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Abstract

Background: Since 2009, numerous tools have been developed to detect structural variants using short read
technologies. Insertions >50 bp are one of the hardest type to discover and are drastically underrepresented in gold
standard variant callsets. The advent of long read technologies has completely changed the situation. In 2019, two
independent cross technologies studies have published the most complete variant callsets with sequence resolved
insertions in human individuals. Among the reported insertions, only 17 to 28% could be discovered with short-read
based tools.

Results: In this work, we performed an in-depth analysis of these unprecedented insertion callsets in order to
investigate the causes of such failures. We have first established a precise classification of insertion variants according
to four layers of characterization: the nature and size of the inserted sequence, the genomic context of the insertion
site and the breakpoint junction complexity. Because these levels are intertwined, we then used simulations to
characterize the impact of each complexity factor on the recall of several structural variant callers. We showed that
most reported insertions exhibited characteristics that may interfere with their discovery: 63% were tandem repeat
expansions, 38% contained homology larger than 10 bp within their breakpoint junctions and 70% were located in
simple repeats. Consequently, the recall of short-read based variant callers was significantly lower for such insertions
(6% for tandem repeats vs 56% for mobile element insertions). Simulations showed that the most impacting factor
was the insertion type rather than the genomic context, with various difficulties being handled differently among the
tested structural variant callers, and they highlighted the lack of sequence resolution for most insertion calls.

Conclusions: Our results explain the low recall by pointing out several difficulty factors among the observed
insertion features and provide avenues for improving SV caller algorithms and their combinations.
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Background
The widespread use of short read massively parallel
sequencing has allowed the fine characterization of the
human genome variability on single nucleotide variants
and small insertions/deletions (<50 bp) [1, 2]. Structural
variants (SVs) are larger variants. They are defined as a
fragment of DNA of more than 50 bp that differs between
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an individual and the reference genome [3]. There is a
great variety of SVs, with various proposed stratifications.
A common categorisation differentiates a deletion (DEL)
for a loss of a fragment, an insertion (INS) for a gain of a
fragment, an inversion for a reversion of a fragment (INV)
and a translocation (TRANS) for moving a fragment to
another position in the genome. SVs are drivers of the
genome evolution along generations, and some of them
can have a significant functional impacts on the organism
and be responsible for rare Mendelian disorders [4].
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The classical approach to discover SVs from Whole
Genome Sequencing (WGS) with short reads relies on
a first step consisting in mapping the reads to a refer-
ence genome. Then SV callers look for atypical mapping
signals, such as discordant read pairs, clipped reads or
abnormal read depth, to identify putative SV breakpoints
along the reference genome [5, 6]. More than 70 SV callers
have been developed up to date and several benchmarks
have revealed great variability between results obtained
by different methods, demonstrating that SV detection
using short read sequencing remains challenging [7, 8].
The challenge is to resolve two issues: a technical and
a methodological one. The technical issue concerns the
sequencing technology: insert size, read size and sequenc-
ing coverage have been shown to impact SV discovery.
The second issue concerns SV caller algorithms and their
ability to decipher and translate the biological signal from
the alignments. Thus, SVs located in repeated regions or
containing repeats larger than the read size are difficult to
detect [9].
In particular, insertions are one of the most difficult

SV types to call [7, 8]. Because the inserted sequence
is absent from the reference genome, or at least at
the given locus of insertion, calling such variants and
resolving the exact inserted sequence requires finely
tuned approaches such as de novo or local assembly
[10, 11]. This increased difficulty is well exemplified by
the dramatic under-representation of such SV type in
usual reference databases or standard variant callsets.
For instance, dbVar at present references only 28% of
insertions or duplications among the SVs larger than
50 bp. On the opposite, deletions represent more than
70% of the database, although both types are expected
to be roughly equally abundant in human populations
[12]. Moreover, only 1.5% of the reported insertions are
sequence-resolved, that is with an inserted sequence fully
characterized.
One explanation is that the size of the reads is small

compared to the target event size and the detection is
mainly based on alignments which may produce artefacts
[13]. Another source of difficulty for insertion detec-
tion is the presence of repeated patterns at the precise
rearrangement breakpoints. Several molecular mecha-
nisms involved in rearrangement genesis are known to
produce such repeated sequences, referred as junctional
homology [14–16]. Junctional homology is defined as a
DNA sequence that has two identical or nearly identi-
cal copies at the junctions of the two genomic segments
involved in the rearrangement, when the sequence is
short (<70 bp) this is often called a micro-homology
[16]. The repair of DNA double strand breaks by diverse
mechanisms, such as Non-Allelic Homologous Recombi-
nation (NAHR), Non-Homologous End Joining (NHEJ)
or Microhomology-Mediated Break-Induced Replication

(MMBIR), generate such homologies whose size depend
precisely on the type of the involved mechanism. These
homologies can have an impact on insertion calling per-
formance, since the concerned region at the inserted site is
no longer specific to the reference allele and it is no longer
possible to identify the exact location of the insertion site.
However, little is known at present about the prevalence
of these homologies and their sizes for human insertion
variants due to their poor referencing in databases.
More recently, novel long reads sequencing technolo-

gies have overcome these limitations and allowed the
generation of more accurate datasets, finally referenc-
ing sequence-resolved insertion variants in the human
genome [8, 17]. Thanks to several international efforts,
some gold standard callsets have been produced in 2019,
referencing tens of thousands of insertions in several
human individuals [18, 19]. Among the reported inser-
tions by Chaisson et al, a great majority (83%) could
not be discovered by any of the tested short-read based
SV callers. This result of recall below 17% is drastically
different from the announced performances of insertion
callers when evaluated on simulated datasets [20]. Indeed,
Chaisson et al showed that 59% of insertion variants
were found in a tandem repeat context, suggesting that
most of the real insertion variants in human individuals
are probably occurring in complex regions and involving
complex sequences. So far, such complexity factors were
rarely included nor analysed in method benchmarks and
to do so, actual insertion variants require to be better
characterized.
Numerous countries are developing genomic medicine

programs, based on short-read sequencing. Although
third generation sequencing offers an unprecedented
technique for exploring the complexity of individual struc-
tural variants, most of the genomic sequencing facilities
will still use short-read based sequencing in coming years
for its reduced cost. Hence, there is a critical need to mea-
sure and control the caveats of standard procedures for
detecting SVs with short-read sequencing data.
In this work, we performed an in-depth analysis of these

unprecedented insertion callsets, in order to investigate
the causes of short read based caller failures. We have
first established a precise classification of insertion vari-
ants according to four different layers of characterization:
the nature and size of the inserted sequence, the genomic
context of the insertion site and the breakpoint junc-
tion complexity. Because these levels are intertwined, we
then used simulations to characterize the impact of each
complexity factor on the recall of several SV callers.

Results
In-depth analysis of an exhaustive insertion variant callset
In this work, we first aimed at precisely characterizing
an exhaustive set of insertion variants present in a given
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human individual. We based our study on a recently pub-
lished SV callset published by Chaisson and colleagues in
2019 [18]. Using extensive sequencing datasets, combin-
ing different sequencing technologies and methodologi-
cal approaches (short, linked and long reads, mapping-
based and assembly-based SV calling), three human trios
were thoroughly analysed to establish exhaustive and gold
standard SV callsets (Supplementary Table S1). We first
focused our study on the individual NA19240, son of the
so-called Yoruban (YRI) Nigerian trio, whose SV callset
contained 15,693 insertions greater than 50 bp.

Nature and size of the inserted sequences
Insertion variants can be classified in different sub-
types according to the nature of the inserted sequence.
Three insertion categories were distinguished in the orig-
inal publication, namely tandem repeats, mobile element
insertions and complex ones for all the other types. We
proposed to refine this classification in five insertion sub-
types, illustrated in Fig. 1. A classical subdivision con-
sisted in distinguishing novel sequence insertions from
insertions of exiting sequences, namely duplicative inser-
tions. Several sub-types of duplicative insertions were
then defined according to the location or amount of the
inserted sequence copies in the reference genome. Among
duplicative insertions, we proposed to stratify (i) tan-
dem duplications, with at least one copy of the inserted
sequence being adjacent to the insertion site, (ii) dispersed
duplications, with copies that can be located anywhere

else in the genome. Among tandem duplications, tandem
repeats are characterized by multiple tandem repetitions
of a seed motif within the inserted sequence. Mobile
element insertions are a very specific sub-type whose
sequences are known and referenced in families. They
are notably characterized by very high copy numbers in
the genome (typically greater than 500). Other dispersed
duplication types were then required to have a copy num-
ber lower than 50, in order not to be confounded with
potential mobile element insertions. We did not define
segmental duplications and CNVs as additional sub-types
of dispersed duplications, as they are defined in the lit-
erature by their size (above 1 Kb), the size being another
independant level of characterization.
In order to classify the insertion callset, all inserted

sequences were aligned against the human reference
genome, a mobile element database and were scanned
for tandem repeats (see Methods). We used a minimal
sequence coverage threshold to annotate each insertion
to an insertion sub-type according to the decision tree
described in Fig. 1. Insertions that did not meet any
requirement to be annotated as one of the previous sub-
types were qualified as unassigned insertions.
We set the threshold to 80% for our analysis to ensure

a compromise between specificity and quantity of anno-
tated insertions in all sub-types. With such threshold, 88%
of insertions could be assigned to a given type. Among the
13,850 annotated insertions, 8,735 (63%) were annotated
as tandem repeats, 2,473 (17%) as mobile elements, 1,000

Fig. 1 Decision tree used to classify insertion variants. Five insertion sub-types are defined according to the nature of the inserted sequence : novel
sequence, tandem repeat and mobile element insertions and tandem and dispersed duplications. Unassigned insertions refer to insertions which
do not meet the requirements to be assigned to at least one sub-type
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(7%) as tandem duplications, 869 (6%) as novel sequences
and 773 (5%) as dispersed duplications (Fig. 2b and
Supplementary Table S2 for results obtained with other
coverage thresholds). 46% of tandem repeats had a repeat
seed smaller than 10 bp and 93% smaller than 50 bp. Com-
pared to the classification of Chaisson et al, the propor-
tions of tandem repeats (57% vs 56%) andmobile elements
(23% vs 16%) were close. The difference in mobile ele-
ment proportions mainly represented insertions that were
unassigned in our annotation. The 1,843 (12%) unassigned
insertions at 80% threshold showed partial annotations
of mobile element (57%), tandem repeats (22%), tandem
duplications (15%) or dispersed duplications (5%).
Concerning the size of the insertions, 67% of the inser-

tions were smaller than 250 bp and only 8% had a
size greater than 1 Kb (Fig. 2a). Interestingly, the size

distributions differed between insertion types (Fig. 3a).
Mobile elements showed the most contrasting size distri-
bution with a strong over-representation of the 250-500
bp size class (61%). This can be explained by the most
frequent and active mobile element class in the human
genome being the SINE elements of size around 300
bp. Notably, the novel sequence insertion type carried a
greater proportion of large insertions than other types,
with 164 (19%) of the 869 novel sequences larger than
1,000 bp.

Characterization of insertion locations in the genome
We then characterized the insertions based on the
genomic context of their insertion site. We investi-
gated in particular genomic features that might make
read mapping and SV calling difficult, such as the

Fig. 2 Distributions of insertion variant features across several callsets. Distributions of a insertion size, b insertion type, c repeated context of
insertion and d homology size at the breakpoint for NA19240, HG00514, HG00733 and HG002 insertion variant callsets. Abbreviations: SimpleRep for
simple repeat, ME for mobile element, TandemRep for tandem repeat, TandemDup for tandem duplication, DispersDup for dispersed duplication
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Fig. 3 Proportions of insertion variant features according to the type of insertion. Proportions of classes of a insertion size, b insertion location, c
homology size at the breakpoint according to the type of insertion in the NA19240 callset. Abbreviations: SimpleRep for simple repeat, ME for
mobile element, TandemRep for tandem repeat, TandemDup for tandem duplication, DispersDup for dispersed duplication

repetitive content. A strong over-representation was
found in regions annotated as simple repeats, with 9,675
(70%) of the annotated insertions located in these regions
that only represent 1.2% of the genome (Fig. 2c). The pre-
ferred genomic context of insertions varied between inser-
tion types (Fig. 3b). 8,047 (92%) tandem repeats, 723 (73%)
tandem duplications and 519 (63%) dispersed duplica-
tions were found in simple repeat regions. Conversely, 580
(67%) novel sequence insertions and 1,383 (56%) mobile
element insertions were located in other regions. We did
not find a higher rate of insertions within exonic, intronic
or intergenic regions compared to a uniform distribution
along the genome.

Junctional homology
We systematically compared the insertion site junction
sequences with the inserted sequence extremities to iden-
tify stretches of identical or nearly identical sequences,
here-after called junctional homologies as in [16] (see
Methods). Overall 5,119 (38%) insertions showed junc-
tional homologies larger than 10 bp (Fig. 2d). This
proportion is greater than the one obtained with ran-
dom sequence insertions, the largest observed junctional
homology being of 7 bp among 2,000 randomly simu-
lated insertions (see Methods). All insertion types carried
junctional homologies greater than expected with random
sequences. Tandem duplications and tandem repeats were
the types with the greatest junctional homologies, with
428 (43%) tandem duplications and 1,751 (20%) tandem
repeats that were identified with a junctional homology
larger than 50 bp (Fig. 3c). This could be expected by their
tandem nature. However, the homology was still smaller
than their insertion size for many of them. The expla-
nation for tandem repeat lies in their structure which

is an amplification of a seed in the reference genome.
Thus the largest homology size corresponded to the seed
size presents at the right breakpoint (in case of left
normalization). As for tandem duplications, the discor-
dance between their annotation as tandem duplication
and the smaller size of the detected junctional homol-
ogy is related to the difference in the methods used to
define the homology, where small distances (<10 bp) to
the insertion site and to the inserted sequence extremity
were required in the junctional homology case, whereas
in the tandem duplication annotation case, the homolo-
gous segment had only to cover at least 80% of the inserted
sequence.

Comparison with other individual callsets
These observations were performed on theNA19240 indi-
vidual callset. Hence, we asked whether they could be
recurrent across individuals from various genetic back-
grounds. We first considered the two other individuals of
the Chaisson et al study, namely HG00514 (14,363 inser-
tions), son of a Han Chinese (CHS) trio, and HG00733
(15,476 insertions), son of a Puerto Rican (PUR) trio.
These callsets were obtained with the same sequencing
technologies and SV calling methodologies as for the
NA19240 individual. Then, we analyzed a callset obtained
by a different study, namely the SV callset for individ-
ual HG002 ( 11,630 insertions) provided by the Genome
in a Bottle (GiaB) Consortium [19]. In this study, Zook
and colleagues also used multiple sequencing technolo-
gies and SV calling methods to achieve a high confidence
insertion and deletion callset (see Supplementary Table S1
for a summary of the technologies and methods used
for all the callsets). Before comparing insertion features
between callsets, we first checked whether they contained
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different variants. Using a rough estimation of shared
variants, we identified only 1,169 insertion sites com-
mon to the four callsets within a 1 kb size window.
On average 3,344 insertions were shared between two
given callsets, and overall, more than 55% of the studied
insertions were specific to a given callset. The distribu-
tions of insertion types, sizes, locations and junctional
homology sizes were similar between the three individ-
uals of the Chaisson et al study and the GiaB callset
(Fig. 2).

Short-read-based recall
In order to investigate whether the previously described
insertion features impacted the recall of short-read-
based (SR-based) SV callers, we reproduced our previous
analysis according to the technology involved in the

variant call as annotated in the callsets. For the individual
NA19240, 2,363 (17%) insertion variants were comforted
by SR-based SV callers. As shown in Fig. 4, this SR-
based recall was highly heterogeneous with respect to the
previously described insertion features. Each described
feature in this work (ie. nature and size of the inserted
sequence, insertion site genomic context and junctional
homologies) impacted the SR-based recall. As shown in
Fig. 4a, insertions larger than 500 bp were poorly discov-
ered by SR-based methods (<3%). An increased SR-based
recall for the 250-500 bp insertion size class corresponded
to mobile element insertions. The greatest difference
in SR-based recall was observed among the insertion
types: 1,410 (56%) mobile elements and 342 (40%) novel
sequence insertions could be detected with SR-based SV
callers compared to only 87 (9%) tandem duplications, 484

Fig. 4 Proportions of SR-based insertion discoveries according to insertion features. Proportions of insertions that were called using short read
technology data according to a insertion size, b insertion type, c insertion location and d homology size at the breakpoint, in the NA19240 and
HG002 callsets. These callsets were provided by two different studies using different discovery tools and methodologies
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(6%) tandem repeats and 40 (5%) dispersed duplications
(Fig. 4b).
The variations of the SR-based recall with respect

to insertion features were very similar between the
three studied individuals from the Chaisson et al. study
(Supplementary Figure S2). However, the same compar-
ison across two different studies with different method-
ologies was much more contrasted. Firstly, overall around
1.6 times more insertions in proportion could be detected
by SR-based methods in the GiaB study compared to the
Chaisson et al study (SR-based recalls of 28% and 17%
for HG002 and NA19240 callsets respectively). Secondly,
the SR-based recall was more homogeneous with respect
to insertion features in the GiaB callset (Fig. 4). The fea-
ture showing the most impact was the insertion size with
a decrease of the SR-based recall with the insertion size,
reaching below 5% for insertions larger than 500 pb for
both studies (Fig. 4a). Similarly to the NA19240 callset,
tandem repeats appeared more difficult to discover with
SR-based methods, but to a lesser extent in the GiaB
callset (Fig. 4b). Insertions located in simple repeats were
less discovered using SR-basedmethods but this SR-based
recall of 25% remained higher than for NA19240 where
it only reached 5% on these locations (Fig. 4c). Junctional
homology of the insertions of individual HG002 did influ-
ence its SR-based recall, but in a different manner than in
the Chaisson et al study (Fig. 4d).

Using simulations to investigate the factors impacting the
insertion calling recall
In real insertion callsets, most of the previously identified
factors impacting SV discovery are intertwined. In order
to quantify the impact of each factor independently, we
produced various simulated datasets of 2x150 bp reads
at 40x coverage, containing each 200 homozygous inser-
tion variants on the human chromosome 3. As a baseline,
we simulated 250 bp novel sequences taken from Sac-
charomyces cerevisiae exonic sequences inserted inside
human exons. This is meant to represent the easiest type
of insertions to detect. Then, we considered four scenar-
ios of simulations, where only one of the four previously
studied factors is changed at a time with respect to the
baseline simulation.
Four insertion variant callers were evaluated on these

datasets. They were chosen according to their good per-
formances in recent benchmarks [7] and to maximise the
methodological diversity. GRIDSS [11], Manta [20] and
SvABA [6] are based on a first mapping step to the ref-
erence genome, contrary to MindTheGap [10] which uses
solely an assembly data structure (the De Bruijn graph).
Two types of recall were computed depending on the pre-
cision and information given for each call: insertion-site
only recall only evaluated if an insertion was called at an
expected genomic position regardless of the predicted size

or inserted sequence. As a more stringent evaluation, the
sequence-resolved recall considered as true positives only
those insertion calls having a correct genomic position
and whose inserted sequence was very similar to the sim-
ulated one (>90% sequence identity and +/- 10% insertion
size).

Factors impacting insertion site recall
Recalls of insertion sites for all four methods are pre-
sented for the different simulated datasets in Table 1.
On the baseline simulation, all tools succeeded to detect
100% of simulated insertions, except for GRIDSS with
81% of recall. The size of the inserted sequence impacted
the recall of the insertion sites for most tools, except
MindTheGap. GRIDSS was challenged by small insertions
(50 bp) whereas Manta and SvABA had more issues with
large insertions. Themost extreme behavior was observed
for SvABA which was not able to find the insertion sites of
any of the simulated novel sequences larger than 500 bp.
When simulating various insertion types, GRIDSS was

the only tool whose recall was not negatively impacted.
Manta could not find any type of dispersed duplica-
tions and showed a lower recall to detect tandem repeats
with 25 bp size seeds. MindTheGap was unable to detect
any type of tandem duplications and found only 58%
of mobile element insertions. SvABA was not able to
detect any tandem repeat insertion but was able to
detect all dispersed and tandem duplications and mobile
elements.
Concerning junctional homology, the tools showed con-

trasting behaviors. GRIDSS was the only tool unaffected
by the presence and size of repeated sequence at the inser-
tion junctions. On the contrary, MindTheGap was the
most impacted by junctional homology, being unable to
detect insertions with homology at any tested size. This
feature is actually controlled by a parameter of MindThe-
Gap, increasing the max-repeat parameter value to 15 bp
(default : 5bp), MindTheGap discovered 99% of the inser-
tion sites with 10 bp junctional homomolgies. Manta’s
recall decreased with the size of junctional homologies,
whereas SvABA handled small (less than 20 bp) or very
large (150 bp) junctional homologies but was affected by
medium sizes.
Concerning the impact of the genomic context of inser-

tions, no loss of recall was observed in non repeated
locations. Alignment-based SV callers showed no change
in recall in small simple repeat (<300 bp), SINE and LINE
locations. Manta and SvABA recalls lost 5 to 6% of recall
in simple repeat regions larger than the insert size (>300
bp). MindTheGap lost 42 and 47% of recall in large simple
repeat and SINE location simulations. Simulating inser-
tions close to each other on the genome, at less than 150
bp, reduced the recall of SvABA (-98%), MindTheGap
(-33%) and Manta (-15%).
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Table 1 Insertion site recall of several short-read insertion callers according to different simulation scenarios. Cells of the table are
colored according to the variation of the recall value of the given tool with respect to the recall obtained with the baseline simulation
(first line, colored in blue): cells in red show a loss of recall >10%, cells in grey show no difference compared to baseline recall at +/- 10%

Insertion site only recall (%)

GRIDSS Manta SvABA MindTheGap

Baseline simulation: 250 bp novel seq. in exons 83 100 100 100

Scenario 1
Insertion
size

50 bp 56 100 100 100

500 bp 100 86 0 99

1,000 bp 100 88 0 98

Scenario 2
Insertion
type

Dispersed duplication 100 1 100 96

Tandem duplication 100 100 100 0

Mobile element 100 2 100 58

Tandem repeat (6 bp pattern) 100 90 1 0

Tandem repeat (25 bp pattern) 99 66 0 2

Scenario 3
Junctional
homology

10 bp 100 100 96 0

20 bp 100 100 85 0

50 bp 77 68 12 0

100 bp 100 22 49 0

150 bp 100 0 100 0

Scenario 4
Genomic
location

Non repeat 83 100 99 96

Simple repeat (<300 bp) 82 100 100 73

Simple repeat (>300 bp) 87 94 95 58

SINE 90 100 99 53

LINE 80 100 97 90

Clustered insertions (<150 bp) 85 85 2 77

Scenario 5
Real insertions

Novel sequences at real locations 84 80 71 38

Real insertions in exonic regions 84 74 57 24

Real insertions at real locations 39 35 44 6

Finally, when simulating the 889 insertions of NA19240
callset located on chromosome 3, with their reported
inserted sequence at their real locations as described in
the variant calling file (scenario 5), the recall of all tools
dropped to less than 44%, reaching for many tools their
lowest values among the different simulated datasets. This
was particularly marked for GRIDSS whose recall was
greater than 77% in all simulated scenarios, but achieved
only 39% on this simulation. When relaxing one complex-
ity factor, the type or the location, ie. simulating either
novel sequences at the real locations or the real types in
exonic regions, the drop of recall is much smaller for all
tools, indicating that there is a synergetic effect of combin-
ing in a single insertion event these two factors, insertion
type and insertion location.

Impact of quality filtering
Previous results were computed using only the calls
assessed with sufficient quality by each tool and anno-
tated as PASS in the FILTER field of the VCF file.

Removing this quality filtering allowed to increase the
recall mainly for GRIDSS and SvABA (see Supplemen-
tary Table S3). Remarkably, GRIDSS reached a 100% recall
on almost every scenario, except the scenario simulat-
ing the real insertions where still a 35% loss of recall
was observed (Supplementary Table S3). These differ-
ences indicated that a substantial amount of true posi-
tive insertions were detected but reported as low quality
calls.

Sequence-resolution of predicted insertions
We then investigated whether the SV callers were also
able to recover the full inserted sequences in the dif-
ferent simulation scenarios (Table 2). On the base-
line simulation with 250 bp novel sequence insertions,
every tools reported for almost all detected insertion
sites a resolved and correct inserted sequence. However,
these high sequence-resolved recalls dropped dramati-
cally when deviating from the baseline scenario. Although
the discovery of insertion sites was not much impacted by
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Table 2 Sequence-resolved recall of several short-read insertion callers according to different simulation scenarios. Cells of the table are
colored according to the variation of the recall value of the given tool with respect to the recall obtained with the baseline simulation
(first line, colored in blue): cells in red show a loss of recall >10%, cells in grey show no difference compared to baseline recall at +/- 10%

Sequence-resolved recall (%)

GRIDSS Manta SvABA MindTheGap

Baseline simulation: 250 bp novel seq. in exons 81 100 96 100

Scenario 1
Insertion
size

50 bp 56 100 100 100

500 bp 0 0 0 99

1,000 bp 0 0 0 98

Scenario 2
Insertion
type

Dispersed duplication 0 0 16 96

Tandem duplication 0 0 0 0

Mobile element 0 0 61 58

Tandem repeat (6 bp pattern) 0 0 1 0

Tandem repeat (25 bp pattern) 0 0 0 0

Scenario 3
Junctional
homology

10 bp 99 100 92 0

20 bp 100 100 78 0

50 bp 6 46 10 0

100 bp 0 11 0 0

150 bp 0 0 0 0

Scenario 4
Genomic
location

Non repeat 80 99 98 96

Simple repeat (<300 bp) 77 98 97 73

Simple repeat (>300 bp) 77 93 90 58

SINE 77 99 94 53

LINE 76 97 95 89

Clustered insertions (<150 bp) 75 73 2 77

Scenario 5
Real
insertions

Novel sequences at real locations 64 73 67 37

Real insertions in exonic regions 11 14 14 9

Real insertions at real locations 6 23 30 6

the insertion size, all tools but MindTheGap were not able
to recover any of the inserted sequences when it was larger
than 500 bp (Table 2). On the contrary, MindTheGap
assembled correctly nearly all simulated novel sequences,
even those of 1 Kb. Concerning the other insertion types,
tools were not able to provide sequence resolved calls,
except for MindTheGap and SvABA for some dispersed
duplications and mobile element insertions (Table 2). In
the case of tandem repeats, GRIDSS which detected all
insertion sites, reported inserted sequences of at most
150 bp (instead of 250), corresponding to the simu-
lated read size. The increase of junctional homology
size reduced the sequence resolution of GRIDSS and
SvABA. Insertions located in repeated regions were less
resolved than in the baseline simulation for every tools.
Finally, the sequence resolution of real insertions simu-
lated at their real locations decreased compared to the
insertion site recall, GRIDSS suffering the greatest loss
(-33%).

False positive amount variations
The tools with the largest recalls were also the tools pro-
ducing the largest amounts of false positive discoveries (in
the order of several hundreds for GRIDSS and SvABA, see
Supplementary Table S4). More surprisingly, the amount
of false positives was not constant for most tools between
the different simulation scenarios. It increased when sim-
ulated insertions presented a duplicative pattern (mobile
element, dispersed duplication and junctional homologies
above 50 bp). For those, some SV callers predicted vari-
ants not only at the insertion site but also at the locations
of homologous copies of the inserted sequences. Remov-
ing the quality filter led to a large increase of the amount
of false positive discoveries for GRIDSS and SvABA (5 to
17 times more respectively).

Unions and intersections of SV callers
A classical strategy to report SVs on real data is to recon-
cile several SV callsets keeping only variants that are sim-
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ilarly called by different SV callers. This strategy ensures a
balance between true and false disovery rate. On the last
simulation scenario, only 12% of the insertion sites were
validated by the three tools, GRIDSS, Manta and SvABA,
and 39% by at least two tools. However, the union of all
three methods comprised 65% of the real insertion sites,
which represented an increase of 20% of the best recall
obtained by a single method (Fig. 5).

Evaluation of insertion recall with long read simulated data
For each of these short-read simulated datasets, we also
simulated a corresponding PacBio long read dataset, with
40 X coverage and 16% error rate. We then applied a
state-of-the-art long-read SV caller, Sniffles [17], on each
of them to assess whether the previously identified dif-
ficulty factors for short read data have also an impact
on the recall with long read data (see Supplementary
Table S5). For most insertion scenarios, Sniffles reported
accurately 100% of the insertions sites, except for the tan-
dem duplication type and for the insertions with large
junctional homologies (recall below 20%). In these cases,
insertions were in fact reported but at more than 10 bp
from the simulated insertion site. This is probably due
to imprecise sequence resolution preventing the correct
left normalization of breakpoint positions. Another diffi-
culty factor was the close proximity of insertion locations,
for which Sniffles reported one complex event instead of
several close insertions. This mainly explained the low
recall of 58% for the dataset with the real chromosome

Fig. 5 Intersections of true positive insertion callsets between
different SV callers. Intersections of true positive insertion callsets
between GRIDSS, SvABA and Manta on the scenario 5 simulation (real
insertions at real locations). In this scenario, the 889 insertions located
on the chromosome 3 from the NA19240 callset were simulated as
described in the vcf file. Insertion calls were validated and compared
based solely on the insertion site prediction

3 insertions at their real locations. Concerning sequence
resolution, although Sniffles calls contained systemati-
cally a full inserted sequence, the latter was imprecise and
contained sequencing errors leading to sequence-resolved
recalls around only 20% when requiring at least 90% of
sequence identity. When relaxing the identity threshold
to 80% or using the dedicated benchmark tool SVanalyzer
from GiaB which relies on a less stringent validation, the
sequence-resolved recall was similar to the insertion site
recall for most insertion scenarios (Supplementary Tables
S5 and S6). These results reveal that long read technolo-
gies enable the discovery of every types of insertion but
the calls remain imprecise.

Discussion
The discovery of genomic variants is an important
step towards the understanding of genetic diseases and
species evolution [21, 22]. The detection of insertions too
small (<1kb) to be detected using comparative genomic
hybridization array (CGH array) but larger than indel
size (>50 bp) to be detected by the gold standard small
variant discovery pipeline (GATK), remained a challenge
with short read technology [4]. Thus these variations were
poorly characterised in databases as compared to other
SVs such as deletions. Numerous variant callers have been
developed to overcome this issue but without resolving
it [7]. Long read technologies or the crossing of vari-
ous sequencing technologies overcome these limitations
but are not affordable for many applications such as rou-
tine diagnosis of genetic diseases [18]. Thus, to improve
current and future SR based SV callers, a better under-
standing of the actual insertion variants present in human
populations is required.
We have presented here one of the most detailed and

comprehensive analyses of actual insertion variants in the
human genome looking for factors impacting their detec-
tion with short read re-sequencing data. This could be
possible thanks to the publication of two exceptional SV
callsets by Chaisson et al. [18] and Zook et al. (GiaB)
[19]. These catalogs of insertions are considered as the
most exhaustive for a given human individual and are
qualified as gold standards thanks to their extensive val-
idation by extensive and cross technology sequencing
datasets. Unlike in the Chaisson et al study, the GiaB
callset contained two categories of variants : 7640 inser-
tions that were reported with a higher confidence (PASS
in the FILTER field) and 6210 other insertions. As men-
tioned by the authors, the first category is likely to
be biased towards easier to discover variants. Because
we did not want to introduce this potential bias, and
after checking that these two categories showed similar
insertion feature distributions (see Supplementary Figure
S1), we decided to conduct our analyses on the whole
callset.
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Not only, these catalogs of insertion variants are consid-
ered as the most exhaustive for a given human individual,
but they are also the first sets with sequence-resolved
events for any size and type of insertions. The fine resolu-
tion of the inserted sequences, present in these datasets,
enabled us to propose a refined classification of inser-
tion variants. In the two datasets, insertion types were not
formally defined and the classifications differed between
the datasets. Our classification allowed to normalize these
heterogeneous annotations and was a direct application
of variant definitions from the dbVar database which is
based on the sequence ontology (SO) [12]. We based our
insertion type annotation on a minimal sequence cov-
erage threshold, that was set to a relatively high value,
80%, in order to ensure a good specificity of our annota-
tion. Increasing this value led to many more unassigned
insertions, as the annotations were based on sequence
alignments that were affected by potential remaining
sequencing errors in the inserted sequences, polymor-
phism with the reference genome and the usage of align-
ment heuristics. If the amount of unassigned insertions
decreased with the coverage threshold value, proportions
of the different insertion types remained quite stable
(Supplementary Table S2). Among the 12% of unassigned
insertions, some could correspond to a mixture of several
insertion types, which particular case was not considered
in this study.
As previously reported in the Chaisson et al and GiaB

studies, we observed a highly heterogeneous distribution
of insertion types and locations along the genome. The
vast majority of insertions consisted in tandem repeats
(63%) and most insertion sites were located in simple
repeat regions (70%). These regions of low complexity,
although representing a small proportion of the genome
(1.2%), are therefore a major source of inter-individual
variability.
The sequence-resolution provided in these SV callsets

also enabled us to analyze precisely the breakpoint junc-
tions of each insertion variant. Junctional homology has
been shown to be a frequent feature of SVs, that can be
used to infer the rearrangement molecular mechanism
[14, 15]. Although, it has been previously described for
human SV callsets (around 2,000 SV breakpoints, includ-
ing less than 400 insertions) [15], this is, to our knowledge,
the first exhaustive quantification of junctional homology
for such a large and almost complete set of insertions in
a human individual. However, our measure of homology
size is highly dependent on the callset precision of the
insertion site location and of the inserted sequence. As
SVs are often difficult to precisely localize, are subject to
left-normalization processes, and their inserted sequences
were mostly obtained from error-prone long reads, our
measures may likely result in an under-estimation of the
actual homology sizes. Despite these potential biases, our

results show that real insertion variants harbour substan-
tially larger junctional homologies than insertions that
would be drawn randomly. Our measures allowed us to
compare such feature between insertion types and all
insertion types have been found to have a substantial
proportion of variants with large junctional homologies
(greater than 20 bp). Results showed also that large inser-
tions tended to carry larger junctional homologies. As
expected by their tandem nature, tandem repeats and tan-
dem duplications had larger homology sizes than other
insertion types.
All the features of insertions characterized in our study

(ie. nature and size of the inserted sequence, insertion
site genomic context and junctional homologies) showed
to impact the ability of SR-based SV callers to discover
these variants, as defined bymethod annotations in the SV
callsets. However, an important difference was observed
between the two studies, with the GiaB study being able
to detect with short reads almost twice as many insertions
in proportion than in the Chaisson et al study. The dif-
ference in SR-based recalls between the two studies can
certainly be explained by the difference in the read depths
of sequencing datasets (77X vs 300X for Chaisson et al and
GiaB studies respectively), by the different SR-based tool
sets used and by the different callset filtering and merg-
ingmethodologies. The two studies used roughly the same
number of SV-callers (13 and 15), but with a poor inter-
section: only one SV-caller (Manta) was common to both
studies. Additionally, the method annotation of each vari-
ant is highly dependant on the study methodology to filter
and merge the numerous callsets obtained for the same
individual with different sequencing technologies and SV
callers. For instance, it is not clear if the presence of an SR-
based tag for a given variant does necessarily mean in both
studies that the latter can be sequence-resolved solely
using short reads. However, both studies showed simi-
lar weaknesses to detect tandem repeats, large insertions
and insertions located inside simple repeats. These obser-
vations are in-line with the already known difficulties of
mapping short reads in such contexts.
These disparities between studies and the fact that most

identified factors responsible of low SR-based recall are
intertwined with one another in real insertion variants led
us to pursue these investigations with simulated data. Our
simulations did not aim at providing an exhaustive bench-
mark of SV callers but at identifying the precise genomic
factors of insertion variants that prevent their correct dis-
covery with short reads. As a consequence, we selected
a small but diverse set of SV callers and we deliberately
ran them with their default parameters. We based our
selection of SV callers on a recent and comprehensive
benchmark study by Kosugui et al. [7]. SV callers selected
in our study were chosen for their good performance in
this benchmark, for their diversity of algorithms and for
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their ease of installation and usage. MindTheGap was not
among the best insertion callers identified by Kosugui et al
but was the only one not based on readmapping and using
intensively de novo assembly with the whole read dataset.
Simulations remain a powerful approach to identify the

strengths and weaknesses of SV callers but they were not
meant to reflect perfectly real situations. In our simula-
tions, several features may be far from the real complexity
of human genome re-sequencing, such as some sequenc-
ing technology biases, the use of one chromosome instead
of the whole genome, and the absence of other polymor-
phisms than insertion variants (SNPs, small indels and
other SVs). As a consequence, the reported recalls are
likely to be over-estimations of the ones obtained with
real data. Although absolute values should be interpreted
with caution, they can readily be compared between SV
callers and between simulation scenarios. As a matter of
fact, we often observed strong differences in recalls allow-
ing to provide interesting insights in terms of impacting
factors and SV caller behaviors. Our simulation protocol
enabled to study each difficulty factor independently and
highlighted the larger impact of insertion type compared
to insertion location. However, all studied factors taken
independently could not explain the whole loss of recall
when simulating the real insertions at their real locations
and there is probably an important synergetic effect of
combining in a single insertion event several of the stud-
ied factors. For instance, the discovery of novel sequences
in repeated regions was not a problem for almost every
tested tools. However, the change of novel sequences to
real inserted sequences, most of them corresponding to
tandem repeats, reduced by half the recall of SV callers.
Our simulations revealed that junctional homologies as

small as 10-20 bp impacted the recall of all tested tools.
Such repeated sequences are likely to alter the mapping
signature targeted by SV callers. Although such features of
SV breakpoints and their relation to themolecular mecha-
nisms generating SVs have long been described, they seem
to be rarely taken into account in the design of SV caller
algorithms. Our study of the real insertions showed that
such junctional homology sizes are relatively common,
with almost 40% of insertions with junctional homologies
larger than 10 bp. Therefore, SV callers algorithms would
benefit from taking into account such properties of the
breakpoints, that are likely to generate very specific signals
in terms of read mapping.
One striking result of our simulations is the absence of

sequence resolution for most of the simulated insertion
features and most of the tested SV callers. In addition to
the obvious loss of information about the variant event,
this also limits the identification of the insertion type, the
genotyping and the validation of the predicted call. As a
matter of fact, we observed that most insertions regard-
less of their type and insertion genomic context were

detectable but often not reported with a sufficient qual-
ity due to this lack of resolution. Furthermore, sequence
resolution is essential for the comparison and genotyp-
ing of SVs in many individuals. As these tasks are the
basis for association studies and medical diagnosis, efforts
should be directed towards a better resolution of the
sequence of these variants [8, 23]. Results obtained with
the local assembly tool MindTheGap showed that the
use of the whole read dataset allowed many insertions
and even large ones to be assembled. The restriction
to a small subset of reads to perform local assembly
may therefore be the shortcoming of the other tested
SV callers. Resolving the inserted sequence is possible
to some extent, but tandem repeats larger than the read
size will remain difficult to resolve with short reads
technology.
Interestingly, sequence resolution appeared also to be

an issue with long read sequencing data. In this case,
the tested long read SV caller did report full inserted
sequences but with a poor sequence precision, due the
higher sequencing error rate. This issue also prevented
the correct left normalization of insertion sites leading
to erroneous insertion locations. This low accuracy of
predicted calls is likely to hamper the genotyping and
comparison of SV calls between individuals. Our results
therefore showed that there is also a need to improve long
read SV callers as well.
Overall, the different SV callers did not performed

well in every situation and in every aspects of inser-
tion calling. Each caller showed its own strengths and
weaknesses, often different from the other tools. Precisely
identifying these in terms of insertion variant features
and genomic contexts will enable each tool to be used to
its best advantage. To do so, benchmark studies should
take into account the wide variability of variant features
that this present work has highlighted. Two recent SV
benchmarks have raised awareness of the variability in
the performances of SV callers depending on data sets
and approaches [7, 9]. They looked at several factors that
could be responsible for this variability. Technical factors
(reads size, insert size and sequencing coverage) and bio-
logical factors (nearby SNVs or indels, genomic context,
and variant size) showed to impact the recall of SV callers.
However, the latter factors were analyzed for all SV types
combined and none of these studies took into account
the different types of insertion variants. Best practices for
benchmarking small variant calling have been suggested
based on gold standard callsets in high confidence regions,
leaving structural variation in the fog [24]. However, it is
precisely this type of variation that requires best practices
for benchmarking and a standardization of annotation as
they are harder to identify and report. We hope that the
present fine characterization of gold standard human SV
callsets will help in the development of better practices
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for benchmarking SV callers, for both short and long read
sequencing data.
Advises to improve the detection using short read tech-

nology have already been described such as the careful
combination of complementary SV callers [7]. Meta SV
callers such as Meta-sv, Parliament2 or sv-callers recon-
cile SV calls produced by different SV callers [25–27].
However, only the calls that are discovered concordantly
between different tools are returned. This strategy allows
the precision to be increased, but at the expense of the
recall. Our simulations showed that the intersection of
only three SV callers reduced the recall of 30%, whereas
taking their union could increase the recall by at least 20%.
Considering unions of callsets would require a careful
control of false positive rates. A better control could prob-
ably be achieved with sequence-resolved variants and by
taking into account the observed characteristics of the dif-
ferent insertion types. Another alternative, less described,
could be the use of dedicated tools for each type of inser-
tion, instead of using only general-purpose SV callers.
Among them, Expansion Hunter has been designed to
detect tandem repeats, Pamir and Popins for novel inser-
tions and TARDIS for large duplications [28–31].

Conclusion
In this work, we produced a detailed characterization
of the insertion variants in a given human individual.
We identified many factors of human insertion variants
that explain their low recall with SR-based SV callers,
including complex insertion types, difficult genomic con-
texts, large insertion sizes and junctional homologies at
the breakpoints. The significant variability in the char-
acteristics of the insertion variants, as well as the fact
that all difficulties were handled differently by the dif-
ferent tested SV callers, call for a better characterization
and comparison of SV callers according to the targeted
variant features. The comparison results presented here
already provide some concrete suggestions to improve
insertion variant calling with short reads. First, insertion
site detection could be improved by taking into account
the atypical mapping signals generated by large junctional
homologies. Then, sequence-resolution recall could be
improved by using the whole read set instead of recruited
read subsets for the assembly of the inserted sequence.
Our simulation protocol also allowed us to identify com-
plementarities between different SV callers and showed
that insertion recall could be significantly improved by
taking the union of calls. Finally, based on these com-
plementarities and with improved sequence-resolution,
smarter consensus selections, than simply callset unions,
taking into account insertion type, size and context, could
be designed to reach a high recall while controlling
the False Discovery Rate. Such improvements are cru-
cial for the generalization of population genomics and

association studies to variants other than punctual ones,
allowing for instance the development of personalised
medicine and the resolution of diagnostic bottlenecks for
many rare diseases.

Methods
Data origin
SV callsets from the Chaisson et al. study [18] were
obtained from dbVar with the accession nstd152. The
HG002 SV callset, Tier 1 version v0.6, from the GiaB
study [19] was used (see the full ftp links in the Declara-
tions section). Only insertions from the core genome, that
were larger than 50 bp and sequence resolved (ie. with
an inserted sequence entirely defined) and called also in
at least one of the parents were kept. No filtering related
to quality or coverage was applied. In the HG002 callset,
insertion calls containing the “LongHomRef” tag in the
FILTER field were removed because they were not con-
firmed by long read genotyping methods and they had
thus a higher probability to be false positive discoveries
(359 insertions). The human reference genome version for
this study was Hg38 (GRCh38). To compare the callsets
on the same reference genome, the HG002 callset pro-
duced on hs37d5 build was converted into Hg38 build
using Picard, the hs37d5 to hg19 and the hg19 to hg38
chain files fromGATK public chain files. Noteworthy, this
process can have some impacts on a few SV calls, since
some genomic regions can differ between the reference
versions. In particular, the conversion (liftover) induced a
loss of 60 SV calls.

Comparison of the callsets
As a rough estimation of the amount of shared inser-
tion variants between callsets, insertion locations were
compared regardless of the insertion type or sequence.
Insertion variants located less than 1,000 bp apart from
one another were considered as the same variant.

Insertion type annotation
TandemRepeatFinder (TRF) was used to annotate tan-
dem repeats within each inserted sequence [32]. Recom-
mended parameters were used, except for the maximum
expected TR length (-l) which was set to 6 millions. In
order to annotate mobile elements in inserted sequences,
we used dfam, one of the annotation tools of Repeat-
Masker [33]. Each inserted sequence was scanned by dfam
with the standardHMMprofile database of humanmobile
elements provided by the tool. For the annotation of dis-
persed duplications and the occurrence count of their
copies in the reference genome, each inserted sequence
was locally aligned against the Hg38 genome using Blat
with default parameters [34]. Only the alignments with at
least 90% of sequence identity were kept. For the annota-
tion of tandem duplications, the two sequences on either
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side of the insertion site and of the same size as the
insertion were aligned against the inserted sequence using
Blat.
We used a minimal sequence coverage threshold,

Mincov, to annotate the insertions. To be assigned to a
given sub-type, the inserted sequence had to contain at
least one contiguous segment annotated with the cor-
responding type and covering at least Mincov % of the
inserted sequence. Novel sequence insertions were a spe-
cial case where the contiguity of the annotation was not
required: more than Mincov % of the inserted sequence
should not be covered by any alignment with the reference
genome nor with the mobile element reference sequences,
nor contain tandem repeats. When several types fulfilled
the minimal coverage requirement, only one type was
assigned according to the decision tree described in Fig. 1.

Junctional homology detection
Junctional homology, as referred to and defined in [16], is
a DNA sequence that has two identical or nearly identi-
cal copies at the junctions of the two genomic segments
involved in the rearrangement. In the case of an inser-
tion, a junctional homology is a sequence segment at
the left (resp. right) side of the insertion site which is
nearly identical to the end (resp. beginning) of the inserted
sequence. Small junctional homologies (<10 bp on each
side) were searched in a strict manner by scanning simul-
taneously the 10 bp sequence at the left (resp. right) side
of the insertion site and the 10 bp end (resp. beginning)
of the inserted sequence, counting the number of iden-
tical nucleotides starting from the insertion site until a
mismatch is encountered. For larger homologies, both
the 100% identity and strict adjacency to the insertion
site constraints were relaxed. We used the local align-
ments between the breakpoint junctions and the inserted
sequence that were previously obtained with BLAT. Only
the alignments with at least 90% identity and occurring at
a maximum of 10 bp before (resp. after) the insertion site
and at a maximum of 10 bp from the end (resp. begin-
ning) of the inserted sequence were retained. In case of
multiple candidates hits at one side of the junction, the
one located at the closest position from the extremities
was kept. If homologies (small or large) were found at
both sides of the junction, the homology size was obtained
by summing both homology sizes after removing poten-
tial overlap on the inserted sequence. To compute the
expected distribution of junctional homology sizes that
could be observed by chance, we generated 2,000 ran-
dom insertions on the human chromosome 3 sequence.
Inserted sequences were generated by concatenating 250
nucleotides sampled uniformly on the A,C,G,T alphabet.
The insertion sites were sampled uniformly along the
chromosome 3 sequence. Junctional homology sizes of

these random insertions were identified using the same
previously described methodology as for real insertions.

Genomic context characterization
To study the genomic context of insertions, we used the
repeat content annotations of RepeatMasker from the
UCSC genome browser for the Hg38 genome and the gene
annotations from the Gencode v32 [35–38]. Simple repeat
location were extracted from the dedicated simple repeat
file from the UCSC genome browser.

SR-based recall of the gold standard callsets
Each callset was partitioned in two parts based on the
discovery technology. The first part, referred as Short
read technology, contained insertion calls that carried the
Illumina (short reads) tag or a SR-based caller tag. For
Chaisson et al callsets (NA19240, HG00514 and HG0733),
the selection was performed on the vcf INFO field and
the UNION variable. The UNION variable can take three
potential values, Pacbio,Bionano or Illumina, that cor-
responded to the sequencing technology allowing the
variant to be discovered. For the GiaB callset (HG002),
insertions that could be discovered with short reads were
identified by the Ill tag contained in the ExactMatchID
located in the INFO field of the vcf file. Insertion calls
that were labelled Ill only with refining methodologies
and not any discovery methodologies were not taken
into account for the Short read technology part. The sec-
ond part, referred as Other technologies, contained all the
remaining insertions. It should be noted that all insertion
calls in the first part carried also at least one long read
technology tag and were not discovered using only short
read technology.

Simulations
Twenty two sequencing datasets were simulated to char-
acterize the impact of the different insertion features
on SR-based insertion variant calling. Each dataset was
obtained by altering the human chromosome 3 with 200
insertions. Sequencing reads were generated using ART
with the following parameters : 2x150 bp reads, at 40 X
coverage, with insert size of 300 bp on average and 20 bp
standard deviation [39].

Baseline simulation
The simulation referred as the baseline was meant to
represent the easiest type of insertions to detect, where
inserted sequences contained very few repeats and are
novel in the genome, the genomic context of inser-
tion was also simple and repeat-free, and breakpoint
junctions did not have any homology. To do so, we
simulated 250 bp novel sequence insertions located in
exons without any homology at the breakpoint junc-
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tions. Novel sequences were extracted from randomly
chosen exonic regions of the Saccharomyces cerevisae
genome.

Scenario 1: varying the insertion size
Insertion locations used in the baseline simulation were
kept and the 200 inserted sequences were alterna-
tively replaced by sequences extracted from Saccha-
romyces cerevisae exons of 3 different sizes: 50, 500, and
1000 bp.

Scenario 2: varying the insertion type
Insertion locations were identical to the baseline simula-
tion, but the 250 bp inserted sequences were alternatively
replaced by dispersed duplications, tandem repeats, tan-
dem duplications and mobile elements. Two types of tan-
dem repeats were simulated, with a pattern size of 6 bp
or 25 bp, the pattern originating from the left breakpoint
junction. As mobile elements, 200 Alu mobile element
sequences with a size ranging between 200 and 300 bp
were randomly extracted from the human genome based
on the RepeatMasker annotation. Tandem duplications
were generated by duplicating the 250 bp right breakpoint
sequence. The inserted sequences of simulated dispersed
duplications were extracted from exons of the chromo-
some 3.

Scenario 3 : varying the junctional homology size
The 250 bp insertion sequences produced in the baseline
simulation were altered with junctional homology. To sim-
ulate junctional homologies, we replaced the X first bases
of each insertion with the same size sequence originat-
ing from the right breakpoint sequence. We simulated five
junctional homology sizes (X value): 10, 20, 50, 100 and
150 bp.

Scenario 4 : varying the genomic context of insertion
The 250 bp insertions from the baseline simulation were
alternatively inserted in specific genomic contexts : either
inside different types of mobile elements, namely SINEs
and LINEs, in small (<300 bp) and large (>300 bp) simple
repeats or in other regions not annotated by Repeat-
Masker (non repeated). A dataset with closely located
variants was simulated by adding insertions closed to the
insertions simulated in the baseline scenario. The distance
between insertions varied uniformly from 5 to 150 bp.

Scenario 5 : Real insertions
The 889 insertions located on the chromosome 3 from
the NA19240 callset were used to simulate three addi-
tional datasets. Novel sequences were first simulated at
the real chromosome 3 locations, then the real insertions
were simulated inside exonic regions of the chromosome

3. Finally, the 889 insertions were simulated as described
in the vcf file.

Insertion calling and benchmarking
Simulated reads were aligned with bwa against the hg38
reference genome, and read duplicates were marked with
samblaster v.0.1.24 and converted into bam file with sam-
tools v1.6 [40, 41]. Bam index and reference dictionary
were obtained by picard tools v2.18.2. GRIDSS v2.8.0,
Manta v1.6.0, MindTheGap v2.2.1 and SvABA v1.1.0 were
all run using recommended, or otherwise default, param-
eters [6, 10, 11, 20]. Only “PASS” insertions, that were
larger than 50 bp, were kept for the recall calculation. Two
types of recalls were computed depending on the pre-
cision and information given for each call: insertion-site
only recall and sequence-resolved recall. The insertion-
site only recall was assessed solely based on the inser-
tion site location prediction with a 10 bp margin around
the expected location. As a more stringent evaluation,
the sequence-resolved recall took also into account the
inserted sequence. When it was reported, the inserted
sequence had to share at least 90% of sequence identity
to the simulated one and had to have a similar size of +/-
10%, to be considered as a true positive. In case of absence
of alternative sequence in the vcf file but the provided
annotation of the event allowed us to extract the insertion
sequence from the reference genome (for instance for dis-
persed duplication with the duplicated copy coordinates),
it was evaluated similarly as for alternative sequences.
Recall was computed as the ratio between the amount
of true positive discoveries and the amount of simulated
insertions. We compared the absolute amounts of false
positive discoveries between tools and simulations, rather
the precision or FDR metrics, as the latter are dependant
of the amount of true positive discoveries.

Long read simulation and benchmark
For each short read simulated dataset, a correspond-
ing PacBio long read simulated dataset was produced,
using Simlord at 40 X coverage with probabilities of dele-
tion, insertion and substitution equal to 11%, 4% and
1% respectively [42]. Reads were aligned with Minimap2,
alignments were sorted with samtools and variants were
called with Sniffles [17, 43]. The evaluation of insertion
site recalls followed the same process than for short read-
based variant callers. For the sequence-resolved recall,
two sequence identity thresholds, 90 and 80%, were used
to validate the inserted sequences. We also used the eval-
uation tool from GiaB, SVBenchmark module from SVan-
alyzer tools suite, with parameters similarly set as our
benchmark method: -minsize set to 50 bp and -maxdist to
10 bp.
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