
HAL Id: hal-03081265
https://hal.inria.fr/hal-03081265

Submitted on 18 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BISM: Bytecode-Level Instrumentation for Software
Monitoring

Chukri Soueidi, Ali Kassem, Yliès Falcone

To cite this version:
Chukri Soueidi, Ali Kassem, Yliès Falcone. BISM: Bytecode-Level Instrumentation for Software Mon-
itoring. RV 2020 - 20th International Conference on Runtime Verification, Oct 2020, Los Angeles,
United States. pp.1-12. �hal-03081265�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/363996372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03081265
https://hal.archives-ouvertes.fr


BISM: Bytecode-Level Instrumentation
for Software Monitoring

Chukri Soueidi, Ali Kassem, and Yliès Falcone
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
chukri.a.soueidi@inria.fr; ali.kassem@inria.fr; ylies.falcone@inria.fr

Abstract. BISM (Bytecode-Level Instrumentation for Software Monitoring) is
a lightweight Java bytecode instrumentation tool which features an expressive
high-level control-flow-aware instrumentation language. The language follows
the aspect-oriented programming paradigm by adopting the joinpoint model, ad-
vice inlining, and separate instrumentation mechanisms. BISM provides join-
points ranging from bytecode instruction to method execution, access to com-
prehensive context information, and instrumentation methods. BISM runs in two
modes: build-time and load-time. We demonstrate BISM effectiveness using two
experiments: a security scenario and a general runtime verification case. The re-
sults show that BISM instrumentation incurs low runtime and memory overheads.

Keywords: Instrumentation · Runtime Verification · Monitoring · Java Bytecode
· Aspect-Oriented Programming · Control Flow · Static and Dynamic Contexts.

1 Introduction

Instrumentation is essential to the software monitoring workflow [9,3]. Instrumen-
tation allows extracting information from a running software to abstract the execution
into a trace that is fed to a monitor. Depending on the information needed by the mon-
itor, the granularity level of the extracted information may range from coarse (e.g., a
function call) to fine (e.g., an assignment to a local variable, a jump in the control flow).

Aspect-oriented programming (AOP) [14] is a popular and convenient paradigm
where instrumentation is a cross-cutting concern. For Java programs, runtime verifi-
cation tools [10,2] have for long relied on AspectJ [13], which is one of the reference
AOP implementations for Java. AspectJ provides a high-level pointcut/advice model for
convenient instrumentation. However, AspectJ does not offer enough flexibility to per-
form some instrumentation tasks that require to reach low-level code regions, such as
bytecode instructions, local variables of a method, and basic blocks in the control-flow
graph (CFG).

Yet, there are several low-level Java bytecode manipulation frameworks such as
ASM [6] and BCEL [19]. However, instrumenting programs with such frameworks is
tedious and requires expertise on the bytecode. Other Java bytecode instrumentation
frameworks, from which DiSL [16] is the most remarkable, enable flexible low-level
instrumentation and, at the same time, provide a high-level language. However, DiSL
does not allow inserting bytecode instructions directly but provides custom transform-
ers where a developer needs to revert to low-level bytecode manipulation frameworks.
This makes various scenarios tedious to implement in DiSL and often at the price of a
considerable bytecode overhead.



2 Chukri Soueidi et al.

Contributions. In this paper, we introduce BISM (Bytecode-Level Instrumentation for
Software Monitoring), a lightweight Java bytecode instrumentation tool that features an
expressive high-level instrumentation language. The language inspires from the AOP
paradigm by adopting the joinpoint model, advice inlining, and separate instrumenta-
tion mechanisms. In particular, BISM provides a separate Java class to specify instru-
mentation code, and offers a variety of joinpoints ranging from bytecode instruction to
basic block and method execution. BISM also provides access to a set of comprehensive
joinpoint-related static and dynamic contexts to retrieve some relevant information, and
a set of instrumentation methods to be called at joinpoints to insert code, invoke meth-
ods, and print information. BISM is control-flow aware. That is, it generates CFGs for
all methods and offers this information at joinpoints and context objects. Moreover,
BISM provides a variety of control-flow properties, such as capturing conditional jump
branches and retrieving successor and the predecessor basic blocks. Such features pro-
vide support to future tools using a control-flow analysis, for instance, in the security
domain, to detect control-flow attacks, such as test inversions and arbitrary jumps.

We demonstrate BISM effectiveness using two complementary experiments. The
first experiment shows how BISM can be used to instrument a program to detect test
inversion attacks. For this purpose, we use BISM to instrument AES (Advanced En-
cryption Standard). The second experiment demonstrates a general runtime verification
case where we use BISM to instrument seven applications from the DaCapo bench-
mark [5] to verify the classical HasNext, UnsafeIterator and SafeSyncMap prop-
erties. We compare the performance of BISM, DiSL, and AspectJ in build-time and
load-time instrumentation, using three metrics: size, memory footprint, and execution
time. In build-time instrumentation, the results show that the instrumented code pro-
duced by BISM is smaller, incurs less overhead, and its execution incurs less memory
footprint. In load-time instrumentation, the load-time weaving and the execution of the
instrumented code are faster with BISM.

Paper organization. Section 2 overviews the design goals and the features of BISM.
Section 3 introduces the language featured by BISM. Section 4 presents the implemen-
tation of BISM. Section 5 reports on the case studies and a comparison between BISM,
DiSL, and AspectJ. Section 6 discusses related work. Section 7 draws conclusions.

2 BISM Design and Features

BISM is implemented on top of ASM [6], with the following goals and features.

Instrumentation mechanism. BISM language follows the AOP paradigm. It provides
a mechanism to write separate instrumentation classes. An instrumentation class spec-
ifies the instrumentation code to be inserted in the target program at chosen joinpoints.
BISM offers joinpoints that range from bytecode instruction to basic block and method
execution. It also offers several instrumentation methods and, additionally, accepts in-
strumentation code written in the ASM syntax. The instrumentation code is eventually
compiled by BISM into bytecode instructions and inlined in the target program.

Access to program context. BISM offers access to complete static information about
instructions, basic blocks, methods, and classes. It also offers dynamic context objects
that provide access to values that will only be available at runtime such as values of local



BISM: Bytecode-Level Instrumentation for Software Monitoring 3

variables, stack values, method arguments, and results. Moreover, BISM allows access-
ing instance and static fields of these objects. Furthermore, new local variables can be
created within the scope of a method to (for instance) pass values between joinpoints.
Control flow context. BISM generates the CFGs of target methods out-of-the-box and
offers this information within joinpoints and context objects. In addition to basic block
entry and exit joinpoints, BISM provides specific control-flow related joinpoints such
as OnTrueBranchEnter and OnFalseBranchEnter, which capture conditional
jump branches. Moreover, it provides a variety of control-flow properties within the
static context objects. For example, it is possible to traverse the CFG of a method to re-
trieve the successors and the predecessors of basic blocks. Furthermore, BISM provides
an optional feature to display the CFGs of methods before and after instrumentation.
Compatibility with ASM. BISM uses ASM extensively and relays all its generated
class representations within the static context objects. Furthermore, it allows for in-
serting raw bytecode instructions by using the ASM data types. In this case, it is the
responsibility of the user to write instrumentation code free from compilation and run-
time errors. If the user unintentionally inserts faulty instructions, the code might break.
The ability to insert ASM instructions provides highly expressive instrumentation capa-
bilities, especially when it comes to inlining the monitor code into the target program.
Bytecode coverage. BISM can run in two modes: build-time (as a standalone applica-
tion) with static instrumentation, and load-time with an agent (utilizing java.lang
.instrument) that intercepts all classes loaded by the JVM and instruments be-
fore the linking phase. In build-time, BISM is capable of instrumenting all the com-
piled classes and methods1. In load-time, BISM is capable of instrumenting additional
classes, including classes from the Java class library that are flagged as modifiable. The
modifiable flag keeps certain core classes outside the scope of BISM. Note, modifying
such classes is rather needed in dynamic program analysis (e.g., profiling, debugging).

3 BISM Language

We demonstrate the language in BISM, which allows developers to write trans-
formers (i.e., instrumentation classes). The language provides joinpoints which capture
exact execution points, static and dynamic contexts which retrieve relevant information
at joinpoints, and instrumentation methods used to instrument a target program.
Joinpoints. Joinpoints identify specific bytecode locations in the target program. BISM
offers joinpoints that capture bytecode instruction executions: BeforeInstruction
and AfterInstruction, conditional jump branches: OnTrueBranchEnter and
OnFalseBranchEnter, executions of basic blocks: OnBasicBlockEnter and
OnBasicBlockExit, method executions: OnMethodEnter and OnMethodExit,
and method calls: BeforeMethodCall and AfterMethodCall.

1 Excluding the native and abstract methods, as they do not have bytecode representation.



4 Chukri Soueidi et al.

public class BasicBlockTransformer extends Transformer {
@Override
public void onBasicBlockEnter(BasicBlock bb){
String id = bb.method.className+"."+bb.method.name+"."+bb.id;
print("Entered block:" + id); }

@Override
public void onBasicBlockExit(BasicBlock bb){
String id = bb.method.className+"."+bb.method.name+"."+bb.id;
print("Exited block:" + id); }

}

Listing 1.1: A transformer for intercepting basic block executions.

Static context. Static context objects provide relevant static information at joinpoints.
These objects can be used to retrieve information about a bytecode instruction, a method
call, a basic block, a method, and a class. BISM performs static analysis on target
programs and provides additional control-flow-related static information such as ba-
sic block successors and predecessors. Listing 1.1 shows a transformer using joinpoints
onBasicBlockEnter and onBasicBlockExit to intercept all basic block exe-
cutions. The static context BasicBlock bb is used to get the block id, the method
name, and the class name. Here, the instrumentation method print inserts a print
invocation in the target program before and after every basic block execution.

public class IteratorTransformer extends Transformer {
@Override
public void afterMethodCall(MethodCall mc,

MethodCallDynamicContext dc){
if (mc.methodName.equals("iterator") &&

mc.methodOwner.endsWith("List")) {
DynamicValue callingClass = dc.getThis(mc); // Access to
DynamicValue list = dc.getMethodReceiver(mc); // dynamic
DynamicValue iterator = dc.getMethodResult(mc); // data
StaticInvocation sti = // Instrumenting to invoke a monitor
new StaticInvocation("IteratorMonitor","iteratorCreation");

sti.addParameter(callingClass);
sti.addParameter(list);
sti.addParameter(iterator);
invoke(sti); }

}}

Listing 1.2: A transformer that intercepts the creation of an iterator from a List.

Dynamic context. Dynamic Context objects provide access to dynamic values that are
possibly only known during execution. BISM gathers this information from local vari-
ables and operand stack, then weaves the necessary code to extract this information. In
some cases (e.g., when accessing stack values), BISM might instrument additional local
variables to store them for later use. We list the methods available in dynamic contexts:
getThis, getLocalVariable, getStackValue, getInstanceField and
getStaticField, and the values related to these methods: getMethodReceiver,
getMethodArgs, and getMethodResult. BISM also allows inserting and up-



BISM: Bytecode-Level Instrumentation for Software Monitoring 5

dating new local variables within the scope of a method. Listing 1.2 presents a trans-
former using afterMethodCall joinpoint to capture the return of an Iterator
created from a List object, and retrieving dynamic data from the dynamic context
object MethodCallDynamicContext dc. The example also shows how to limit
the scope using an if-statement to a specific method. Note that BISM also provides a
general notion of scope that can be specified as an argument to match packages, classes,
and methods by names (using possibly wildcards).

Instrumentation methods. A developer instruments the target program using speci-
fied instrumentation methods. BISM provides print methods with multiple options
to invoke a print command. It also provides (i) invoke methods for static method in-
vocation and (ii) insert methods for bytecode instruction insertion. These methods
are compiled by BISM into bytecode instructions and inlined at the exact joinpoint lo-
cations. Listing 1.1 shows the use of print to print the constructed id of a basic block.
Listing 1.2 shows how a method invocation is instrumented after a method call.

4 BISM Implementation

BISM is implemented in Java with about 4,000 LOC and 40 classes distributed
in separate modules [17]. It uses ASM for bytecode parsing, analysis, and weaving.
Figure 1 shows BISM internal workflow.

ASM

Parse
 Bytecode

Build
CFG

Transformer 
Weaving

Instrumented
Program

.jar, .class
or raw bytes

Generate 
Joinpoints &

Context Objects

Transformer 

(2)

(3) (4)

(5)
(1)

(6)

Target Program
.jar, .class

or raw bytes

Built-In
Trans-
formers

BISM

CFG
.htmlCFG

.html

Fig. 1: Instrumentation process in BISM.

(1) User Input. In build-time mode, BISM takes a target program bytecode (.class or
.jar) to be instrumented, and a transformer which specifies the instrumentation logic. In
load-time mode, BISM only takes a transformer used to instrument every class being
loaded by the JVM. BISM provides several built-in transformers that can be directly
used. Moreover, users can specify a scope to filter target packages, classes, or methods.
(2) Parse Bytecode. BISM uses ASM to parse the bytecode and to generate a tree ob-
ject which contains all the class details, such as fields, methods, and instructions.
(3) Build CFG. BISM constructs the CFGs for all methods in the target class. If
the specified transformer utilizes control-flow joinpoints (i.e., onTrueBranch and
onFalseBranch), BISM eliminates all critical edges from the CFGs to avoid instru-
mentation errors. This is done by inserting empty basic blocks in the middle of critical
edges. Note, BISM keeps copies of the original CFGs. Users can optionally enable the
visualizer to store CFGs in HTML files on the disk.



6 Chukri Soueidi et al.

(4) Generate Joinpoints and Context Objects. BISM iterates over the target class to
generate all joinpoints utilizing the created CFGs. At each joinpoint, the relevant static
and dynamic context objects are created.
(5) Transformer Weaving. BISM evaluates the used dynamic contexts based on the
joinpoint static information and weaves the bytecode needed to extract concrete values
from executions. It then weaves instrumentation methods by compiling them into byte-
code instructions that are woven into the target program at the specified joinpoint.
(6) Output. The instrumented bytecode is then output back as a .class file in build-time
mode, or passed as raw bytes to the JVM in load-time mode. In case of instrumentation
errors, e.g., due to adding manual ASM instructions, BISM emits a weaving error. If
the visualizer is enabled, instrumented CFGs are stored in HTML files on the disk.

5 Evaluation

We compare BISM with DiSL and AspectJ using two complementary experiments.
To guarantee fairness, we switched off adding exception handlers around instrumented
code in DiSL. In what follows, we illustrate how we carried out our experiments and
the obtained results2.

5.1 Inline Monitor to Detect Test Inversions

We instrument an external AES (Advanced Encryption Standard) implementation in
build-time mode to detect test inversions. The instrumentation deploys inline monitors
that duplicate all conditional jumps in their successor blocks to report test inversions.
We implement the instrumentation as follows:

– In BISM, we use built-in features to duplicate conditional jumps utilizing insert
instrumentation method to add raw bytecode instructions. In particular, we use the
beforeInstruction joinpoint to capture all conditional jumps. We extract the
opcode from the static context object Instruction and we use the instrumenta-
tion method insert to duplicate the needed stack values. We then use the control-
flow joinpoints OnTrueBranchEnter and onFalseBranchEnter to cap-
ture the blocks executing after the jump. Finally, at the beginning of these blocks,
we utilize insert to duplicate conditional jumps.

– In DiSL, we implement a custom InstructionStaticContext object to re-
trieve information from conditional jump instructions such as the index of a jump
target and instruction opcode. Note, we use multiple BytecodeMarker snip-
pets to capture all conditional jumps. To retrieve stack values, we use the dynamic
context object. Finally, on successor blocks, we map opcodes to Java syntax to
re-evaluate conditional jumps using switch statements.

We use AES to encrypt and then decrypt input files of different sizes, line by line. The
bytecode size of the original AES class is 9 KB. After instrumentation, it is 10 KB
(+11.11%) for BISM, and 128 KB (+1,322%) for DiSL. The significant overhead in
DiSL is due to the inability to inline the monitor in bytecode and having to instrument it
in Java. We note that it is not straightforward in DiSL to extract control-flow information

2 More details about the experiments are at https://gitlab.inria.fr/monitoring/bism-experiments.

https://gitlab.inria.fr/monitoring/bism-experiments


BISM: Bytecode-Level Instrumentation for Software Monitoring 7

100

100.5

101

101.5

102

102.5

20 21 22 23 24 25 26 27 28

Original DiSL BISM

(a) Runtime (ms).

0

2000

4000

6000

20 21 22 23 24 25 26 27 28

Original DiSL BISM

(b) Memory footprint (KB).

Fig. 2: Runtime and memory footprint by AES on files of different sizes.

in Markers, whereas BISM provides this out-of-the-box. Figure 2 reports runtime and
memory footprint with respect to file size (KB)3. For each input file, we performed 100
measurements and reported the mean and the standard deviation. The latter is very low.
We use Java JDK 8u181 with 4 GB maximum heap size on a standard PC (Intel Core
i7 2.2 GHz, 16 GB RAM) running macOS Catalina v10.15.5 64-bit. The results show
that BISM incurs less overhead than DiSL for all file sizes. Table 1 reports the number
of events (corresponding to conditional jumps).

Table 1: Number of events according to the file input to AES (in millions).
Input File (KB) 20 21 22 23 24 25 26 27 28

Events (M) 0.92 1.82 3.65 7.34 14.94 29.53 58.50 117.24 233.10

5.2 DaCapo Benchmarks

Experimental setup. We compare BISM, DiSL, and AspectJ in a general runtime veri-
fication scenario4. We instrument the benchmarks in the DaCapo suite [5] (dacapo-9.12-
bach), to monitor the classical HasNext, UnSafeIterator, and SafeSyncMap proper-
ties5. We only target the packages specific to each benchmark and do not limit our
scope to java.util types; instead, we match freely by type and method name. We
implement an external monitor library with stub methods that only count the number of
received events.

We implement the instrumentation as follows:

– In BISM, we use the static context provided at method call joinpoints to filter meth-
ods by their names and owners. To access the method calls’ receivers and results,
we utilize the methods available in dynamic contexts.

– In DiSL, we implement custom Markers to capture the needed method calls and
use argument processors and dynamic context objects to access dynamic values.

3 Note, AspectJ is not suited for inline monitoring, and that is why it is not included.
4 We use the latest DiSL version from https://gitlab.ow2.org/disl/disl and AspectJ Weaver 1.9.4.
5 HasNext property specifies that a program should always call hasNext() before calling
next() on an iterator. UnSafeIterator property specifies that a collection should not be
updated when an iterator associated with it is being used. SafeSyncMap property specifies
that a map should not be updated when an iterator associated with it is being used.

https://gitlab.ow2.org/disl/disl


8 Chukri Soueidi et al.

– In AspectJ, we use the call pointcut, type pattern matching and joinpoint static in-
formation to capture method calls and write custom advices that invoke the monitor.

We use Java JDK 8u251 with 2 GB maximum heap size on an Intel Core i9-9980HK
(2.4 GHz. 8 GB RAM) running Ubuntu 20.04 LTS 64-bit. All our measurements cor-
respond to the mean of 100 runs on each benchmark, calculating the standard devia-
tion. We run our experiment in two modes: load-time and build-time. The first mode is
to compare the performance of the tools in load-time instrumentation and the second
mode to examine the performance of the generated instrumentation bytecode.

0

2500

5000

7500

avrora batik fop h2 pmd sunflow xalan

Original DiSL AspectJ BISM

Fig. 3: Load-time instrumentation runtime (ms).

Load-time evaluation. Figure 3 reports the execution time in ms for the benchmarks.
We do not measure the used memory since DiSL performs instrumentation on a separate
JVM process. BISM shows better performance over DiSL and AspectJ in all bench-
marks. DiSL shows better performance than AspectJ except for the pmd benchmark.
For the pmd benchmark, this is mainly due to the fewer events emitted by AspectJ
(see Table 2). We notice that AspectJ captures fewer events in benchmarks batik, fop,
pmd, and sunflow. This is due to its inability to instrument synthetic bridge methods
generated by the compiler after type erasure in generic types.

Build-time evaluation. We replace the original classes in the benchmarks with stat-
ically instrumented classes from each tool. Figure 4 reports the execution time and
memory footprint of the benchmarks. For memory, we measure the used heap and non-
heap memory after a forced garbage collection at the end of each run6. BISM shows
less overhead in all benchmarks in execution time, except for batik where AspectJ emits
fewer events. BISM also shows less overhead in used-memory footprint, except for sun-
flow, where AspectJ emits much fewer events.

Table 2 compares the instrumented bytecode and the number of events emitted after
running the code. We report the number of classes in scope (Scope) and the instru-
mented (Instr.), we measure the overhead percentage (Ovh.) on the bytecode size for

6 The DaCapo callback mechanism captures the end of each run.



BISM: Bytecode-Level Instrumentation for Software Monitoring 9

0

2500

5000

7500

avrora batik fop h2 pmd sunflow xalan

Original DiSL AspectJ BISM

(a) Runtime (ms).

0

100

200

300

avrora batik fop h2 pmd sunflow xalan

Original DiSL AspectJ BISM

(b) Memory footprint (MB).

Fig. 4: Build-time execution.

each tool. We also report the number of generated events. BISM and DiSL emit the
same number of events, while Aspect (AJ) produces fewer events due to the reasons
mentioned above. The results show that BISM incurs less bytecode size overhead for all
benchmarks. We notice that even with exception-handlers turned off, DiSL still wraps
a targeted region with try-finally blocks when the @After annotation is used. This
guarantees that an event is emitted after a method call, even if an exception is thrown.

Table 2: Generated bytecode size and events emitted.
Scope Instr. Ref BISM DiSL AspectJ Events (M)

KB KB Ovh.% KB Ovh.% KB Ovh.% # AJ
avrora 1,550 35 257 264 2.72 270 5.06 345 34.24 2.5 2.5

batik 2,689 136 1,544 1,572 1.81 1,588 2.85 1,692 9.59 0.5 0.4
fop 1,336 172 1,784 1,808 1.35 1,876 5.16 2,267 27.07 1.6 1.5
h2 472 61 694 704 1.44 720 3.75 956 37.75 28 28

pmd 721 90 756 774 2.38 794 5.03 980 29.63 6.6 6.3
sunflow 221 8 69 71 2.90 74 7.25 85 23.19 3.9 2.6

xalan 661 9 100 101 1.00 103 3.00 116 16.00 1 1

6 Related Work and Discussion

Low-level code instrumentation is widely used for monitoring software and imple-
menting dynamic analysis tools. To this end, several tools and frameworks, in different
programming languages, have been proposed and adopted. We focus our comparison
on Java-related instrumentation tools. Yet, there are several tools to instrument pro-
grams in different programing languages. For instance, to instrument C/C++ programs
AspectC/C++ [7,18] (high-level) and LLVM [15] (low-level) are widely used.

ASM [6] is a bytecode manipulation framework utilized by several tools, including
BISM. ASM offers two APIs that can be used interchangeably to parse, load, and mod-
ify classes. However, to use ASM, a developer has to deal with the low-level details
of bytecode instructions and the JVM. BISM offers extended ASM compatibility and
provides abstraction with its aspect-oriented paradigm.

DiSL is a bytecode-level instrumentation framework designed for dynamic program
analysis [16]. DiSL adopts an aspect-oriented paradigm. It provides an extensible join-
point model and access to static and dynamic context information. Even though BISM



10 Chukri Soueidi et al.

provides a fixed set of joinpoints and static context objects, it performs static analysis
on target programs to offer out-of-the-box additional and needed control-flow joinpoints
with full static information. As for dynamic context objects, both BISM and DiSL pro-
vide equal access. However, DiSL provides typed dynamic objects. Also, both are ca-
pable of inserting synthetic local variables (restricted to primitive types in BISM). Both
BISM and DiSL require basic knowledge about bytecode semantics from their users. In
DiSL, writing custom markers and context objects also requires additional ASM syntax
knowledge. However, DiSL does not allow the insertion of arbitrary bytecode instruc-
tions but provides a mechanism to write custom transformers in ASM that runs before
instrumentation. Whereas, BISM allows to directly insert bytecode instructions, as seen
in Sec. 5.1. Such a mechanism is essential in many runtime verification scenarios. All
in all, DiSL provides more features (mostly targeted for writing dynamic analysis tools)
and enables dynamic dispatch amongst multiple instrumentations and analysis without
interference [4], while BISM is more lightweight as shown by our evaluation.

AspectJ [13] is the standard aspect-oriented programming [14] framework highly
adopted for instrumenting Java applications. It provides a high-level language used in
several domains like monitoring, debugging, and logging. AspectJ cannot capture byte-
code instructions and basic blocks directly, forcing developers to insert additional code
(like method calls) to the source program. With BISM, developers can target single
bytecode instructions and basic block levels, and also have access to local variables
and stack values. Furthermore, AspectJ introduces a significant instrumentation over-
head, as seen in Sec. 5.2, and provides less control on where instrumentation snippets
get inlined. In BISM, the instrumentation methods are weaved with minimal bytecode
instructions and are always inlined next to the targeted regions.

7 Conclusions

BISM is an effective tool for low-level and control-flow aware instrumentation,
complementary to DiSL, which is better suited for dynamic analysis (e.g., profiling).
Our first evaluation (Sec. 5.1) let us observe a significant advantage of BISM over DiSL
due to BISM’s ability to insert bytecode instructions directly, hence optimizing the in-
strumentation. Our second evaluation (Sec. 5.2) confirms that BISM is a lightweight
tool that can be used generally and efficiently in runtime verification. We notice a sim-
ilar bytecode performance between BISM and DiSL after static instrumentation since,
in both tools, the instrumentation (monitor invocation) is always inlined. On the other
hand, AspectJ instruments calls to advice methods that, in turn, invoke the monitors. In
load-time instrumentation, the gap between BISM and DiSL is smaller in benchmarks
with a large number of classes in scope and a small number of instrumented classes.
This stems from the fact that BISM performs a full analysis of the classes in scope to
generate its static context. While DiSL generates static context only after marking the
needed regions, which is more efficient.

Overall, we believe that BISM can be used as an alternative to AspectJ for lightweight
and expressive runtime verification and even runtime enforcement (cf. [8,11,12]) thanks
to its ability to insert bytecode instructions.



BISM: Bytecode-Level Instrumentation for Software Monitoring 11

References

1. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification - Introductory and
Advanced Topics, Lecture Notes in Computer Science, vol. 10457. Springer (2018).
https://doi.org/10.1007/978-3-319-75632-5

2. Bartocci, E., Falcone, Y., Bonakdarpour, B., Colombo, C., Decker, N., Havelund, K., Joshi,
Y., Klaedtke, F., Milewicz, R., Reger, G., Rosu, G., Signoles, J., Thoma, D., Zalinescu, E.,
Zhang, Y.: First international competition on runtime verification: rules, benchmarks, tools,
and final results of CRV 2014. Int. J. Softw. Tools Technol. Transf. 21(1), 31–70 (2019)

3. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime verification. In:
Bartocci and Falcone [1]. https://doi.org/10.1007/978-3-319-75632-5

4. Binder, W., Moret, P., Tanter, É., Ansaloni, D.: Polymorphic bytecode instrumentation.
Softw. Pract. Exp. 46(10), 1351–1380 (2016)

5. Blackburn, S.M., Garner, R., Hoffmann, C., Khan, A.M., McKinley, K.S., Bentzur, R., Di-
wan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.L., Jump, M., Lee,
H.B., Moss, J.E.B., Phansalkar, A., Stefanovic, D., VanDrunen, T., von Dincklage, D., Wie-
dermann, B.: The DaCapo benchmarks: Java benchmarking development and analysis. In:
Tarr, P.L., Cook, W.R. (eds.) Proceedings of the 21th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2006,
October 22-26, 2006, Portland, Oregon, USA. pp. 169–190. ACM (2006)

6. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: A code manipulation tool to implement adapt-
able systems. In: Adaptable and extensible component systems (2002), https://asm.ow2.io

7. Coady, Y., Kiczales, G., Feeley, M.J., Smolyn, G.: Using AspectC to improve the mod-
ularity of path-specific customization in operating system code. In: Tjoa, A.M., Gruhn,
V. (eds.) Proceedings of the 8th European Software Engineering Conference held jointly
with 9th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering 2001, Vienna, Austria, September 10-14, 2001. pp. 88–98. ACM (2001).
https://doi.org/10.1145/503209.503223

8. Falcone, Y.: You should better enforce than verify. In: Barringer, H., Falcone, Y., Finkbeiner,
B., Havelund, K., Lee, I., Pace, G.J., Rosu, G., Sokolsky, O., Tillmann, N. (eds.) Runtime
Verification - First International Conference, RV 2010, St. Julians, Malta, November 1-4,
2010. Proceedings. Lecture Notes in Computer Science, vol. 6418, pp. 89–105. Springer
(2010). https://doi.org/10.1007/978-3-642-16612-9 9

9. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In: Broy, M., Peled,
D.A., Kalus, G. (eds.) Engineering Dependable Software Systems, NATO Science for Peace
and Security Series, D: Information and Communication Security, vol. 34, pp. 141–175. IOS
Press (2013). https://doi.org/10.3233/978-1-61499-207-3-141

10. Falcone, Y., Krstic, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime verification
tools. In: Colombo, C., Leucker, M. (eds.) Runtime Verification - 18th International Confer-
ence, RV 2018, Limassol, Cyprus, November 10-13, 2018, Proceedings. Lecture Notes in
Computer Science, vol. 11237, pp. 241–262. Springer (2018)

11. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and reaction. In:
Bartocci and Falcone [1], pp. 103–134. https://doi.org/10.1007/978-3-319-75632-5 4

12. Falcone, Y., Pinisetty, S.: On the runtime enforcement of timed properties. In: Runtime Ver-
ification - 19th International Conference, RV 2019, Porto, Portugal, October 8-11, 2019,
Proceedings. pp. 48–69 (2019). https://doi.org/10.1007/978-3-030-32079-9 4

13. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: Getting started
with AspectJ. Commun. ACM 44(10), 59–65 (2001)

14. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J., Irwin,
J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP’97. LNCS,
vol. 1241, pp. 220–242. Springer (1997)

https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-319-75632-5
https://asm.ow2.io
https://doi.org/10.1145/503209.503223
https://doi.org/10.1007/978-3-642-16612-9_9
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-030-32079-9_4


12 Chukri Soueidi et al.

15. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program analysis &
transformation. In: 2nd IEEE / ACM International Symposium on Code Generation and Op-
timization (CGO 2004), 20-24 March 2004, San Jose, CA, USA. pp. 75–88. IEEE Computer
Society (2004). https://doi.org/10.1109/CGO.2004.1281665

16. Marek, L., Villazón, A., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z.: DiSL: a domain-specific
language for bytecode instrumentation. In: Hirschfeld, R., Tanter, É., Sullivan, K.J., Gabriel,
R.P. (eds.) Proceedings of the 11th International Conference on Aspect-oriented Software
Development, AOSD, Potsdam, Germany. pp. 239–250. ACM (2012)

17. Soueidi, C., Kassem, A., Falcone, Y.: BISM: Bytecode-Level Instrumentation for Software
Monitoring, https://gitlab.inria.fr/monitoring/bism-tool

18. Spinczyk, O., Lohmann, D., Urban, M.: AspectC++: An AOP extension for C. Software
Developer’s Journal (01 2005)

19. The Apache Software Foundation: Apache commons. https://commons.apache.org, ac-
cessed: 2020-06-18

https://doi.org/10.1109/CGO.2004.1281665
https://gitlab.inria.fr/monitoring/bism-tool
https://commons.apache.org

	 BISM: Bytecode-Level Instrumentation for Software Monitoring *-1em 

