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ABSTRACT 
One woman in eight develops breast cancer during her lifetime in the Western world. 
Measures are warranted to reduce mortality and to prevent breast cancer. Mammography 
screening reduces mortality by early detection. However, approximately one fourth of the 
women who develop breast cancer are diagnosed within two years after a negative screen. 
There is a need to identify the short-term risk of these women to better guide clinical follow-
up. Another drawback of mammography screening is that it focuses on early detection only 
and not on breast cancer prevention. Today, it is known that women attending screening can 
be stratified into high and low risk of breast cancer. Women at high risk could be offered 
preventive measures such as low-dose tamoxifen to reduce breast cancer incidence. Women at 
low risk do not benefit from screening and could be offered less frequent screening. 

In study I, we developed and validated the mammographic density measurement tool 
STRATUS to enable mammogram resources at hospitals for large scale epidemiological studies 
on risk, masking, and therapy response in relation to breast cancer. STRATUS showed similar 
measurement results on different types of mammograms at different hospitals. Longitudinal 
studies on mammographic density could also be analysed more accurate with less non-
biological variability. 

In study II, we developed and validated a short-term risk model based on mammographic 
features (mammographic density, microcalcifications, masses) and differences in occurrences 
of mammographic features between left and right breasts. The model could optionally be 
expanded with lifestyle factors, family history of breast cancer, and genetic determinants. Based 
on the results, we showed that among women with a negative mammography screen, the 
short-term risk tool was suitable to identify women that developed breast cancer before or at 
next screening. We also showed that traditional long-term risk models were less suitable to 
identify the women who in a short time-period after risk assessment were diagnosed with 
breast cancer. 

In study III, we performed a phase II trial to identify the lowest dose of tamoxifen that could 
reduce mammographic density, an early marker for reduced breast cancer risk, to the same 
extent as standard 20 mg dose but cause less side-effects. We identified 2.5 mg tamoxifen to be 
non-inferior for reducing mammographic density. The women who used 2.5 mg tamoxifen 
also reported approximately 50% less severe vasomotor side-effects. 

In study IV, we investigated the use of low-dose tamoxifen for an additional clinical use case 
to increase screening sensitivity through its effect on reducing mammographic density. It was 
shown that 24% of the interval cancers have a potential to be detected at prior screen. 

In conclusion, tools were developed for assessing mammographic density and breast cancer 
risk. In addition, two low-dose tamoxifen concepts were developed for breast cancer 
prevention and improved screening sensitivity. Clinical prospective validation is further needed 
for the risk assessment tool and the low-dose tamoxifen concepts for the use in breast cancer 
prevention and for reducing breast cancer mortality. 
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1 INTRODUCTION 
Thirteen percent of all women in the Western world develop breast cancer during their lifetime. 
This makes breast cancer the most common cancer among women, which accounts for 
approximately thirty percent of all female cancers [1]. Globally there are approximately 1.5 
million women diagnosed with breast cancer every year and 500,000 women die from the 
disease. The incidence has increased over the last thirty years, while breast cancer mortality has 
decreased over the same period. The reasons for the increase are not well understood, but the 
mortality decrease is estimated to be due to mammography screening by 20% and due to 
improved cancer therapies by 60% [2]. 

In this thesis, my aim is to a) show feasibility of reducing the mortality by more than 20% and to 
b) show feasibility of increasing the uptake of preventive therapies in the population to reduce 
breast cancer incidence. 

Mammography screening invites women based on their age every one-to-three years to identify 
cancers that are rare in the population [3, 4]. However, approximately 25% of the women 
develop breast cancer in between screening visits [5]. These women are a symptom that the age-
based mammography screening is suboptimal. The screening could be improved by 
individualizing the invitations and the clinical follow-up of the women, based on the risk of 
breast cancer. I develop a risk tool that potentially can be used in a risk-based screening setting 
and I suggest how clinical follow-up could be performed. 

Tamoxifen reduces breast cancer incidence by approximately 30% [6], but the uptake in the 
population is low and is challenged by severe side-effects [7]. In this thesis, I investigate if a low 
dose of tamoxifen is as efficient as the standard tamoxifen dose to reduce mammographic 
density but have less severe side-effects. Mammographic density reduction is a known proxy for 
a reduction of breast cancer incidence and, could be used early in the treatment to judge which 
women benefit from the therapy. A low dose of tamoxifen with less side-effects could increase 
the uptake in the population and therefore reduce breast cancer incidence. 

In addition, I investigate if low-dose tamoxifen could be used to improve the sensitivity of a 
mammogram by the effect from fibro-glandular tissue reduction. Today, mammography 
screening is challenged by the sensitivity of screening modalities that are used to distinguish 
tumors from the radio dense healthy tissue. Approximately fifty percent of the breast cancers are 
missed in screening in the group of women with extremely dense breasts. Low-dose tamoxifen 
lowers mammographic density and could potentially increase the sensitivity of a mammogram. 
Therefore, low-dose tamoxifen could improve early detection of interval cancers. Interval 
cancers are known to be more aggressive and a reduction of interval cancers has the potential to 
reduce breast cancer mortality further. 
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2 BACKGROUND 

2.1 BREAST CANCER 

2.1.1 Breast anatomy and development 

The female breast is composed of lobular units that are responsible for producing milk, milk 
ducts for draining milk to the nipple, connective tissue (stroma), and adipose tissue [8]. The 
lobular terminal units are supported by the connective tissue, which gives the breast its shape. 

 

Figure 1. Anatomic picture of the breast. American Cancer Society. 

 

The female breast starts to develop during puberty in its first reproductive phase. The ducts 
elongate and is branching under the influence of oestrogen and, the lobular units develops into 
cellular structures including epithelial and myoepithelial cells [9].The epithelial cells are positioned 
in the lobular units and in the inner lining of the milk ducts. The second development phase 
occur during pregnancy and breast feeding [10]. The lobular units develop from no cell 
differentiation (type 1) to complete cell differentiation (type 4) at the end of pregnancy, which is 
a type that can secret milk. The final breast development phase occurs during menopause [11]. 
The breast involutes into mainly fatty tissue by shrinkage of the glandular tissue. 
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2.1.2 Rare and common genetic mutations 

Breast cancer is a genetic disease that origin from the epithelial cells for almost all breast cancers. 
The best-known breast cancer susceptibility gene is the BRCA1 gene. BRCA1 is involved in the 
deoxyribonucleic acid (DNA) repair mechanism, which is effective for other genetic 
abnormalities such as double strand breaks that occur due to external stimuli or during DNA 
replication [12]. Deleterious mutations in the BRCA1 gene impairs the repair mechanism, which 
could lead to further carcinogenic processes at a later time during the woman’s lifetime [13]. 
Mutations are commonly categorised by prevalence and inferred risk. High-penetrant rare 
variants are deleterious mutations in genes such as BRCA1, BRCA2, TP53, and PTEN genes. 
Medium-penetrant rare variants are mutations in CHECK2, ATM, PALB2, and BRIP1. Single 
nucleotide polymorphisms (SNP) belong to the third category of low-penetrance common 
variants with >1% frequency in the population. A SNP is a mutation where one base-pair in the 
DNA double-helix has been replaced with an alternate base-pair in the same double-helix 
position. 

A polygenic risk score (PRS) is a weighted multiplicative model construct that consists of several 
SNPs that show an association with breast cancer outcome [14]. PRSs have been developed in 
the Breast Cancer Association Consortia (BCAC) consortia over the last 10 years aiming at 
identifying women at increased risk of breast cancer to be used in clinical practice [15]. Several 
PRSs have been published and described over the last years and it has been shown that women 
with a high PRS score more commonly have ER-positive tumors, i.e. less aggressive tumors [16]. 

BCAC recently extended the PRS to include 313 SNPs [17]. 305 SNPs are used in the overall 
breast cancer PRS, 311 SNPs for the ER-positive breast cancer score, and 196 SNPs for the ER-
negative score. The consortia also developed an alternative PRS score including 3,820 SNPs that 
has a slight performance improvement. The PRS was developed from case-control data that 
origin from multiple countries and included over 100,000 cases and controls. Penalized 
regression was used in the later models to improve the generalizability of the PRS discrimination 
performance of external cohorts. 

There is an interaction between family history of breast cancer and PRS. Women with a family 
history of breast cancer show a lower PRS. The effect of ER-positive and ER-negative PRSs are 
attenuated with approximately 21% and 12% respectively in women with a family history of 
breast cancer compared to women with no family history of breast cancer [17]. Risk models 
therefore use different estimates for women with and without a family history of breast cancer. 

2.1.3 Cancer development 

Breast cancer is believed to be initiated by exposure to various agents such as ionising radiation, 
virus, hormones, and spontaneous mutations. Underlying germline alterations influence the 
susceptibility for a cancer [18, 19]. Breast cancer carcinogenesis is a multistep process where 
normal cells develop to invasive cancers. In a carcinogenic progression epithelial cells initially 
enlarge in the terminal ducts lobular units (TDLU) in the lobes into hyperplastic enlarged lobular 
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units (HELU). The enlarged lobular units may progress further to atypical hyperplasia and, 
through further proliferation into a carcinoma in situ lesion (DCIS) [20]. 

 

Figure 2. Wellings-Jensen model of invasive breast cancer development. 

 

 

Non-invasive carcinoma in situ consists of nearly 15% of newly diagnosed cancers [21]. Ductal 
cancer in-situ (DCIS) is a common precursor for breast carcinoma [22]. Invasion occurs when 
abnormal cells break through the cell barrier and spread to the surrounding. The lymph system 
and blood vessels could further transport the cancerous cells to form metastases in the skeleton, 
lungs, liver, and brain. The tumor growth is fuelled by oestrogen, progesterone, and HER2 [23]. 
The adenocarcinomas (epithelial based cancers) are responsible for 99% of all breast cancers 
[24]. 

2.1.4 Risk factors 

Breast cancer is a complex disease with a genetic origin and with lifestyle factors that affect the 
progression of a genetic abnormality into a cancer. A Swedish study showed that the heritability 
of breast cancer is approximately 25% [25]. The lifestyle effect of the increased cancer 
development rates has been studied among domestic Asian populations in comparison to Asian 
populations living in US [26]. A study showed that the lifestyle component could induce three 
times increased breast cancer incidence in populations, who live in developed countries 
compared to women living in non-developed countries [27]. The lifestyle factors are associated 
with increased oestrogen and progesterone female hormones, which in turn are growth factors 
for developing cancers. Prior history of in-situ cancer and benign diseases also increases the risk 
for developing invasive breast cancer later in life [28], due to a common heritable cause [29]. 
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Table 1. Risk factors are summaries below. 

Relative risk Risk factor 

>4 Age of woman 
BRCA1/2 mutation carrier ship (TP53, PTEN) 
High mammographic density 

4.0-2.0 Microcalcifications 
Benign breast disorders and in-situ cancer 
Family history of breast cancer 
High polygenic risk score (combined SNPs) 
CHECK2, ATM, PALB2, BRIP1 gene mutation carrier ship 
Recent and long-term use of hormone replacement therapy 
Nulliparity and no breastfeeding 

2.0->1 Late age at first full-term pregnancy 
Early menarche 
Late menopause 
Postmenopausal body mass index 
Recent use of oral contraceptives 
Tallness 
Alcohol and tobacco consumption 
Physical activity 

A short description of the risk factors is given below. Mammographic features are described in 
more detail in the separate ‘Breast Imaging’ section. 

Age and sex 

Age in females is the strongest risk factor for developing breast cancer [30]. Women above age 
60 is 5 times more likely to develop breast cancer compared to women below age 60 [31]. 
Women with early cancer onset are more likely to have ER-negative tumors. Lifestyle factor 
exposures become more important for cancer onset at a later age where ER-positive tumors are 
also more common. The cancer incidence increases non-linearly with age and peaks at age 60 to 
70. This may be partly caused by the hormonal milieu [32]. 

BMI 

BMI affects breast cancer risk in pre- and postmenopausal women, but studies show inconsistent 
results in the direction of the association. A study showed increased risk in women with high 
BMI in both pre- and postmenopausal women [33]. Another study showed decreased risk in 
obese premenopausal women, but increased risk in obese postmenopausal women [34]. Large 
childhood body size has been shown to infer a reduced breast cancer risk in both pre- and 
postmenopausal women [35]. 
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Age at menarche 

Earlier age at menarche increases the risk for breast cancer later in life [36]. The mechanism is 
probably a prolonged exposure to female sex hormone [37]. The risk is higher for developing 
ER-positive cancers and BRCA1 mutated tumors compared to ER-negative and BRCA2 
mutated cancers. The elevated risk for specific subtypes could be caused by a breast type 
differentiation earlier in life [38, 39]. 

Oral contraceptives 

Current use of oral contraceptives and earlier onset increases the breast cancer risk [40]. Later 
oral contraceptive leads to a lower risk due to lower hormone doses. 

Parity 

Number of children decreases the risk of ER-positive cancers [41]. HER2-positive and triple 
negative cancers are not associated with parity [39]. Neither are BRCA1/2 mutated cancers [42]. 

Age at first childbirth 

Older age at first childbirth increases the risk for ER-positive breast cancer [37]. HER2-cancers 
and triple negative cancers are not associated with the woman’s age at first childbirth [41]. 
Studies show that BRCA1-mutated cancer are less common in women with later age at first 
childbirth [42]. 

Breastfeeding 

Women who have a child and not breastfeed the child or have short breast-feeding periods have 
increased risk for breast cancer compared to women who breastfeed [43]. Breast feeding is 
protective for ER-positive and triple-negative cancers. HER2-positive cancers are not associated 
with breast feeding [38]. 

Hormonal replacement therapy  

Women using oestrogen-progesterone based hormonal replacement therapy (HRT) or 
oestrogen-only HRT have an increased risk for breast cancer up to two years following HRT 
treatment [44, 45]. Alternative HRT treatment including phytoestrogens is not associated with 
breast cancer risk [46]. HRT increases mammographic density, but it is unclear whether 
phytoestrogens affect density. 

Menopause 

Menopause is defined as the time in time when menstrual periods has stopped for the last 12 
months. Menopause often occurs close to age 50 [47] by a reduction of oestrogen and 
progesterone production in the ovaries [48]. Women who have an earlier menopause have a 
decreased risk of breast cancer [37]. Breast cancer risk is also lower in women who had 
hysterectomy or oophorectomy prior to natural menopause [49]. 

Alcohol 
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Alcohol increases the risk of breast cancer with 40-50% in heavy drinkers compared to non-
drinkers [50, 51]. Studies show that alcohol causes ER-positive cancers to a higher extent 
compared to ER-negative cancers [52]. Alcohol also increases the level of mammographic 
density in the breast [53]. 

Tobacco  

Cigarette smoking is measured as intake of number of cigarettes per day over one year [54]. One 
pack-year is 20 cigarettes per day in 1 year. Current smoking increases the risk of breast cancer 
with approximately 12% compared to non-smokers [54]. Smoking have been associated with 
both ER-positive and ER-negative cancers [55]. Studies suggest that smoking could also have an 
anti-oestrogen effect by impairing the ovarian functioning [56]. Smoking could alter oestrogen 
metabolism [57], and lower body fat [58]. Mammographic density could also be affected by 
smoking, but studies are non-conclusive [59]. 

Physical activity 

Physical activity means any kind of bodily movement leading to energy expenditure [60]. Physical 
activity is measured in metabolic equivalent of task (MET) [61]. By sitting on a chair for 1 hour is 
equivalent with 1 MET hour. Physical activity is further categorized into sedentary activity, light 
intensity, moderate activity, and vigorous activity. Studies show that physically active pre- and 
postmenopausal women have lower breast cancer risk compared to less active women [62]. 
Physical activity reduces the absolute level of glandular tissue in the breast measured as absolute 
dense mammographic area [63, 64]. 

Family history of breast cancer 

A family history of breast cancer in a 1st degree relative doubles the breast cancer risk for the 
woman herself. Women who develop breast cancer before age 50 are more likely to have a 
BRCA1/2 mutation [65] and an aggressive tumor. An inherited risk is also captured in polygenic 
risk scores (PRS) which combine the risks from multiple low-susceptibility SNPs [66]. Currently, 
the PRSs predict risk for ER-positive, ER-negative, and overall breast cancer risk. The largest 
proportion of the inherited breast cancers are still not explained by the known genetic variants 
[67]. A study shows that 25% of the cancers can be explained by a heritable pathway [25] in a 
Scandinavian population. 

BRCA 1 and 2 mutation 

Genetic mutations are constantly occurring during deoxyribonucleic acid (DNA) replication in 
the cells and, by external stimuli such as ionizing radiation, tar, virus, and alcohol that cause 
DNA damage [68]. The cell has mechanisms to repair such abnormalities and the most famous 
repair mechanism is related to the BRCA 1 protein that is transcribed and translated based on the 
DNA-region with the same name. It repairs DNA damages where both strands of the double-
helix are broken. A mutation in the BRCA genes could cause the DNA repair mechanism to 
malfunction. Women with specific deleterious mutations in the BRCA genes are therefore more 
likely to develop breast cancer [69]. Women with malicious BRCA 1 mutation have an 
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approximately 70% probability to develop breast cancer at some point in time during lifetime, 
while BRCA 2 mutations inflict a lifetime risk of approximately 30% to develop breast cancer 
[70]. 

2.1.5 Tumor characteristics 

Tumor size is initially assessed in a clinical examination or by investigating a mammogram, but is 
most commonly reported in registers based on the pathology report. The size is reported as the 
widest diameter of the tumor [71]. Tumor size is also categorized into T0 (not palpable), Tis 
(ductal carcinoma in-situ), T1 (<=20 mm), T2 (21-50 mm), T3 (>50 mm). The additional 
category T4 refers to a tumor that is attached to the chest wall or is breaking through the skin. 
Tumor size is one of three prognostic factors that defines the TNM classification. 

Lymph nodes are positioned in the axilla area and are clumps of immune cells that act as filters in 
the lymphatic system [69]. A tumor in the breast most commonly spreads through the lymphatic 
system to the lymph nodes. Affected lymph nodes means that the cancer spread to one or more 
lymph nodes. Lymph node status is categorized into N0 (no regional lymph nodes metastasis), 
N1 (moving lymph node metastases in the axilla), and N3 (fixed lymph node metastases in the 
axilla). Lymph node status is one of the prognostic factors defining the TNM classification. 

Metastasis refers to the distant spread of a cancer, most commonly to the brain, lungs or 
skeleton. M0 means that there is no known metastasis and M1 means that a metastasis has been 
discovered [69]. Metastasis is a highly prognostic factor and is part of defining the TNM 
classification. 

Grade is a microcopy judgement of the abnormality of the tumor cells [72]. Grade 1 are well-
differentiated tumor cells where most cells are slow-growing, Grade 3 are poor-differentiated 
cells where most cells are fast-growing. Grade 2 refers to that most cells are moderate 
differentiated, that is between grade 1 and 3. 

Estrogen receptor (ER) status refers to the immunohistochemistry (IHC) classification of the 
percentage of cells that express estrogen receptors. Oestrogen is an important growth factor for 
tumor cells. ER is positive if 10% or more of the cells are positive. Progesterone receptor (PR) 
status refers to an IHC classification of the percentage of cells that express progesterone 
receptor. PR is positive if 10% or more cells are positive. 

A human epidermal growth factor receptor 2 (HER2) positive tumor refers to tumor cells that 
have several copies of the HER2 gene, with the result of an over-expression of HER2 protein 
[73]. Increased levels of the HER2 protein promotes tumor cell growth. IHC staining is used as a 
screening technique for HER2 and, fluorescence in situ hybridization (FISH) analysis is used in 
addition to confirm HER2 gene amplification. HER2 is positive if at least 10% of the cells are 
positive and confirmed by FISH. 

Ki-67 is a protein marker for cell proliferation, an antigen protein encoded by the MKI67 gene. 
IHC staining is used to classify Ki-67 status [74]. Ki-67 is positive if 20% or more cells are 
positive. 
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2.1.6 Diagnosis 

Diagnosis of breast cancer is performed using a triple-diagnostic method [75]. The method 
consists of a clinical examination of the breast, imaging (e.g. digital mammography and 
ultrasound), and fine-needle biopsy for cytopathology diagnosis. If at least one of these 
examinations indicates a malignancy, the finding is treated as malignant. 

BI-RADS codes 

Radiologists classify their radiological findings on a seven-grade scale called BI-RADS [76, 77]. 
Women who receive code 3 or higher are routinely examined in further work-up. The proportion 
of women with code 3 or higher is in Europe approximately 3-7% and in US more than 10% 
[78]. Approximately 2% of the women with code 3 are diagnosed with breast cancer. Women 
with code 4 and 5 are 30% and 95% likely to be diagnosed with breast cancer, respectively. 

 

Table 2. BI-RADS malignancy coding. 

Code Description 

Code 0 – assessment is incomplete The assessment was not complete, and the 
woman could be recommended additional 
work-up, with further examinations. 

Code 1 – negative No suspicious finding was found, i.e. no 
microcalcifications, no suspicious mass, and no 
asymmetrical glandular structure. 

Code 2 – benign finding An abnormal lesion was found, but it was a 
definitive non-malign finding. 

Code 3 – probably benign finding An abnormal lesion was found but is probably 
a non-malignant finding and no palpable lesion 
was found. 

Code 4 – suspicious finding An abnormal lump is present, but initial 
judgement did not indicate malignant 
morphological characteristics. 

Code 5 – highly suspicion of malignant finding An abnormal finding was found with a very 
high suspicion of malignancy. An immediate 
biopsy will be performed. 

Code 6 – known cancer finding A cancer is proven by biopsy. This category 
applies to women that has follow-up 
mammograms after proven cancer. 
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Clinical examination 

In a clinical examination of the breast the breast is palpated to examine the solidity and size of 
the lump with a potential malignancy. In the screening setting, the clinical examination is 
performed after the mammogram is taken. For women who themselves detect a suspicious lump 
in the breast have a triple-diagnostic procedure referred to as a clinical detection outside the 
screening program [2]. 

Histopathology 

Radiologists perform biopsies on suspicious cases and send the specimen to pathologists for 
microscopy analysis [77]. The specimen is examined for morphological characteristics and is 
categorized into tumor size, histological grade, oestrogene receptor positivity, progesterone 
receptor positivity, HER2 over amplification, a marker of cell proliferation Ki67, and lymph 
node status [79-81]. Approximately 85% of the specimens are found to be ductal carcinoma, 
15% are lobular carcinoma [82]. Stage and grade are defined based on these characteristics [71]. 

Staging 

Stage is the most important classification of breast cancer due to its importance in 
prognostication [83]. Stage is defined based on the TNM classification, where T refers to the 
tumor size of the primary tumor, N is number of affected lymph nodes and marks the regional 
spread, and M is distant metastasis [73]. T1 is defined as a tumor with a maximum diameter of 2 
cm or less, T2 is a tumor larger than 2 cm but no more than 5 cm. More than 90% of the tumors 
have size T1 or higher, while only 30% of the women have affected lymph nodes. Few women 
have distant metastasis, M1. 

Molecular subtypes 

Molecular subtyping is a recent addition to tumor subtyping, where gene expression analysis [84] 
is used to categorize subtypes into the five intrinsic molecular subtypes Luminal A, Luminal B, 
HER2 enriched, basal-like, and normal-like tumors [85]. Molecular subtyping has improved 
decisions for assigning the appropriate oncological treatment to improve survival. Luminal A are 
ER and PR positive, but HER2 negative cancers. Luminal A benefit from hormone therapy and 
may also benefit from chemotherapy. Luminal B are ER positive, PR negative and HER2 
positive tumors. The luminal B breast cancers benefit from chemotherapy and may benefit from 
hormone therapy and treatment targeted to HER2. HER2 tumors are negative for ER and PRS, 
but positive for HER2. HER2 breast cancers benefit from chemotherapy and treatment targeted 
to HER2. The triple-negative tumors are negative for ER, PR, HER2 negative. Basal-like breast 
cancers benefit from chemotherapy. 

2.1.7 Prognosis 

The five-year and ten-year survival from breast cancer is approximately 90% and 85%, 
respectively [86]. However, the breast cancer survival is differential dependent on tumor size, 
affected lymph nodes, and distant metastasis. Approximately 15% of the women have in-situ 
cancers and have a 5-year survival of more than 99%. Approximately 60% of the women have an 
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invasive cancer not spread to the lymph nodes and a 5-year survival of 99%. Approximately 10% 
of the women have regional spread of the cancer to lymph nodes resulting in 85% 5-year 
survival. Cancers with distant spread are found in approximately 1% of the women who in 
consequence have a 5-year survival of 30% [1, 87]. 

The female hormones oestrogen and progesterone (HR) and the human epidermal protein 
(HER2) are growth factors for tumors and are commonly used in addition to staging to 
characterize tumor subtypes. Cells with abundant receptors of these hormones could lead to 
increased tumor growth. Approximately 10% of the women have triple negative cancers with a 
75% 5-year survival [87]. 

2.2 BREAST IMAGING 

2.2.1 Mammograms 

Ionizing radiation is used to x-ray the breast in digital mammography [88]. A radiographer 
positions the breast between two plates, one compression plate that is transparent to x-rays and a 
larger plate that contains the detector. An image sensor registers the x-ray that is transmitted 
through the breast. The fibro-glandular tissue attenuates the amount of radiation that reaches the 
sensor, while the radiation transmitted through the fatty tissue easily reaches the image sensor. 
Prior to presenting the image it is inverted so the radio-dense tissue appears white on the image 
and the fatty tissue appears dark. During mammography, images of the left and right breasts are 
taken from the craniocaudal (CC) view from above the breast, and in addition from the medio-
lateral oblique view diagonal from the outer side of the breast. In the case of a suspicious finding, 
additional views could be taken such as magnification views or views from the side of the breast. 

Prior to approximately year 2000 x-rays of breasts were developed on analogue films. The films 
were narrow in dynamic range and, after development of the film the image contrast was fixed. 
Nowadays, digital mammography uses a semiconductor detector that has a large dynamic range, 
which results in images with high contrast and, images can be further manipulated in post-
processing. 

2.2.2 Mammographic density and density change over time 

Mammographic density is the x-ray attenuated image depicturing the fibro-glandular tissue from 
the breast. The bright part of the image represents the radio dense fibro-glandular tissue, while 
the dark part of the image depictures the fatty breast tissue. Mammographic density is largely 
composed of collagen (30%), but also by glandular structures [89], while less than 5% consists of 
epithelial cells [90]. Breast cancer is an epithelial based cancer but a cancer could develop in the 
near milieu of stromal and connective tissue [91]. 

Wolfe was the first to classify different levels of mammographic density into four categories and 
he also described an association with breast cancer risk [92]. Tabár later presented an alternative 
classification of mammographic density [93]. Boyd defined the concept of percent 
mammographic density in relation to breast size using a semi-automated method called Cumulus 
[94]. The American colleagues of radiology has also presented the BI-RADS breast composition 
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classification for assessing the probability of masking of a cancer by mammographic density [95]. 
The BI-RADS 5th edition is the most commonly uwed density categorization and is widely used 
by radiologists today [76]. 

 

Table 3. BI-RADS breast composition coding. 

BI-RADS breast composition category Description 

A Almost entirely fatty breasts 

B Scattered areas of fibro-glandular tissue 
present 

C Heterogeneously dense breasts that could 
obscure small masses 

D Extremely dense breasts that lowers screening 
sensitivity 

In a screening population of age 50-70 approximately 10% of the women are found in category A, 
40% in category B and C each, and 10% in category D. 

 

Figure 3. Mammograms of four breasts with breast compositions BI-RADS A, B, C, D from 
left to right. 

 

 

Fully automated software for percent mammographic density assessment have been developed 
and they measure mammographic density as either the area percent density of the total breast 
area [96] or as the volumetric percent density of the total breast volume [97]. Several software 
were then developed over the years for either area or volumetric assessment of mammographic 
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density [98-101]. Computerized scores which mimic the BI-RADS A, B, C, D categories have 
also been developed based on percent density cut-offs. 

Percent density (PD) is mainly affected by age and BMI [102] and the PD decrease is largest 
during menopause [103]. Women in the highest density category have 4-6 times higher risk of 
breast cancer compared to women in the lowest category [104]. At the same time, 
mammographic density lowers the sensitivity of a mammogram, i.e. the probability for a 
radiologist to find a cancer. An on-going study in KARMA shows that the sensitivity varies from 
88% in BI-RADS A women to 51% in BI-RADS D women. 

Mammographic density change 

The bulk of mammographic density research literature is based on mammograms from cross-
sectional studies. A broad understanding has been reached on how mammographic density is 
associated with risk of breast cancer, associated with other risk factors, masking of breast cancer, 
cyclic menstrual changes, and natural involution [102, 103, 105, 106]. 

Women with a high mammographic density have 4-6 higher risk for developing breast cancer 
compared to women with low mammographic density [107]. Masking reduces the detection of 
breast cancer by up to fifty percent [76]. It is known that mammographic density is reduced 5 
days prior to menses and is increased during the second half of the menstrual cycle [106]. Natural 
involution reduces mammographic density mainly during menopausal transition, and is on 
average 1% per year in premenopausal women and 0.5% in postmenopausal women [108]. In 
addition, studies have been performed on how density change over time is associated with breast 
cancer [109-111], and how mammographic density could be used to predict response to risk 
reducing therapies [112]. Differential breast involution over time has not been shown to be 
associated with breast cancer. However, mammographic density reduction has shown to be an 
early marker of women who respond to tamoxifen therapy and experience a reduction in breast 
cancer incidence [113]. 

A mammographic density change over time is a good proxy for women that respond to 
endocrine treatment and show a reduction of recurrence and initial development of breast cancer 
[112, 114]. By visually inspecting mammograms in a time series, it is obvious that different parts 
of the breast are captured by the radiographers in the images. This problem needs to be 
addressed. Imaging registration techniques are generally available [115], but they are not currently 
used for correcting the technical differences prior to measuring mammographic density. In this 
thesis we describe how an alignment protocol was developed to address this issue. 

Radiographers are challenged everyday with requirement of consistent positioning and 
compression of the breast during mammography. Below image illustrates the problem (A) and 
shows how this could be handled (B) by aligning the images prior to measuring mammographic 
density. The global rigid registration technique was used to correct the images. 
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Figure 4. Two mammograms of the same breast were taken within minutes apart by the same 

radiographer. In panel A, the mammograms were superimposed to show the difference in breast 

placement in the mammography machine. In panel B, the two images were digitally aligned to 

the image showing the smallest breast size outlined with red in panel A prior to density 

measurement. 

 

 

Figure 5. Image registration techniques. Maintz and Viergever 1998. 

 

2.2.3 Microcalcifications 

Microcalcifications are deposits of calcium smaller than 1 mm and are commonly located in the 
terminal duct lobular units and in the ducts. Microcalcifications appear as white dots on the 
mammogram [116]. 
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Figure 6. Microcalcifications with a typical pattern inside the terminal ducts. American Cancer 
Society. 

 

 

Microcalcifications are found in 90% of the ductal carcinoma in-situ tumors [117]. Ductal 
carcinoma in-situ is a common precursor for breast cancer [118] with a 40-100% increased risk 
for invasive cancer [119]. Microcalcifications are BI-RADS classified according to their 
mammographic morphology and distribution [120]. Type I are calcium oxolate 
microcalcifications that form pyramidial structures in a planar surface. Type II are calcium 
phosphate (hydroxyapatite) microcalcifications with diffuse shapes and irregular surfaces. The 
morphology of the microcalcifications determines whether the microcalcifications are potentially 
malignant or is a risk factor for breast cancer [121]. 
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Table 4. BI-RADS malignancy classification of microcalcifications [76]. 

Code Microcalcification description 

Code 2 – benign finding a) Round opacities or scattered 
macrocalcifications, typically calcified 
fibroadenoma or cyst 

b) Vascular calcifications 

Code 3 – probably benign finding Clusters of smaller calcifications of round or 
oval shape. 

Code 4 – suspicious finding a) Microcalcifications that appear amorphous 
or indistinct in a cluster 

b) Heterogeneous and pleomorphic 
microcalcifications 

Code 5 – highly suspicion of malignant 
finding 

a) Linear branching pattern of 
microcalcifications, segmental distribution 

b) Microcalcification cluster with segmental or 
galactophorous distribution 

c) Microcalcifications in architectural 
distortions 

One of the Hanahan & Weinberg 10 Hallmarks of cancer is the activation of invasion and 
metastasis [19]. Epithelial-mesenchymal transition (EMT) is a phenomenon where epithelial cells 
lose their characteristic traits and gain mobile mesenchymal traits. This phenomenon is part of 
intravasation when malignant cells start to gain mobile mesenchymal characteristics to migrate 
from the extracellular matrix toward the blood vessels to metastasize [122, 123]. It has been 
hypothesized that microcalcifications could result from a mineralization process that is sustained 
by EMT [124] similar to bone osterogenesis. Other explanations for the development of 
microcalcifications has also been studied, including cell necrosis [125]. Microcalcifications have 
been shown to predict breast cancer lymph node status [126]. A study also showed that 
microcalcifications predicts HER2 and Luminal A molecular subtypes in the pre-operative 
setting [126]. It is not known at what earliest point in time microcalcifications are predictive for a 
breast cancer. 

2.2.4 Masses 

A mass in the breast is a benign or a malignant breast lesion. A benign lesion could lead to a 
proliferative lesion, hyperplasia or atypical hyperplasia with an increased risk for developing into 
a malignant tumor [127, 128]. Fibroadenoma is a common benign disease that through epithelial 
elements in their nodules of fibrous tissue could develop into a breast cancer [129]. A study 
showed that fibroadenomas share the same genetic, reproductive, and lifestyle factor risks as 
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malignant tumors [29]. In the diagnostic setting, a Computer Aided Detection (CAD) software is 
used to indicate lesions that have a high probability for malignancy. In this thesis we study the 
risk of breast cancer based on a software that uses a lower probability for malignancy to identify 
women that are likely to be diagnosed with breast cancer. 

2.2.5 Bilateral breast asymmetry of mammographic features 

The asymmetric distribution of density in a single breast is routinely examined by radiologists 
[76]. However, bilateral differences of mammographic features (mammographic density, 
microcalcifications, masses, distortions) between left and right breast is not regulated in the 
radiologists’ examination procedures. In this thesis we describe the first effort to use bilateral 
breast asymmetry of mammographic features for breast cancer risk assessment. A recent study 
paid interest to this and further studied bilateral breast asymmetry of mammographic features 
[130]. The potential value to study bilateral asymmetry of mammographic features is based on 
the fact that the vast majority of breast cancers are developed in one breast only. For this reason, 
the breast tissue could be investigated for risk factors of breast cancer, where pre-diagnostic 
images are examined for differences in mammographic features. One breast is considered 
diseased and the other breast is a paired control. The paired comparison is by design adjusted for 
the woman’s germline, personal disease history, and lifestyle factors. 

Figure 7. X-ray image of microcalcifications, masses, and architectural distortions. American 
Cancer Society. 
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2.2.6 Mediation of risk factors through mammographic features 

Breast cancer is a genetic disease, but several factors contribute to the development of a tumor 
[19, 131]. Mammographic features are measures from the imaged breast tissue. The most studied 
mammographic features are mammographic density, microcalcifications, masses, and tissue 
distortions. Several hormonal risk factors (age at menarche, parity, age at first childbirth, prior 
breast biopsy, HRT use) are influencing a change in the breast tissue and mediates their risk 
association with breast cancer through mammographic density [132, 133]. Studies also suggest 
that familial history of breast cancer is partly mediated through mammographic density. 

An overview of how risk factors for breast cancer incidence are mediated through 
mammographic density and microcalcifications is seen in below table. The mediation analyses 
were based on the KARMA cohort using a Cox regression method developed by Nevo et al. 
[134]. The models were adjusted for potential confounders of the associations between a) risk 
factors and breast cancer, b) mammographic features and breast cancer, and c) risk factors and 
mammographic features. In addition, the models were adjusted for d) potential confounders of 
the association between risk factors and confounders for the association between 
mammographic features and breast cancer (i.e. mediator-outcome confounders). The potential 
confounders were age, BMI, parity, hormone replacement therapy, prior biopsy, and family 
history of breast cancer. The mediation property of mammographic density and 
microcalcifications are of special interest for the prediction model that is developed in this thesis, 
because the model uses mammographic features as the main component. 

 

Table 5. Mediation of breast cancer risk factors through mammographic features. 

Risk factor Mediation through 
mammographic density (%) 

Mediation through 
microcalcifications (%) 

Parity 

Age at first child 

Current HRT use 

Current alcohol use 

Family history of BC 

Benign breast disease 

Prior biopsy 

PRS score 

40 

17 

25 

25 

6 

20 

24 

6 

Not significant 

Not significant 

52 

Not significant 

7 

23 

41 

14 

HRT – hormone replacement therapy 
PRS – polygenic risk score including 313 SNPs 
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Body mass index, age at menarche, and current smoking were not significantly mediated through 
mammographic density nor through microcalcifications. 

2.3 ARTIFICIAL INTELLIGENCE 

Artificial intelligence (AI) is today in extensive use in many areas, and especially in the area of 
classification or prediction based on image information. Today, mammography screening units 
make use of AI based detection tools to improve their ability to identify cancers. In this thesis, 
we use AI for assessing breast cancer risk based on mammograms to improve the accuracy of 
risk assessment. 

2.3.1 General principle 

Neutral networks date back to the 40’s and was initially constructed as a threshold logic method 
to mimic human brain intelligence [135]. A second milestone in the 60’s was the development of 
a method called backpropagation that is a method to fit network models to input data [136]. The 
simplest form of a neural network can be illustrated using logistic regression. 

 

Figure 8. Neural network of logistic regression. (w=beta, int.=intercept). 

 

 

Risk factors are used in the input layer. Each node has data values corresponding to each risk 
factor. Each risk factor data value is multiplied with a unique weight. An activation function 
(here a sigmoid logistic regression function) calculates the probability that each woman is positive 
or negative for breast cancer. 

In general, a neural network is constructed by neurons that are structured in several layers 
starting with the input data layer, then hidden layers, and ends with the output layer. Each node 
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belongs to one layer and is connected (weighted) to the other notes in the adjacent layer. The 
input nodes are bits of raw data that is used by the network, e.g. millions of pixel data points 
from one mammogram. Each node in the first hidden layer receives data from each input node. 
The value for each node is multiplied with a unique weight between 0 and 1. The first hidden 
layer sums up the weighted values from all input nodes together with a bias and calculates the 
output value using an activation function. The output value is sent to the nodes in the next layer. 
The last output layer calculates the probability of each output value, e.g. positive and negative 
breast cancer status. 

 

Figure 9. Three-layer neural network. 

 

Supervised neural networks are trained by knowing the output data values (e.g. breast cancer 
status). After the raw data has been input from several individuals (e.g. mammograms of 
women), initial weights are applied to each node. The backpropagation procedure includes a 
gradient descent algorithm that finds the best weights for the hidden layer(s) to minimize a loss-
function. The loss-function minimizes the probability of making an error when classifying the 
breast cancer case status from each of the input mammograms [137]. Neural networks that 
analyze images commonly interprets the data as two-dimensional objects and is referred to as 
convolutional neural networks. 

2.3.2 Computer aided detection 

Computer Aided Detection (CAD) is a complementary device for helping radiologists to identify 
a cancer on a mammogram [138]. Artificial intelligence (AI) is used in recent developments as a 
decision support tools. The performance of an AI based tool for detection of cancer in a digital 
mammogram is now on par with a radiologist performance with a sensitivity above 70% and a 
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specificity above 95% in the screening setting. CAD systems are classified as medical devices and 
are regulated in US by the Food and Drug Administration (FDA). 

2.3.3 Detection vs short-term risk 

By the definition from FDA, detection is the identification of a malignant lesion in the breast. 
Based on that, I defined short-term risk based on mammographic features in a distinct 
different manner as the identification of a breast with a malignant predisposition, but without 
identifying a specific lesion or region in the breast. I also set a time constraint of up to five 
years risk projection to be considered a short-term risk. 

2.4 RISK ASSESSMENT 

2.4.1 General concepts 

Prediction versus explanation 

Epidemiology showed great success using explanatory statistics in areas such as lung cancer to 
explain lung cancer outcome from smoking [139]. An ideal epidemiological scenario is to 
estimate known necessary and sufficient causal factors to explain the outcome of interest. The 
causal relationship could in addition be supported by a theory describing an underlying 
biological mechanism. However, in many health quests a complete explanation cannot be 
reached. Familial risk factors and germline genetic abnormalities explain approximately 25% of 
the breast cancers [25]. Most breast cancers occur in women without a family history of breast 
cancer and are caused by somatic mutations in the genome [68]. In contrast to explanatory 
modelling, predictive modelling could be defined as the development of models that estimates 
outcomes in new data based on factors in that data [140]. The aim is to optimize the accuracy 
of estimating the outcome in the new data by reducing the prediction error. The prediction 
error is measured by a loss-function. The statistical approach for prediction is fundamentally 
different from explanatory statistics. Predictive modelling predicts the outcome based on 
predictive factors, using statistics to minimize a loss-function; while explanatory modelling 
estimates causal associations between exposures and outcome. However, both statistical 
approaches make use of the same basic scientific principle of replication to warrant the 
accuracy of the models. In this respect, the two approaches could be compared through their 
abilities to replicate results in new data. 

Sensitivity and specificity 

A group of women with breast cancers is referred to as true positives. In mammography 
screening radiologists will identify a proportion of the true positives, referred to as the 
radiologists’ sensitivity. In general terms, the sensitivity is the proportion of individuals who 
tested positive among all true positives, that is the probability of testing positive using a 
medical test in the group where all are diseased individuals [141]. Specificity is the probability 
of testing negative using a medical test in the group where all individuals are healthy. 

Confusion matrix 
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A risk model predicts the probability for an individual to be a breast cancer case. For any 
practical use of the risk model a cut-off is needed to classify at what probability level an 
individual is considered to be a breast cancer case. If the cut-off for being considered a breast 
cancer case is set at zero percent, then all individuals will be considered by the model to be 
breast cancer cases. This means that the sensitivity of the model will be 100%, but the 
specificity of the model will be 0%. If on the other hand the cut-off for being considered a 
breast cancer case is set to hundred percent, then no individual will be considered by the 
model to be a breast cancer case; the sensitivity of the model will be 0% and the specificity will 
be 100%. A two-by-two table can be used to present how the medical test predicts disease 
status in relation to the true disease status. A confusion matrix is created by counting the 
number of individuals in each cell. 

 

Table 6. Confusion matrix with 0% cut-off probability for classifying a case as positive. 
Sensitivity 100%, specificity 0%. 

 True disease status 

Test result Breast cancer case Breast cancer free 

Positive 100 true positive cases 0 false positive cases 

Negative 0 false negative cases 0 true negative cases 

Multiple tables are calculated for different probability cut-offs. Then a receiver operating 
characteristics curve (ROC) is created by plotting the sensitivity and specificity, for each of the 
probability cut-offs, on a two-dimensional plot where sensitivity (true positives) is on the Y-
axis and 1-specificity (false positives) is on the X-axis. 

Discrimination performance 

The discrimination performance of a model is calculated as the area under the ROC curve 
(AUC) as is illustrated in the below figure [142]. An AUC of 0.5 corresponds to the diagonal 
dotted line and means that regardless of which probability cut-off is used to classify a woman 
as a positive case there will not be a greater chance than 50% that the positive case is truly 
positive. 
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Figure 10. ROC curve and random chances diagonal. 

 

AUC can be calculated based on the c-statistic (concordance statistic) using logistic regression. 
The c-statistic is the probability that the individual who truly has the outcome have a higher 
predicted probability by the test than the individual who truly does not have the outcome. 
AUC is a theoretical concept that not necessarily give a practical understanding of how well the 
risk model can distinguish true cases from true healthy individuals in a clinical setting. In a 
clinical setting it will be required that a risk model shall operate at a certain sensitivity or 
specificity. The ROC can tell which specificity will be reached given a certain sensitivity or 
vice-verse. 

Calibration 

A risk model predicts the probabilities for individuals to have the disease. This results in a 
distribution of risk probabilities that commonly is stratified into deciles for an estimation of 
calibration [143]. Calibration compares the observed probabilities for having the disease with 
the expected probabilities, as predicted by the model, for having the disease in each of the 
deciles. A statistic called the Hosmer-Lemeshow test estimates how well the observed risks 
compares with the expected risks. 

Risk stratification 

The clinical use of a risk model is the model’s ability to distinguish individuals with a high and 
a low probability for developing the disease, respectively. The risk classification in breast 
cancer is defined by clinical guidelines [144, 145]. The most common guideline in Europe is 
the National Institute for Health and Care Excellence (NICE) guidelines [144]. NICE 
recommends different types of clinical follow-up of women dependent of their levels of risk. 
Women in the high-risk category are recommended more frequent screening or a more 
sensitive screening modality from age 30 and above. The guideline is described in more 
detailed under Prevention. 
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Validation 

Validation is a technique that critically tests a risk model using new data that was not used 
during the training of the model [146]. The preferred form of validation is external validation, 
where the new data origin from another population than was used in the training. The external 
population can either be women that attend screening under similar circumstances, e.g. at 
another hospital in the same country. The external population can also be women from 
another screening setting. Examples of screening settings are that different screening 
modalities, screening intervals, personal screening history, and ethnicities are included. The 
generalizability of a risk model is less challenged by predicting new data in a screening setting 
similar to the training setting and is challenged more by predicting new data in new screening 
settings. 

Common validation outcome measures are sensitivity, specificity, AUC, risk stratification, and 
clinical usability. 

2.4.2 Risk assessment (long term) 

Over the last 40 years, attempts have been made to identify women that will develop breast 
cancer. The Gail risk model was introduced in 1989 and was based on approximately 2,852 cases 
and 3,142 controls retrieved from a large screening cohort [147]. The model identified age, age at 
menarche, number of previous taken biopsies, age at first childbirth, and number of relative with 
breast cancer as risk factors. Gail constructed the model to estimate 5-year absolute risk of breast 
cancer, calibrated to the general female population, based on i) estimating the relative risks for 
each risk factor adjusted for the others, ii) estimate the absolute risks of the women based on 
their profile of risk factor exposures, while accounting for competing mortality due to other 
causes. A logistic regression model was used to estimate the relative risks and a Fine and Gray 
regression model was used to estimate the absolute risks accounting for the competing risks [148, 
149]. The discrimination performance has been reported in ranges from AUC 0.52 to 0.7 in 
cohorts with different criteria for selecting cases and controls [150]. The model was validated in 
several populations. 

A second landmark in the risk model development was seen with the Tyrer-Cuzick risk model 
that estimates 10-year and lifetime risks [151]. By this time, more risk factors had been identified. 
The Tyrer-Cuzick model include age, BMI, age at menarche, age at first childbirth, use of HRT, 
menopausal status, benign breast disorders (atypical hyperplasia, lobular cancer in situ), first and 
second order family history of breast and ovarian cancer, Ashkenazi origin, and BRCA-gene 
mutation. Cuzick also introduced the “low susceptible” gene which he meant should be 
prevalent in the population but have a lower risk association with breast cancer. A later update to 
the Tyrer-Cuzick risk model also includes an 18 PRS score and mammographic density [152]. 

A third landmark in the risk model development was done with the BOADICEA model which 
estimates lifetime risk for developing breast cancer based on the genetic risk [67]. BOADICEA 
was developed to assess the probability for a woman to carry a BRCA1/2 mutation given her 
family history of breast cancer. The family history covers up to 3rd degree relatives, known BRCA 
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mutations in the family, Ashkenazi origin, bilateral cancer status, and ovarian cancer. The model 
was further developed to include a PRS score. The model has been validated in 22 populations. 
An on-going development will also include classical lifestyle risk factors and mammographic 
density. 

Many models have been developed over the decades that have similar setups of risk factors as 
Gail, Tyrer-Cuzick, and BOADICEA [150]. For instance, the BCSC model developed as an 
extension to the Gail model. The prediction accuracies are low to moderate and the models may 
not be cost-effective for the use in risk screening of the general female population.  

Today, a breast cancer risk model is more or less synonymous with the concept of predicting 
lifetime risk or at least ten-year risk [150]. The aim is to identify women that could be 
prevented from breast cancer. This concept has great value for women with an extensive 
familial risk of breast cancer [67]. However, most cancers occur in women without a family 
history of breast cancer. A recent study questioned the use of assessing lifetime risk as is 
commonly requested by clinical guidelines [153]. Risk models may show lower accuracy in 
long-term risk assessment compared with shorter term risk assessment. 

2.4.3 Short-term risk assessment 

A challenge with traditional risk models is that the predictive accuracy is low to moderate and 
that they are not designed to improve mammography screening. In paper II I constructed a 
prediction model that is designed to circumvent these problems. The model uses mammograms 
as the main component and could add lifestyle factors and a polygenic risk score to further 
increase the accuracy. The model is a two-year risk for the purpose to be useful in screening 
programs with biennial screening. The model's ability to stratify women into high-to-low risk is 
essential for clinical use. The risk model fits with clinical guidelines that have been developed 
for the general population, where more intense screening is recommended for women at high 
risk of breast cancer [144, 145]. More intense screening will lead to more detected cancers. 
This means that the intervention will lead to earlier detection of breast cancer, rather than 
primary prevention of breast cancer. This means that the clinical aim for using the risk model 
in this setting is to improve the screening efficiency for these women. The Envision 
consortium recently recognized this as the second aim for using a risk model [154]. A recent 
systematic review observed that a risk model could benefit from a short-term prediction to 
increase the accuracy of identifying women that are at high risk of breast cancer [155]. 

2.5 MAMMOGRAPHY SCREENING 

2.5.1 Age based screening 

Breast cancer screening was designed to detect cancer early and to reduce breast cancer mortality. 
In Sweden mammography screening was implemented between 1976 and 1997 in different 
counties [3]. Landmark papers have been shown that tumors nowadays are found at earlier stages 
[156, 157] and that screening reduces mortality from breast cancer by approximately 20% 
compared to women not attending a screening program [158, 159]. The screening age varies 
between countries. In Sweden, the screening age range is 40 to 74. The current screening 



 

26 

intervals are 18 and 24 months. Some Swedish counties screen women in the ages 40 to 54 in 18 
months intervals and older women in 24 months intervals. In European screening programs 
approximately 3% of the women are recalled after each mammography screen. After further 
work up approximately 0.5% of the women are diagnosed with a cancer. Approximately 75% of 
eligible women attend the screening [160] and among these women approximately 75% of the 
cancers are detected by the screening program. Women who develop interval cancer, 
approximately 25% of the women in Sweden, do not benefit from the mammography screening 
program. In this thesis we develop a prediction model that could lead to detecting the interval 
cancers earlier at their prior regular mammography screening on average 1 year before the 
current interval diagnosis date. 

2.5.2 Supplemental imaging 

In addition to digital mammography, ultrasound or magnetic resonance imaging could be used 
for women with x-ray radio dense breasts [161]. Magnetic resonance imaging is more commonly 
used to monitor women with a familial or genetic high risk for developing cancer over time 
[106]. The advantage with these modalities is that they have a higher sensitivity, but on the other 
hand have a lower specificity than a mammogram. Contrast-enhanced mammography is a late 
development that has a potential to be a large-scale screening modality for women in need of 
supplemental screening with a similar performance as MRI but with a shorter protocol [162]. 

In this thesis, we identify high-risk women who also have a high density and therefore potentially 
could have a value from supplemental imaging. 

2.5.3 Screening frequency 

Mammography screening intervals varies between one and three years depending on age-group 
and screening program [163]. The proportion of cancers that will be detected in screening or as 
interval cancers is related to screening frequency and the age of the woman [164]. A study found 
that in-situ cancer more likely develop into invasive cancers in screening programs with three-
year intervals compared to screening programs with shorter screening intervals [165]. 

In this thesis, we investigate the potential value for recommending more frequent screening 
intervals for women at high risk of breast cancer who in addition have low mammographic 
density, that is with an increased probability to have a fast-growing cancer that develop between 
mammography screening intervals. Women with low risk of breast cancer could potentially be 
recommended less frequent screening. 

2.6 BREAST CANCER PREVENTION 

Risk reducing strategies has been thoroughly investigated and, risk factors and preventive 
measures have been identified [166]. Risk reducing mastectomy is offered to women with a high 
genetic risk for breast cancer [167]. A less drastic preventive therapy is tamoxifen that reduce 
recurrence of oestrogen-positive breast cancer but can also be used to reduce the risk in healthy 
women from developing breast cancer [113]. Studies have shown that approximately 30% of the 
oestrogen-positive cancer can be primary prevented using tamoxifen, raloxifene or aromatase 
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inhibitors [168, 169]. Side-effects are venous thromboembolic events and endometrial cancers, 
which increase by a two-fold, with an increased 5-year probability of 0.5% and 0.25%, 
respectively [170]. Endometrial cancers and endometrial thickness could develop in consequence 
of the pro-oestrogen agonist effect of tamoxifen in a low oestradiol environment. Menopausal 
symptoms are prevalent side-effects which are the main reason for not continuing taking the 
medication [171]. Vasomotor symptoms are most common with a prevalence of approximately 
35%. Vasomotor symptoms are also associated with increased cardiovascular morbidity and 
mortality [172]. A study of 5 mg low-dose tamoxifen indicated that breast cancer events reduced 
by half and, rare serious adverse events were not significantly higher in the treatment arm 
compared with the placebo group; but menopausal similar symptoms were slightly increased in 
the treatment arm (2.1 vs. 1.5 hot flashes per day) [173]. The number needed to be helpful to 
reduce breast cancer events was ten times better than the number needed to be harmful of 
serious adverse events, including vein thrombosis and endometrial cancer events. 

Tamoxifen is an anti-oestrogen that inhibits oestrogen to bind to oestrogen receptors in the cell 
nucleus [174]. It is not well-known how the selective oestrogen receptor modulator reduces the 
risk for developing breast cancer, but the modulator is considered to reduce the rate of cell 
division and proliferation and to induce apoptosis. Tamoxifen is a pro-drug that is metabolized 
into metabolites, where endoxifen is considered the main metabolite that affects breast cancer 
risk. The ability to metabolize tamoxifen into endoxifen is inherited and is affected by 
polymorphisms in the CYP2D6 gene [175]. Up to 10% of the women have poor or ultrarapid 
CYP2D6 gene activity, which makes tamoxifen less useful for these women to reduce their 
breast cancer risk [176]. Poor metabolizers experience too low therapeutic levels, and ultrarapid 
metabolizers experience too high therapeutic levels which leads to severe side-effects and 
discontinuation of the therapy. 

Tamoxifen also reduces mammographic density and has shown to be an effective early marker 
for which women respond to tamoxifen [112, 114]. One hypothesis is that cells with reduced 
proliferative activity are less radiolucent on a mammogram which leads to lower mammographic 
density. A study on premenopausal breast cancer patients showed that mammographic density 
was more likely to remain low two years after discontinuing medication, if the woman initially 
showed a density response to the therapy [177]. The sustained effect was seen in sixty percent of 
the women who had an initial density response to tamoxifen. 

The focus of paper III was to address the question whether the tamoxifen dose could be lowered 
with non-inferior reduction of mammographic density as a proxy for reduced breast cancer risk, 
while lowering the side-effects for the woman. 

Guidelines have been developed to assign clinical preventive action points to women at different 
levels of breast cancer risk. The NICE guideline (UK National Institute of Health and Care 
Excellence) has guidelines for women with familial history of breast cancer [144]. The guideline 
recommends increased surveillance, use of tamoxifen, and possibly prophylactic mastectomy in 
the high-risk group dependent on the genetic carrier ship. Women with moderate risk are 
recommended increased surveillance and lifestyle changes. 
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Lifestyle changes is another potential means for primary prevention of breast cancer [178]. BMI, 
alcohol, physical activity, smoking, and hormone replacement therapy use are factors that could 
change the breast cancer risk. 
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3 AIMS AND HYPOTHESES 
The overall aim of the thesis is two-fold - to improve mammography screening and to reduce 
breast cancer incidence. My work focused on developing and evaluating tools for measurement 
of mammographic density and risk assessment of breast cancer, and in addition to identify the 
lowest dose of tamoxifen that could be used to reduce breast cancer incidence and to improve 
the sensitivity of mammograms. The work was laid out in the following four studies. 

 

I. To develop and evaluate a tool for measuring mammographic density in large-scale 
mammography screening cohorts and in clinical trials. 
 
The hypothesis was that processed mammograms, that are generated as part of the 
mamography screening workflow and are stored at the hospitals, could be used to 
measure mammographic density regardless of the type of mammogram and vendor 
of the mammography machine. 
 

II. To develop and evaluate a short-term risk assessment tool for the general female 
population to identify women who are sent home with a negative screen, but are 
diagnosed with breast cancer before or at next mammography screen. 
 
The hypotehsis was that a short-term risk model based on mammograms could be 
developed that identifies women who will be diagnosed with breast cancer before 
or at next mammography visit and is more accurate than established risk models. 
 

III. To test if lower doses of tamoxifen could be as efficient in reducing 
mammographic density compared to the standard dose of tamoxiofen but cause 
less side-effects. 
 
The hypothesis was that a lower dose of tamoxifen is non-inferior to reduce 
mammographic density, a proxy for therapy respons to tamoxifen, but still cause 
fewer side-effects. 
 

IV. To model the feasibility of using low-dose tamoxifen to improve the sensitivity of 
mammograms due to the low-dose tamoxifen effect on reducing mammographic 
density. 
 
The hypoteshis was that screening sensitivity could be improved due to the effect 
that low-dose tamoxifen has on reducing mammographic density. 
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4 PATIENTS AND METHODS 

4.1 STUDY POPULATIONS 

The description below refers to the original populations which formed the basis of my study 
populations in the thesis. Selection criteria are stated in the ‘Results’ section for each of the 
included studies. 

4.1.1 KARMA 

In study I, II, and IV, the main study population was based on the KARMA (Karolinska 
mammography project for risk prediction of breast cancer) cohort [179]. KARMA is a 
prospective mammography screening cohort consisting of 70,877 women recruited between 
2011 and 2013. KARMA includes approximately 35% of the women in the south Stockholm 
area and southern of Sweden that were invited to mammography screening under the 
recruitment period. KARMA is a prospective cohort, which means that women were followed 
from baseline and onwards. At baseline, information on exposures that possibly are related to 
breast cancer were collected. Exposures were collected using surveys, mammograms from the 
screening units, register data, and medical records. Women also donated blood. Whole blood 
and plasma were stored, and DNA was extracted. The information is continuously updated 
through collection of mammograms, register data, surveys, and additional blood drawing. 

Mammograms were collected from 2011 and onwards for all women. In addition, a 
retrospective collection of available mammograms was performed for all breast cancer cases in 
the cohort. The collected mammograms were raw and processed full-field digital 
mammograms and analogue images. The analogue mammograms were digitized at the 
department with 50-micron spatial resolution and 12-bit greyscale dynamic range. Till current 
date almost three million mammograms have been collected. 

4.1.2 LIBRO1 

In study I, the LIBRO1 (Linné-Bröst1) population was included. The LIBRO1 population 
consists of 9,348 incident breast cancer cases, registered in the Swedish National Breast Cancer 
register, in the Stockholm-Gotland area between 2001 and 2008 in the age range 40 to 74. The 
study population was invited to donate blood and answer a survey in 2009. Sixty-one percent 
of the women (N=5,715) gave informed consent to participate in the study. Women 
responded to a survey and donated blood. The survey collected information on exposures that 
possibly could be associated with breast cancer. Whole blood was stored, and DNA was 
extracted. The median between cancer diagnosis in the full LIBRO1 population and the sub-
population was 4.8 years. 

Mammograms were collected from 2001 and onwards for all women, and a retrospective 
collection was performed for all available mammograms in digital archives and analogue films. 
The collected mammograms were mainly processed full-field digital mammograms and 
analogue images. The analogue mammograms were digitized at the department with 50-micron 
spatial resolution and 12-bit greyscale dynamic range. 
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4.1.3 CAHRES 

In study I, the CAHRES (Cancer And Hormone Replacement Therapy Study), also referred to 
as SASBAC (Singaporean And Swedish Breast Cancer Study), population was included. The 
CAHRES study identified all breast cancer cases, registered in the Swedish National Breast 
Cancer Register, between 1993 and 1995 in ages 50 to 74. Women were invited to participate 
in the study and 84% signed an informed consent and responded to a survey. Healthy controls 
were selected in an incidence density sampling scheme, based on information from the 
Swedish Cancer Register, and were selected from the same time-period and were matched on 
age. In all, 2,818 breast cancer cases and 3,111 controls were included in the study. Exposures 
were collected based on survey data, mammograms from screening units, register data, and 
medical records. A sub-group of women later donated blood which formed the SASBAC sub-
cohort. DNA was extracted for 1,534 breast cancer cases and 1,504 controls. 

Analogue mammograms were collected from hospitals before and at the time of diagnosis. 
Mammograms were available for approximately 75% of the study population. Mammograms 
with poor quality were excluded. The analogue mammograms were digitized at the department 
with 50-micron spatial resolution 12-bit greyscale dynamic range. 

4.1.4 KARISMA 

In study III, the study population was KARISMA (KARMA Intervention Study). KARISMA 
is a six-month double-blind randomized six-armed and placebo-controlled non-inferiority 
dose-determination phase II trial. Women participating in the Swedish national mammography 
screening program at Södersjukhuset in Stockholm and at Unilabs mammography screening 
unit in Lund were invited to the study. In all, 159,207 women were invited, and 2,314 women 
volunteered and were investigated for eligibility to participate. Main exclusions were women 
with almost entirely fatty breasts and women with a history of cardiovascular disorder. The 
predefined number of women (N=1,440) were included. Women signed informed consent and 
information was collected based on survey data, mammograms, and in addition women 
donated blood. Plasma endoxifen levels and CYP2D6 gene activity were analysed. The women 
were allocated to placebo, 1, 2.5, 5, 10, or 20 mg of tamoxifen at study start for a six month 
administration of the medication. 

Digital full-field raw and processed mammograms were collected at baseline and at study exit, 
that is at the scheduled six months visit or at time of discontinuation. 

4.1.5 CSAW 

In study II, the CSAW (Cohort of Screen-Age Women) was included as an external validation 
cohort. The women were recruited from the Karolinska Hospital mammography screening 
program between 2008 and 2015. The available 613 breast cancer cases with mammogram data 
were included and a random sample of 10,000 women with a negative mammogram were 
selected. After excluding controls outside the range of mammography years of the breast 
cancer cases, 8,489 controls remained. The mean age was 53 and the average follow-up time 
5.2 years. 
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4.1.6 MBTST 

In study II, the MBTST (Malmö Breast Tomosynthesis Trial) population was included as an 
external validation cohort. The trial included a subgroup of women, who volunteered to have 
tomosynthesis examinations in addition to digital mammography, among all women 
participating in the national screening program in Malmö, Sweden. The women were recruited 
to the trial between 2010 and 2015 and included 104 incidence breast cancer cases and 9,745 
women with a negative mammogram [180]. The mean age in the cohort was 57 and the follow-
up time was on average 3.7 years.

4.2 DATA 

4.2.1 Research platform 

Prior to my thesis work, I developed the KARMA research platform which was the first 
epidemiological platform to hold an extensive research dataset in one single database that was 
readily available through the web. At that time, skilled principal investigators not often knew in 
detail what data they were possessing, which caused a slow process in designing new studies. In 
the new system, principal investigators got information at their fingertips to perform typical 
tasks such as investigating inclusion and exclusion criteria for what studies were possible to 
perform. More extensive on-line analyses were also provided through the system [181]. The 
platform delivered the individual research data to the researcher after ethical approval by the 
research project principal investigator. 

 

Figure 11. Schematics over the KARMA research platform data sources. 
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Figure 12. Web-view of the KARMA research platform. 

 

 

In addition, I created the extensive KARMA web questionnaire and the vast majority of the 
finalized research datasets by quality checking, recoding, and derivations of variables based on 
the collected data [182]. The KARMA research platform is since its creation the basis for 
research in the breast cancer research group at the department of Medical Epidemiology and 
Biostatistics, Karolinska Institutet. The research platform was also promoted in 2015 as the 
raw model for the National Cancer Institute (NIH) epidemiological future projects [183]. 
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Figure 13. The KARMA web questionnaire. Icons represents themes of questions. 

 

 

4.2.2 Register data 

In Sweden, population-based registers have a centuries-old tradition. The personal identifier 
PNR has been used since 1947. The personal number is given to each Swedish citizen at the 
time of birth. PNR makes it possible to link the register data to the women individually and in 
addition to the other individual information that the women contributed to the study. The 
following registers were used in this thesis: 

• The Swedish Cancer Register containing information on type of cancer, date of 
diagnosis, invasiveness, TNM stage, and histological type. The register has a high 
coverage (98%) of all breast cancer diagnoses that were reported [184]. 
 

• The Breast Cancer Quality Register containing additional data on tumor size, stage, 
tumor receptor status, histological grade, and more [185]. 
 

• The Cause of Death Register started in 1952 containing data on the cause of death for 
each individual [186]. 
 

• The Screening Register at Regional Cancer Centre Stockholm-Gotland containing data 
on mammography screening status and recall status of the individuals in the 
Stockholm-Gotland area [187]. 

Register data were used in all studies. 
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4.2.3 Survey based data 

Survey based data was used in studies I, II, and III. The questionnaires in KARMA and 
LIBRO1 were web based and the questionnaire in CAHRES was paper based. The women in 
LIBRO1 could request a paper-based questionnaire to replace the web-based questionnaire. 
The baseline questionnaires were filled in at time of enrolment. KARMA also included follow-
up questionnaires. The KARMA questionnaire was the most extensive and included questions 
on background, reproductive health, use of medication, use of alcohol and tobacco, previous 
and current diseases and treatments, family history of breast and ovarian breast cancer, quality 
of life, physical activity, and diet. All cohorts used questionnaires that included questions on 
the essential breast cancer risk factors age, BMI, family history of breast cancer, age at 
menarche, parity, age at first child, contraceptives, menopausal status, benign breast disease, 
and use of hormone replacement therapy. 

4.2.4 Mammograms 

Mammograms were used in all studies. Mammograms from left and right breasts from medio-
lateral oblique and craniocaudal views were collected. Mammograms from the KARMA cohort 
were used in all studies. Mammograms from KARISMA were used in study III and IV. 
Mammograms in the KARMA and KARISMA studies were collected prospectively from 
hospitals in the middle part and the southern part of Sweden. Digital full field processed and 
raw mammograms were collected integrated with the screening workflow. This made it 
possible to also include the raw images which otherwise are deleted automatically within a 
short timeframe in the screening workflow. The images were regularly transferred to the 
Department of Medical Epidemiology and Biostatistics (MEB), Karolinska Institutet, from the 
hospitals. Mammograms from the LIBRO1 study were retrospectively collected from hospitals 
in the Stockholm-Gotland region. Digital processed mammograms and analogue 
mammograms were available for the LIBRO1 women. Mammograms in the CAHRES study 
were collected from multiple hospitals in Sweden. All mammograms were analogue. The 
analogue mammograms were digitized at MEB using an Array 2905HD Laser Film Digitizer 
(Array Corp, Tokyo, Japan). 

Analyses of mammographic features were performed on the mammograms using STRATUS 
and iCAD algorithms [188, 189]. 

4.2.5 Mammographic density and density change over time 

Mammographic density was assessed on mammograms using the STRATUS tool developed 
and validated in study I. Mammographic density was used in all studies. In short, 
mammographic density assesses the radio dense representation of fibro-glandular tissue in the 
breast. The total breast area (cm2) and the radio dense tissue is measured. Percent 
mammographic density was calculated as the radio dense area divided by the total breast area. 
Percent density was categorized into four groups referred to as cBIRADS to mimic the BI-
RADS fifth edition breast composition definition [76], where BI-RADS A refers to breasts that 
are almost entirely fatty and BI-RADS D refers to breast that are extremely dense and lowers 
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screening sensitivity. Mammographic density change was studied as relative and absolute 
change over time of mammograms taken within minutes from each other and in mammograms 
taken years apart. 

4.2.6 Microcalcifications and masses 

In study II, microcalcifications were assessed based on the iCAD algorithm [188, 189]. In 
short, the iCAD algorithm is based on a deep convolutional neural network trained on 
radiologists’ expert annotated microcalcifications and soft-tissue lesions. Microcalcification 
malignancy scores were trained on amorphous, coarse heterogeneous, fine pleomorphic, fine 
linear and fine-linear branching microcalcifications. Masses malignancy scores were trained on 
masses, architectural distortions, and asymmetries. iCAD uses malignancy score cut-offs to 
identify cancers. In study II, these cut-offs were re-trained to identify at-risk lesions on prior 
images to discriminate the risk of breast cancer compared to women who did not develop 
breast cancer. The risk scores were validated in three external datasets. 

4.2.7 Differences of mammographic features between left and right breasts 

Bilateral asymmetry of the occurrence of mammographic features between left and right breasts 
were investigated in study II. The x-ray representation of the breast tissue was investigated for 
risk factors of breast cancer. Pre-diagnostic images were examined for absolute differences in 
mammographic features in a paired breast analysis. Bilateral asymmetry between left and right 
breasts were investigated by region of breast tissue. Each region of breast tissue in left and right 
breasts were compared with each other. This approach has a statistical interesting property as 
both breasts have been exposed to the same personal and familial history including germline 
genetics, lifestyle factors, and family history of breast cancer. The remaining factor that stands 
out that differs between the two breasts is the disease. 

4.2.8 Polygenic risk score 

In study II, a polygenic risk score was used [17]. The polygenic risk score (PRS) was developed 
by the Breast Cancer Association Concortia (BCAC). The PRS includes 313 single nucleotide-
polymorphisms (SNPs) selected based on 94,075 breast cancer cases and 75,107 controls from 
69 studies in Europe. The score was developed using logistic ridge regression. The PRS was 
validated in an independent test set from 10 prospective studies. No evidence was found for 
any statistically significant interactions between the SNPs. The polygenic score predicts the 
probability of developing breast cancer during a lifetime. 

4.3 EPIDEMIOLOGICAL STUDY DESIGN 

Epidemiologists' study health and disease, and applications for health promotion and disease 
prevention [190]. Descriptive distributions are studied, and determinants are analyzed. In 
addition, experimental research investigates interventions for changing health and disease 
outcomes. Two main and important steps in performing a study is to define the research 
question and to design the study. 
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Epidemiological study design is defined based on two concepts: outcome and sampling of the 
outcome from the underlying population [191]. Common types of outcome are incidence or 
prevalence. Incident data is data that is collected of new exposures and disease statuses at a given 
time interval. Prevalent data is data that is collected of all available exposures or disease statuses 
in a population at a given point in time. As an example, prevalent data sampling that is based on 
the outcome is referred to as prevalence case-control study design. Incident data sampling not 
based on the outcome, but typically following the exposure, is named incidence study design. 

The ideal research study is to have the full study population of interest readily available in the 
study and have the study individuals exposed to the factor of interest and, at the same time not 
exposed to the same factor. Such circumstances could ideally calculate how the exposure affects 
the outcome. Any other factor that could affect the association between exposure and outcome 
would affect both the exposed and unexposed study population equally. The association between 
the exposure and outcome would be causal and applicable to the whole population. This scenario 
is of course not possible to achieve, but epidemiological study design aims to achieve the best 
possible estimation of a real situation. Various epidemiological study designs have been 
constructed to estimate the association between exposure and outcome under different scenarios 
of available data. In the sections below, I briefly describe and discuss the study designs that I use 
in my studies. 

4.3.1 Randomized controlled trial 

The golden study design for performing a medical study is a randomized controlled trial due to 
its ability to infer causality between exposure and outcome [192]. The study design assures, at a 
sufficient sample size, that the baseline characteristics of the individuals in the study are evenly 
distributed in each of the study arms. This means that there is no bias in how any pre-exposure 
can affect the association between exposure and outcome at the time of baseline in the study. 
Statistically, this means that the randomization procedure breaks any confounding pathway 
between each of the pre-exposures and the association between exposure and outcome in the 
study. 

4.3.2 Cohort study 

A cohort study follows a group of individuals over time, where exposures are collected at 
baseline and outcomes are collected during follow-up as they occur in the study group [193]. A 
cohort study can also include repeated measures of exposures during the follow-up. The 
association between exposure and outcome is either estimated per person or per person-year. 
Person-years are defined as the number of years the person is at risk in the study and contributes 
with time in the cohort. A person that is included after study baseline is referred to as 
contributing with left-truncated person-time. A person that exits the study before the end of 
follow-up contributes with right-truncated person-time. The point in time when a person is not 
monitored any longer in the study is referred to as censoring. 
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Effects are estimated by comparing the outcome between the exposed and unexposed groups. 
Incidence rate (cases per person-years at risk) is possible to estimate in a cohort study and it is 
possible to infer causality, if any confounders are known. 

4.3.3 Case-cohort study 

A case-cohort study is a special case of a cohort study where all cases in the cohort that are 
known at a point in time during follow-up are selected [194]. In addition, a random sample of 
controls are selected from the cohort at study baseline. Study individuals in the random sample 
keep their control status throughout the study. 

The case-cohort has the same statistical properties as the cohort study, but with the sample size 
efficiency of a nested case-control study. In the analysis, the random sample of controls needs to 
be up weighted to the cohort sample size. This will lead to underestimation of the sample 
variance, which can be adjusted using e.g. robust standard error estimation [195]. 

4.3.4 Case-control study 

A case-control study starts by selecting cases for the study and then samples controls that are at 
risk of the outcome from the same underlying population [196]. Prior exposures of cases and 
controls are collected. The selection of controls, whether an individual is selected or not, should 
not be associated with the exposure that is studied. Controls are often matched to cases to 
increase the efficiency to estimate the association. Common matching schemes are matching by 
year at study inclusion (nested case-control) or e.g. by age (age matching). Case-control studies 
are cost-efficient for diseases with rare outcome, because all cases that would occur in a cohort 
could be sampled together with a smaller number of controls (commonly 5 times the controls). 
This is sufficient for studying the difference of exposures between cases and controls with a 
sufficiently small confidence intervals [197]. 

Effects are estimated by comparing exposed and unexposed individuals between the cases and 
controls. Person-years are not possible to define in case-control studies and therefore incidence 
rate cannot be estimated in a case-control study. However, it is possible to infer causality if the 
confounders are known and collected in the study. 

4.4 STATISTICAL METHODS 

4.4.1 Linear regression (study I, IV) 

The association between exposure and outcome could be analyzed by assuming that individuals 
who have higher levels of exposures, e.g. age at menarche, also have higher levels of the 
outcome, e.g. mammographic density, compared to women with lower levels of exposures [198]. 
The statistical analysis of the association assumes that there will be a linear relationship between 
the exposure and the mean value of the outcome. Secondly, the analysis also assumes that the 
residual variance, i.e. difference between the actual outcome values and the estimated mean 
values, are the same for any value of the exposure (homoscedasticity). Thirdly and fourthly, the 
individuals need to be independent of each other, and the actual outcome values in relation to 
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the model's estimated mean values of the outcome (the error term) need to be normally 
distributed. There is also a rule of thumb that the number of independent factors that can be 
added to the model is limited by the number of observations in the model population. 

Linear regression estimates a beta value, which is the estimated mean change in the outcome 
from one-unit change of the exposure. A beta-value with confidence intervals that includes the 
number zero means that there is a non-significant association between exposure and outcome. 

4.4.2 Logistic regression (study I, II) 

Logistic regression estimates the association between the exposure and the probability that a 
binary outcome occurs [199]. The association is estimated on the log scale to achieve a 
proportional scale of positive and negative associations around the no-association zero. Logistic 
regression assumes that the association between exposure and the probability of the outcome is 
linear. The regression also assumes that the individuals are independent, that there is no 
multicollinearity between exposures, and that there is no strong influence from outliers. There is 
also an assumption that there shall be approximately 10 to 20 events per exposure in the model. 

Logistic regression estimates a change in the probability that the outcome occurs from one-unit 
change of the exposure. A log-odds beta-value with confidence intervals that includes zero 
means that there is a non-significant association between exposure and outcome. Odds-ratios are 
estimated by comparing the probability that the outcome occurs in exposed individuals versus 
unexposed individuals. 

4.4.3 Penalized regression (study I) 

Penalized regression models (also known as shrinkage or regularization models) have the 
advantage that the number of independent factors that can be added to the model is not limited 
by the number of individuals that are in the model population [200]. The model fitting technique 
multiplies the penalty term lambda to the slope and to the regression coefficients of the model. 
Ridge regression adds lambda to the square of the slope and regression coefficients, while lasso 
regression adds lambda to the slope and regression coefficients as they are. Lasso regression can 
use different lambdas for the slope and each regression coefficient. The slope and coefficients 
are not squared, and the lambdas can result in zero beta coefficient estimates. Elastic net 
regression adds both the ridge regression lambda and the lasso regression lambdas to the model. 
In consequence, lambda adds a bias to the model fit. Lambda is estimated using cross-validation. 
This modelling technique is potentially valuable for improving model fit on new data. 

The penalized regression technique can be applied to several regression models such as linear 
and logistic regression. 

4.4.4 Log-binomial regression (study III, IV) 

Risk ratios and prevalence ratios (relative risks) could be estimated using log-binomial regression 
by estimating the association between exposure and the probability that the binary outcome 
occurs [201]. Odds-ratio approximates the relative risk only when the event is rare in the study 



 

40 

population. Log-binomial regression is a more general method for estimating relative risks. Log-
linear regression assumes that the association between exposure and the probability of the 
outcome is linear. The regression interprets the outcome as the probability of success in a series 
of independent Bernoulli trials. 

Log-binomial regression estimates prevalence ratios for prevalent associations and risk ratios for 
incident associations. 

4.4.5 Cox regression and competing risk analysis (study II) 

Cox regression estimates the association between person-years of exposure and the probability 
that the binary outcome occurs over the follow-up period [202]. The time-to-event survival 
analysis estimates hazards between exposed and outcome events, and between unexposed and 
outcome events, in infinite small time slice dataset over the follow-up time. Hazard ratios of the 
outcome compares the exposed and unexposed hazards. Cox regression assumes that the hazard 
ratio is the same over time, independent of time, which is referred to as the proportionality 
assumption. Further, Cox regression also assumes a linear association between continuous 
exposures and events, such that e.g. a two-times higher exposure level results in a two-times 
higher beta estimate of the event. In addition, Cox regression assumes that the individuals are 
independent. These assumptions are tested based on Schoenfeld and Martingale residuals. 

Cox regression assumes that only one type of event, e.g. breast cancer, is occurring over study 
follow-up for a woman. In the actual situation, women could experience several events including 
a death event. A competing risk of breast cancer means that the woman dies from another cause 
than breast cancer before the woman could develop breast cancer. Competing events could be 
included in a model by using a cumulative incidence function to estimate the marginal probability 
for the competing events [203]. A marginal probability refers to the probability that a woman 
develops breast cancer regardless of any competing event or censoring occurring. The marginal 
probability does not assume any independence of the competing events. Fine and Gray 
developed a model using a hazard function that is based on a sub distribution function, 
analogous to the Cox model, but can also account the competing events [149]. 

Cox regression estimates a change in the probability that an event occurs from one-unit change 
of person-time exposure. The Fine and Gray regression, in addition accounts for competing 
events. 

4.4.6 Model generalization (study II) 

There are efficient ways to optimize a model to improve its generalization performance. One 
approach is as follows. A subset of women is set aside for testing the model by estimating the 
prediction error. The model is fitted in a second subset and validated for prediction error in a 
third subset, where the lowest average square error in the third training subset determines the 
model selection in the second dataset. This is done in an iterative process [204]. A similar 
approach is to perform nested cross-validation [205]. In nested cross-validation, the dataset is 
randomly split into e.g. ten subsets (outer loop). One of the datasets is used as the test dataset. 
The training of the model is done in the remaining nine subsets combined. The combined 
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training subset is further split into e.g. five subsets (inner loop). The model is trained in four of 
the subsets combined and it is evaluated it in the fifth fold. This procedure is repeated by 
rotating the inner loop subsets (folds). In each iteration, the average model score metrics is 
calculated, and eventually the model with the best hyperparameter setting is chosen. This model 
is then trained on the main training dataset with the nine subsets (outer loop) and the model is 
evaluated on the main test dataset. This procedure is repeated by rotating the test dataset in the 
main dataset (outer loop). 

4.4.7 Non-inferiority analysis (study III) 

Non-inferiority analysis estimates the difference in the proportion of individuals that show an 
effect from an experimental intervention compared to the proportion of individuals that show an 
effect from the standard intervention [206]. The estimated proportion of responders in the 
experimental arm is compared to a non-inferiority margin. If the point estimate confidence 
intervals include the non-inferiority margin, then the experimental intervention is not considered 
non-inferior. The validity of the non-inferiority analysis relies on the constancy assumption 
which means that the effect of the standard treatment that is reported in the current trial is 
consistent with the effect that has been observed in previous trials. In study III, the proportion 
of mammographic density responders was 50%, similar to what was reported in previous trials. 
The validity of the non-inferiority analysis also relies on that the difference between the standard 
dose and tested lower dose are not compromised by study design or procedure.  

4.4.8 Potential outcome analysis (study IV) 

Potential outcome analysis estimates the association between exposure and an outcome that 
follows if the individual would have had the exposure [207]. The exposure is not actually 
occurring but is counterfactual. Potential outcome analysis is commonly used to study causation 
between exposure and outcome but could also be used to study counterfactual associations in 
general, e.g. to study feasibility of a planned study. 

Risk difference, risk ratio, and odds ratio can be estimated in potential outcome analysis using the 
same statistical methods that are used for estimating associations between exposure and outcome 
based on factual data. 
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5 RESULTS 

5.1 STUDY I 

In all, 45,417 women from the KARMA, LIBRO1, and SASBAC cohorts were included in the 
study. After development of the mammographic density tool in healthy women the relative risk 
of breast cancer was estimated in a case-control setting using three datasets. The risk 
association was estimated to 1.6 (95% confidence interval CI 1.3-1.8) per standard deviation 
averaged over the three studies after adjustments for lifestyle and familial breast cancer factors. 
The case-control discrimination was AUC 0.62 (CI 0.60-0.64). The type of image did not 
influence the risk association. The alignment protocol that was developed and evaluated 
decreased the non-biological variability observed in density change and did re-estimate the 
yearly overall percent density decrease seen in aging from 1.5 to 0.9 percent, p<0.001. 

 

Table 7. Odds-ratios and 95% confidence-intervals of breast cancer per standard deviation from 

density measures in processed, raw, and analogue mammograms. 

Case – control study sample Model 11 Model 22 Model 33 

1a. KARMA (processed) 1.6 (1.5-1.7) 1.7 (1.6-1.8) 1.7 (1.6-1.8) 

1b. KARMA (raw) 1.6 (1.5-1.7) 1.7 (1.6-1.8) 1.7 (1.6-1.8) 

2. LIBRO1 / KARMA 

(processed/analogue) 

1.5 (1.4-1.6) 1.6 (1.4-1.8) 1.6 (1.4-1.8) 

3. LIBRO1 / SASBAC (analogue) 1.5 (1.3-1.7) 1.5 (1.3-1.8) 1.5 (1.3-1.7) 

Study samples combined 1.5 (1.3-1.6) 1.6 (1.3-1.8) 1.6 (1.3-1.8) 

1Model 1 - percent density and age. 

3Model 2 - percent density, age, and BMI. 

3Model 3 - percent density, age, BMI, ever use of HRT, menopause status, and family history of 
breast cancer. 

 

The risk tool has the potential to be used for assessing risk, masking, and mammographic 
density change over time. 
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5.2 STUDY II 

The KARMA case-cohort included 10,350 women sampled from the KARMA screening 
cohort that includes 70,877 women recruited between 2011 and 2013. The case-cohort 
consisted of the available 974 incident breast cancers and a random sample of 9,376 healthy 
controls from the KARMA screening cohort. The discrimination performances of model 1, 
model 2, and model 3 was 0.73, 0.74, and 0.77, respectively. The Hosmer-Lemeshow model fit 
statistics was non-significant for each of the models. The AUCs of the three external validation 
cohorts CSAW, MBTST, and independent KARMA validation cohort were 0.73, 0.71, and 
0.73, respectively. In comparison, the established risk models Tyrer-Cuzick, Gail, and PRS 
showed AUCs of 0.62, 0.61, and 0.64, respectively. 

 

Figure 14. Frequency distribution of 2-year absolute risks for developing breast cancer in cases 
and healthy women in the KARMA case-cohort using Model 3. 

 

Risk groups1  Percent women 
at risk 

Absolute  

2-year risk (%) 

Relative risk2 

0-0.15 (low) 26.7 0.09 0.3 

0.15-<0.6 (general) 48.2 0.29 1.0 (reference) 

0.6-<1.6 (moderate) 17.3 0.87 3.0 

≥1.6 (high) 7.8 2.70 9.4 
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Microcalcifications and masses showed the strongest risk associations, followed by polygenic 
risk score and mammographic density. The left-right breasts differences of microcalcifications 
and masses added to the risk association. The risk association in screen detected and interval 
detected cancers were 8-fold in the high-risk group compared with the general risk group. The 
model predicted more often cancers with large tumors ≥20mm) and stage II tumors. The 
distribution of two-year absolute risks for developing breast cancer in cases and healthy 
women in the KARMA case-cohort using Model 3 is presented in the figure. 

The short-term risk model has the potential to identify a group of women that currently are 
sent home from screening but are more likely to come back with an interval cancer or a cancer 
at the next mammography screen. 

5.3 STUDY III 

Women from the Swedish mammography screening program were invited to participate in the 
KARISMA randomized controlled trial. In all, 2,314 volunteering women were investigated for 
eligibility to the study. There were 566 premenopausal women and 873 postmenopausal 
women included in the study. The premenopausal women showed non-inferior reduction in 
mammographic density after exposure to 2.5, 5, and 10 mg tamoxifen compared with the 
standard dose of 20 mg. Postmenopausal women showed no reduction in mammographic 
density. Severe vasomotor symptoms were reduced by approximately 50% in the 2.5, 5, and 10 
mg groups compared to the standard dose. The 2.5 mg group were therefore identified as the 
lowest dose that showed non-inferior reduction of mammographic density reduction with less 
severe side-effects. The lack of the mammographic density reduction effect in the 
postmenopausal women was not due to the fact that postmenopausal women had lower initial 
level of mammographic density at baseline. Below figure presents the non-inferiority analysis 
of the proportions of responders in the intention to treat population. 

 

Figure 15. Non-inferiority analysis of proportion of responders after six months of tamoxifen 
in the intention to treat population. 
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Figure 16. Prevalence ratios of severe vasomotor symptoms after six-months of tamoxifen in the 
intention to treat population. 

 

Low-dose tamoxifen has the potential to reduce breast cancer incidence in currently healthy 
women. 

A.Vasomotor severe events

B.Gynecological severe events

C. Sexual severe events

D.Musculoskeletal severe events
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5.4 STUDY IV 

Premenopausal women in the KARMA prospective mammography screening cohort were 
included in this pilot study. In all, 28,282 women had mammograms with two-year follow-up. 
There were 287 screen-detected and 230 interval cancers in the study population, with available 
screening mammograms at the time of diagnosis of a screen detected cancer or with an 
available screening mammogram prior to diagnosis of an interval cancer. The screening 
sensitivities in the KARMA cohort were 76%, 69%, 53%, 46% for BI-RADS density categories 
A, B, C and D, respectively. After the potential exposure to tamoxifen, the modelled screening 
sensitivities increased by 0% (p=0.35), 2% (p=<0.01), 5% (p<0.01), and 5% (p<0.01), in the 
four density categories. A potential relative density decrease by ≥20% could reduce tumour 
sizes >2cm at the time of detection by 4% (p<0.01). The table presents the number of interval 
cancers per 100,000 age standardized screening premenopausal women together with the 
change in numbers of interval cancers by percentage mammographic density decrease. The 
unexposed group is included as the reference. In the exposed group, more than fifty percent of 
the women experienced a ≥20% relative density reduction. This group included 24% of the 
interval cancers that potentially could be identified on the earlier screening mammogram. 

 

Figure 17. Screening sensitivity in the unexposed and exposed groups by mammographic breast 
density at baseline. 
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Screening sensitivity, BI-RADS density category Low High Low+ 

category mean (%) A B C D A+B C+D High 

Unexposed group 76 69 53 46 70 51 56 

Exposed group 76 71 58 51 72 55 60 

Difference 0 2 5 5 2 4 4 

p-value 0.35 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
 

In the KARMA exposed group, the figure presents screening sensitivity by mammographic density at 
baseline. Baseline mammographic density is presented as a regression plot and as categories of computer-
generated BI-RADS density categories A, B, C, D. Low density is defined as categories A+B and high 
density as C+D.  
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6 DISCUSSION 

6.1 STUDY I 

We developed an automated measurement tool that could measure mammographic density on 
different types of mammograms from different vendors. At the time the project was initiated, 
processed images were considered unusable for image analysis, due to the processing that 
vendors performed on the raw mammograms. The processing was done to better show 
potential tumors, thereby reducing mammographic density in the images. The study completely 
changed that usability of the mammograms since the tool was the first that measured 
mammographic density on processed images. 

A measurement at single points in time is usable to assess risk and masking of breast cancer, 
while longitudinal series of mammograms could be used to assess mammographic density as a 
marker for therapy response. Recent developments of other tools also use this approach [100]. 

Mammographic density is a well-established risk factor for breast cancer. The risk association 
could be explored at a large scale through the use of the automated tool. Masking is a main 
challenge in mammography screening and delays detection of cancers. The density tool enables 
studies where mammographic density better can be used to guide clinical decision for follow-
up of women that are at high risk of breast cancer and in addition have high mammographic 
density. 

Mammographic density has proven to be an excellent early marker of response to tamoxifen 
therapy and breast cancer incidence reduction. Given the challenges that has been observed for 
radiographers to take mammograms, the density alignment tool could help to reduce the non-
biological variability that otherwise obscures the true mammographic response to therapy. 

The study was limited by the lack of a publication for validating the density tool in non-
Swedish populations. The density tool is currently being tested in other populations. Screening 
modalities are constantly developing and tomosynthesis become more commonly used. In 
addition, contrast enhanced mammography is more frequently used as an alternative to 
magnetic resonance imaging. 

Further development of the density tool is needed to assess mammographic density on 
modalities other than digital mammography and analogue films. 

6.2 STUDY II 

We developed a short-term risk model based on mammographic features with the advantage 
that it could be used to automatically assess risk in the general population at mammography 
screening units. At the time the project was initiated, risk assessment was done mainly in the 
research setting where lifetime, ten year, or five-year projection were estimated. In the clinical 
setting risk models were not used to assess risk in the general population and no risk model 
was designed to improve screening. Mammography screening is a well-established examination 
procedure for early detection of breast cancer. Age-based screening is efficient for reducing 
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breast cancer mortality but is suboptimal for women that develop breast cancer that is not 
identified by the screening. Suggestions have been made to move towards a more efficient 
screening scheme [208]. The image-based model could be further expanded with lifestyle 
factors including BMI which brings a public health message. Family history of breast cancer is 
an important factor, not the least for a risk tool to be approved by regulatory authorities where 
clinics can be reimbursed for assessing risk. The model could further be expanded with a 
polygenic risk score, which improves the model substantially to well-define the low-risk group. 
This positive effect of using a polygenic risk score to well-define the low-risk group has been 
reported recently [209]. One potential value from using the full risk model including genetic 
determinants is for women in the 40’s. The women found with a low risk could be 
recommended to come back in 10 years’ time to participate in regular biennial screening. 

Risk models based on lifestyle factors or polygenic risk scores has been shown to identify the 
less aggressive oestrogen-receptor positive cancers to an increasing extent with a higher risk 
score. Our model is the first to target interval cancers and large cancers. Women that were 
identified in our model had both oestrogen-receptor positive and oestrogen-negative tumors, 
larger tumor sizes, and were more often stage II cancers. More work is needed in this field to 
improve the ability to identify more aggressive cancers. A main challenge is that the more 
aggressive cancers are only a few ten percent of all cancers and therefore naturally contributes 
with the smallest amount of information in the training step of the risk model. 

In a post hoc analysis, a cancer detection tool was used to assess the short-term risk to 
complement the risk model comparison that was published including the Tyrer-Cuzick, Gail, 
and PRS risk models. The iCAD detection tool showed an AUC of 0.69. This makes sense 
because a proportion of the cancers that are identified in the short time interval of two years 
are missed cancers. This addressed a question of what distinguishes a short-term risk model 
from detection of a cancer. In discussions with FDA, who approves clinical devices, it was 
clear that FDA defines cancer detection as the identification of a malignant lesion in the breast. 
Based on that, I defined short-term risk assessment, using mammographic features, as the 
identification of the breast with a malignant predisposition, but without identifying any specific 
lesion or region in the breast. 

In this study, a case-cohort was used instead of the full cohort. The advantage is that a smaller 
group of women can be used to perform the time-consuming image analysis. By up weighting 
the controls, the full cohort can be recreated using robust standard error estimates. The 
analysis was also performed using logistic regression instead of Cox regression to estimate the 
risk factors. A Cox regression could possibly have been preferred but was more time-
consuming to perform. The timeframe was fixed to two years in the analysis which would lead 
to comparably smaller difference in estimates. In model updates that will include five-year 
projection, time time-varying regression will be used. The analysis was controlled for age. 

Short-term risk versus detection also brings up a question whether the model identifies women 
with already existing cancers, or cancers that are developing quickly within the two-year time 
interval. To clarify this matter, it is valuable to discuss cancer development. There is a point in 
time when a cancer is initiated. Cancer initiation happens at the first genetic mutation, 
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provided that this mutation later leads to a cancer. This subclinical phase is difficult to estimate 
but is normally assumed to be ten years. There is a second point in time when a cancer 
theoretically could be detected based on the detection tool that is used to identify cancers. In 
the mammography screening context this point in time is referred to as the sojourn time. 
Studies show that this time is on average three years prior to diagnosis. There is a third point in 
time when the cancer is diagnosed. Interval cancers consists mainly of two groups, i.e. missed 
cancers and fast-growing cancers. They are approximately in a proportion of 50-50. This 
means that the short-term risk tool targets both interval cancers that are missed at prior screen 
and cancers that are fast-growing. The short-term risk model targets interval and large cancers 
at the next screen that was not detected at prior screen. It should be underlined that from a 
clinical point of view the question whether the cancer is already existing is of lesser 
importance. The screened woman is sent at home without additional follow-up. 

A study showed that women who were recalled and were found to be false positives had a 
doubled risk for developing a breast cancer within four years after the false-positive recall 
[210]. Another study showed that women diagnosed with in-situ carcinoma have a four-fold 
risk to later in life develop invasive carcinoma [28]. Recent studies showed that the breast 
cancer incidence may be underestimated in mammography screening based on digital 
mammography [211, 212]. At the same time, over diagnosis of clinically irrelevant cancers is a 
major challenge in mammography screening [4]. 

No study has shown that supplemental screening reduces breast cancer mortality. However, 
today there is no established clinical praxis for when to perform supplemental screening and 
how to perform the procedure. This challenges a systematic investigation of the value of 
supplemental screening. 

The main challenge when developing risk models is to judge the model accuracy in 
independent populations. Statistical regulation is performed to that end on the training dataset 
to make the model more generalizable. Our study was limited by not having access to more 
than two Swedish external datasets. The model accuracy is affected by different screening 
strategies, screening modalities, ages included, screening intervals, personal screening histories, 
and population ethnicities. A common strategy is to further train the model by including in the 
training dataset those population settings to enhance the model further. 

Additional external validation is needed in screening settings with different screening routines, 
screening modalities, and ethnicities. 

6.3 STUDY III 

We showed that lower doses of tamoxifen could reduce mammographic density to the same 
extent as standard 20 mg dose with less severe vasomotor symptoms. Prior to the study was 
performed, tamoxifen was used in the adjuvant setting to reduce recurrence of breast cancer 
and in the neo-adjuvant setting to reduce tumor burden prior to surgery. Tamoxifen was also 
in limited use in the preventive setting to reduce breast cancer incidence. The main challenge 
was the severe side effects that caused women to discontinue the treatment. There was a need 
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to investigate alternative approaches to increase uptake in the population in the preventive 
setting. A study had shown that a lower dose could be used to reduce intraepithelial neoplasia, 
but it was unknown which women benefit from the treatment [173]. It was known that 
mammographic density in the adjuvant and preventive setting was an early marker for which 
women benefit from the therapy. A lower dose could potentially lead to less severe side effects, 
but the efficacy of the density reduction needed further investigation. 

Our study was limited by a low participation rate and that no difference was seen in adherence 
between the study arms. Women with a family history of breast cancer were more likely to 
participate and potentially more loyal to the study protocol. The low participation rate did not 
likely lead to bias as no factor was identified that affected both participation rate and the study 
outcome. Furthermore, a low participation rate and adherence do not necessarily affect the 
results of a dose-determination randomized controlled trial. The potential for increasing uptake 
in the population when using low-dose tamoxifen has been discussed recently [213]. 

Further studies are needed to test if a reduction of breast cancer incidence and an increase in 
uptake in the population follows from the use of low-dose tamoxifen. 

6.4 STUDY IV 

We presented the first study of the tamoxifen effect on mammography screening sensitivity. 
We modelled the influence of 2.5 mg tamoxifen on mammographic sensitivity in 
premenopausal women. At the time, paper III had shown that low-dose tamoxifen reduced 
mammographic density as efficient as full dose of tamoxifen. We hypothesized that the 
mammographic density, in addition to be used for reducing breast cancer incidence, could also 
improve screening sensitivity. Low-dose tamoxifen could decrease mammographic density and 
reduce the number of interval cancers by identifying the cancers at smaller tumor sizes already 
at prior screen. The group of women that could potentially benefit from low-dose tamoxifen 
are women at high-risk of breast cancer that in addition have dense breast and a masking 
problem. It has been shown that all subtypes of cancer, not only oestrogen-receptor positive 
cancers, have a higher probability to be detected in women with low mammographic density 
compared to women that have high mammographic density. Women using low-dose 
tamoxifen could therefore benefit from early detection regardless of which cancer subtype they 
develop, an aggressive or a non-aggressive tumor. The modelling study was a feasibility study 
to investigate the potential use of low-dose tamoxifen to increase mammography sensitivity. 

Our study estimated the number of interval cancers that potentially could be reduced, 
assuming that a certain threshold of mammographic density reduction was sufficient to identify 
an interval cancer already at the prior regular screening mammogram. The median relative 
reduction of mammographic density in the study was ~20%. Studies on prevention have 
shown that women with at least a median density reduction responds to therapy with a reduced 
breast cancer incidence [112, 114]. However, it has not been shown that mammographic 
density or this specific cut-off of relative density reduction will improve screening by reducing 
the number of interval cancers. 
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The study was limited by the potential outcome analysis. Mammographic density responses 
were available from the KARISMA randomized controlled trial and were used as the reference 
of the expected density responses that would be observed in a large screening cohort, if they 
had used low-dose tamoxifen. Due to the limited number of density responses in KARISMA 
the density response variance was limited in KARMA. 

Further studies are needed to confirm that the density reduction induced by low-dose 
tamoxifen results in increased sensitivity that in turn translates into earlier detection of breast 
cancers of any subtype and thereby reduces breast cancer mortality.  
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7 METHODOLOGICAL CONSIDERATIONS 

7.1 BIAS, CONFOUNDING, AND VALIDITY 

Selection (sampling) bias 

Statistical methods are well developed for assessing the probability that a point estimate is with 
in the confidence intervals. This estimation is commonly reported with a confidence of 95%, 
i.e. it is a 95% certainty that the point estimate is within the given interval. The point estimate 
certainty is based on the assumption that the data is a representative sample, a random sample 
of sufficiently large size, of the underlying population which the point estimate is trying to 
assess. In the medical research this assumption is often violated due to difficulties of selecting 
individuals for the study. 

The possibility to perform a random draw from an underlying population is challenged by the 
availability of the entire pool of individual for the draw. Studies often rely on volunteering 
study participants. This concept jeopardizes the availability of the entire pool for the draw. 
Another challenge is that research budgets struggle with the cost for achieving a sufficiently 
large sample to test the research question. Power analyses helps in this respect but are at the 
same time assuming the possibility to make random draws, which often is challenged. Factors 
affecting the selection of individuals could affect how exposure and outcome are selected and 
could therefore result in a bias. A low participation rate per se does not imply selection bias. 
However, selection bias could affect the association between exposure and outcome if the 
factors that is responsible for the selection bias is associated with both exposure and outcome. 

Misclassification (information) bias 

In order to study the association between exposures and outcomes, the exposures and 
outcomes needs to be defined. There will always be gap between the data definitions and the 
true values. This means that the exposure and outcome definitions could include 
misclassifications. All information that is collected, measured, or categorized is subject to this 
bias. e.g. information from images, biological samples, survey-based interview data, medical 
records, or register data. 

The misclassification is either differential or non-differential. Differential misclassification 
means that the exposure or outcome definitions are not equally wrong in the two contrasting 
groups usually referred to as cases and controls. Example of an outcome misclassification is 
what occurs in a retrospective study based on survey data, where women with breast cancer are 
more likely to be aware of what exposures affects breast cancer as compared to women who 
remained healthy during the study period. The breast cancer cases are therefore more likely to 
better recall breast cancers among their relatives as compared to the women who did not 
develop breast cancer. This means that the exposure definitions would be more accurate 
among the breast cancer cases as compared to the non-breast cancer cases. 
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Lead-time bias 

A special case of misclassification in screening studies is lead time bias. Mammography 
screening is an example where women are diagnosis with a cancer earlier than otherwise would 
have been the case if the women did not participate in mammography screening. When 
estimating survival from breast cancer the lead time from diagnosis to death will be longer for 
screened women compared to non-screened women because of earlier detection. This 
systematic difference in lead time is referred to as the lead time bias where survival time is 
overestimated due to early detection. 

Length-time bias 

A special case of selection bias is length-time bias. Mammography screening is by design 
sensitive to detect cancers that are slowly growing. In comparison, women who do not attend 
mammography screening will detect slow growing cancers symptomatically at a later time. The 
time from detecting a slowly growing cancer to death is systematically longer in women 
attending mammography screening compared with the corresponding time among women not 
attending screening. This means that mammography screening leads to a potential 
overdiagnosis of cancers that are progressing slowly. 

Confounding 

The association between exposures and outcomes could be affected by a common cause. This 
leads to that the association between exposures and outcomes could be wrongly estimated. 
This bias is referred to as confounding. The true effect could therefore be outside the 
confidence intervals that was estimated from the biased model. If the confounder of an 
association is known, it can be controlled. A study could handle confounders by design 
through matching cases and controls on the confounders. In an analysis situation, associations 
could also be estimated using regression analysis or stratified analysis after controlling for the 
confounders. Confounding could also occur due du unknown factors skewing the association 
results. This could be addressed by study design in a randomized controlled trial. A 
randomized controlled trial assures that any possible known or unknown common cause of the 
studied association between exposures and outcome is controlled for at baseline of the trial. 
This means that all pre-exposures are equally distributed in all study arms and, are non-
differential to the trial exposure and outcome. 

Validity 

Bias could lead to overestimation or underestimation of the true effects. Bias could be reduced 
by increasing validity, i.e. by decreasing systematic error. This is done by reducing selection 
bias, differential misclassification, and confounding. An increase in sample size will not affect 
the validity if the bias is present in the sample. 

7.2 STUDY I 

We addressed the concern that large screening cohorts were available for potential analysis of 
mammographic density and breast cancer, but there did not exist a tool for measuring 
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mammographic density on processed images. In order to develop the mammographic density 
tool, three cohorts (KARMA, LIBRO1, and SASBAC) were used with a good representation 
of mammograms of different types from different vendors. 

The mammographic density tool could not be developed based on the contrast between breast 
cancer cases and healthy controls or the contrast between screen detected cancers and interval 
detected cancers, as this would lead to a training effect that could overestimate the risk 
association between mammographic density and breast cancer or screening sensitivity. The 
mammographic density tool was therefore developed using healthy controls in the KARMA 
and SASBAC cohorts. The KARMA and SASBAC cohorts included digital and analogue 
mammograms from different vendors. 

The FDA approved iCAD iReveal mammographic density measurement tool was used as the 
reference measure. iReveal measured mammographic density on original raw mammograms. 
Through the data collection in KARMA both raw and processed images were collected from 
the same women. This made it possible to use iReveal as the reference measure on the raw 
mammogram and train the STRATUS mammographic density tool to measure mammographic 
density on the corresponding processed mammogram. 

STRATUS learned to measure mammographic density based on image features and image tags 
information in the processed images using supervised machine learning. Mammographic 
features were analysed, and a lasso penalized linear regression models were used to predict the 
reference mammographic density measure. The mammographic features were weighted 
differently for different mammogram types and vendors. The weights could be estimated using 
penalized lasso regression, including a weight of zero. This meant that the model by itself 
could find those features that were relevant. The regularization technique with cross-validation 
also made the model more generalizable. Other model techniques were also tested, such as 
support vector machines, but the penalized lasso regression model performed as well as the 
other modelling techniques. 

The STRATUS tool was tested on an independent selection of women in the KARMA, 
LIBRO1, and SASBAC cohorts. Spearman correlation statistics and Bland-Altman fit plots 
were used to assess the measurement accuracy on square root transformed density 
measurements to achieve an approximation of normal distribution. 

Based on the development and validation of the density tool, the association between 
mammographic density and breast cancer was estimated. Through the literature it was known 
that the association between mammographic density and breast cancer was confounded by age, 
BMI, menopausal status, family history of breast cancer, and use of hormonal replacement 
therapy. An augmented case—control study design was used to include the three cohort 
KARMA, LIBRO1, and SASBAC where available breast cancer cases were matched in one-
year age bands. Logistic regression models were fit with breast cancer case status as the 
outcome and mammographic density as exposure, adjusted for the known confounding 
factors. 
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An alignment protocol was developed to better measure mammographic density changes over 
time. By observing numerous mammograms, it became clear that the radiographers who take 
mammograms work with a degree of imprecision when it comes to compressing and placing 
the breast into the mammography machine. Through estimation of breast positioning on the 
digital mammogram we saw that approximately 10% of the mammograms substantially 
deviated from recommended breast placement recommendation. The KARMA cohort was 
used for the study, including one dataset for training the alignment protocol and one dataset 
for evaluating the alignment protocol. Rigid global registration was the simplest method and as 
good or better than the alternative registration methods. 

The training was performed on women who had repeated screening mammograms taken 
within minutes from each other due to that the radiographer considered the first mammogram 
to be suboptimal. This is data that is not stored at the hospitals, but due to our data collection 
protocol this phenomenon could be studied. 

7.3 STUDY II 

We addressed the need for developing a short-term risk model to improve mammography 
screening. A case-cohort was constructed based on the available breast cancers in the KARMA 
cohort at the register linkage in 2017 (N=974) and a random sample of 9,376 controls. The 
women in the random draw that were breast cancer cases at the register linkage in 2017 were 
included as controls in the study. 

Mammographic features, (mammographic density, microcalcifications, masses) and differences 
in the occurrences of mammographic features between left and right breasts were measured 
for the women. In addition, lifestyle risk factors and family history of breast cancer was 
collected, and a polygenic risk score were estimated. 

The mammographic features included bilateral asymmetry between left and right breasts. These 
features have a statistical interesting property, because both breasts have been exposed to the 
same personal and familial history including germline genetics, lifestyle factors, and family history 
of breast cancer. This means that the remaining factor that stands out that differs between the 
two breasts is the disease. 

Risk models were developed to predict breast cancer diagnosis in the 2-year time interval after 
a negative mammogram on the basis of the mammographic, lifestyle, familial, and polygenic 
risk factors. The first risk model included mammographic features and age only. The second 
model included model one plus lifestyle and familial breast cancer risk factors. The third 
included model 2 and in addition a polygenic risk score. Logistic regression was used to 
estimate the associations between the risk factors and the breast cancer outcome. Absolute 
risks were calculated based on the achieved estimates in addition to Swedish national incidence 
rates and competing mortality risks, and risk factor exposure prevalence in the KARMA 
cohort. The absolute risks were further categorized using the NICE guidelines into high, 
moderate, and general risk. A fourth low-risk category was defined in the low end of the 
general risk category. 
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External validation was performed in the CSAW and MBTST screening cohorts including 
approximately ten thousand women each and in total approximately 700 incident breast 
cancers. A third independent validation cohort was extracted from KARMA including breast 
cancer cases diagnosed after the breast cancer that were included in the KARMA case-hort. 
The independent validation cohort also included a sample of approximately ten thousand 
controls from the KARMA cohort. 

The short-term risk model was compared with established long-term risk models Tyrer-Cuzick, 
Gail, and PRS designed for breast cancer prevention. 

The generalizability of a model is the ability predict the risk accurately in new data. In the 
model training, statistical generalization techniques were used based on women that attend the 
Swedish mammography screening setting. New data to predict can be new women in the same 
screening setting or new women in other screening settings. Population ethnicity, screening 
modality, mammographic feature risk associations, screening intervals, personal screening 
history, and incidence rates are examples of factors that determines a screening setting.  A 
model construct that is developed in one such screening setting has the potential to generalize 
to new women in that setting. Further model development should be needed to generalize in 
other screening settings. 

7.4 STUDY III 

We addressed the need to efficiently reduce breast cancer incidence by using a medication. For 
this purpose, a study would be needed that included approximately 100,000 women due to the 
low incidence of 0.5% breast cancer cases per 1,000 screened women. Previous research 
showed that mammographic density is an early marker of women that responds to tamoxifen 
and experience a lower risk of developing breast cancer. To this end, 159,027 women in the 
Swedish mammography screening program, aged 40-74, were invited to the six-months 
double-blind six-arm randomized placebo-controlled dose-determination KARISMA trial. 
Approximately 1.4% or 2,314 of the women volunteered and were investigated for eligibility. A 
randomization procedure was used that assured that the medication allocation was masked for 
all parties involved in the study execution. Placebo, 1, 2.5, 5, 10, and 20 mg of tamoxifen was 
tested. The main outcome was defined as a non-inferior reduction of mammographic density 
causing fewer severe side-effects in the lower doses compared with the standard dose of 20 
mg. Mammographic density was measured after aligning time series of mammogram, to 
account for radiographer variability in performing mammograms. Both intention to treat and 
per protocol populations were analysed. A sensitivity analysis was performed on the full 
population after multiple imputation. Post hoc analyses identified that menopausal status was a 
key to understand differential mammographic density effects among the study participants. 

7.5 STUDY IV 

We considered the potential use of low-dose tamoxifen to improve mammogram sensitivity in 
a pilot study. It is known that women who use the oestrogen hormonal replacement therapy 
increase in mammographic density and have lower screening sensitivity. We assumed that 
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tamoxifen, an anti-oestrogen proven to reduce mammographic density, could improve 
screening sensitivity. The density response to tamoxifen was known from the KARISMA trial 
and the density dependent screening sensitivity were known in the KARMA cohort. Potential 
outcome analysis was performed including the available 28,282 premenopausal women in the 
KARMA prospective screening cohort. Mammographic density is shown to be associated with 
screening sensitivity and the tumor size that is registered at the time of diagnosis. For this 
reason, two models were fitted to estimate the screening sensitivity and tumor size dependence 
on mammographic density in the KARMA cohort. The density response in the KARISMA 
trial were thereafter investigated for any association with lifestyle and familial risk factors. No 
association was found and the density response in the 2.5 arm in the KARISMA trial was 
therefore applied to the KARMA screening cohort using a random distribution. Analysis was 
performed where the KARMA women were compared to themselves with and without the 
estimated density effect of tamoxifen. Interval cancer rates and tumor sizes were compared 
before and after a potential exposure to tamoxifen. 
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8 ETHICAL CONSIDERATIONS 
Key concepts for performing research is to assure the safety and integrity of the study 
participant. The study participants shall have the right to a well-balanced study information 
prior to actively choosing to accept or not to accept to participate in the study. The European 
Council established a convention on human rights and biomedicine to regulate the ethical 
process including the operation of ethical review boards that approve research. The General 
Data Protection Regulation (GDPR) legislates the use of sensitive personal data such as 
informed consent and data based on surveys, mammograms, blood samples, and registers. 
Personal identifying information must be removed from the data prior to the research use of 
the data. 

In the KARMA study women who attend mammography screening were recruited at study 
centres located near the mammography screening units. Women were given detailed written 
and oral information before giving informed consent to participate in the study. The women 
contributed with survey-based information, mammograms, donated blood, and gave the 
permission to access register-based data and medical records. The data was collected and 
handled according to the officially available and GDPR compliant routines at the department 
of Medical Epidemiology and Biostatistics, Karolinska Institutet. The women in the LIBRO1 
study and the CAHRES study similarly contributed with survey-based information, 
mammograms, donated blood, and gave the permission to access register-based data including 
cancer and vital status, and medical records. The data was collected and handled according to 
the routines held by the department at these time periods. The KARISMA trial included 
women who were recruited when performing mammography screening. The same procedure 
was followed as for the KARMA women. The CSAW study was based on register data 
including mammograms and cancer and vital status register data. The MBTS study similarly 
was based on register data including mammograms and cancer status register data. Personal 
identifying IDs were exchanged with study specific IDs to protect the study participants from 
revealing personal identifying information. 

Ethical approval was granted by the regional ethics board at Karolinska Institutet for all studies 
but for MBTS that was granted ethical approval by the regional ethics board at Lund 
University: 

• KARMA   2010/958-31/1 and 2013/2090-32 
• KARISMA  2016/65-31/2 
• LIBRO1   2009/254-31/4 and 2011/2010-32 
• CAHRES/SASBAC 155/93, 2006/1350-32 
• CSAW  2016/2600-31 
• MBTS  2009/770 

Register-based data is governed under the same regulation as all sensitive personal data. 
However, due to routines of de-identifying the data some of the data may not be classified as 
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sensitive personal data. For this reason, informed consent may not be required. Under no 
circumstances could personal identifying information be revealed in the research data.  
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9 CONCLUDING REMARKS 
In this thesis I investigate ideas for improving mammography screening and prevention of 
breast cancer. Considering that one woman in eight develops breast cancer during the lifetime 
in the Western world, measures are warranted for reducing mortality and to prevent breast 
cancer. In this thesis I developed tools for assessing mammographic density and breast cancer 
risk. We also developed one low-dose tamoxifen concept that reduces mammographic density 
for the potential use in breast cancer prevention, and I developed one low-dose tamoxifen 
concept that reduces mammographic density for the potential use to improve screening 
sensitivity. 

The study populations that were used to develop the tools and concepts were mainly KARMA 
and KARISMA. The prospective KARMA cohort are women attending mammography 
screening in the Stockholm area and southern of Sweden in 2011 till today. Approximately 
35% of the women who attend mammography screening participated in the KARMA study. 
An increased proportion of women with a family history of breast cancer was observed, which 
may have affected our results in addition to other non-measured confounding. Due to the 
prospective study design, the women were not aware of a later cancer outcome, which makes 
any classification bias of risk factors and breast cancer outcome less likely differential. 

Women who attended mammography in the Stockholm area were invited to participate in the 
KARISMA study. Approximately 1.4% of the invited women participated in the KARISMA 
study between 2016-2019. This phase II study was a double-blind randomized and placebo-
controlled non-inferiority dose determination study. This means that the baseline 
characteristics of the women were equally distributed in the study arms. In consequence, this 
means that the observed differences in density reductions between the study arms after 
tamoxifen exposure have low bias. 

In study I, I developed and evaluated a mammographic density tool for automated assessment 
of radio dense fibro-glandular tissue. The measurement could be used on processed and raw 
images and on digital and analogue mammograms origin from different vendors. This made it 
possible to access vast resources on the hospitals that was previously difficult to include in 
research studies. The measurements were also suited for longitudinal studies to follow density 
change over time. The tool was valuable for assessing the three key concepts risk, masking, and 
therapy response to therapy. 

In study II, I developed and evaluated a risk assessment tool for assessing short-term risk of 
breast cancer. The work introduced the concept of constructing a risk model using 
mammograms as the main component. The rational was to make use of the infrastructure that 
is available at mammography screening units. The work constructed the first risk model with 
the aim to improve mammography screening. This concept is now recognized as the second 
clinical use case for a risk model. 

In study III, the lowest tamoxifen dose was identified that was non-inferior to standard dose of 
20 mg tamoxifen to reduce mammographic density and to show less side-effects. The 
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overarching aim for performing the project was to improve adherence of a medication that 
could be used for breast cancer prevention. 

In study IV, I developed a concept based on low-dose tamoxifen to improve screening 
sensitivity and to reduce interval cancers and large cancers. The rational for performing the 
study was that it is known that low-dose tamoxifen reduces mammographic density to the 
same extent, but has less side-effects, compared with standard 20 mg dose. It is also known 
that screening sensitivity is higher for any type of breast cancer in women who have low 
mammographic density. We modelled the effect of how interval cancers and large cancers 
could be reduced by identifying those cancers at prior mammography screen. The study was 
done as a pilot to investigate the feasibility of performing a large-scale study on the same 
subject. 

The concepts developed in this thesis have a huge potential for clinical use. Any follow-up of 
the use potential of this research requires clinical prospective trials to validate the risk 
assessment tool and the low-dose tamoxifen therapy. 
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10 FUTURE PERSPECTIVES 
Today, one woman in eight develop breast cancer in her lifetime. Mammography screening 
reduces mortality by approximately 20%. Prevention strategies are scarce due to severe side-
effects. Women who develop breast cancer in a short time after a negative mammogram are 
between two chairs of clinical strategies; detection of breast cancer and risk assessment for 
prevention of breast cancer. 

In the thesis I describe development of tools that are needed to move from age based to risk 
based screening by improving mammography screening and to improve breast cancer 
prevention by reducing therapy side-effects. A risk model was developed to improve 
mammography screening of interval and large breast cancers. The model could potentially be 
used to reduce breast cancer mortality. A low-dose tamoxifen therapy was developed to reduce 
mammographic density. Low-dose tamoxifen was shown to reduce mammographic density to 
the same extent as the clinically accepted full dose. A mammographic density reduction could 
contribute to future screening efforts by increasing the sensitivity of a mammogram. A density 
decrease has also proven to be a good proxy for tamoxifen therapy response thereby indicating 
that low-dose tamoxifen has a potential preventive effect. 

The thesis is the starting point for potential validation studies. The work for the 2020s is 
outlined as follows. 

As a first follow-up study, I suggest a clinical prospective trial for evaluating the risk 
assessment tool. The study should be done in multi-centre European and US settings. Several 
countries in Europe provide organized national mammography screening programs, while US 
provides regional screening programs and opportunistic screening. In Asian countries 
opportunistic or no mammography screening is most common. Given the international 
difference in screening routines, at least two main trials are needed, ideally more. A European 
trial should include mammography screening units from several countries to account for 
differences in screening routines and differences in screening modalities and ethnicities of the 
women attending screening. In Europe, the breast cancer detection rate is approximately 0.5% 
per 1,000 women screened and the recall rate differs between approximately 3-7%. The 
screening modality that is used is mainly digital mammography. The screening interval is 
between one and three years and the screening age is most commonly 50-69, but some 
countries start screening at 40 and ends at 74 years. The screening attendance is on average 
approximately seventy percent. 

The trial should assess the risk of breast cancer in women attending mammography screening 
in two screening rounds. Two arms will be included, one for risk assessment and one for the 
regular screening routine group. The outcome should be interval and aggressive cancers 
diagnosed before or at the last screening round. The comparison is done between the two 
arms. 

A potential result from the trial is that high-risk women are identified who a) benefit from a 
follow-up using a more sensitive modality if they have dense breasts and b) benefit from a 
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follow-up using more frequent mammography screening if they have non-dense breasts. Fewer 
interval cancers and fewer aggressive cancers should be seen in the risk arm compared to the 
regular arm. More cancers are expected to be seen at the screening visits. 

A low-risk group could also be identified who may not benefit from screening and potentially 
could have less frequent screening. The best definition of low risk could be reached by 
including genetic determinants into the image-based risk model. This opens a possibility to 
assess the breast cancer risk already at age 40 using the full risk model. Women with low risk 
could potentially be recommended to start their regular screening at age 50. The clinical 
experience for the radiologists is important to follow-up through interviews to understand any 
potential for an implementation phase. 

In the US setting there are key differences in the diversity of ethnicities at screening units. It is 
more common to use one-year screening intervals and tomosynthesis modalities are a more 
commonly used. The screening attendance is low below 50%, and there is much higher recall 
rates of 10-30%. Each of these differences potentially affects the risk model and the model 
needs to be adapted to these screening settings. 

As a second follow-up study, I suggest a clinical prospective trial for evaluating the low-dose 
therapy use in prevention and screening. The low-dose tamoxifen effect on breast cancer 
prevention and screening sensitivity could be assessed in the same study. Given that the low-
dose phase II trial for reducing mammographic density already is done, a phase III trial should 
be performed where a reduction of breast cancer incidence is tested. The main aim is to reduce 
breast cancer incidence in the healthy population. Approximately 25,000 premenopausal 
women are required to perform the study in a 4-year and two screening round randomized 
trial. Women receive medication for the first two years and are observed for the next two 
years. With an incidence rate of ~0.3% approximately 300 breast cancer cases will be 
developed in the cohort. 

With regards to the large study size, it should be investigated if women should be selected 
based on risk using the risk model from study II. The model is designed to identify 
approximately ten percent of all screened women where approximately eight times more 
cancers will be identified. This means that the group of 25,000 women could be reduced to 
approximately 3,000 women with a similar statistical power. 

The main outcomes are a) cancer sub type by oestrogen-receptor status because tamoxifen is 
shown to reduce oestrogen-receptor positive cancers, and b) cancer detection rates and recall 
rates because the potential effect that tamoxifen has on reducing mammographic density. 
Additional outcomes are mammographic density change, adherence, and side-effects. The 
main estimates for point a) are oestrogen-receptor positive cancers compared between the 
arms. The main estimates for point b) are incidence of cancer of any subtype compared 
between the arms. In addition, cancer detection rates, recall rates, and screening sensitivity at 
year two and four are estimated. Mammographic density change, adherence, and side-effects 
are a key factor in both analyses. 
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A potential result from the trial is that fewer oestrogen-receptor women will be observed in the 
low-dose tamoxifen arms. It remains to be shown whether there will be a difference in number 
of oestrogen-positive cancers comparing all low-dose tamoxifen arms. It also remains to be 
shown if the potential reduction is seen at year 2 and at year 4. A second potential result from 
the trial is that the detection rate will increase for cancers of any subtype, even after accounting 
for the potential reduction of oestrogen-receptor positive cancers. Screening sensitivity may 
increase, although it is less clear how recall rates would be affected. How adherence and side-
effects will develop is less easy to judge but they are key factors for interpreting the results. The 
clinical experience for the radiologists is important to follow-up through interviews as a first 
step towards understanding any potential for an implementation phase. Ethical discussions will 
be performed with study participants in focus groups on the concept of medicating non-
cancerous women. 

In summary, a clinical prospective trial could evaluate the risk assessment tool in a European 
and a US setting to assess the efficacy of reducing interval cancers and large breast cancers. 
The study will also assess any change in sensitivity, specificity, and recall using the model. In 
Europe current recall rates are at low levels compared with the high recall rates in US. A 
second clinical trial could evaluate the low-dose tamoxifen therapy efficacy of reducing 
oestrogen-receptor positive cancers and increasing screening sensitivity of any type of breast 
cancer by administering low-dose tamoxifen to healthy women. 

The industry is carefully following late developments in the research fields of improved 
screening and prevention. New screening modalities such as contrast-enhanced mammography 
should be investigated as an affordable alternative to magnetic resonance imaging for the use 
in screening follow-up of women at high risk of breast cancer. Additional studies are needed to 
evaluate the risk model use in the risk-based screening setting in developing countries. 
Developing countries are likely to benefit the most from risk-based screening with life-
changing consequences of reducing breast cancer mortality. New breast cancer risk reducing 
medication should be investigated such as endoxifen for its potential to reduce breast cancer 
incidence similar to tamoxifen but with less side-effects. Through the combined efforts of 
research and the industry, it is feasible to say that in 2030 we will see a break in the trend of 
increased breast cancer incidence by the prevention initiative and a further reduction of breast 
cancer mortality by the improved screening. 
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ABSTRACT IN SWEDISH 
En av åtta kvinnor utvecklar bröstcancer under sin livstid i västvärlden. Åtgärder behövs därför 
för att minska dödligheten och för att förhindra bröstcancer. Mammografiscreening minskar 
dödligheten genom tidig upptäckt. Cirka en fjärdedel av kvinnorna som utvecklar bröstcancer 
diagnostiseras dock inom två år efter en normal mammografiundersöknng. Det finns därför ett 
behov av att identifiera den kortsiktiga risken för bröstcancer för att bättre kunna vägleda ett 
klinisk beslut för vilka kvinnor som behöver bättre uppföljning. En annan nackdel med 
mammografiskreening är att den enbart fokuserar på tidig upptäckt och inte på förebyggande 
åtgärder för bröstcancer. Idag är det känt att kvinnor som deltar i screening kan delas in i 
kvinnor med hög och låg risk för bröstcancer. Kvinnor med hög risk skulle kunna erbjudas 
förebyggande åtgärder såsom en låg dos av tamoxifen för att minska risken för att utveckla 
bröstcancer. Kvinnor med låg risk har inte samma behov av skreening och skulle därför kunna 
erbjudas mindre frekvent skreening. 

I studie I utvecklade jag mammografitäthets-mätverktyget STRATUS som är till för att 
möjliggöra att mammogramresurser på sjukhus kan användas för storskaliga epidemiologiska 
studier för att studera risk och prognos för bröstcancer. STRATUS är även till för att studera 
risken för att missa en cancer samt att använda mammografisk täthet som en markör för att 
påvisa om man svarar på en behandling som kan förebygga bröstcancer. 

I studie II utvecklade jag en riskmodell för att bedöma korttidsrisken för att bli diagnostiserad 
med bröstcancer. Modellen var baserad på mammografiska markörer såsom mammografisk 
täthet, mikroförkalkningar, knölar i bröstet och skillnader i mammografiska fynd mellan 
vänster och höger bröst. Modellen kan därtill utvidgas med riskfaktorer relaterat till livsstil och 
genetiska riskmarkörer. Baserat på resultaten visade vi att bland kvinnor som ej hade en cancer 
vid den nuvarande mammografiscreen, så identifierade korttidsrisk-verktyget kvinnor som 
senare blev diagnosiserade med bröstcancer före eller vid nästa screening. Vi visade också att 
traditionella riskmodeller inte var anpassade för att identifiera de kvinnor som inom en kort tid 
efter en riskbedömning blev diagnostiserade med bröstcancer. 

I studie III genomförde vi en fas II-studie där den lägsta dosen tamoxifen identifierades som 
kunde användas för att minska den mammografiska tätheten. En sänkning av den 
mammografisk tätheten är en tidig markör för att kvinnan har en minskad risk för att utveckla 
bröstcancer. Kvinnorna påvisade lägre grad av biverkningar än standarddosen 20 mg som 
används normalt. En tamoxifendos på 2,5 mg tamoxifen var tillräcklig för att minska den 
mammografiska tätheten lika mycket som standarddosen. Till följd av den lägre dosen 
rapporterade kvinnorna cirka 50% mindre allvarliga vasomotoriska biverkningar, dvs. mindre 
vallningar och svettningar. 

I studie IV undersökte jag om lågdos-tamoxifen även kan användas för att underlätta läsningen 
av mammografibilderna till följd av att tamoxifen sänker den mammografisk tätheten som kan 
dölja en cancer i mammografibilden. Vi visade att 24% av intervallcancer potentiellt skulle 
kunna upptäckas vid det tidigare ordinarie skreeningtillfället. 
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Sammanfattningsvis utvecklade vi verktyg för att mäta mammografisk täthet och korttidsrisk 
för bröstcancer. Dessutom utvecklade vi två koncept med lågdostamoxifen, där det första 
konceptet kan förhindra östrogenpositiva bröstcancerar från att utvecklas och det andra 
konceptet kan förbättre möjligheten för att upptäcka en cancer vid mammografiskreeningen. 
Kliniska prospektiva valideringar behöver genomföras för att utvärdera verktyget för 
riskbedömning samt en låg dos av tamoxifen mer ingående för att de ska kunna användas vid 
förebyggande av bröstcancer och för att minska dödlighet i bröstcancer. 
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insights of the similarities who performed the first STRATUS based GWAS with very 
promising results. 

Jennifer Stone, leading Australian epidemiologist with no challenge untouched and a great 
supporter of my risk model efforts. 

John Hopper, leading Australian geneticist and a fantastic supporter of my research projects. 
Thanks for inspiring discussions at conferences. 

Jenny Chang-Claude, key BCAC professor with whom I had many discussions about the 
best large-scale data approach for meta analyses. 

Martin Widschwendter, head of ENVISION and invaluably promoter of the idea for the 
short-term risk model approach to improve screening. 

JoAnn Pushkin, patient advocate and founder of DenseBreast-info.org for warm support of 
the risk model and for the energizing discussions. 

Adam Brentnall, key developer of the Tyrer-Cuzick model for interesting meetings at 
Wolfson and insightful information exchanges. 

Anthony Howell, charming professor and risk prevention specialist who provided highly 
interesting feedback in research collaboration on risk prevention. 

Susan Astley, expert mammographic density researcher with whom I had many cheerful 
conference chats and dinners. 

Gretchen Gierach, expert breast density researcher who gave insightful discussion points at 
conferences and inspiring events in the Hawaiian Islands. 

Karin Leifland, head of the South General hospital radiology unit who invited me to 
stimulating discussions on how the screening unit work flow is setup and for showing interest 
in the potential for improvements. 

Paolo Giorgi Rossi, brilliant Italian epidemiologist and mammography screening program 
developer for discussions of remarkable research project prospects. 

Axel Gräwingholt, German radiologist with unmistaken devotion to improve mammography 
screening and an invaluable fascination to evaluate “the latest” in the field. 

Nasim Mavaddat, expert geneticist risk modeller who opened my eyes for the great interest 
in combining late genetic risk determinants with mammographic density as discussed at nice 
dinners. 

Manjeet Bolla, main data manager in BCAC with a very nice appearance and nice lunch 
companionship for discussions of the data complexities in vast projects. 
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Jean Wang, key data manager in BCAC with great patience in pursuing loose ends in the data 
yarn to facilitate research prospects even further. 

Michael Lush, IT responsible in Cambridge with a devoted support for guaranteeing the 
uptime of the STRATUS density tool and for cheerful chats at the coffee machine. 

Joe Dennis, geneticist in Cambridge with a formidable programming skill and interest in the 
further development of density. Nice party conversations. 

John Shepherd, leading image analysist and conference organizer for our breakthrough 
discussions of future development paths in image analysis on our many fold Thursday pancake 
lunches. 

Signe Borgquist, oncologist and epidemiologist for insightful dinner discussions and research 
discussions, always with a sparkling touch. 

Fiona Gilbert, leading UK radiologist for vivid conference discussions of the landscape of on-
going studies and the possibilities for the better positioning. 

Sophia Zackrisson, leading Swedish radiologist with very productive flight discussion and 
following fruitful research collaborations. 

Fredrik Strand, radiologist and prior PhD colleague who offered very valuable support for 
performing a key paper in my thesis. 

Steven Quay, MIT lecturer and head of the Persian queen therapeutics company who shared 
enormous skills in patent work with unprecedented dedication to prevention therapies. 

Ralph Highnam, head of Volpara and legendary density tool developer with whom I spent 
many white-board sessions to push the density development one more step forward. 

Douglas Katz, scientific editor with skills unprecedented to my experience who gave me 
memorable learnings towards perfecting a manuscript. 

Linda Moy, US radiologist and screening regulatory committee member who gave me crucial 
screening regulatory insights and great panel discussions for further risk model direction. 

Andrea DeCensi, legendary prevention researcher and clinician who inspired me in critical 
analysis of tamoxifen doses in balancing effect, side-effects, and prior knowledge in the field in 
a great panel discussion. 

Jingmei Li, associate professor in Singapore who quickly connects the dots to a full picture 
with flowering ideas and great follow-up research collaborations. 

Wei He, prior post doc in our research group with a very pleasant approach and sharing of 
nice research ideas, along with Chinese habits. 

Hatef Darabi, prior post doc in our group with prediction skills to infinity and beyond who 
introduced me to the martial arts. 
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Natalie Holowko, prior post doc in our research group with especial interest in genetic 
determinants of mammographic features for the productive research collaborations. 

Martin Eklund, associate professor at the department with an exquisite ability to stay on 
course in delicate analyses under challenging conditions. 

Andrea Discacciati, a post doc at the department with excellent statistical skills who elegantly 
and cheerfully showed how all imputations and bootstraps should be realized. 

Felix Grossmann, post doc in our research group with extraordinary large-scale analysis 
abilities and insightful discussions of analysis problems over oatly spiced coffee. 

Shadi Azam, PhD fellow for all discussions with easy laughs and several collaborative research 
projects. 

Maya Alsheh Ali, post doc in our research group with high image analysis skills with special 
interest in automated microcalcification analysis and fruitful collaborations. 

Haomin Yang, prior PhD fellow for fun discussions on complementary use cases of 
mammographic features with s novel clinical potential. 

Roxanna Hellgren, radiologist and head of radiology at South General hospital for nice walks 
and talks about potential research questions and their challenges. 

Amber Wilcox, US PhD student who kept me on edge with multitudes of risk model 
assessments. 

Nadja Rajaram, Malaysian PhD student who clarified the similarities and differences of 
mammographic densities in a fruitful collaboration using STRATUS in international cohorts 
with a focus on traditional risk factors and physical activity. Soya is the latest prospect. 

Linda Rainey, PhD fellow in the Netherlands for nice discussions on analysis challenges and 
quality of life interpretations. 

Marie O’Reilly, professor at the department and an excellent teacher who extended my view 
of what is a good study design. 

Matteo Bottai, professor at IMM and a distinguished teacher who made teaching of elements 
a work of art. 

Abbas Cheddad, prior post doc in the research group and skilled image analysist for 
interesting meetings on analysis challenges during summers. 

Senthil Periaswamy, industry leading deep learning expert with ROC curves and patent skills 
covering the office walls like a true rock star. Thanks for fruitful collaborations and coffee 
coupons. 

Kourosh Jafari, deep learning expert with unusual empathic image and modelling expertise 
with unravelled performances and future prospects. Thanks for nice chats. 
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Mike Klein, head of the world leading cancer detection tool for mammography screening that 
warmly embraced the expansion of the portfolio into my image based short-term risk model. 

Rodney Hawkins, vice president of industry leading detection tool and the first to adopt the 
short-term risk tool for evaluation and later implementation into a clinically valid product. 

Andjela Azabagic, project manager for the short-term risk tool and is devoted 24 hours a day 
pushing towards to establish the first short-term risk tool for improving womens’ breast health 
in the screening setting. 

Jeffrey Hoffmeister, scientist and research study responsible for clinical implementations who 
has shown extraordinary engagement in promoting the risk tool. 

Alicia Garfield, project manager in the risk tool project who luckily keep us all on the right 
track with time-lines and deliveries. 

Jim Pike, research responsible for the clinical risk tool and devoted into adopting the tool to 
the different and very challenging screening settings. 

Rives Bird, computer aided detection account responsible who provided the first machine 
that later led to history. 

Simon Lee, IT specialist who with unprecedented record in delivering solutions to problems 
that occur in the clinical application phase. 

Daniel Hayden, programming expert with a probable Viking gene hidden and language skills 
that makes any coding translation a breeze. 

Thomas Harrison, programming expert with skills stretching also into the deep learning area 
and strong tool prototypes. 

Linda Thorén, PhD fellow with sparkling bottle promises soon to be realized after extensive 
and nice research discussions on improving breast cancer patient health using refined early 
markers for therapy response. 

Jacob Järås, statistician and breast cancer register expert for an always happy and reliable 
delivery and quality strategy. 

Daniel Nyqvist, Pfizer representative with great interest in the research prospects and 
valuable discussions on future endeavors. 

Malin Gavelin, editor of Hemmets Journal for a fruitful discussion and introduction to media 
exposure. 

And not the least, I want to direct my sincere gratitude to each woman that contributed with 
trust, time, information, and samples to the research work. And in addition, to the Entire 
study personnel group in KARMA, KARISMA, LIBRO1, SASBAC, MBTST, and CSAW. 
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