lemma.

Lemma 11 (Ordering of the mean allelic rates). Assume Assumptions 1 and 2 are fulfilled. Then for

any polymorphic state x ∈ R
3
+, one has

m1(b
∗(x)) ≥ m̃F,r

(x) ≥ m2(b
∗(x)) ≥ m̃F,s

(x) ≥ m3(b
∗(x)) , (31a)

m1(b
∗(α(x))) ≥ m̃S,r

(x) ≥ m2(b
∗(α(x))) ≥ m̃S,s

(x) ≥ m3(b
∗(α(x))) (31b)

and

µ1(w
Tx) ≤ µ̃F,r

(x) ≤ µ2(w
Tx) ≤ µ̃F,s

(x) ≤ µ3(w
Tx) , (32a)

µ1(w
Tx) ≤ µ̃S,r

(x) ≤ µ2(w
Tx) ≤ µ̃S,s

(x) ≤ µ3(w
Tx) (32b)
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Proof. For some j ∈ {r, s} consider e.g. the map µ̃F,j
. One has

µ̃F,j
(x) :=

uT

jµ(w
Tx)x

uT

jx

and thus

µ̃F,1(x) =
µ1(w

Tx)x1 +
1
2µ2(w

Tx)x2

x1 +
1
2x2

, µ̃F,3(x) =
µ3(w

Tx)x3 +
1
2µ2(w

Tx)x2

x1 +
1
2x2

and Assumption 2 yields immediately (32a). The three other formulas are proved in the same way.

5 Analysis of the selectively neutral case

An inheritable variant is selectively neutral when the phenotypic manifestations of certain mutant alleles
are equivalent to those of the wild type allele in their fitness (fertility and viability). Neutrality is
considered the null hypothesis of evolution in the study of adaptation [48], since when this is not fulfilled,
the selection operates.

We consider here the selectively neutral case, where recruitment and mortality rates are identical for
all genotypes. Write in this case µsn := µi, msn := mi for i = 1, 2, 3. In particular, Assumption 2 doesn’t
hold here. As a consequence of Assumption 1, msn is decreasing and µsn increasing. Equation (18) here
writes

b = msn(b)v
Tx

and its unique scalar solution clearly depends upon x only through the quantity vTx. To emphasize this
fact, it is denoted bsn(v

Tx), rather than b∗(x). As a direct consequence of Lemma 1, bsn is null at zero
and takes on positive values otherwise. Also, it comes from the second point of Lemma 3 that bsn is
increasing. The following result for (F) and (S) then presents no difficulty.

Lemma 12. Assume Assumptions 1, 3 and 4 are fulfilled. For any x ∈ R
3
+ \ {0}, there exists a unique

solution, denoted c∗sn(x) in the sequel, of the equation

msn(bsn(cv
Tx)) = µsn(cw

Tx). (33)

The latter is such that the vector c∗sn(x)x is an equilibrium.

Proof. Due to Assumption 1, the map c 7→ msn ◦ bsn(cv
Tx) is decreasing, while the map c 7→ µsn(cw

Tx)
is increasing. On the other hand, msn(bsn(0)) = msn(0) > µsn(0) from Assumption 3; and 0 ≤
lim

z→+∞
msn(z) < lim

z→+∞
µsn(z) ≤ +∞ due to Assumption 4. This demonstrates Lemma 12.

Both systems (F) and (S) now reduce to the equation

ẋ = msn(bsn(v
Tx))α(x) − µsn(w

Tx)x . (34)

The asymptotic behaviour of the solutions of (34) is completely described by the following fundamental
result. In particular, its proof makes clear that the total population follows a variant of Verhulst’s logistic
growth equation [49].

Theorem 13 (Hardy-Weinberg law in selectively neutral evolution). Assume Assumptions 1, 3 and 4
are fulfilled, and that the recruitment and mortality rates are the same for all genotypes. Then for any

nonzero initial condition, the solutions of (F), resp. (S), satisfy

∀t ≥ 0,
uT

jx(t)

1Tx(t)
=

uT

jx(0)

1Tx(0)
:= pj , j = r, s (35)

where pr + ps = 1, and
lim

t→+∞
x(t) = c∗sn (p) p (36)

for c∗sn defined in Lemma 12 and the vector p defined by pT := (p2r 2prps p2s).
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As is clear from the statement, Assumption 2, which implies fitness ordering, is not made here.
Theorem 13 establishes that in absence of asymmetric fitness among genotypes, systems (F) and (S)
fulfil the Hardy-Weinberg principle: the allele frequencies remain constant over time and determine the
asymptotic genotype frequencies, see (35), while the total density of individuals converges to the unique
population level, defined by the solution of (33), which forms the carrying capacity for this relative
frequency. This is a “null model” of the behavior of genes frequency in a population [50], obtained as a
consequence of the random mating and the absence of selection in the population.

Proof of Theorem 13. • For any j = r, s, one has

uT

jẋ = uT

j (msn(bsn(v
Tx))α(x) − µsn(w

Tx)x) =
(

msn(bsn(v
Tx))− µsn(w

Tx)
)

uT

jx

using property 1 in Lemma 2. Therefore

1Tẋ = (ur + us)
Tẋ = (msn(bsn(v

Tx))− µsn(w
Tx))1Tx

The two ratios
uT

jx(t)

1Tx(t)
are defined for any t ≥ 0 and differentiable with respect to time, with

d

dt

(

uT

jx

1Tx

)

=
(uT

j ẋ)(1
Tx)− (uT

jx)(1
Tẋ)

(1Tx)2

= (msn(bsn(v
Tx)) − µsn(w

Tx))
(uT

jx)(1
Tx)− (uT

jx)(1
Tx)

(1Tx)2
= 0

which yields (35) by integration.
• One now studies the evolution of the components of the vector x. ite One may rewrite formally (34)
as

ẋ = m̂(t)α(x) − µ̂(t)x (37)

where for simplicity we put the scalar functions m̂(t) := msn(bsn(v
Tx(t))) and µ̂(t) := µsn(w

Tx(t)). Using
(35), which has just been demonstrated, one may write, for any t ≥ 0,

α(x(t)) =
1

1Tx(t)





(uT

rx(t))
2

2(uT

rx(t))(u
T

sx(t))
(uT

sx(t))
2



 = (1Tx(t))p,

for the vector p defined in the statement. Consequently, one obtains from (37) the identities:

∀t ≥ 0, m̂(t)(1Tx(t)) =
1

p2r

(

ẋ1 + µ̂(t)x1(t)

)

=
1

2prps

(

ẋ2 + µ̂(t)x2(t)

)

=
1

p2s

(

ẋ3 + µ̂(t)x3(t)

)

One then deduces that

d

dt

(

x1

p2r
−

x2

2prps

)

+ µ̂(t)

(

x1

p2r
−

x2

2prps

)

=
d

dt

(

x3

p2s
−

x2

2prps

)

+ µ̂(t)

(

x3

p2s
−

x2

2prps

)

= 0 . (38)

The function µ̂(t) is uniformly bounded from below by a positive constant on the set {x ∈ R
3
+ : 1Tx ≤

c∗}, due to Theorem 4. Thus
∫ +∞

0
µ̂(t) dt = +∞, and one deduces by integration of (38) that the limits

in the following formula exist, and consequently that the identities themselves are true:

lim
t→+∞

(

x1(t)

p2r
−

x2(t)

2prps

)

= lim
t→+∞

(

x3(t)

p2s
−

x2(t)

2prps

)

= 0 .

Therefore, the evolution occurs asymptotically on the half-line
{

x ∈ R
3
+ : ∃c > 0, x = cp

}

.
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• Now, the evolution of the state x(t) = c(t)p on the previous half-line is dictated by the evolution of
c(t). The fact that pr + ps = 1 implies that 1Tx(t) = c(t), and the function c fulfils the scalar differential
equation

ċ = (m̂(t)− µ̂(t))c(t) = (msn ◦ bsn (c(t)v
Tp)− µsn (c(t)w

Tp)) c(t).

The latter possesses two points of equilibrium, namely 0 and c∗sn (p) by definition of the map c∗sn —see
Lemma 12. Due to Assumption 3, one has msn(0) > µsn(0), so the first equilibrium is unstable, while
the second one is globally asymptotically stable. This achieves the proof of Theorem 13.

6 Analysis of the selection case

We now state the result that describes the asymptotic behaviour in the dominant and codominant cases.

Theorem 14 (Asymptotic convergence to the homozygous equilibrium with higher fitness). Assume

Assumptions 1, 2, 3 and 4 are fulfilled. Then, for any nonzero initial condition, the solution of (F),
resp. (S), satisfies

lim
t→+∞

x(t) = c∗1e1 (39)

if allele r is initially present, and otherwise

lim
t→+∞

x(t) = c∗3e3 . (40)

Theorem 14 states that, provided that the allele r is initially present, the system converges asymp-
totically towards the homozygous equilibrium of strictly higher fitness. When only the allele s is present,
it goes towards the other homozygous nonzero equilibrium, or towards extinction if the latter does not
exist. In both cases, the asymptotic population levels c∗j , j = r = 1 and j = s = 3, correspond to the
monomorphic equilibria defined in Lemma 6.

Theorem 14 is a central result in the context of the evolution of resistance. It is important to
emphasize that a scenario of resistance reversal would be covered by turning in the direction of the order
relationship for the fitness components. From a biological point of view, the latter implies homogeneous
modifications in the environment —in space and time interval— that condition heterogeneous fitness in
a target population. This last Theorem guarantees that the selection can lead to total saturation, that
is, to the fixing of the resistance and total adaptation of the population. Lemmas 17 and 18 guarantee
the extinction of the susceptible allele. The latter is a fundamental difference in relation to the models
derived from the conventional definition of Malthusian fitness, where all alleles grow exponentially unless
they are assumed to be unviable (birth less than mortality), e.g. dynamics for Mendelian populations
model presented in [17].

The case of monomorphic trajectories has been already studied in Lemma 7. The proof of Theorem
14 in the general case of polymorphic trajectories is conducted in the remaining part of the present
section, based on careful study of the evolution of each allele j = r, s in the population, and then of
the evolution of each genotypic population i = 1, 2, 3. Central use will be made of the notions of mean
allelic rates and of the formulas (30), introduced in Section 4.3. Most of the demonstration steps below
are similar for (F) and (S), and will be treated altogether for both systems. For simplicity we drop,
whenever possible, the indices referring to the system considered, and simply write the allelic evolution

uT

jẋ = (m̃j(x(t)) − µ̃j(x(t))) u
T

jx(t), j = r, s . (41)

We first demonstrate in the following result that the ratio of the allelic frequencies evolves in a mono-
tone way. More precisely, the ratio of the densities of the (“susceptible”) allele s over the (“resistant”)
allele r is non increasing.

Lemma 15. For any polymorphic trajectory,

∀t ≥ 0,
d

dt

(

uT

sx(t)

uT

rx(t)

)

=
(

m̃s(x(t)) − µ̃s(x(t)) − m̃r(x(t)) + µ̃r(x(t))
)

(

uT

sx(t)

uT

rx(t)

)

≤ 0, (42)

and the previous inequality is strict for any t > 0.
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Proof.

• As a consequence of Lemma 8, the ratio
uT

sx(t)

uT

rx(t)
is defined for any t ≥ 0 along a polymorphic trajectory,

and it is differentiable with respect to time. One has therefore

∀t ≥ 0,
d

dt

(

uT

sx(t)

uT

rx(t)

)

=

(

uT

sẋ

uT

sx(t)
−

uT

rẋ

uT

rx(t)

)

uT

sx(t)

uT

rx(t)
(43)

which, thanks to (41), gives the equality part of (42). Formulas (31) and (32) provide the non-strict
version of (42).
• To prove the strict inequality, consider first system (F). One has
(

m̃F,r
(x)− µ̃F,r

(x)− m̃F,s
(x) + µ̃F,s

(x)
)

=
(

m̃F,r
(x)−m2(b

∗(x))− µ̃F,r
(x) + µ2(w

Tx)
)

+
(

m2(b
∗(x)) − m̃F,s

(x) + µ̃F,s
(x)− µ2(w

Tx)
)

(44)

and due to Lemma 11, each of the two expressions between parentheses in the right-hand side of (44) is
nonnegative.

Moreover, at any polymorphic point, one has —see the definitions in (28):

m̃F,r
(x) −m2(b

∗(x)) − µ̃F,r
(x) + µ2(w

Tx)

=
x1

uT

rx
(m1(b

∗(x))−m2(b
∗(x)) + µ2(w

Tx)− µ1(w
Tx))

m2(b
∗(x)) − m̃F,s

(x) + µ̃F,s
(x)− µ2(w

Tx)

=
x3

uT

sx
(m2(b

∗(x)) −m3(b
∗(x)) + µ3(w

Tx)− µ2(w
Tx)) (45)

A fundamental point now is that, due to the fact that x1 6= 0 and x3 6= 0 at any polymorphic point,
one deduces from the second part of Assumption 2 that at least one of the two nonnegative expressions

m1(b
∗(x))−m2(b

∗(x))+µ2(w
Tx)−µ1(w

Tx) and m2(b
∗(x))−m3(b

∗(x))+µ3(w
Tx)−µ2(w

Tx) is positive.
Notice that Assumption 2 is crucial here for nonnegativity.

As all genotypes are present along a polymorphic trajectory when t > 0 —see Lemma 8, one gets
that, along any polymorphic trajectory, at least one of the two nonnegative expressions

x1(t)

uT

rx(t)
(m1(b

∗(x(t))) −m2(b
∗(x(t))) + µ2(w

Tx(t)) − µ1(w
Tx(t)))

and
x3(t)

uT

sx(t)
(m2(b

∗(x(t))) −m3(b
∗(x(t))) + µ3(w

Tx(t)) − µ2(w
Tx(t)))

is indeed positive whenever t > 0. This in turn shows that along any polymorphic trajectory of equa-

tion (F),
(

m̃F,a
(x(t)) − µ̃F,a

(x(t)) − m̃F,A
(x(t)) + µ̃F,A

(x(t))
)

< 0 for any t > 0, and thus the strict

inequality in (42). This achieves the proof of Lemma 15 in the case of equation (F).
• The same argument holds for system (S). The counterpart of the formulas (45) is obtained by noticing
that, at any polymorphic point, one has (see (29)):

m̃S,r
(x)−m2(b

∗(α(x))) − µ̃S,r
(x) + µ2(w

Tx)

=
α1(x)

α1(x) +
1
2α2(x)

(m1(b
∗(α(x))) −m2(b

∗(α(x)))) +
x1

uT

rx
(µ2(w

Tx)− µ1(w
Tx))

=
uT

rx

1Tx
(m1(b

∗(α(x))) −m2(b
∗(α(x)))) +

x1

uT

rx
(µ2(w

Tx)− µ1(w
Tx)) (46a)

and similarly

m2(b
∗(α(x))) − m̃S,s

(x) + µ̃S,s
(x)− µ2(w

Tx)

=
uT

sx

1Tx
(m2(b

∗(α(x))) −m3(b
∗(α(x)))) +

x3

uT

sx
(µ3(w

Tx) − µ2(w
Tx)) . (46b)
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Using the adequate version of the second part of Assumption 2 allows to obtain in the same manner than
before the strict inequality in (42) for equation (S), and finally achieves the proof of Lemma 15.

We gather in the following result a series of estimates related to the genotypic frequencies.

Lemma 16. For any polymorphic trajectory, there exists c1 > 0 such that

uT

sx(t) ≤ c1(u
T

rx(t)), ∀t ≥ 0. (47)

Moreover, for any ε > 0, there exist c2, c3 ≥ 0 such that ∀t ≥ ε

x2(t) ≤ c2x1(t), x3(t) ≤ c3x2(t),
x1(t)

uT

rx(t)
≥

1

1 + 1
2c2

,
x3(t)

uT

sx(t)
≤

c3

c3 +
1
2

(48)

Lemma 16 establishes that along any polymorphic trajectory, the ratio of the densities of susceptible
over the density of resistants is bounded from above.

Proof.

• Formula (47) comes as direct consequence of Lemma 15. As a matter of fact, integrating (42) yields

(

uT

sx(t)

uT

rx(t)

)

= exp

(∫ t

0

(m̃s(x(t)) − µ̃r(x(t)) − m̃r(x(t)) + µ̃r(x(t))) dt

)(

uT

sx(0)

uT

rx(0)

)

≤

(

uT

sx(0)

uT

rx(0)

)

(49)

for any t ≥ 0, and therefore

uT

sx(t) ≤
uT

sx(0)

uT

rx(0)
(uT

rx(t)) := c1(u
T

rx(t)), ∀t ≥ 0.

• Consider first system (F). For any polymorphic trajectory one has x1(ε) > 0 for any ε > 0, see the
proof of Lemma 8. Within the present demonstration, one assumes for simplicity that ε may be taken
as zero, i.e. x1(0) > 0. Choose then positive constants c2, c3 such that

c2 > max

{

x2(0)

x1(0)
; 2c1

}

, c3 < max

{

x2(0)

x3(0)
;
2

c1

}

(50)

where c1 is the positive constant in (47). One deduces successively from Assumption 2 and (47) that

uT

sM(x)x =
1

2
m2(b

∗(x))x2 +m3(b
∗(x))x3

≤
1

2
m2(b

∗(x))x2 +m2(b
∗(x))x3

= m2(b
∗(x))(uT

sx)

≤ c1m2(b
∗(x))(uT

rx)

= c1m2(b
∗(x))

(

x1 +
1

2
x2

)

≤ c1

(

m1(b
∗(x))x1 +

1

2
m2(b

∗(x))x2

)

= c1(u
T

rM(x)x) (51)

Using by turns (F.b), (51), (50) and (F.a), one deduces

ẋ2 =
2

1TM(x)x
(uT

rM(x)x)(uT

sM(x)x) − µ2(w
Tx)x2

≤ 2c1
1

1TM(x)x
(uT

rM(x)x)2 − µ2(w
Tx)x2

≤ c2
1

1TM(x)x
(uT

rM(x)x)2 − µ2(w
Tx)x2

= c2 (ẋ1 + µ1(w
Tx)x1)− µ2(w

Tx)x2
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Therefore,

ẋ2 − c2ẋ1 ≤ c2µ1(w
Tx)x1 − µ2(w

Tx)x2

= −µ1(w
Tx) (x2 − c2x1) + (µ1(w

Tx)− µ2(w
Tx)) x2

≤ −µ1(w
Tx) (x2 − c2x1) (52)

where the last inequality has been deduced from the fact that µ2 ≥ µ1, see Assumption 2. Integrating
inequality (52) and using (50) yields for any t ≥ 0:

x2(t)− c2x1(t) ≤ exp

(

−

∫ t

0

µ1(w
Tx(s)) ds

)

(x2(0)− c2x1(0)) ≤ 0

and the first part of (48).
On the other hand, one also deduces from (F.b), (51), (F.c) and the fact that µ3 ≥ µ2,

ẋ2 =
2

1TM(x)x
(uT

rM(x)x)(uT

sM(x)x) − µ2(w
Tx)x2

≥
2

c1

1

1TM(x)x
(uT

sM(x)x)2 − µ2(w
Tx)x2

≥ c3
1

1TM(x)x
(uT

sM(x)x)2 − µ2(w
Tx)x2

= c3(ẋ3 + µ3(w
Tx)x3)− µ2(w

Tx)x2

≥ c3ẋ3 + µ3(w
Tx) (c3x3 − x2)

Therefore
ẋ2 − c3ẋ3 ≥ −µ3(w

Tx) (x2 − c3x3) (53)

which, taking into account the fact that c3 <
x2(0)

x3(0)
, yields

∀t ≥ 0, x2(t)− c3x3(t) ≥ 0 .

This proves the second inequality in (48). The last two inequalities come as a consequence, using the
fact that

x1(t)

uT

rx(t)
=

x1(t)

x1(t) +
1
2x2(t)

,
x3(t)

uT

sx(t)
=

x3(t)

x3(t) +
1
2x2(t)

.

This concludes the proof of Lemma 16 in the case of system (F).
• The proof is conducted similarly for system (S). We just quote here step by step the differences in the
computations. The analogue of formulas (52) and (53) is proved as follows. Using (S.b), Assumption 2,
(47) and (S.a), one deduces that

ẋ2 =
2

1Tx
(uT

rx)(u
T

sx)m2(b
∗(α(x))) − µ2(w

Tx)x2

≤ 2c1
(uT

rx)
2

1Tx
m1(b

∗(α(x))) − µ2(w
Tx)x2

≤ c2
(uT

rx)
2

1Tx
m1(b

∗(α(x))) − µ2(w
Tx)x2

= c2 (ẋ1 + µ1(w
Tx)x1)− µ2(w

Tx)x2

and therefore

ẋ2 − c2ẋ1 ≤ c2µ1(w
Tx)x1 − µ2(w

Tx)x2

= −µ1(w
Tx) (x2 − c2x1) + (µ1(w

Tx)− µ2(w
Tx)) x2

≤ −µ1(w
Tx) (x2 − c2x1)
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On the other hand, the fact that m3 ≤ m2 and µ3 ≥ µ2 yields

ẋ2 =
2

1Tx
(uT

rx)(u
T

sx)m2(b
∗(α(x))) − µ2(w

Tx)x2

≥
2

c1

(uT

sx)
2

1Tx
m3(b

∗(α(x))) − µ2(w
Tx)x2

≥
1

c3

(uT

sx)
2

1Tx
m3(b

∗(α(x))) − µ2(w
Tx)x2

=
1

c3
(ẋ3 + µ3(w

Tx)x3)− µ2(w
Tx)x2

≥
1

c3
ẋ3 + µ3(w

Tx)

(

1

c3
x3 − x2

)

which is the counterpart of (53). The other steps of the proof are similar to the case of system (F), and
not repeated for the sake of space. This concludes the proof of Lemma 16.

We are now in position to show that the ratio of the allelic frequencies not only decreases, as demon-
strated by the previous result, but also vanishes asymptotically. Of course Assumption 2, which orders
the different recruitment and mortality rates, is crucial to this Lemma.

Lemma 17. For any polymorphic trajectory,

lim
t→+∞

uT

sx(t)

uT

rx(t)
= 0 . (54)

Proof. We consider in the whole demonstration a given polymorphic trajectory —either of system (F)
or of system (S) according to the context.

The ratio of allelic frequencies being decreasing, as a consequence of Lemma 15, there exists a non-
negative scalar λ such that

lim
t→+∞

uT

sx(t)

uT

rx(t)
= λ . (55)

Due to the fact that uT

sx+uT

rx = 1Tx, one may deduce from (55) that the allelic frequencies also converge,
namely:

lim
t→+∞

uT

sx(t)

1Tx(t)
=

λ

1 + λ
, lim

t→+∞

uT

rx(t)

1Tx(t)
=

1

1 + λ
.

We assume by contradiction that
λ > 0 . (56)

Our aim is to show that (56) is wrong, i.e. that λ = 0.

• By Theorem 4, the trajectories are uniformly bounded. Therefore, by compactness, Assumption 2
guarantees the existence of a certain ζ > 0 such that

∀t > 0, m1(b
∗(x(t))) −m3(b

∗(x(t))) + µ3(w
Tx(t)) − µ1(w

Tx(t)) > ζ (57a)

for system (F); and

∀t > 0, m1(b
∗(α(x(t)))) −m3(b

∗(α(x(t)))) + µ3(w
Tx(t)) − µ1(w

Tx(t)) > ζ (57b)

for system (S). For the considered trajectory and the corresponding value ζ, let the set X be defined as

X :=

{

x ∈ R
3
+ : m1(b

∗(x)) −m2(b
∗(x)) + µ2(w

Tx)− µ1(w
Tx) >

ζ

2

}

(58a)

for the case of system (F), and as

X :=

{

x ∈ R
3
+ : m1(b

∗(α(x))) −m2(b
∗(α(x))) + µ2(w

Tx)− µ1(w
Tx) >

ζ

2

}

(58b)
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for system (S). Notice that, due to (57),

x(t) 6∈ X ⇒ m2(b
∗(x(t))) −m3(b

∗(x(t))) + µ3(w
Tx(t)) − µ2(w

Tx(t)) >
ζ

2
(59a)

for (F), and for (S):

x(t) 6∈ X ⇒ m2(b
∗(α(x(t)))) −m3(b

∗(α(x(t)))) + µ3(w
Tx(t))− µ2(w

Tx(t)) >
ζ

2
. (59b)

Now, observe that the derivative of
uT

sx

uT

rx
appears in (42) as a locally Lipschitz function of the state

variable x; and that along any polymorphic trajectory, the latter is uniformly bounded with uniformly

bounded time derivative. From this, we may deduce that this derivative is uniformly continuous with
respect to the time variable. As the convergence property (55) holds, Barbalat’s lemma [51, 52], estab-
lishes that the derivative converges to zero when t → +∞. Inserting in the expression of the latter (see
(42)), the decomposition in two nonnegative terms obtained in (44) and (45) for (F), and in (46) for (S),
one concludes by use of the hypothesis (56), that

lim
t→+∞

x1(t)

uT

rx(t)
(m1(b

∗(x(t))) −m2(b
∗(x(t))) + µ2(w

Tx(t)) − µ1(w
Tx(t))) = 0

lim
t→+∞

x3(t)

uT

sx(t)
(m2(b

∗(x(t))) −m3(b
∗(x(t))) + µ3(w

Tx(t)) − µ2(w
Tx(t))) = 0

• Assume first that, for the considered polymorphic trajectory and the set X defined in (58),

meas {t > 0 : x(t) ∈ X} = +∞ , (61)

where meas denotes the Lebesgue measure.
Consider primarily the case of system (F). One derives from (45), (48) and the definition of X in

(58), that

m̃F,s
(x(t)) − µ̃F,s

(x(t)) − m̃F,r
(x(t)) + µ̃F,r

(x(t))

≤ −
x1(t)

uT

rx(t)

(

m1(b
∗(x(t))) −m2(b

∗(x(t))) + µ2(w
Tx(t))− µ1(w

Tx(t))
)

≤ −
1

1 + 1
2c2

ζ

2
χx−1(X)(t) (62)

where by definition the characteristic function χx−1(X)(t) is equal to 1 if x(t) ∈ X , 0 otherwise. Inte-
grating now this inequality as in (49), one gets for any t ≥ 0,

(

uT

sx(t)

uT

rx(t)

)

≤

(

uT

sx(0)

uT

rx(0)

)

exp

(

−
1

1 + 1
2c2

ζ

2
meas {s ∈ (0, t) : x(s) ∈ X}

)

Due to the hypothesis made in (61), the previous expression converges towards 0 when t → +∞. There-

fore λ = lim
t→+∞

uT

sx(t)

uT

rx(t)
= 0, which contradicts (56). This latter formula is thus wrong, which establishes

(54) by contradiction.
The case of (S) is quite similar. Due to (47), one has for any t ≥ 0,

uT

rx(t)

1Tx(t)
≥

1

1 + c1
and

uT

sx(t)

1Tx(t)
≤

c1
1 + c1

.

From (46a), one derives here

m̃S,s
(x(t)) − µ̃S,s

(x(t)) − m̃S,r
(x(t)) + µ̃S,r

(x(t))

≤ −
uT

rx

1Tx
(m1(b

∗(α(x))) −m2(b
∗(α(x)))) −

x1

uT

rx
(µ2(w

Tx) − µ1(w
Tx))

≤ −
1

1 + c1
(m1(b

∗(α(x))) −m2(b
∗(α(x)))) −

1

1 + 1
2c2

(µ2(w
Tx)− µ1(w

Tx))

≤ −min

{

1

1 + c1
;

1

1 + 1
2c2

}

ζ

2
χx−1(X)(t)
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which is analogous to (62). The demonstration is then conducted in the same way and yields similarly
λ = 0. By contradiction with (56), this shows identity (54).
• We now treat the case where (61) does not hold, that is:

meas {t > 0 : x(t) ∈ X} < +∞ . (63)

It is not possible to use here the same argument than previously, because the quantity
x3(t)

uT

sx(t)
is

bounded from above, contrary to
x1(t)

uT

rx(t)
which is bounded from below, see (48). The measure of the

set {t > 0 : x(t) 6∈ X} is now infinite, and as a consequence of (59), one deduces that

meas

{

t ≥ 0 : m2(b
∗(x(t))) −m3(b

∗(x(t))) + µ3(w
Tx(t)) − µ2(w

Tx(t)) >
ζ

2

}

= +∞ (64a)

for (F), and for (S):

meas

{

t ≥ 0 : m2(b
∗(α(x(t)))) −m3(b

∗(α(x(t)))) + µ3(w
Tx(t))− µ2(w

Tx(t)) >
ζ

2

}

= +∞. (64b)

From (60) and (64), one obtains here that necessarily:

lim
t→+∞

x3(t)

uT

sx(t)
= 0 ,

and thus
lim

t→+∞
x3(t) = 0 . (65)

In view of the equations (F.c) for system (F) and (S.c) for system (S), one deduces by invoking
newly Barbalat’s lemma that

lim
t→+∞

ẋ3(t) = 0 . (66)

By considering again the right-hand side of (F.c), resp. (S.c), one then gets from (65) and (66) that

lim
t→+∞

uT

sM(x(t))x(t) = 0, resp. lim
t→+∞

uT

sx(t) = 0 ,

and therefore
lim

t→+∞
x2(t) = 0 . (67)

But (65) and (67) together yield

λ = lim
t→+∞

uT

sx(t)

1Tx(t)
= 0 ,

which contradicts (56). The latter is therefore wrong. This establishes (54) in the case where (63) holds,
and finally concludes the proof of Lemma 17.

As a remark, notice that using the techniques in the proof of Lemma 17, one may show that
the convergence is exponential in (54) whenever the following stronger form of Assumption 2 holds:
m1(b

∗(x)) − m2(b
∗(x)) + µ2(w

Tx) − µ1(w
Tx) > 0 for system (F), or m1(b

∗(α(x))) − m2(b
∗(α(x))) +

µ2(w
Tx) − µ1(w

Tx) > 0 for system (S). Indeed (61) always holds in such cases. On the contrary, there
is no indication that the same property holds when m2(b

∗(x))−m3(b
∗(x)) + µ3(w

Tx)− µ2(w
Tx) > 0 for

system (F), or m2(b
∗(α(x))) −m3(b

∗(α(x))) + µ3(w
Tx)− µ2(w

Tx) > 0 for system (S).
The asymptotic behavior of the ratio of allelic populations given in Lemma 17 is sufficient to assert

the asymptotics of the genotypic relative frequencies in (F) and (S), as shown now.

Lemma 18. For any polymorphic trajectory,

lim
t→+∞

x1(t)

1Tx(t)
= 1, lim

t→+∞

x2(t)

1Tx(t)
= lim

t→+∞

x3(t)

1Tx(t)
= 0 . (68)
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Proof. Recall that by definition

uT

sx(t)

uT

rx(t)
=

1
2x2(t) + x3(t)

x1(t) +
1
2x2(t)

≥
1
2x2(t) + x3(t)

x1(t) + x2(t) + x3(t)

which is larger than or equal to both nonnegative expressions

1

2

x2(t)

x1(t) + x2(t) + x3(t)
and

x3(t)

x1(t) + x2(t) + x3(t)

Lemma 17 implies that both these ratios converge towards 0 when t → +∞ and this permits to conclude
the proof of Lemma 18.

Due to Lemma 18 and the fact that the trajectories are bounded (see Theorem 4), x2 and x3 converge
towards 0. We are finally in the position to establish the asymptotic behaviour of the population size
for each genotype.

Lemma 19. For any polymorphic trajectory,

lim
t→+∞

x1(t) = c∗1, lim
t→+∞

x2(t) = lim
t→+∞

x3(t) = 0 . (69)

Proof. Consider e.g. system (F). Equation (F.a) may be written as

ẋ1 =
(uT

rM(x)x)2

1TM(x)x
− µ1(w

Tx)x1 =

(

(uT

rM(x)x)2

(1TM(x)x)x1
− µ1(w

Tx)

)

x1 .

Due to (68),

lim
t→+∞

η(t) = 0, η(t) :=

(

(uT

rM(x)x)2

(1TM(x)x)x1
− µ1(w

Tx)−m1(b
∗(x1(t)e1)) + µ1(w1x1(t))

)

.

Thus, for any polymorphic trajectory of (F) and any η̄ > 0, there exists Tη̄ > 0 such that, for any t ≥ Tη̄,

(

m1(b
∗(x1(t)e1))− µ1(w1x1(t)) − η̄

)

x1 ≤ ẋ1 ≤
(

m1(b
∗(x1(t)e1))− µ1(w1x1(t)) + η̄

)

x1. (70)

For η̄ > 0 sufficiently small, let c±η̄ be the unique positive scalars such that

m1(b
∗(c±η̄ e1))− µ1(w1c

±

η̄ )± η̄ = 0 .

By definition of c∗1, see Lemma 6, one has

c−η̄ < c∗1 < c+η̄ , lim
η̄→0+

c±η̄ = c∗1 . (71)

By (70), one deduces that, for any sufficiently small η̄ > 0,

c−η̄ ≤ lim inf
t→+∞

x1(t) ≤ lim sup
t→+∞

x1(t) ≤ c+η̄ ,

and finally
lim inf
t→+∞

x1(t) = lim sup
t→+∞

x1(t) ≤ c∗1 ,

by doing η̄ → 0+ and using (71). This demonstrates Lemma 19 in the case of system (F). System (S)
is treated analogously.

With the proof of Lemma 19, the proof of Theorem 14 is now complete.
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7 Conclusion and future issues

We proposed a class of Mendelian inheritance models that considers the complexity of the life history of
insects and its selective pressures. These models describe the evolution in continuous time of a population
with two main life phases, governed by birth of the three genotypes of two alleles, density-dependent
mortality rates and constant rate of passage to reproductive phase. Each model is represented by a
system of six scalar ordinary differential equations, one for each genotype in each life phase.

This starting system has been simplified using slow manifold theory, to obtain two classes of Mendelian
inheritance models of dimension 3. Both classes were derived from assuming one of the phases slower
than the other.

We proved that, under realistic assumptions, the proposed models demonstrate several fundamental
properties expected in population dynamics and population genetics. In fact, in a selectively neutral
scenario, the population converges asymptotically to a carrying capacity, while Hardy-Weinberg law is
valid: the allele frequencies in the polymorphic population are constant, and determine the asymptotic
value of the genotypic relative frequencies. In presence of selective pressures —i.e. an ordering of the
recruitment or mortality functions according to genotype—, adaptive evolution occurs, and in case of
dominance or codominance, the population is asymptotically made of individuals of the homozygous
genotype having the highest fitness, at the corresponding carrying capacity.

The evolution described above take place as consequence of a stationary environment. On the other
hand, introducing time-dependence in the model parameters offers the possibility to describe a variety
of evolving phenomena, such as e.g. emergence and reversal of resistance evolution as a result of inter-
mittent pesticide applications. Also, these models allow to analyze selective pressure situations faced by
genotypes during life phases occurring in different ecological niches.

The proposed classes of models permit, possibly through minor extensions, to study several issues of
importance related to the use of insecticides and other adaptive phenomena. Simple extensions of the
models to incorporate migration would allow to evaluate the consequences of the natural or artificial
addition of susceptible genotypes in the evolution of insecticide resistance, following the proposals made
in [28] and [29]. Also, one could explore the consequences of the use of a larvicide and adulticide in
the context of an evolution-proof insecticide following the line developed in [34, 12, 35], —partitioning
the adult phase into younger adults and less vigorous old adults, with a mortality rate in the last phase
more affected by the adulticide. Further, the proposed models can be used to explore how dominance
levels given by the dose of insecticide [53, 54, 29, 55] affect the speed of settlement of resistance evolution
[56, 50, 57]. In addition, in situations where the application of the insecticide is interrupted and the
resistance has a fitness cost, the models may be used to estimate the time taken by a resistant population
to revert to a susceptible one, as done in [58, 37].

Looking forward, as most traits of evolutionary or economic importance are determined by several
genes, an adequate understanding of the evolution of such traits may require the study of multi-locus
models [21]. It turns out that the heredity function which models the births is constructed in such a way
as to allow extensions to more than two alleles, multiple loci —by means of Kronecker product between
inheritance matrices— or polyploid cases. The modelling procedure presented in the present paper thus
offers the ability to accommodate more complicated inheritance configurations, with two or more loci with
autosomal inheritance, accounting for e.g. sequential or mixed use of insecticides [31, 32, 26, 33], non-
genetic inheritance, unified maternal and autosomal inheritance as autosomal resistance and Wolbachia

for biological control —a bacterium of maternal inheritance related to mitochondria with the potential
to suppress vector capacity in mosquitoes [59, 14].

As a last remark, notice that models of species having more than two main phases may be considered
too, for example in the case of a holometabolous insect for which the phases of embryo, larva and pupa
are all quite fast compared to the adult phase. Note also that organism models having two life phases
do not concern only insects. Even in plants it is possible to describe pre-reproductive and reproductive
phases with different periods. For instance, weedy ephemerals (a very common weed) are very short-
lived plants that reproduce rapidly after human disturbance from plowing [60]. This means that the
models proposed here could cover problems related to resistance to herbicides, where chemical control
can occur in the seedling phase or in the reproductive phase (see [36]), which are supposed to slow down
or even reverse the development of resistances due to the interruption or modification of the application
of pesticide lethal doses in the environment.

Mathematical models played a decisive role in reconciling Mendelian genetics with Darwin’s theory of
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adaptive evolution [18]. In regard to inheritance models, the biological or genetic control for insect pest
raises new issues with potentially valuable applications [61, 62]. We think that the modeling strategy
presented here may help in this task, for which extensions of these models may help to design, analyze,
dimension and simulate release strategies.
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A Proof of technical results

A.1 Proof of Lemma 1

The left-hand side of (18) is an increasing function of b and varies from 0 to +∞; while the right-hand
side is null if x = 03 and a decreasing function otherwise. Therefore, by the implicit function theorem,
there exists a unique solution b∗(x) to the scalar equation

b−

3
∑

i=1

vimi(b)xi = 0

which is of class Cp if every function mi is of class C
p, p ∈ N. �

A.2 Proof of Lemma 2

For Property 1, one can see that, for any j = r, s,

uT

jα(x) =
1

1Tx
((uT

jx)
2 + (uT

rx)(u
T

sx)) =
1

1Tx
(uT

rx+ uT

sx)u
T

jx = uT

jx.

as ur + us = 1. Using again this identify, property 2 is deduced from the previous one, as:

1Tα(x) = uT

rα(x) + uT

sα(x) = uT

rx+ uT

sx = 1Tx.

Property 3 is trivial, and expresses the homogeneity of the function α. To show Property 4, notice
that for any (j, k) ∈ {1, 3}× {r, s}, uT

kej = 1 if (j, k) = (1, r) or (3, s), and 0 otherwise; and on the other
hand that 1Tej = 1. Therefore

α(ej) =
1

1Tej





(uT

rej)
2

2(uT

rej)(u
T

sej)
(uT

sej)
2



 = ej

for any j = r = 1, j = s = 3. �

A.3 Proof of Lemma 3

• Let x ∈ R
3
+ \ {03} and λ > 0. By definition (see the statement of Lemma 1),

b∗(λx) = λ

3
∑

i=1

vimi(b
∗(λx))xi.

Therefore

λ min
i=1,2,3

{vi/wi} min
i=1,2,3

{mi(b
∗(λx))}wTx ≤ b∗(λx) ≤ λ max

i=1,2,3
{vi/wi} max

i=1,2,3
{mi(b

∗(λx))}wTx.
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which may be rewritten as an inequality on λ(wTx):

b∗(λx)

maxi{vi/wi}maxi{mi(b∗(λx))}
≤ λ(wTx) ≤

b∗(λx)

mini{vi/wi}mini{mi(b∗(λx))}

Therefore, when λ → +∞, one has
b∗(λx)

mini{vi/wi}mini{mi(b∗(λx))}
→ +∞, and the convergence is

uniform with respect to x such that wTx = 1. Consequently, b∗(λx) → +∞ uniformly in x such that
wTx = 1.

From this one deduces that lim
λ→+∞

mi(b
∗(λx)) < lim

λ→+∞

µi(λ), because mi decreases, µi increases and

Assumption 4 holds.
• Let us now show the second property on b∗. By definition one has, for any x ∈ R

3
+ \ {0},

b∗(x) =

3
∑

i=1

vimi(b
∗(x))xi.

Therefore, for any λ, λ′ ≥ 0,

λ

3
∑

i=1

vimi(b
∗(λx))xi − λ′

3
∑

i=1

vimi(b
∗(λ′x))xi = b∗(λx) − b∗(λ′x)

Subtracting and adding the term λ
∑3

i=1 vimi(b
∗(λ′x))xi, one gets

λ

3
∑

i=1

vi

(

mi(b
∗(λx)) −mi(b

∗(λ′x))
)

xi + (λ− λ′)

3
∑

i=1

vimi(b
∗(λ′x))xi = b∗(λx) − b∗(λ′x)

that is

(λ− λ′)

3
∑

i=1

vimi(b
∗(λ′x))xi = b∗(λx) − b∗(λ′x)− λ

3
∑

i=1

vi

(

mi(b
∗(λx)) −mi(b

∗(λ′x))
)

xi

Assume e.g. b∗(λx) > b∗(λ′x). Due to Assumption 1, the functions mi, i = 1, 2, 3, decrease. Therefore
mi(b

∗(λx)) −mi(b
∗(λ′x)) < 0, and we deduce from the previous identity that λ > λ′.

One shows similarly that b∗(λx) < b∗(λ′x) implies λ < λ′. In conclusion, λ < λ′ ⇔ b∗(λx) < b∗(λ′x),
and this shows that b∗ is increasing. �

References

[1] Hector Caraballo and Kevin King. Emergency department management of mosquito-borne illness:
malaria, dengue, and West Nile virus. Emergency medicine practice, 16(5):1–23, 2014.

[2] Adnan I. Qureshi, editor. Zika virus disease: from origin to outbreak, chapter 2, Mosquito-Borne
Diseases. Academic Press, 2018.

[3] World Health Organization et al. A global brief on vector-borne diseases. Technical report, World
Health Organization, 2014.

[4] John T Roehrig and Robert S Lanciotti. Arboviruses. In Clinical Virology Manual, Fourth Edition,
pages 387–407. American Society of Microbiology, 2009.

[5] Samir Bhatt, Peter W Gething, Oliver J Brady, Jane P Messina, Andrew W Farlow, Catherine L
Moyes, John M Drake, John S Brownstein, Anne G Hoen, Osman Sankoh, et al. The global
distribution and burden of dengue. Nature, 496(7446):504, 2013.

[6] Donald S Shepard, Eduardo A Undurraga, Yara A Halasa, and Jeffrey D Stanaway. The global
economic burden of dengue: a systematic analysis. The Lancet infectious diseases, 16(8):935–941,
2016.

27



[7] Smriti Sharma, Rubaljot Kooner, and Ramesh Arora. Insect pests and crop losses. In Breeding

Insect Resistant Crops for Sustainable Agriculture, pages 45–66. Springer, 2017.

[8] E-C Oerke. Crop losses to pests. The Journal of Agricultural Science, 144(1):31–43, 2006.

[9] Angela E Douglas. Strategies for enhanced crop resistance to insect pests. Annual review of plant

biology, 69:637–660, 2018.

[10] Catteruccia F. Shaw WR. Vector biology meets disease control: Using basic research to fight vector-
borne diseases. Nature microbiology, 4:20–34, 2019.

[11] Janet Hemingway and Hilary Ranson. Insecticide resistance in insect vectors of human disease.
Annual review of entomology, 45(1):371–391, 2000.

[12] Jacob C. Koella, Penelope A. Lynch, Matthew B. Thomas, and Andrew F. Read. Towards evolution-
proof malaria control with insecticides. Evolutionary Applications, 2(4):469–480, 2009.

[13] J Vontas, E Kioulos, N Pavlidi, E Morou, A Della Torre, and Hilary Ranson. Insecticide resistance
in the major dengue vectors Aedes albopictus and Aedes aegypti. Pesticide Biochemistry and

Physiology, 104(2):126–131, 2012.

[14] Gabriela A Garcia, Ary A Hoffmann, Rafael Maciel-de Freitas, and Daniel AM Villela. Aedes ae-
gypti insecticide resistance underlies the success (and failure) of Wolbachia population replacement.
Scientific Reports, 10(1):1–9, 2020.

[15] Phillip J Daborn, Gaelle Le Goff, et al. The genetics and genomics of insecticide resistance. TRENDS

in Genetics, 20(3):163–170, 2004.
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