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Résumé

Les processus décisionnels de Markov décentralisés et par-
tiellement observables (Dec-POMDPs) offrent un cadre
unifié pour la prise de décisions séquentielles par de
plusieurs agents collaboratifs—mais ils restent difficiles
à résoudre. Les reformulations en programmes linéaires
mixtes (PLMs) se sont avérées utiles pour les proces-
sus décisionnels de Markov partiellement observables.
Malheureusement, les applications existantes se limi-
tent uniquement aux domaines mobilisant un ou deux
agents. Dans cet article, nous exploitons une propriété
de linéarisation qui nous permet de reformuler les con-
traintes non linéaires, omniprésentes dans les systèmes
multi-agents, pour en faire des contraintes linéaires. Nous
présentons en outre des approches de planification et
d’apprentissage s’appuyant sur de nouvelles reformula-
tions en PLMs des Dec-POMDPs, dans le cas général ainsi
que quelques cas spécifiques. Les expérimentations sur des
bancs de test standards à deux et plus de deux agents four-
nissent un solide soutien à cette méthodologie.

SMAs, Planification, Apprentissage, PLM

Abstract

The decentralized partially observable Markov decision
process offers a unified framework for sequential decision-
making by multiple collaborating agents but remains in-
tractable. Mixed-integer linear formulations proved use-
ful for partially observable domains, unfortunately ex-
isting applications restrict to domains with one or two
agents. In this paper, we exploit a linearization property
that allows us to reformulate nonlinear constraints from
n-agent settings into linear ones. We further present plan-
ning and learning approaches relying on MILP formula-
tions for general and special cases, including network-
distributed and transition-independent problems. Experi-
ments on standard 2-agent benchmarks as well as domains
with a large number of agents provide strong empirical
support to the methodology.

MAS, Planning, Learning, MILP

1 Introduction
The decentralized partially observable Markov decision
process offers a unified framework to solving cooperative,
decentralized stochastic control problems [Bernstein et al.,
2002]. This model encompasses a large range of real-
world problems in which multiple agents collaborate to op-
timize a common objective. Central to this setting is the as-
sumption that agents can neither see the actual state of the
world nor explicitly communicate their observations with
each other due to communication cost, latency or noise.
This assumption partially explains the worst-case complex-
ity: finite-horizon cases are in NEXP; and infinite-horizon
cases are undecidable [Bernstein et al., 2002]. A general
methodology to solving decentralized stochastic control
builds upon the concept of occupancy states, i.e. sufficient
statistics for evaluating and selecting decentralized policies
[Dibangoye et al., 2013, Oliehoek, 2013, Dibangoye et al.,
2014b]. The occupancy-state space is a probability simplex
of points in the Cartesian product over the state and history
spaces. For every occupancy state, dynamic programming
and reinforcement learning approaches compute and store
tables consisting of one value per state-history pair. Un-
fortunately, the state space grows exponentially with the
number of state variables, and the history space expands
doubly exponentially with time. Known as the curse of di-
mensionality, these phenomena render existing approaches
intractable in the face of decentralized decision-making
problems of practical scale.
Methods that can overcome the curse of dimensionality
previously arose in the literature of decentralized con-
trol, but restricting to 2-agent settings. Examples include
memory-bounded dynamic programming [Seuken and Zil-
berstein, 2008, Kumar et al., 2015] and linear and non-
linear programming using finite-state controllers [Amato
et al., 2010, Kumar et al., 2016]. These successes shed
light on approximate dynamic and linear programming
as potentially powerful tools for large-scale decentralized
partially observable Markov decision processes. One ap-
proach to dealing with the curse of dimensionality is to rely



on parametrized occupancy measures [Dibangoye et al.,
2014b]. However, choosing a parametrization that can
closely mimic the desired occupancy measures requires hu-
man expertise or theoretical analysis. Though crucial, the
design of an approximation architecture goes beyond the
scope of this paper. Instead this paper focusses on ex-
act planning and learning approaches relying on MILP for
computing good decentralized policies given parametrized
occupancy measures.
To this end, we first exploit a linearization property that
allows us to reformulate into linear ones all nonlinear con-
straints that arose from multiple collaborating agents. We
then present a general MILP formulation for n-agent set-
tings, restricting attention to deterministic finite-memory
decentralized policies1. In addition, we introduce a two-
phase approach that produces a sequence of decentralized
policies and dynamics through iteration. At the first phase
called the model estimation, we maintain statistics about
the dynamics. At the second phase namely the policy im-
provement, we rely on our MILP formulation to calculate
a new decentralized policy based on the current dynam-
ics. Under the discounted reward criterion, the sequence
of decentralized policies converges to some optimal deter-
ministic and finite-memory decentralized policy. We fur-
ther demonstrate how to use this planning and learning
scheme to exploit two properties present in many decen-
tralized stochastic control problems, namely joint-full ob-
servability and weak separability [Becker et al., 2004, Nair
et al., 2005]. Experiments on standard 2-agent benchmarks
as well as domains with a large number of agents provide
strong empirical support to the methodology for planning
and learning good decentralized policies.

2 Related Work
Mixed-integer linear programming was used previously for
decentralized decision-making, but always with a focus
different from ours. Much of the effort has been directed
toward exact formulations for restricted classes of either
problems or policies. Witwicki and Durfee [2007] and later
on Mostafa and Lesser [2011] presented formulations for
2-agent transition independent decentralized Markov de-
cision processes [Becker et al., 2004]. Aras and Dutech
[2010] introduced an exact formulation for 2-agent finite-
horizon decentralized decision-making, which inevitably
scales poorly with the number of state variables and plan-
ning horizon. More recently, Kumar et al. [2016] pro-
posed yet another 2-agent formulation but with a focus on
finite-state controllers. Unfortunately, there are a number
of factors that may affect the performance of solvers while
optimizing finite-state controllers. First, the numbers of
variables and contraints grow linearly with the number of

1Though randomized finite-memory decentralized policies should
achieve better performances than deterministic ones, the corresponding
optimization problem is non-convex, often leading to poorer or equiva-
lent random solutions in comparison to deterministic ones [Amato et al.,
2010].

agents, states, actions, and observations; even more impor-
tantly they grow quadratically with the number of nodes
per controller. Consequently, MILP formulations of inter-
est for practical problems involve prohibitively large num-
bers of variables and constraints. The second limitation is
somewhat imperceptible and has to do with the semantic of
nodes in finite-state controllers. Each node aims at repre-
senting a partition of the history space as well as prescrib-
ing an action to be taken in that node. Interestingly, these
separate decisions are interconnected. The actions to be
taken in all nodes may affect the histories to be subsumed
in each specific node and vice-versa. Taken all together,
these barriers make optimizing finite-state controllers par-
ticularly hard tasks, which explains the impetus for the
development of a novel approximation approach. Kumar
et al. [2016] suggest a heuristic search method that can
incrementally build small 2-agent finite-state controllers.
However, to the best of our knowledge, no existing MILP
formulation for decentralized decision-making can cope
with problems with more than two agents. The primary
contribution of this paper is to provide the first attempt to
handle this issue.
To address the adaptive case, i.e. when the dynamics model
is unknown, a standard approach is reinforcement learning.
Existing reinforcement learning methods for decentralized
decision-making extend adaptive dynamic programming
and policy search approaches from single to multiagent
settings. Currently, no multiagent reinforcement learning
methods is based on MILP. This is somewhat surprising
since, there are single-agent reinforcement learning meth-
ods based on linear programming. One such approach,
namely probing, consists of two phases: (i) the estima-
tion phase, where the transition probabilities are updated;
and (ii) the control phase, where a new policy is calcu-
lated based on the current transition probabilities [Altman,
1999]. The algorithm iterates these two phases forever or
until the training budget is exhausted. In this paper, we ex-
tend this approach to decentralized decision-making, thus
providing the first multiagent model-based reinforcement
learning method based on MILP.

3 Backgrounds
The paper makes use of the following notation. δy(x) is
the Kronecker delta function. For any arbitrary finite setB,
|B| denotes the cardinality of B, N≤|B| = {0, 1, . . . , |B|},
N+
≤|B| = {1, . . . , |B|}, and 4(B) is the (|B| − 1)-

dimensional real simplex. Also, we use shorthand nota-
tions b1:n = (b1, b2, . . . , bn) and b> to denote the trans-
pose of b. Finally, we shall use short-hand notation Pζ(·)
to denote probability distribution P(·|ζ) conditional on ζ.

3.1 Problem Formulation
A decentralized partially observable Markov decision pro-
cess is given by a tuple Mn

.
= (X,U,Z, p, q, r, ν) made

of: a finite set of n agents; a finite state space X; a finite
action space U = U1×U2× · · · ×Un; a finite observation



space Z = Z1×Z2×· · ·×Zn; state transition probabilities
pu(x, y) representing the probability that next state will be
y given that the current state is x and the current action is
u; observation probabilities qu(y, z) representing the prob-
ability that after taking action u next state and observation
will be y and z, respectively; rewards r(x, u) representing
the reward incurred when taking action u in current state
x; and ν is the initial state-history distribution.
Solving decentralized stochastic control problems aims at
finding a (decentralized) policy a, i.e., n independent poli-
cies (a1, a2, . . . , an), one individual policy for each agent.
Each policy a prescribes actions conditional on (action-
observation) histories o = (o1, o2, . . . , on), initially o .

=
(∅, ∅, . . . , ∅), such that

a(o, u) =
∏n
i=1ai(oi, ui), ∀o ∈ O, u ∈ U, (1)

whereO = O1×· · ·×On is a finite set of histories, ranging
from 0- to `-steps histories. We shall restrict attention to `-
order Markov policies. These policies map 0- to `-steps
histories to actions, in particular 1-order Markov policies
are called Markov policies. For any arbitrary ε, one can
choose ` = logα(1−α)ε/‖r‖∞ so that there always exists
at least one `-order policy within ε of an optimal one. For
each policy a, we define a transition matrix P a, where each
entry P a(x, o, x′, o′) denotes the probability of transiting
from state-history (x, o) to state-history (x′, o′).
Policies of interest are those that achieve the highest per-
formance. In this paper, we consider the infinite-horizon
normalized discounted reward criterion, which ranks poli-
cies a according to the initial state-history distribution ν
and a discount factor α ∈ (0, 1) as follows:

Jα(a; ν)
.
= (1− α)

∑∞
τ=0α

τEaν{r(xτ , uτ )}, (2)

where Eaν{·} denotes the expectation with respect to state-
action-history distributions P aν (τ) at each time step τ con-
ditional on distribution ν and policy a, also known as a τ -th
occupancy state. P aν (τ ;xτ , oτ ) denotes the probability of
being in state xτ after experiencing history oτ at decision
epoch τ when agents follow policy a starting in ν. An op-
timal policy a∗ ∈ argmaxa Jα(a; ν) is one that achieves
the unique optimal value Jα(ν) = Jα(a

∗; ν).

3.2 Extended Occupancy Measures
This section presents the notion of extended occupancy
measures which describe the variables when solving Mn

as MILP. Extended occupancy measures subsume two crit-
ical quantities: (i) the target policy; and (ii) the state-
history-action frequency called hereafter occupancy mea-
sure. Next, we provide intuitions behind the concept of
occupancy measures as well as key properties.
To overcome the fact that agents can neither see the state
of the world nor explicitly communicate with one an-
other, Szer et al. [2005] suggest formalizing decentralized
stochastic control problems from the perspective of an of-
fline central planner (respectively learner). A central plan-
ner selects a policy to be executed by the agents. In gen-
eral, resulting policies are non-stationary, i.e. agents may

act differently from one decision epoch to another one. For
the sake of conciseness, we restrict attention to stationary
policies. This choice gives rise to statistics, namely occu-
pancy measures sα(ν, a), that summarizes all occupancy
states {P aν (τ)}τ∈N encountered under policy a starting at
state distribution ν.

Definition 1. The occupancy measure under policy a start-
ing at initial distribution ν is given by:

sα(ν, a)
.
= (1− α)

∑∞
τ=0 α

τP aν (τ). (3)

Interestingly, the occupancy measure comes with many im-
portant properties.

Lemma 1. sα(ν, a) is a probability distribution.

If α were seen as a survival probability at each time step,
then sα(ν, a) gives, for state-history pair (x, o), the proba-
bility to be in that situation just before dying. Combining
(2) and (3), it appears that Jα(a; ν) is a linear function of
occupancy measure sα(ν, a):

Lemma 2. sα(ν, a) is a sufficient statistic for estimating
infinite-horizon normalized discounted reward:

Jα(a; ν) = Easα(ν,a){r(x, u)}. (4)

Lemma 2 proves occupancy measures sα(ν, a) also pre-
serves ability to estimate α-discount reward Jα(a; ν). Fi-
nally, occupancy measure sα(ν, a) satisfies a linear charac-
terization, which shall prove critical to solve Mn as MILP.

Lemma 3. Occupancy measure sα(ν, a) is the solution of
the following linear equation w.r.t. sα(ν, a):

sα(ν, a)
>(I − αP a) = (1− α)ν>. (5)

To solve Mn, it will prove useful to search both a policy
a and the corresponding occupancy measure sα(ν, a). We
are ready to define extended occupancy measures.

Definition 2. Extended occupancy measure ζα(ν, a)
.
=

{ζα(ν, a;x, o, u)} over state-history-action triplets, asso-
ciated with each policy a, initial distribution ν, and dis-
count factor α, is given by

ζα(ν, a;x, o, u)
.
= sα(ν, a;x, o) · a(o, u), ∀x, o, u. (6)

The extended occupancy measure captures the frequency
of visits of each state-history-action triplet when the sys-
tem runs under policy a, conditioned on initial distribution
ν. Interestingly, because it subsumes an occupancy mea-
sure, it also inherited occupancy measures’ properties, in-
cluding: (i) it is a probability distribution; (ii) it can accu-
rately estimate infinite-horizon normalized discounted re-
ward; and (iii) it satisfies a linear characterization.



4 MILP Reformulations
To motivate the role of extended occupancy measures (6),
let us start with a mathematical program to finding a∗.
Consider problem (P1) given by:

Maximizea,a1:n,ζ Es{r(x, u)} subject to : (1) and (5)

where ai is agent i’s policy, a defines the decentralized pol-
icy, and ζ denotes the extended occupancy measure. It can
be shown, using (5), that any feasible ζ of (P1) is an ex-
tended occupancy measure ζα(ν, a) under policy a. It fol-
lows that, for any ζ = ζα(ν, a) solution of program (P1),
policy a is optimal for any selected class of finite-memory
policies. Unfortunately, (P1) is a nonlinear optimization
problem, with many local optima. Earlier attempts to solv-
ing (P1)—for one or two agents only—make use of non-
linear solvers, often leading to local optima [Amato et al.,
2010]. The remainder of this section presents an exact
mixed-integer linear program for Mn, restricting attention
to deterministic and stationary `-order Markov policies, as
they have been shown to achieve ε-optimal performance.

4.1 `-order Markov Policies
Notice that (5) is a nonlinear constraint, so that (P1) is
not a MILP. Therefore, finding an ε-optimal policy by di-
rectly solving (P1) is hopeless in general, though from case
to case nonlinear programming may achieve good results
[Amato et al., 2010]. However, it is possible to reformu-
late the constraints to transform the problem into a MILP.
Previous linearization of nonlinear programs to solving de-
centralized stochastic control problems have been limited
to two-agent cases, with either specific problem assump-
tions, e.g., transition-independent settings [Wu and Durfee,
2006], or restricted classes of policies, e.g., sequence-form
policies [Aras and Dutech, 2010]; finite-state controllers
[Kumar et al., 2016].
Next, we introduce a mixed-integer linear programming
approach for general discrete-time decentralized stochas-
tic control problems. Before proceeding any further let us
provide preliminary properties that will be useful to estab-
lish the main results of the paper. In particular, we present
a linearization property that allows us to formulate nonlin-
ear constraints in (P1) as linear constraints. We start with
the linearization of the product between Boolean and con-
tinuous variables [Berthold et al., 2009].

Lemma 4 ([Berthold et al., 2009]). If we let v1, v2, and w
be Boolean, random, and non-negative variables, respec-
tively; and

(C1)

∣∣∣∣ w − vk ≤ 0 ∀k ∈ {1, 2}
v1 + v2 − w ≤ 1

then solutions of polyhedron (C1) satisfy w = v1 · v2.

The next property shows for the first time how to ex-
ploit Lemma 4 to reformulate nonlinear constraints from
n-agent cases into linear ones.

Proposition 1. If we let ζ(x, o1:n, u1:n) be a joint distri-
bution and {ai(oi, ui)}i∈N+

≤n
be Boolean variables; and

(Cζ(oi, ui))

∣∣∣∣ Pζ(oi, ui)− ai(oi, ui) ≤ 0
Pζ(oi) + ai(oi, ui)− Pζ(oi, ui) ≤ 1

then solutions of polyhedron {Cζ(oi, ui)}i∈N+
≤n

satisfy

ζ(x, o1:n, u1:n) = Pζ(x, o1:n)
∏n
i=1Pζ(ui|oi)

ai(oi, ui) = Pζ(ui|oi).

Proof. The extended occupancy state ζ(x, o, u) can be re-
written equivalently as follows:

ζ(x, o, u)
.
= Pζ(x, o1:n)

∏n
j=1Pζ(uj |oj)

= Pζ(x, o−i, u−i|oi, ui)Pζ(oi)Pζ(ui|oi) (7)
= Pζ(x, o−i, u−i|oi, ui)Pζ(oi, ui) (8)

Since LHS of both (7) and (8) are equal, we have equiva-
lently

Pζ(oi, ui) = Pζ(oi)Pζ(ui|oi), ∀i, oi, ui. (9)

Using Lemma 4 along with the fact that {Pζ(ui|oi)} are
Boolean variables (and the obvious result that Pζ(oi, ui)−
Pζ(oi) ≤ 0), we know that solutions of {Cζ(oi, ui)} also
satisfy (9). Equality ai(oi, ui) = Pζ(ui|oi) follows di-
rectly from Lemma 4. Indeed, if Pζ(oi) = 0, the first
inequality implies ai(oi, ui) = 0(= Pζ(ui|oi)); otherwise
Pζ(oi) = 0, and Lemma 4 gives us Pζ(oi, ui) = ai(oi, ui)·
Pζ(oi) 6= 0, so that ai(oi, ui) = Pζ(oi, ui)/Pζ(oi) =
Pζ(ui|oi) using Bayes rule.

We are now poised to present a MILP to solving general
decentralized stochastic control problems.

Theorem 1. If we let {ai(oi, ui)} and {ζ(x, o, u)} be
Boolean and non-negative variables, respectively, then a
solution of mixed-integer linear program (P2):

max
a1:n,ζ

Eζ{r(x, u)} s.t. (5) and {Cζ(oi, ui)}i,oi∈Oi,ui∈Ui

is an ε-optimal solution of (P1), where ai is agent i’s policy
and ζ denotes the extended occupancy measure.

Proof. From Oliehoek et al. [2008], we know there always
exists a deterministic history-dependent decentralized pol-
icy that is as good as any randomized history-dependent
decentralized policy. Moreover, as previously discussed,
by restricting attention to `-order Markov decentralized
policies, the best possible performance in this subclass is
within ‖r‖∞ · α`/(1− α) of the optimal performance, i.e.,
the regret of taking arbitrary decisions from time step ` on-
ward. Hence, by searching in the space of deterministic
and `-order Markov decentralized policies, i.e., one indi-
vidual `-order Markov policy ai for each agent i ∈ N+

≤n,
we preserve ability to find an ε-optimal solution of the



original problem Mn under the discounted-reward crite-
rion, where ε ≤ ‖r‖∞ · α`/(1− α). Since ai is agent
i’s policy and ζ denotes the extended occupancy mea-
sure, we know that {ai(oi, ui)} and {ζ(x, o1:n, u1:n)} are
Boolean and non-negative variables, respectively. Thus,
from Proposition 1, we have that solutions of polyhe-
dron {Cζ(oi, ui)}i,oi∈Oi,ui∈Ui satisfy ζ(x, o1:n, u1:n) =
s(x, o1:n)

∏n
i=1 ai(oi, ui) and s(x, o1:n) are marginal

probabilities Pζ(x, o1:n) and ai(oi, ui) are conditional
probabilities Pζ(ui|oi) for i ∈ N+

≤n.

This theorem establishes a general MILP to finding an ε-
optimal policy in Mn under the discounted-reward crite-
rion. We will refer to this problem as the exact MILP. Un-
fortunately, the state, action, history spaces for practical
problems are enormous due to the curse of dimensionality.
Consequently, the MILP of interest involves prohibitively
large numbers of variables and constraints. (P2) considers
less constraints than its nonlinear counterpart (P1), but the
same number of variables. Variables in (P1) are all free,
whereas variables {ai(oi, ui)}i∈N+

≤n,oi∈Oi,ui∈Ui
in (P2)

are Boolean and remainders {ζ(x, o, u)}x∈X,o∈O,u∈U are
free.

5 Tractable Subclasses
In this section, we present two examples involving the
mixed-integer linear formulations for subclasses of decen-
tralized partially observable Markov decision processes.
The intention is to illustrate more concretely how the for-
mulation might be achieved and how reasonable choices
lead to near-optimal policies. We shall consider joint-
observability and weak-separability assumptions.

5.1 Joint observability assumption
We first consider a setting where agents collectively ob-
serve the true state of the world. This assumption,
known as joint observability, arises in many decentralized
Markov decision processes [Bernstein et al., 2002], e.g.,
transition-independent decentralized Markov decision pro-
cesses [Becker et al., 2004]. More formally, we say that
a system is jointly observable if and only if there exists a
surjective function ϕ : Z 7→ X which prescribes the true
state of the world given the current joint observation.

Corollary 1. Under joint observability assumption, if
we let ai(zi, ui)i∈N+

≤n
and ζ(z, u) be Boolean and non-

negative variables, respectively, then:
(i) the transition probability from observation z to obser-
vation z′ upon taking action u is

puϕ(z, z
′)
.
=
∑
x∈Xδx(ϕ(z))

∑
y∈Xp

u(x, y) · qu(y, z′),

where the rewards over observations is given by rϕ(z, u)
.
=∑

x∈X δx(ϕ(z)) · r(x, u); and the initial distribution over
observations is given by νϕ(z)

.
=
∑
x∈X δx(ϕ(z))ν(x);

(ii) the occupancy measures over observations satisfy

s>(I − αP a) .= (1− α)ν>ϕ ; (10)

(iii) a solution of mixed-integer linear program (P3)

max
a1:n,ζ

Eζ{rϕ(z, u)} s.t. (10) and {Cζ(zi, ui)}i,zi∈Zi,ui∈Ui

is also solution of (P2), where ai is agent i’s policy and ζ
denotes the extended occupancy measure.

This corollary presents an approximate mixed-integer lin-
ear program that can find Markov decentralized policies
under joint observability. Markov policies, a.k.a. 1-order
Markov policies, act depending only upon the current ob-
servation. This formulation depends on states and histories
only through the current observations, which results in a
significant reduction in the number of variables and con-
straints, i.e., from O(|X||O||U |) in (P2) to O(|Z||U |) in
(P3). Interestingly, this formulation finds optimal policies
in transition-independent decentralized Markov decision
processes, as deterministic Markov policies were proven
to be optimal in such a setting [Goldman and Zilberstein,
2004].

5.2 Weak separability assumption
Next, we consider the weak separability assumption, which
arises in network-distributed partially observable Markov
decision processes [Nair et al., 2005]. The assumption al-
lows us to decouple variables involved in the approximate
mixed-integer linear programs into factors, i.e., subsets of
variables, which make it possible to scale up to large num-
ber of agents. The intuition behind this assumption is that
not all agents interact with one another; often an agent in-
teracts only with a small subset of its neighbors, hence its
decisions may not affect the remainder of its teammates.
To take into account the locality of interaction, we make
the following assumptions.

Definition 3. Let E be a set of subsets e of agents. A
decentralized partially observable Markov decision pro-
cess (n,X,Z, U, q, p, r, ν) is said to be weakly separable
if the following holds: n denotes the number of agents;
X

.
= X0 × X1 × · · · × Xn; ν is multiplicatively fully

separable, i.e., there exists (νi)i∈N≤n such that ν(x) =∏
i∈N≤n

νi(xi), where x = (xi)i∈N≤n ; p is multiplica-
tively weakly separable, i.e., there exists (pi)i∈N≤n such
that puee (xe, ye) = p0(x0, y0)

∏
i∈e p

ui
i (xi, yi), where

xe = (x0, (xi)i∈e) and ue = (ui)i∈e; q is multiplica-
tively weakly separable, i.e., there exists (qi)i∈N+

≤n
such

that quee (ze, ye) =
∏
i∈e q

ui
i (zi, yi), where ye = (yi)i∈e,

ze = (zi)i∈e and ue = (ui)i∈e; r is additively weakly
separable, i.e., there exists (re)e∈E such that r(x, u) =∑
e∈E re(xe, ue), for all state and action x, u.

This assumption suggests two agents, i and j, can only
affect one another if they share the same subset e, i.e.,
i, j ∈ e; otherwise they can choose what to do with no
knowledge about what the other sees or plans to do. As a
consequence, the value function in this setting is proven to
be additively weakly separable [Dibangoye et al., 2014a],



i.e., Eζ{r(x, u)} =
∑
e∈E Eζe{re(x, u)}, where

s>e (I − αP ae)
.
= (1− α)ν>e , (11)

describes the recursion definition of the occupancy mea-
sure se extract from the extended occupancy measure ζe.
The following exploits this property to define an exact
mixed-integer linear program that decouples variables ac-
cording to E, resulting in significant dimensionality reduc-
tion.

Corollary 2. Let Mn be weakly separable. If we let
{ai(oi, ui)}i∈N+

≤n
, and {ζe(xe, oe, ue)} be Boolean and

non-negative variables, respectively; then a solution of
mixed-integer linear program (P4)

max
a1:n,ζ

∑
e∈EEζe{re(xe, ue)} s.t. (11) and {Cζe(oi, ui)}

is also a network-distributed solution of (P2), where where
ai is agent i’s policy and ζe denotes the extended occu-
pancy measure for all e.

This mixed-integer linear program exploits the so-called
weak separability assumption that arises under locality of
interaction. It is worth mentioning that (P4) can find an
optimal policy for network-distributed partially observable
Markov decision processes, assuming reasonable choice of
histories Oe for each subset of agents e [Dibangoye et al.,
2014a].

6 Adaptive Decentralized Control
In this section, we extend to decentralized partially ob-
servable Markov decision processes the probing algorithm
originally introduced for Markov decision processes. Sim-
ilarly to the original algorithm, ours alternates between
model estimation and policy improvement phases forever
or until the training budget is exhausted. The estimators
of both dynamics {Pτ} and exploration policies {πτ} shall
involve counting the number of times the algorithm vis-
its state-action-state-observation quadruplets (x, u, y, z),
state-action pairs (x, u), and states x after τ interactions
between the agent and the environment—by an abuse of
notation we shall use wτ (x, u, y, z), wτ (x, u), wτ (x) to
store these numbers, respectively. It is worth noticing that
since the model does not depend on histories, maintain-
ing history-dependent policies {aτ} is useless, instead it
suffices to maintain state-dependent policies {πτ} corre-
sponding to extended occupancy measures {ζτ}.
Under standard ergodicity conditions, the model estima-
tion phase ensures each state-action pairs is visited in-
finitely often, making Pτ = {pu,zτ (x, y)} a consistent es-
timator of dynamics after τ interactions: pu,zτ (x, y) =
wτ (x, u, y, z)/wτ (x, u), if wτ (x, u) > 0 and chosen arbi-
trary otherwise. In other terms, if each state-action pair is
visited infinitely often, then by the strong law of large num-
ber, limτ→∞ Pτ = P . To do so, we make use of an explo-
ration strategy, namely probe. To better understand the

probing exploration policy, let U(x) = {1, . . . , |U(x)|} be
the set of available actions in state x ∈ X , and σ(x) be the
number of actions to be experienced in state x ∈ X . Before
a new estimation phase starts, we set σ(x) = |U(x)| for ev-
ery state x ∈ X . At each time step of the model estimation
phase, if σ(x) > 0, the centralized coordinator executes
action σ(x) in state x and decrements σ(x); otherwise, he
or she selects the action which minimizes the difference be-
tween the estimated and the optimized exploration policies
(updated at the improvement phase), denoted π̂τ and πτ ,
respectively: for any arbitrary x ∈ X and vector of counts
σ,

probe(x, σ)
.
=

{
σ(x), if σ(x) > 0
argmin
u∈U(x)

{π̂τ (u|x)− πτ (u|x)}, otherwise.

If the state space forms a single positive recurrent class
under any stationary policy, probe ensures every state-
action pair gets visited at least once at each model estima-
tion phase, in which case the estimation phase terminates.
Otherwise, we shall impose a training budget τmax during
each model estimation phase. Once the budget is exhausted
the estimation phase stops—in that case, there is no guar-
antee of visiting every state-action pair. Next, the algorithm
proceeds to the policy-improvement phase.
Each policy-improvement phase starts by computing an ex-
tended occupancy measure ζτ for the current estimate dy-
namics Pτ using our MILP formulations. Then, it calcu-
lates the state-dependent exploration policy as follows:

πτ (u|x) =
∑
oζτ (x, o, u)/

∑
x,oζτ (x, o, u). (12)

Next, it ensures π̂τ
.
= {π̂τ (u|x)} is a consistent estimator

of πτ , where π̂τ (u|x)
.
= wτ (x, u)/wτ (x), if wτ (x) > 0;

and 0 otherwise. To this end, it explores the state space
by selecting the action which minimizes the difference be-
tween the estimated and the optimized exploration poli-
cies, until ‖π̂τ − πτ‖∞ goes below a certain threshold.
It is worth noticing that that this algorithm requires no
hyper-parameter tuning. We present the pseudocode of our
probing algorithm in the supplementary material.

7 Experiments
This section empirically demonstrates and validates the
scalability of the proposed planning and learning approach
w.r.t. the number of agents for α = 0.9. We show that our
planning and learning approach applies to n-agent Dec-
POMDPs where no other MILP formulation does. We
run our experiments on Intel(R) Xeon(R) CPU E5-2623 v3
3.00GHz.

7.1 ND-POMDPs
Setup. We conduct experiments on well-established
benchmarks for evaluating n-agent Dec-POMDPs, i.e.
network-distributed domains based on the sensor network
applications [Nair et al., 2005], which range from four to
fifteen agents. The reader interested in the description of



Figure 1: Probing results for n-agent∞-horizon ND-POMDPs with α = 0.9.



Algorithm |a| Time Jα(a; ν)
4 domain — |X| = 12, n = 4, |Zi| = 2, and 2 ≤ |Ui| ≤ 3

P4(` = 1) 3× 3 0.37s 752.492
P4(` = 2) 5× 5 0.39s 752.492

4-star domain — |X| = 12, n = 4, |Zi| = 2, and 2 ≤ |Ui| ≤ 3
P4(` = 1) 3× 3 0.279s 568.642
P4(` = 2) 5× 5 0.298s 568.642

5-star domain — |X| = 12, n = 5, |Zi| = 2, and 2 ≤ |Ui| ≤ 3
P4(` = 1) 3× 3 0.932s 407.821
P4(` = 2) 5× 5 1.241s 407.821

5-P domain — |X| = 12, n = 5, |Zi| = 2, and 2 ≤ |Ui| ≤ 3
P4(` = 1) 3× 3 7.12s 334.536
P4(` = 2) 5× 5 10.01s 334.536

7-H domain — |X| = 12; n = 7, |Zi| = 2, and 2 ≤ |Ui| ≤ 3
P4(` = 1) 3× 3 5.10s 199.773
P4(` = 2) 5× 5 7.63s 199.773
15-3D domain — |X| = 60; n = 15, |Zi| = 2, and 2 ≤ |Ui| ≤ 4
P4(` = 1) 3× 3 1328.48s 409.069
P4(` = 2) 5× 5 3002.19s 409.069
15-Mod domain — |X| = 16; n = 15, |Zi| = 2, and 2 ≤ |Ui| ≤ 4
P4(` = 1) 3× 3 27.1845s 571.642
P4(` = 2) 5× 5 59.238s 571.642

Table 1: MILP results for n-agent ∞-horizon ND-
POMDPs. Higher Jα(a; ν) is better.

the benchmarks can refer to http://teamcore.usc.
edu/projects/dpomdp/. To the best of our knowl-
edge, no other MILP formulation can solve these domains,
e.g., [Kumar et al., 2016] is inapplicable. Alternative ap-
proaches include: an extension of FB-HSVI for network-
distributed domains [Dibangoye et al., 2014a], unfortu-
nately the only available formulation is dedicated for finite-
horizon settings; and local search methods, e.g., [Kumar
et al., 2011], which (i) can only provide local optima;
(ii) trade theoretical guarantees for scalability w.r.t. the
number of states and (iii) go beyond the scope of this
paper. Instead, we target scalability w.r.t. the number
of agents while preserving theoretical guarantees over a
selected class of decentralized and deterministic `-order
Markov policies. Table 1 reports results on all tested n-
agent domains. To validate the potential of this learning
approach, we demonstrate one can learn the exact model
and a corresponding policy in Figure 1.

Analysis. Experiments show the ability for our MILP
formulations to quickly find finite-memory decentralized
policies that may serve as good approximations of the op-
timal decentralized policy. They also demonstrate the scal-
ability with respect to the number of agents. Our MILP
formulations optimally solve all network-distributed do-
mains with up to fifteen agents. It is worth noticing that
both planning and learning processes, the main limitation
is the lack of scalability w.r.t. the number of states, ac-
tions, observations, and hence histories. We argue that for
domains where the double-exponential number of histories
affect the scalability far more strongly than the number of
states and actions, our approach is particularly useful. In
future work, we plan to learn a low-dimensional represen-
tation of the model of world making it possible to apply
our approach even when facing domains with larger state,
observation and action spaces.

7.2 Two-agent Dec-POMDPs

Algorithm |a| Time Jα(a; ν)
Broadcast (|X| = 4, |Ui| = 2, |Zi| = 2)

P2(` = 1) 3× 3 0.01s 9.19
P2(` = 2) 5× 5 0.01s 9.2629
FB-HSVI 102 19.8s 9.271
FB-HSVI(δ = 0.01) 435 7.8s 9.269
Kumar et al. [2016] 3× 3 0.05s 9.1

Dec-tiger (|X| = 2, |Ui| = 3, |Zi| = 2)
FB-HSVI(δ = 0.01) 52 6s 13.448
FB-HSVI 25 157.3s 13.448
Kumar et al. [2016] 7× 7 4.2s 13.4
MPBVI 231 < 18000s 13.448
EM 6 142s −16.3
P2(` = 2) 5× 5 0.01s −20

Recycling robots (|X| = 4, |Ui| = 3, |Zi| = 2)
P3(` = 1) 3× 3 0.01s 31.9291
FB-HSVI 109 2.6s 31.929
FB-HSVI(δ = 0.01) 108 0s 31.928
Kumar et al. [2016] 3× 3 1.1s 31.9
EM 2 13s 31.50

Meeting in a 3x3 grid (|X| = 81, |Ui| = 5, |Zi| = 9)
P3(` = 1) 10× 10 0.19s 5.81987
FB-HSVI 108 67s 5.802
FB-HSVI(δ = 0.01) 88 45s 5.794
Kumar et al. [2016] 10× 10 4.4s 5.8

Box-pushing (|X| = 100, |Ui| = 4, |Zi| = 5)
FB-HSVI(δ = 0.01) 331 1715.1s 224.43
FB-HSVI(δ = 0.05) 288 1405.7s 224.26
Kumar et al. [2016] 7× 8 6.2s 181.2
P2(` = 1) 6× 6 0.06s 181.985
P2(` = 2) 26× 26 1.86s 197.607

Mars rover (|X| = 256, |Ui| = 6, |Zi| = 8)
FB-HSVI(δ = 0.01) 136 74.31s 26.94
FB-HSVI(δ = 0.2) 149 85.72s 26.92
Kumar et al. [2016] 9× 9 20.2s 23.8
P2(` = 1) 9× 9 2.48s 23.8302
EM 3 5096s 17.75

Table 2: Results for infinite-horizon domains. Higher
Jα(a; ν) is better. δ and ` denote the regret in Bellman’s
backup and the class of policies, respectively.

Setup. For the sake of completeness we also present our
performances for 2-agent Dec-POMDPs, where we pro-
vide competitive results w.r.t. state-of-the-art methods.
Experiments were conducted on standard benchmarks, all
available at masplan.org. We use two of our 2-agent
MILP formulations, i.e., P2(`) and P3(` = 1), for ` ∈
{1, 2}. Though our MILP formulations are guaranteed to
find an optimal solution in the target class of policies, we
do not expect them to do always better than the state-of-
the-art solver FB-HSVI, since the latter achieves provably
a near-optimal performance on these benchmarks. Instead,
these domains serve for the sanity check, assessing the
quality of our solutions w.r.t. near-optimal ones. We also
report performances from other Dec-POMDP solvers, e.g.,
[Kumar et al., 2016] and EM.

Analysis. Results for EM [Kumar et al., 2016] were
likely computed on different platforms, and, therefore, time
comparisons may be approximate at best. Results for 2-
agent domains can be seen in Table 2. In many tested 2-
agent domains, low-order Markov policies achieve good
performances. Hence our MILP formulations are competi-
tive to state-of-the-art algorithms. In decentralized MDPs,
e.g., recycling robots and meeting in a 3x3 grid, decentral-
ized and deterministic Markov policies are optimal, non-

http://teamcore.usc.edu/projects/dpomdp/
http://teamcore.usc.edu/projects/dpomdp/
masplan.org


Figure 2: Probing results for n-agent∞-horizon 2-agent
Dec-POMDPs.

surprisingly P3 can find optimal solutions. However, in
domains requiring more memory, i.e., higher-order Markov
policies, our MILP formulations may achieve poor perfor-
mances, see for example Dec-tiger. The difficulty comes
from the exponentially many joint histories to consider as
` increases. Overall, MILP formulations provide a sim-
ple yet efficient alternative to solving 2-agent domains, es-
pecially when (i) finite-memory policies can achieve good
performances; and (ii) states, actions and observations are
small. Finally, we successfully run the adaptive decentral-
ized control approach on two small domains, i.e. recycling
robots and broadcast see Figure 2, providing a strong theo-
retical support for this promising approach.

8 Conclusion
In this paper, we investigated MILP formulations, which
proved useful for partially observable domains, but exist-
ing applications restrict to benchmarks with one or two
agents. To overcome this limitation, we introduced a novel
linearization property that allows us to reformulate non-
linear constraints from general decentralized partially ob-
servable Markov decision processes into linear ones. We
further presented MILP formulations for general and spe-
cial cases, including network-distributed and transition-
independent problems. Our experiments on both standard
2-agent benchmarks as well as domains with a large num-
ber of agents illustrate the ability for our planning and
learning approaches based on MILP formulations to find
good approximate solutions often and sometimes optimal
ones. Yet, the scalability, w.r.t. states, actions and obser-
vations, remains a major limitation. In future work, we
shall generate an approximation of the extended occupancy
measures within a parameterized class of functions to deal
with the intractability of the exact MILP formulation, in a
spirit similar to that of statistical regression. We shall draw
inspiration from the literature of deep generative models,
and more specifically (discrete) variational autoencoders
[Kingma and Welling, 2014, Ha and Schmidhuber, 2018].
Besides, we plan to apply standard decomposition methods
in the literature of discrete optimization.
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A Proofs
Lemma 1. sα(ν, a) is a probability distribution.

Proof. Let e be a vector of all ones. Then we have

sα(ν, a)
>e

.
=

(
(1− α)ν>

∞∑
τ=0

ατ (P a)τ

)
e

= (1− α)ν>
∞∑
τ=0

ατe

= (1− α)ν>(1− α)−1e given
∞∑
τ=0

ατ = (1− α)−1

= ν>e

= 1 ν being a probability distribution

and the claim follows.

Lemma 2. sα(ν, a) is a sufficient statistic for estimating infinite-horizon normalized discounted reward:

Jα(a; ν) = Easα(ν,a){r(x, u)}. (4)

Proof. Let measure ν>(P a)τ be the probability distribution over state-history pairs conditional on initial state distribution ν
and policy a, after τ decision epochs. Then we have

Jα(a; ν)
.
= (1− α)

∞∑
τ=0

ατEaν{r(xτ , uτ )}

= (1− α)
∞∑
τ=0

ατE{r(xτ , uτ ) | {(xτ , oτ ) ∼ ν>(P a)τ , uτ ∼ a(oτ , ·)}

= (1− α)
∞∑
τ=0

ατ
∑
x∈X

∑
o∈O

(ν>(P a)τ )(xτ = x, oτ = o)
∑
u∈U

a(o, u) · r(x, u)

=
∑
x∈X

∑
u∈U

r(x, u)
∑
o∈O

a(o, u)

(
(1− α)ν>

∞∑
τ=0

ατ (P a)τ

)
(xτ = x, oτ = o)

=
∑
x∈X

∑
u∈U

r(x, u)
∑
o∈O

a(o, u) · sα(ν, a;x, o)

.
= Easα(ν,a){r(x, u)}

and the claim follows.

Lemma 3. Occupancy measure sα(ν, a) is the solution of the following linear equation w.r.t. sα(ν, a):

sα(ν, a)
>(I − αP a) = (1− α)ν>. (5)

Proof. If we let I be the identity matrix, the following holds:

∞∑
τ=0

ατP aν (τ) = ν>
∞∑
τ=0

ατ (P a)τ = ν>(I − αP a)−1. (13)

Injecting (13) into (3), and re-arranging terms lead to a linear characterization of occupancy measures:

sα(ν, a)
>(I − αP a) = (1− α)ν>.

Which ends the proof.



Lemma 4. If we let v1, v2, and w be Boolean, random, and non-negative variables, respectively; and

(C1)

∣∣∣∣ w − vk ≤ 0 ∀k ∈ {1, 2}
v1 + v2 − w ≤ 1

then solutions of polyhedron (C1) satisfy w = v1 · v2.

Proof. Building upon [Berthold et al., 2009], the proof proceeds by considering all possible values for v1.

1. If v1 = 0, then from w − vk ≤ 0 and w ∈ [0, 1], we know that w = 0 no matter v2, which satisfies w = v1 · v2.

2. On the other hand, if v1 = 1, then from v1 + v2 − w ≤ 1 and w ∈ [0, 1], we know that w ≤ 1 for v1 = v2, which is
further tightened when considering v1 = v2, i.e., w ≤ v2. The last inequality v1 + v2 −w ≤ 1 shows that w ≥ v2. As a
consequence w = v2, which satisfies w = v1 · v2.

Which ends the proof.
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