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“Gräv ut slöhetens bomull ur förståndets öra, så att från de döde visdomsordet må tränga in 

i ditt öra” 

–  Shaikh Saadi  

(Persisk poet 1210–1292) 

  



ABSTRACT 
Background: A new capacitance-based automatic urinometer (AU) facilitates continuous 

urine output (UO) measurement, which may help to predict and diagnose acute kidney 

injury (AKI). To prevent mismeasurement due to bacterial, albumin or free hemoglobin 

biofilm, a water-soluble capsule with silicone oil has been integrated in the device.  

Aims: To assess: the performance of a new capacitance-based AU in adult patients in a 

cardiothoracic intensive care unit (ICU) and compare it with a manual urinometer (MU) in 

regard of bias, precision, temporal deviation and to evaluate the staff’s opinion of the AU 

(Study I); a modified capacitance-based AU in comparison with an MU regarding 

measuring bias among patients ≤10 kg in a pediatric intensive care unit and to evaluate the 

staff’s opinion of the AU (Study II); whether a silicone oil-coated polypropylene plastic 

surface, as used in an AU, may reduce early microbial biofilm formation and to identify the 

silicone oil target; to compare polypropylene with polystyrene and low with medium 

viscosity silicone oil regarding the propensity to impede biofilm formation (Study III); if 

silicone oil added to the measuring chamber of the AU may prevent the rise in capacitance 

due to albumin or free hemoglobin biofilm, allowing the device to function for longer 

periods of time (Study IV).  

Methods: Study I-II were prospective observational cohort studies, whereas Study III-IV 

were experimental prospective in vitro studies. Study I: 34 postoperative patients had their 

hourly UO registered with either an AU (n=220) or an MU (n=188), which were validated 

by cylinder measurements and analyzed using the Bland-Altman method. The temporal 

deviation of the MU measurements was recorded (n=108) and at the end, the nursing staff 

(n=28) evaluated the AU. Study II: The hourly diuresis was measured using either an AU 

(n=127) or an MU (n=83) in 12 children (weight ≤10 kg) and validation was carried out 

using a measuring cylinder. Thereafter, the nursing staff (n=18) evaluated the AU. Study 

III: Clear flat-bottomed wells of either polypropylene or polystyrene were pretreated with 

silicone oil of low or medium viscosity, after which a panel of microbes, including common 

uropathogenic bacteria and Candida albicans, were added. The plates were left for 3 days 

and the amount of biofilm formation was assessed using the crystal violet assay. Study IV: 

A solution of Ringer’s acetate mixed with either albumin or free hemoglobin was run 

through an AU with either a water-soluble capsule with silicone oil (n=20) or not (n=20) 



and the derived 400-500 capacitance measurements, respectively, were retrieved from the 

AU device and analyzed. 

Results: Study I: The AU had a smaller mean bias (+1.9 mL) than the MU (+5.3 mL) 

(p<0.0001). Defined by their limits of agreements (±15.2 mL AU vs. ±16.6 mL MU, 

p=0.11), the measurement precision of the two urinometers were similar. The AU had 

inherently no temporal deviation, whereas the mean temporal deviation of the MU was ±7.4 

minutes (±12.4%) (p<0.0001). The nursing staff rated the AU significantly higher than the 

MU in terms of user-friendliness, measuring reliability, efficacy and safety. Study II: The 

AU and the MU had a mean bias of −1.1 mL (CI, -0.6 to -1.5) and -0.6 mL (CI, ±0.0 to 

-1.2) respectively (p=0.21). The participating staff considered the AU significantly easier 

to learn, use and handle compared with the MU. Study III: Polypropylene plastic exhibited 

less biofilm growth than polystyrene. Silicone oil, irrespective of viscosity, significantly 

decreased biofilm formation by common uropathogenic bacteria, including ESBL-

producing and multi-drug resistant strains, as well as C. albicans. E. coli curli fimbriae 

were established as the main focus of silicone oil. Study IV: The mean increase in 

capacitance with albumin 3 g/L group was 257±96 without and 105±32 with silicone oil, 

respectively, during 24 hours. After ten hours of registration, differences between the two 

albumin groups reached statistical significance. For the free hemoglobin groups (0.01 g/L), 

the mean increase in capacitance was 190±174 with silicone oil and 324±78 without. A 

significant difference between the free hemoglobin groups was seen after 20 hours and 

onwards. 

Conclusions: For adult postoperative patients, the AU was non-inferior to the MU with 

regard to measuring precision and significantly better than the MU in terms of bias and 

temporal deviation (Study I); for children weighing ≤10 kg, the urinometers were 

comparable in performance (Study II); staff consistently appraised the AU significantly 

higher than the MU in terms of user-friendliness, reliability, safety and efficacy (Study I 

and II). Both low and medium viscosity silicone oil coating of a polypropylene surface 

decreased biofilm formation from common uropathogenic bacteria including Candida 

albicans and the biofilm-promoting factor curli fimbriae was identified as a plausible target 

(Study III); coating of the capacitance measurement membrane of the AU by albumin or 

free hemoglobin significantly disturbed the capacitance measurement capability of the AU, 

and this could be prevented by incorporating silicone oil in the device (Study IV).  
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1 INTRODUCTION AND BACKGROUND 

1.1 WHY REGISTER URINE OUTPUT 

For hospitalized patients, particularly for those in the intensive care unit (ICU), essential 

physiological parameters, including arterial saturation, heart rate, blood pressure, 

temperature and respiration rate, are routinely recorded and displayed on the patient data 

monitoring system. The used measuring devices will warn the staff if the monitored values 

are not within the set reference range, whereupon, when necessary, they may help to reduce  

risk for organ failure and ultimately death. 

Urine output (UO) is a vital part of the patient´s fluid turnover, representing the lion’s share 

of fluid output and corresponds to approximately 1500 mL/day in a resting adult person. In 

contrast to fluid intake, which is commonly automatically registered via pumps and 

syringes, UO is virtually still exclusively recorded manually.  

Measuring UO hourly may warn of acute kidney injury (AKI), which is not an unusual 

problem after major surgery and periods of hemodynamic instability (1, 2). AKI occurs in 

more than 55% of ICU patients (3) while cardiac surgery has been associated with up to 

30% incidence of AKI (4). Ischemia, sepsis and toxic medication are considered the most 

frequent triggers of AKI in both children and adults (5). In one study, 25% of pediatric ICU 

patients with AKI died within 4 weeks, whereas the mortality rate in children without AKI 

was 2.7% during the same period (6).  

UO is included alongside creatinine and glomerular filtration rate (GFR) in the 

internationally used systems RIFLE, AKIN and KDIGO to define AKI (Figure 1) (7, 8).  

 

 
 
Figure 1. Internationally used systems, RIFLE (Risk Injury Failure Loss and End-stage renal disease, left), AKIN 
(Acute Kidney Injury Network, middle), and KDIGO (Kidney Disease Improving Global Outcome, right) to 
define AKI (7). (Reprinted with permission from BMC Springer Nature and Karger Publishers). 

KDIGO 
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Serum creatinine has a low sensitivity for AKI as almost 50% of the GFR must be lost 

before a change in serum creatinine may be detected (9). Although the importance of UO as 

a solitary parameter to reflect kidney function has been debated, continuous monitoring of 

UO in addition to renal laboratory parameters may help to identify AKI (10-12) and be 

related to outcome. In a prospective study by Macedo et al. including 317 ICU patients, UO 

was found to be both an early and sensitive marker for AKI and correlated to an increased 

mortality rate in ICU patients (13). In another study by Kellum et al. (14), isolated oliguria 

in stage 2 and 3 AKI was associated with a decreased 1-year survival. Moreover, prediction 

of both short- and long-term risk of death or renal replacement therapy was greatest when 

both the serum creatinine and the UO criteria were met together. 

UO is probably a more sensitive but less specific criterion that needs to be addressed in 

context with the patient’s clinical status and medical history. In a study by Prowle et al., it 

was found that solitary oliguria, without taking other parameters into consideration, was 

only an average predictor of AKI. However, if the patient was hemodynamically unstable 

or in need of incrementing vasopressor support, oliguria was a clinically helpful indicator to 

identify patients in danger of developing AKI (15). Although a low UO is usually 

associated with pending or manifest AKI, UO might in some cases of AKI also increase, 

e.g. in acute interstitial nephritis. Furthermore, the patient’s fluid status will influence the 

UO. Hypovolemia for instance will trigger a low UO without the absolute need of 

concomitant kidney injury (9).  

UO during cardiopulmonary bypass (CPB) has been shown to be independently associated 

with the risk for developing AKI (16) and oliguria post cardiac surgery in association with a 

positive fluid balance has been shown to better predict longer hospital length of stay (LOS) 

than oliguria alone (17).  

Interestingly, hourly UO is one of six simple parameters (heart rate, systolic blood pressure, 

respiratory rate, temperature, state of consciousness, UO) that are included in the modified 

early waring score (MEWS) score, which is used to identify deteriorating patients on 

hospital wards who may need intensive care (Table 1) (18). It is also one of 10 vital 

parameters included in another early warning system called 10 signs of vitality (10 SOV) 

(Table 2) (18). Several other therapeutic protocols use UO to evaluate patients’ response to 

treatment, e.g. resuscitation in septic shock (19, 20) and management of burn patients (21, 

22). 
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Table 1. Urine output is included in the MEWS (modified early warning score), which is used to identify 
deteriorating patients on hospital wards who may need intensive care (18). 
 

Score 3 2 1 0 1 2 3 
Respiratory rate, per min – £8 – 9-14 15-20 21-29 >29 
Heart rate, per min – £40 41-50 51-100 101-110 111-129 >129 
Systolic blood pressure, mm Hg £70 71-80 81-100 101-199 – ³200 – 
Urine output, mL×kg-1×h-1 Nil <0.5 – – – – – 
Temperature, °C – £35 35.1-36 36.1-38 38.1-38.5 ³38.6 – 
Neurological – – – A V P U 
The score for each parameter is recorded at the time that observations are taken. If the total is four or 
more then the ward doctor is informed. A = alert; V = reacting to voice; P = reacting to pain; U = 
unresponsive 

 
 
 
 
Table 2. Urine output is one of 10 vital parameters included in another early warning system called 10 SOV 
(10 Signs Of Vitality) (18). 
 

Sign Abnormal range  
Temperature ³38°C Unweighted measures 
Pulse <50 or >100/min  
Pain New or significant  
Respiratory rate <6 or >20/min Weighted measures 
SaO2 <90% or increasing O2 requirement  
Blood pressure 
 

Mean arterial pressure<60 mm Hg or 
systolic blood pressure <90 mm Hg 

 

Level of consciousness 
 

Agitation, anxiety, apathy, lethargy, 
stupor, or coma 

 

Urine output 
 

<30 mL/h or <100 mL/4 h excluding 
renal failure 

 

Capillary refill >3 s  
Temperature <36°C  
Lactic acid and metabolic acidosis >2 meq/L or base deficit ³5 meq/L  
Any one abnormality of the above signs triggers an assessment by the bedside nurse of all 10 signs. 
Presence of ³2 weighted abnormalities suggests significant hypoxia or hypoperfusion, thereby triggering 
a mobilization of the Rapid Response Team. 

 

1.2 MANUAL REGISTRATION OF URINE OUTPUT 

UO is manually registered recurrently (usually hourly) by the nursing staff in wards and in 

ICUs. Manual measuring is based on visual evaluation of urinometers and collection bags 

and data are documented manually. UO of ICU patients is gathered in a graded container 

that usually has a maximal volume of approximately 500 mL. The container is attached to a 

plastic bag that has a volume of a 1500-3000 mL.  
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1.2.1 Disadvantages with manual registration of urine output 

Manual registration of UO requires a considerable amount of time and effort by the 

working staff. The whole process of recording UO manually requires up to two minutes 

(23). In an ICU with 12 patients, this translates to 24 minutes per hour and 9.5 hours per 

day. Likewise, this corresponds to 292 hours per ICU bed and year. Due to lack of staff 

and/or excess workload, the manual recording of UO is usually not possible in all wards 

where it would have been needed. Thus, patients at risk of developing AKI may be 

neglected. 

There are several risks associated with incorrect manual UO recording. First, registrations 

may not be carried out at exactly a full hour, leading to a false hourly UO measurement. For 

example, a 5 minute-error is introduced if one measurement is taken 3 minutes before full 

hour and the subsequent measurement is taken 2 minutes after full hour. This translates into 

an error of 8%. In one study of manual UO, the mean time error in routine ICU monitoring 

was found to be 16% ±15% (24). Second, the visual assessment of the urine level must be 

done meticulously keeping the eyes at the level of the urine, which otherwise leads to a 

false recording. Third, manual data-recording, whether by pencil or into an electronic 

patient data management system, is another source of error. In contrast to an automatic 

urinometer (AU), manual urinometers (MU) do not emit an alarm in case the system is 

mispositioned or recordings are not within the set reference range. Furthermore, manual 

emptying of the measuring chamber into the collection bag implies a theoretical risk of 

infection upon contact with the urinometer. The numerous obstacles involved in manual 

UO recording as depicted above, have questioned the trustworthiness of MU measurements 

(25). 

1.3 AUTOMATIC URINOMETERS 

Several AUs have been developed to facilitate hourly UO diuresis measurement, whereby 

different methods to measure UO have been applied. Measuring techniques used include 

droplet-based (23), electromagnetic switch (26), high precision scale (27, 28), air pressure 

based volumetric pump (Sentinel®, Serenno Medical, Israel), temperature exchange based 

electronic sensor (Clarity RMSÔ, RenalSense, Israel) (29), weight sensor (Sensica UO®, 

Adaptec Medical Devices, US), motor-pump, speed-based calculation (HS-UM1®, 

Hyupsung Medical, South Korea), artificial intelligence-driven system to support predictive 

analytics (Accuryn Monitoring System®, Potrero Medical, US) (24) and capacitance (30). 

Some AUs have not reached or seem to have disappeared from the market (23), and some 
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are being tested in clinical practice (Sentinel®, Serenno Medical, Israel). Most of these 

techniques show according to their manufacturer excellent performance, and high accuracy, 

including at low and high UO flow rates. However, very few techniques have been 

clinically validated and usually results of ongoing or planned studies have not been 

published in international medical journals. We have only found one technique in current 

clinical use that has been clinically validated (29), except for the capacitance technique, 

which is evaluated in this thesis.  

1.3.1 The capacitance technique for AU measurements (Sippi®) 

The capacitance technique is used in an AU developed by a Swedish startup company 

(Sippi®, Observe Medical, Gothenburg, Sweden). This device comprises two units: a base 

unit to which a disposable unit is attached (Figure 2).  

 

 
FIGURE 2. Overview of the evaluated new automatic urinometer (Sippi®, Observe Medical, Gothenburg).  
(Reprinted with permission from Observe Medical). 

 

This AU is attached to the urinary catheter from where urine flows into the antechamber. In 

the antechamber, urine dissolves a capsule containing silicone oil that is transferred with 

the urine to the measuring chamber located just below. Change in capacitance between two 
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sensors is used to estimate the urine volume within the measuring chamber and the urine 

volume is constantly documented automatically. After measurement, when a volume of 16-

18 mL is attained, urine will depart automatically from the chamber using a siphon 

technique to a collection bag.  

1.3.2 Advantages with an automatic urinometer 

An AU has several potential advantages compared with a traditional MU. First, an AU may 

reduce human error. Second, it should save the work load of the nursing staff (31, 32). 

Third, the applied electronic technique to measure UO may be used to warn for looming 

AKI in a complicated care environment (33) and also enables the implementation of kidney 

injury criteria such as AKIN and KDIGO. Fourth, the use of an AU should help clinicians 

to improve monitoring and forecasting the patient´s fluid balance. The importance of 

continuous monitoring of UO for AKI and fluid management in critically ill patients has 

been emphasized by leading nephrologists and critical care experts (12, 13, 17, 25, 34, 35). 

In a retrospective study of close to 16,000 ICU patients, intensive monitoring of UO 

(defined as hourly recordings and no gaps >3 hours for the first 48 hours after ICU 

admission) was linked to better detection of AKI and lessened 30-day mortality in AKI 

patients, in addition to a decreased fluid overload for all patients (23). Fifth, "no-contact" 

data transmission may lessen the risk of cross-infection of bacteria and virus, including 

SARS-CoV-2, between ICU patients and staff. Sixth, AUs may enable measurement of UO 

in normal wards. Commonly, staff shortage does not allow manual recordings of UO to a 

desirable degree and this may help to identify patients at risk of developing AKI. Seventh, 

minute-to-minute recording of UO may help to identify sepsis at an early stage (36).  

1.3.3 Obstacles to introducing automatic urinometers 

As discussed above, very few AUs are currently used clinically and only one has been 

clinically validated (29). The numerous techniques used for automatic urine measurements 

indicate the complexity in developing a solid measurement technique for clinical use. Apart 

from being accurate at various rates of urine flow, the AU should be easy to handle, robust, 

capable of measuring urine with varying concentrations in electrolytes, urea, creatinine, 

osmolality, glucose etc., as well as to be competitive in price and to allow communication 

with common patient data management systems.  

The AU Sippi® is currently in use in several ICUs around Europe. However, every new 

device needs to be scientifically validated and our aim, in the first part of this thesis, was to 

validate this AU in both adult and pediatric patients.  
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1.4 BIOFILM 

1.4.1 Definition  

Biofilm is composed of extracellular polymeric substances (EPS) containing primarily 

polysaccharides, proteins and extracellular DNA (37). These are produced by most bacteria 

and candida (37, 38), enabling the microorganisms to be irrevocably accumulated and fixed 

to a surface, making their elimination difficult (Figure 3). Biofilm may be produced on 

both host tissue cells, such as uroepithelial cells, and abiotic surfaces, including urinometers 

and indwelling urinary catheters. As an example, in a study by Sabir et al., bacterial biofilm 

was found in 73.4% of patients having symptoms of a catheter-associated urinary tract 

infection, underscoring the impact of biofilm (39). If released from the biofilm, 

microorganisms may instigate life-threatening infections that need long hospital treatment.  

 

 
FIGURE 3. A scanning electron microscopic image showing Staphylococcus aureus bacteria on an indwelling 
catheter. Biofilm is seen as the sticky-looking substance between the round bacteria. (Reprinted with 
permission from Public Health Image Library/Centers for Disease Control and Prevention). 
 

1.4.2 Biofilm formation 

Biofilm is formed in several steps (40, 41) (Figure 4). In short, free-living (planktonic) 

microbes initially interact briefly and intermittently with a surface (reversible attachment). 

As microbes adapt to the surface, special surface-sensing features are expressed, the cyclic 

adenosine monophosphate level is increased within the cells and more and more cells will 

attach to the surface and remain so for longer periods of time (early biofilm formation). The 

cells will finally enter into an irreversible attachment stage, in which cells are stuck to the 

surface and start producing an extracellular matrix (mature biofilm). Finally, some 

microbes will be released from the biofilm (dispersal phase) and these microbes are often 
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phenotypically and sometimes also genotypically, transformed. Throughout this process, 

complex signaling is thought to take place between the microbes (42).  

 
FIGURE 4. The different phases in biofilm formation. (Illustration by Martin Slettengren).  

1.4.3 Virulence factors 

Bacteria possess different virulence factors to resist the host defense mechanisms and to 

express biofilm. Those virulence factors, here exemplified by uropathogenic Escherichia 

coli, can be divided into different groups based on the underlying mode of action (Figure 

5). Adhesins (e.g. fimbriae or pili) mediate adherence to host cells (43). Toxins (e.g. 

lipopolysaccharides and haemolysin) may destroy host immune effector cells and enable 

the bacteria to penetrate deeper into issue. Iron acquisition mechanisms (e.g. siderophores) 

are vital for the bacteria to survive in the iron-depleted environment of the urinary tract. 

Immune evasion (e.g. cellulose) is used to escape from the host immune cells by biofilm 

production, intracellular hiding or to suppress the pro-inflammatory response. Finally, E. 

coli is equipped with multiple rotating helical filaments, termed flagella, enabling the 

bacteria to swim, for example, against the direction of the urine flow (44). 

In Study III we investigated the effect of different virulence factors of uropathogenic E. 

coli strains. More specifically, we studied type 1 fimbriae, curli and cellulose. Type 1 

fimbriae, adhesins, are helical structures composed of several subunits. Those fimbriae are 

most commonly produced through the chaperone-usher pathway in which chaperones fold 

the different subunits of the fimbriae in the periplasm of the bacteria and subsequently a 

protein, the usher, assemble the fimbriae in the outer membrane (45). One such usher, 

which is essential to fimbriae biogenesis, is FimD.  
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Curli, an amyloid, is also an adhesin and a major part of the extracellular matrix, that 

promotes cell accumulation, adhesion to surfaces and biofilm formation (41). It is 

composed of a large number of the major subunit curli specific gene (Csg)A, which after 

polymerization is transported across the outer cell membrane to form the functional fiber 

exposed at the bacterial surface. This transport is mediated via the nucleator subunit CsgB 

(46).  

Cellulose is a polymer consisting of repeating chains of glucose molecules linked via β-1,4 

glycosidic linkages, synthesized by glycosyltransferases located in the membrane. Linked 

to the synthesis is membrane translocation through a channel constituted by cellulose 

synthase. This synthesis and translocation process are catalyzed in bacteria by the inner 

membrane-associated bacterial cellulose synthase (Bcs)A and BcsB subunits (47). Cellulose 

provides structure and protection to bacteria in biofilm through the formation of a matrix. 

Moreover, cellulose may help bacteria to reduce the host’s immune response as well as cell 

aggregation, enabling the biofilm to reach the surface of the culture where oxygen is 

available to the bacteria (48).    

 
 

 
 

FIGURE 5. Virulence factors, including groups, of uropathogenic Escherichia coli (Reprinted with permission 
from Elsevier) (43). 
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1.4.4 Albuminuria 

Normally, healthy kidneys only filter very small amounts of protein into the urine as almost 

all protein molecules are too large to pass through glomeruli. Proteinuria may be due to 

diseases of the glomeruli e.g. glomerulonephritis or diabetes mellitus, urinary tract 

infection, congestive heart failure, surgery or genetic differences in the glomerular 

endothelial function (49). Proteinuria is a known independent risk factor for AKI (50). In 

patients undergoing cardiac surgery, both preoperative (51) and postoperative (52) 

albuminuria can predict which patients have an increased risk of developing AKI during 

their hospital stay. 

1.4.5 Hemoglobinuria 

Hemolysis occurs due to destruction of red blood cells and results in release of hemoglobin 

into the blood system. The possible causes of hemolysis are many, e.g. toxins, 

hypersplenism, thrombotic thrombocytopenic purpura, autoimmune hemolytic anemia, 

bacterial infections, transfusion reactions and malignant hypertension. It may also occur 

during extended operations on CPB or extracorporeal membrane oxygenation (ECMO) as a 

result of mechanical forces e.g. shear stress, hypothermia, turbulent flow, excessive pump 

speed, cavitation or decreased oncotic pressure and clot formation, resulting in complete 

lysis or variable degree of damage of red blood cells (53-55). Excess free hemoglobin (fHb) 

in blood is filtered in the glomeruli of the kidneys that excrete it into the urine, which 

becomes dark red. Severe hemoglobinuria may result in acute tubular necrosis, acute renal 

failure and need for dialysis. In a study by Heijmans et al. (56), patients undergoing 

extended periods of CPB (valve + coronary surgery) had higher levels of plasma fHb than 

shorter periods (coronary surgery) during CPB and the first postoperative hours. In contrast, 

patients undergoing off-pump coronary surgery did not have increased levels of fHb in 

plasma. Patients with AKI (13.4%) exhibited significantly higher fHb serum levels already 

during surgery compared with patients without AKI. 

1.4.6 Biofilm eludes antibiotics 

Microbes form biofilm as an adaptation to external stressors such as the host immune 

response and antibiotics. Once biofilm is formed in the body, the acute microbial infection 

will progressively develop into a chronic infection that is difficult to treat and get rid of. 

Although antibiotics may work in early stages of biofilm, the effect is considerable weaker 

in mature biofilm and biofilm-growing microbes are 10 to 1000 times more resistant toward 
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almost all antiseptics and antibiotics (cell wall biosynthesis inhibitors), compared with 

planktonic microbes (57). 

Several underlying mechanisms have been identified to cause this, e.g. slow or incomplete 

permeation of antibiotics through the biofilm to the bacteria, horizontal gene transfer 

between bacteria, creation of a new chemical microenvironment among the bacteria and the 

progress into a multicellular, heterogenous community of bacteria which is difficult for the 

antibiotics to reach and target (58). Also, microbes may enter into a tolerant state, making 

them capable to survive exposure to an excessive concentration of an antibiotic for some 

time. This may be due to the microbes entering a dormant state with minimal or no growth 

(59). It is estimated that around 80% of chronic and recurrent infections (58) and 65-80% of 

all clinical infections (60) are associated with biofilm.  

1.4.7 Impact on medical devices  

Microbial biofilm may deteriorate the function of medical devices, cause degradation of 

biomaterials and lead to nosocomial bloodstream infections (61, 62) with negative 

consequences for the patient. In the case of an implanted device with biofilm, such as a 

pacemaker or a mechanical heart valve, there is often no other option than to remove the 

infected device and reinstall a new device when the infection is under control (58). As for 

the AU using the capacitance technique, biofilm formation may result in false readings or 

even shutdown, stemming from the progressive biofilm coating of the measuring chamber 

that disturbs the capacitance signal (63). Plausibly, the biofilm may result in a higher risk of 

infection of the patient, regardless of the type of urinometer that is used. Preliminary 

clinical analyses of data in patients undergoing cardiac surgery using the AU Sippi® 

showed that measurements could not be recorded in some patients having albuminuria 

and/or hemoglobinuria or urinary tract infection after 24 hours use of the AU. 

Consequently, finding and validating new methods to decrease the formation of biofilm on 

medical devices, and in this case, the AU, is of clinical importance. 

1.5 BIOFILM PREVENTION 

1.5.1 Measures to decrease biofilm 
Numerous substances and methods have been investigated with the aim to prevent, treat 

and control biofilm in clinical medicine. Methods range from surface modifications (64), 

antimicrobial impregnated surfaces (65), electricity (66, 67), and substances to prevent 

attachment of bacteria to a surface, such as cellobiose dehydrogenase/amylase (68), 

hydrogels (69), silver nanoparticles (70) and honey (71). Treatment may also target 
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established biofilm, e.g. signal interference between bacteria (72), antibiotic-loaded 

nanoparticles to enhance penetration into biofilm (73) and biofilm dispersion (e.g. 

Dispersin B) (74). Medical devices are also being developed that integrate a function of 

early biofilm detection (75). 

1.5.2 Silicone oil 
Silicones, also called polysiloxanes, are polymers consisting of repeating units of 

alternating silicon and oxygen atoms, linked to organic side-chains including 

carbon, hydrogen, and sometimes other elements. Silicone is used in a variety of 

applications, e.g. as lubricants, adhesives, cooking utensils, electrical insulation and in 

medicine. Silicone should not be confused with silicon, which is the chemical element with 

symbol Si and atomic number 14.  

 

 
 

FIGURE 6. Principal chemical structure of the silicone oil polydimethylsiloxane (PDMS).  
“All rights reserved. No part of this publication may be reproduced, copied, stored in a retrieval system or 
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise 
without the prior written permission of the copyright holder. Applications to reproduce, store, copy or 
translate should be made to the Secretary General. ECETOC welcomes such applications. Reference to the 
document, its title and summary may be copied or abstracted in data retrieval systems without subsequent 
reference. The content of this document has been prepared and reviewed by experts on behalf of ECETOC 
with all possible care and from the available scientific information. It is provided for information only. 
ECETOC cannot accept any responsibility or liability and does not provide a warranty for any use or 
interpretation of the material contained in the publication". 
 

Silicones come in different forms, from hard plastic to liquid, e.g. silicone oil. Silicone oil 

is extensively used in medicine, for example in breast implants and in vitreous fluid 

substitutes. Safety studies indicate that silicone oil has a low toxicity and is associated with 

a low risk for adverse effects (76, 77). Moreover, silicone oil has no bactericidal effects on 

common microorganisms (78). The most prevalent type of silicone oil is 

polydimethylsiloxanes (PDMS) which is chemically inert, heat-resistant, non-toxic and has 

a low surface tension (Figure 6) (79). Interestingly, preliminary studies indicate that the 

silicone oil PDMS effectively reduce biofouling in polyurethane catheters and that long-

standing slippery liquid infused porous surfaces can be produced on nano-surfaces that also 

inhibit bacterial formation (80, 81). As far as we know, the effect of PDMS has not been 
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investigated on polypropylene plastic, which is the plastic used in the measuring chamber 

of the evaluated new AU (Sippi®) and in parts of the MU (Unometer 500™) that are in 

contact with urine. From our clinical experience, by adding a water-soluble capsule 

containing silicone oil to the antechamber of the device, the problem we initially 

experienced with progressive biofilm formation and deteriorating capacitance signal of the 

AU Sippi®, seemed to be significantly postponed.  

1.5.3 Polypropylene plastic 
The siphon cassette of the studied AU, consisting of the antechamber and the measuring 

chamber, is made up of polypropylene plastic (PP), which is one of the most used plastics 

worldwide and largely utilized in medicine. It has the chemical formula (C3H6)n and is a 

thermoplastic polymer (Figure 7). PP is inherently hydrophobic and oleophilic (82). The 

tendency of biofilm formation varies between type of material. It seems like biofilm by 

some bacteria are more prone to form on hydrophilic surfaces, e.g. glass and stainless steel, 

than on hydrophobic surfaces, such as PP (83). 

 

 
FIGURE 7. Principal chemical structure of polypropylene plastic (PP). (Reprinted with permission from 
Wikimedia Commons). 
 
 

1.5.4 Biofilm prevention in the automatic urinometer SippiÒ 

Based on our initial clinical experience that an integrated water-soluble capsule containing 

silicone oil improved the capacitance measuring capability of the AU SippiÒ, in particular 

for patients with urinary tract infections, albuminuria and hemoglobinuria, we sought to 

determine if the combination of PP and silicone oil had an effect in this regard. As a first 

step, we aimed to investigate this in vitro.  
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2 AIMS 
 
The specific aims were to: 

 

• Evaluate the performance of a new capacitance-based AU in adult patients in a 

cardiothoracic ICU and compare it with an MU in regard of bias, precision, temporal 

deviation and to evaluate the participating nursing staff’s opinion of the AU compared 

with the MU. 

 

• Compare a modified capacitance-based AU with an MU regarding bias of 

measurements, and to evaluate the participating nursing staff’s opinion of the AU, 

among patients ≤10 kg in a pediatric intensive care unit.  

 

• Investigate whether a silicone oil-coated polypropylene plastic surface, as used in an 

AU, may reduce early biofilm formation by pathogenic bacteria, including ESBL-

producing and multidrug resistant strains, as well as C. albicans, and to investigate 

whether the viscosity of the silicone oil has an impact in this regard.  

 

• Identify the tentative silicone oil target, by using an E. coli strain equipped with curli, 

cellulose and type 1 fimbriae and the isogenic mutants, deficient in one or more of 

these virulence factors.   

 

• Investigate whether albumin or free hemoglobin coating of the capacitance 

measurement membrane of the AU could influence the capacitance measuring 

capability of the AU and whether this could be attenuated by adding silicone oil to 

the measuring chamber of the device. 
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3 METHODS 

3.1 THE NEW AUTOMATIC URINOMETER 

The new AU estimates the UO by measuring the change in height of a column of urine in a 

measuring chamber (Figure 8A), after the urine has passed through an antechamber 

(Figure 8C), which contains a water-soluble capsule with silicone oil (Figure 8B) of 

medium viscosity (viscosity 350 mm2/s) (Silbione®, oils 70047, V350, Elkem, Oslo, 

Norway). Thus, the first urine from the patients will dissolve the capsule and transport the 

oil to the measuring chamber, which will get coated with a film of silicone oil. A 

capacitance-based sensor continuously records the height of the urine column through the 

polypropylene plastic wall of the measuring chamber. When the measuring chamber gets 

filled, the urine empties automatically via a siphon. The AU runs on 3 AA batteries, which 

need to be exchanged every three to four months. The standard display shows the 

accumulated UO during the present hour, UO from the last hour and the accumulated UO 

during the present 24-hour period (Figure 9). By pressing a button, each hourly UO of the 

present 24-hour period can be presented as a graph with columns. Optionally, stored data 

can continuously be transferred via Bluetooth to a patient data management system 

(https://observemedical.com/sippi/). 

 

 

FIGURE 8. The measuring chamber (A, lower 2/3) of the automatic urinometer (Sippi®, Observe Medical, 
Gothenburg, Sweden) with a water-soluble capsule (B) containing medium viscosity silicone oil in its ante-
chamber (C) upper 1/3). (Reprinted with permission from Observe Medical). 
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FIGURE 9. The display of the evaluated automatic urinometer (Sippi®, Observe Medical, Gothenburg, 
Sweden). (Reprinted with permission from Observe Medical). 
 

3.1.1 Capacitance measurement 
Capacitance, by definition, is the ability of a component to store an electrical charge and is 

measured in the SI unit farad (symbol: F). Such a component is called a capacitor and 

consists of two metal plates with an insulating layer in between, called dielectric. If a 1 F 

capacitor is charged with 1 coulomb (1 ampere x 1 second) of electrical charge, it will have 

a potential difference of 1 volt between its plates. The capacitance of a capacitor is 

determined by the size and the distance between its plates and the amount and type of 

dielectric. In the AU Sippiâ, the dielectric consists of a column of urine in the measuring 

chamber and the higher the height of urine column in the measuring chamber, the higher 

the capacitance. By measuring the duration it takes to charge and discharge the capacitor, a 

value is acquired of the capacitance that is related to the height of the urine column in the 

measuring chamber. The volume of urine in the measuring chamber can easily be 

calculated based on the change in capacitance. The measurement resolution is 1 mL. In our 

studies we read the visual information on the display every hour according to the inbuilt 

clock. Thus, we could record the information about hourly diuresis at any time. The hourly 

diuresis cycle was determined by the internal clock. The automatic urinometer data can be 

automatically transferred to a patient data management system via Bluetooth, as required, 

usually every solar hour.  

Two capacitance sensors are used, one main sensor (Cm) and one reference sensor (Cr). If 

there is a linear urine inflow to the measuring chamber, Cm will increase, followed by an 

augmentation of Cr in the middle (Figure 10, between A and B), and then Cm will rise 
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again. Due to the automatic emptying of the measuring chamber by the built-in siphon, the 

signals from Cm and Cr will decrease rapidly when the chamber self-empties. Nevertheless, 

several external factors, e.g. tilting of the system or biofilm formation within the measuring 

chamber, will affect the signal. The capacitance changes are very low, close to 10-12 F.  

 

 
FIGURE 10. The rise in capacitance over time when the urine volume increases in the measuring chamber. 
Cm = Main plate. Cr = Reference plate. (Reprinted with permission from Observe Medical). 
 

3.1.2 Siphon effect   
A siphon is a liquid reservoir equipped with an inverted U-tube. First, the inverted U-tube is 

filled with liquid after which the siphon may drain liquid from the reservoir to a higher 

level than the reservoir surface and then down again to a lower level. It will do so 

continually without external energy until the level in the reservoir falls below the level in 

the output end of the U-tube (Figure 11). 

The mechanism of the siphon effect has been debated (84, 85). In the past, the atmospheric 

pressure was attributed to push water through the tube, whereas a more recent explanation 

is based on gravitation: The column of water in the downward tube drags water up in the 

upward tube and acts like a chain with the water molecules interacting with each other 

using hydrogen bonds. The maximum height of a liquid siphon depends on the tensile 

strength of water – i.e. the maximum weight that hydrogen bonds are able to lift. It is 

critical that the outflow of the tube lies lower than the inflow of the tube, in that case 

gravitational energy is released at the bottom of the tube and that energy will drag the water 

in the upward tube. If air comes into the tube, the siphon effect will be broken. The siphon 

effect is used in common water closets. 
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FIGURE 11. The principle of the siphon effect (A) and how it is constructed in the automatic urinometer (B). 
(A. Reprinted with permission: User: Tomia, CC BY-SA 3.0 <http://creativecommons.org/licenses/by-
sa/3.0/>, via Wikimedia Commons; B. Reprinted with permission from Observe Medical). 
 

 

The AU Sippiâ uses the siphon effect to transport urine from the measuring chamber to the 

urine collection bag. The measuring chamber empties at a volume around 16-18 mL, and 

the exact volume will be registered each time.  

3.1.3 Signal processing algorithm 
An algorithm is used to calculate the urine volume from the measured capacitance values. 

By using signals from the two sensors, the algorithm self-calibrates the device after each 

UO measurement. For every new measurement the AU will sense the existing conditions 

and adapt accordingly.  

3.1.4 Biofilm warning 
Biofilm that is accumulating on the plastic wall of the measuring chamber close to the 

capacitance measurement membrane will affect the capacitance measurement and increase 

the capacitance signal. Biofilm will form from the bottom to the top, resulting in 

progressive failure of the sensors in the lower part of the measuring chamber. This triggers 

an alarm when reaching critical levels that creates a risk of misreading (Figure 12). 
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FIGURE 12. Progressive biofilm build-up (yellow areas) begins at the bottom of the measuring chamber and 
progresses towards the top. The capacitance expressed as voltage (V) undulates each time the measuring 
chamber is filled and emptied, from A to B. If biofilm is formed, it will occur from the bottom to the top of 
the measuring chamber, resulting in progressive failure of the sensors in the lower part of the measuring 
chamber. This triggers an alarm when reaching critical levels that creates a risk of misreading Cm = Main 
capacitance sensor. Cr = Reference capacitance sensor. (Reprinted with permission from Observe Medical). 
 
 
 

3.2 CLINICAL STUDIES 

3.2.1 Study design 
Study I and Study II were prospective observational cohort studies performed in the 

cardiothoracic ICU at Karolinska University Hospital, and in the pediatric intensive care 

unit at Astrid Lindgren’s Children Hospital, Stockholm Sweden, respectively. Study I 

included 34 adult patients who had undergone cardiac surgery, whereas Study II comprised 

12 patients, with an indwelling urinary catheter before inclusion, weighing <10 kg, which 

corresponds to <12 months of age (86). Based on Study I, we aimed to have about 100 

cylinder and urinometer measurements for each device, the MU and the AU, in Study II. 

Apart from evident exclusion criteria such as anuria and on-going dialysis, we did not have 

any exclusion criteria for Study I and Study II. 
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3.2.2 Hourly urine measurements with the AU, MU and reference cylinder 

A laboratory technician measured the reference urine volume with a laboratory precision 

measuring cylinder immediately after each hourly measurement with the AU or the MU. 

This person was unaware of the data from the urinometer measurement till after the 

corresponding reference measurement, but aware of which urinometer that was used. 

Immediately prior to each full hour, the AU tube and the MU tube, respectively, were 

emptied. Next, the technician momentarily blocked the tube close to the measuring 

chamber inlet in order to prevent urine inflow during data recording and urine gathering. 

Thereafter, the attending nurse noted the data from the AU screen. Afterwards, the 

technician emptied the attached urine plastic pouch and evaluated the urine volume with the 

reference cylinder. The urine volume that remained in the measuring chamber of the AU, 

when reference measurements had been made, usually varied somewhat between two 

successive measurements. This influenced the measurement of the reference volume. For 

this reason, the technician used a transparent plastic measuring scale delivered by Observe 

Medical (accuracy ±1 mL) to register the remaining urine volume in the measuring 

chamber at each measurement. The temporal deviation of the MU was investigated during a 

separate period in the ICU, by registering the exact time of each measurement (Study I). 

We paired data from each urinometer and from control cylinder used as a reference. 

The MU stores urine in graded chambers, which enables visual reading of the accumulated 

urine volume by the attending nurse before the chambers are emptied manually. A 

prerequisite for correct measurements is that the MU hangs vertically and that the grading 

scale lines are in a horizontal position. In contrast, the AU senses changes in positions that 

interfere with measurements, via a built in accelerometer, and displays an error message on 

its display. Also, an error message appears on the display of the AU when the disposable 

unit needs to be replaced, usually after 7 days or earlier due to severe biofilm formation in 

the measuring chamber.  

3.2.3 Measurements in adult patients (Study I) 
An indwelling urinary catheter was inserted on all adult patients participating in Study I in 

the operating room after induction of anesthesia according to clinical practice. After arrival 

to the ICU, we connected the patients to either the AU (Sippi®, Observe Medical, 

Gothenburg, Sweden) (Figure 2, 8, 9) or to a standard MU (UnoMeter™ 500, Unomedical 

a/s, Birkeroed, Denmark, Figure 13A).  
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FIGURE 13. A. The manual urinometer UnoMeter™ 500 (A, Study I) and the manual urinometer Unometer™ 
Safeti™ Plus (B, Study II). (Reprinted with permission from Convatec). 
 

We used a laboratory measuring cylinder (250 mL; BLAUBRAND®, BRAND GMBH + 

CO KG, Wertheim, Germany) with a tolerance of ±1 mL as a control. We evaluated the 

urinometers during two separate time periods, first the MU to reflect routine UO 

measurements followed by the AU. There were no cross-overs between the studied 

urinometers. We registered UO data from each patient every hour during daytime for up to 

3 consecutive days, without demanding any minimum number of measurements to be 

entered in the analysis. 

3.2.4 Measurements in pediatric patients (Study II) 

We measured UO in the studied pediatric patients with an AU (Sippi®, Observe Medical 

Nordic AB, Gothenburg, Sweden) and an MU (Unometer™ Safeti™ Plus, Convatec Inc., 

Lejre, Denmark) (Figure 13B) and analyzed and compared data with a gold standard 

measuring cylinder (25 mL; Pyrex® DIN 12680 25:0.5, England). 

The included 12 children either received an AU or an MU, although we registered UO in 2 

children with both urinometers. We measured UO every hour during daytime for up to 4 

sequential days. Clinical data are presented in Table 7. 
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To make the AU and the MU in Study II more comparable, we substituted the original 

single lumen tube of the AU, connected to the indwelling catheter, with a sterile double-

lumen tube. This is the same kind of tube applied in the MU, as it is devised for measuring 

small urine volumes in pediatric patients (Figure 14). 

 

 
FIGURE 14. The double-lumen tube between the patient´s indwelling urinary catheter and the automatic 
urinometer in Study II. (Photo by Martin Slettengren). 
 
 

 
FIGURE 15. The automatic urinometer in clinical use, mounted on a pediatric patient’s bed.  
(Photo by Martin Slettengren). 
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3.2.5 Staff view of the urinometers (Study I and II) 
We investigated the staff’s view of the urinometers after ending Study I and II. Each 

participating nursing staff member answered an anonymous questionnaire (Table 6 and 

Table 9 in Results) after a 15-minute introduction course and having used the AU during 3 

days in the respective ICU. The questionnaire included 5 questions considering the easiness 

to learn how to use the AU (question 1) and the user easiness of the AU compared with the 

MU (questions 2-5). There were no missing data. For each question, an ordinal scale 

ranging from 1 to 5 was used. Answers to question 1 were analyzed separately, whereas 

questions 2 to 5 were analyzed by aggregated and personal mean.   

3.3 EXPERIMENTAL STUDIES 

3.3.1 Study design 
Study III and IV were experimental prospective in-vitro studies.  

3.3.2 Bacterial and fungal biofilm formation (Study III) 

3.3.2.1 Bacteria and candida strains 

In Study III we included the uropathogenic Gram-negative bacteria E. coli #12, from a 

child with acute pyelonephritis, E. coli strain CFT073, from a patient with acute 

pyelonephritis, extended spectrum beta lactamase (ESBL)-producing E. coli (CCUG 

55971), Proteus mirabilis (ATCC 29245), Klebsiella pneumoniae (ATCC 13883) and 

multi-drug-resistant (MDR) Klebsiella pneumoniae (CCUG 58547), Pseudomonas 

aeruginosa (ATCC 27853) and the Gram-positive bacteria Enterococcus faecalis (ATCC 

29212) and Staphylococcus aureus (ATCC 29213) and finally the fungus Candida albicans 

(CAC4). E. coli #12, wild-type strain, is equipped with curli, cellulose and type 1 fimbriae, 

which are essential for production of biofilm. To investigate if silicone oil targeted any of 

these virulence factors, we utilized isogenic mutants, lacking at least one of the virulence 

genes. The set of E. coli strains included the wildtype strain #12 (curli+/cellulose +/type 1 

fimbriae+) and its isogenic mutants WE1bcsA (curli+/cellulose−/type 1 fimbriae+), 

WE11csgBA (curli-/cellulose+/type 1 fimbriae+) and WE16csgBA bscA (curli−/cellulose−/ 

type 1 fimbriae+) (87, 88). Type 1 fimbriae were verified by yeast agglutination. We 

created a fim D deficient strain (WKfimD) by the λ-Red mediated homologous 

recombination method (88, 89) to validate the precise outcome of the silicone oil on type 1 

fimbriae. 
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3.3.2.2 Preparation of bacteria and C. albicans 

In Study III we cultured E. coli #12 and its isogenic mutants on Luria-Bertani (LB) agar 

plates without salt for at least 24 hours to stimulate biofilm formation, while we cultured 

other bacterial strains overnight at 37ºC on blood agar plates. Single bacterial colonies were 

applied for bacterial suspension preparation in phosphate-buffered saline. To circumvent 

bacterial aggregates, we centrifuged the suspension at 1000 revolutions per minute (RPM) 

for 5 min and measured the suspension’s optical density at 600 nm using a 

spectrophotometer and adjusted the suspension to a final concentration of 106 colony 

forming units (CFU) per mL in LB broth without salt. The bacterial concentration was 

verified by viable count. We cultured C. albicans in YPD (yeast peptone dextrose) using 

the same protocol as for bacteria.  

3.3.2.3 Biofilm formation on polypropylene and polystyrene plastic 

To compare the amount of biofilm formed on polypropylene plastic without silicone oil 

with another frequently used plastic, polystyrene, we added E. coli #12 to wells in these 

plastics and left them for 72 hours, where after we measured biofilm formation with a 

crystal violet assay (see below). We studied the effect on polypropylene plastic because the 

measuring chamber of the AU (Sippi®, Observe Medical, Gothenburg, Sweden) consists of 

this plastic. 

3.3.2.4 Silicone oil 

In Study III we used a low-viscosity silicone oil (viscosity 100 mm2/s) and a medium-

viscosity silicone oil (viscosity 350 mm2/s) (Silbione, oils 70047, V100 and V350, Elkem, 

Oslo, Norway). The latter oil was also used in Study IV. The medium-viscosity silicone oil 

is used within the measuring chamber of the AU Sippi®, evaluated in Study I, II and IV. 

3.3.2.5 Pretreatment of microtiter plate with silicone oil 

In Study III we pretreated 96 well clear flat-bottom polypropylene microtiter plates 

(Sigma, USA) with either 300 µl of low viscosity silicone oil (V100) or medium viscosity 

silicone oil (V350) in each well for 5 minutes. Thereafter, we immediately and 

meticulously removed as much oil as possible from each well with a disposable micro-

pipette, leaving merely a thin coating of silicone oil in each well.   

3.3.2.6 Measurement of biofilm formation with crystal violet 

The preparation of bacterial suspension has been described earlier (87). In short, we added 

50 µl of 106 CFU/ mL of bacterial suspension in LB broth without salt together with 150 µl 
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of LB broth without salt, giving a total volume of 200 µl in each polypropylene well with 

and without pre-treatment with the low and medium viscosity silicone oils. We then 

incubated the microtiter plates at 37˚C without shaking for 72 hours. After incubation, we 

removed planktonic cells (single free moving or swimming cells in the medium), washed 

the plates twice with PBS and let them dry in air. We then studied the effect of silicone oil 

on biofilm formation using the crystal violet assay (90). Each well was stained with 220 µl 

of 0.3% crystal violet for 5 minutes, and then destained them with 250 µl of 20% acetone 

and 80% ethanol. The optical density of dissolved crystal violet was determined at 570 nm. 

In Study III all bacterial strains and C. albicans were studied with the same protocol. We 

compared silicone oil treated wells with the untreated controls. To evaluate the viability 

within the biofilm, selected microorganisms, E. coli #12, P. aeruginosa, S. aureus and C. 

albicans, were allowed to grow and form biofilm for 72 hours.  

3.3.2.7 Exclusion of a direct bactericidal or fungicidal effect of silicone oil 

In Study III, we performed growth curves of E. coli #12, S. aureus and C. albicans in order 

to exclude a direct bactericidal or fungicidal effect of the medium viscosity silicone oil. 50 

mL polypropylene Falcon tubes were coated with medium viscosity silicone oil for 5 

minutes, followed by incubation of E. coli #12 or S. aureus in LB broth at 37˚C for 15 

hours, C. albicans in YPD broth at 30˚C for 24 hours. We performed viable counts after 3, 

6, 9 and 15 hours for E. coli #12 and S. aureus, and at 3, 6, 9, 12 and 24 hours for C. 

albicans post incubation with and without oil after serial dilution on blood agar. 

3.3.2.8 Effect of silicone oil on C. albicans hyphae 

C. albicans staining was performed from overnight grown cultures in YPD broth cultured 

with and without oil at 30ºC and centrifuged at 100 RPM. A thin smear was formed on the 

glass slide using an inoculation loop. We let the slides dry for 30 min at 55ºC. We then 

added one drop of blankophor p to the smear and the slides were instantly evaluated using 

ultraviolet light with an Olympus microscope with a 20X objective. 

3.3.3 Albumin and free hemoglobin biofilm (Study IV) 

3.3.3.1 Experimental setup 

In Study IV we explored the effect of silicone oil on biofilm production of albumin and 

fHb, each diluted in a separate solution. The studied solution was stored in a 2500 mL 

container with an outgoing tube, which passed through a peristaltic pump (WELCO WPX1-

P3/328; WELCO Co., Ltd, Tokyo, Japan) powered by a SPS 8041 (Manson Engineering 

Industrials Ltd, Hong Kong, China) with a default of 4.5 Volts. The outgoing tube was then 
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connected to the ingoing tube of the AU (Sippi®) device. To prevent vacuum, air was let 

into the container through a small hole, created with a 18G needle. The solution was thus 

run through the antechamber of the AU and then to its disposable collection bag (Figure 

16). 

The circuit was assembled with either the standard silicone oil capsule in the antechamber 

of the AU or not. The silicone oil capsule was dissolved when the studied solution entered 

the antechamber, whereby the silicone oil was transferred by the solution to the measuring 

chamber, where it adhered to its polypropylene plastic walls (91). Alternatively, the silicone 

oil capsule was removed through a hole created by a soldering iron in the front of the 

antechamber. Thereafter, the hole was sealed with a 3M tape designed for plastic surfaces. 

Every 24 hours a new solution was added to the container and the collection bag was 

emptied. 

 
FIGURE 16. The experimental setup in Study IV. (Illustration by Martin Slettengren). 
 

 

3.3.3.2 Albumin solution 

The first part of Study IV investigated the effect of an albumin solution on capacitance 

measurements with and without silicone oil released from a capsule. Sixty mL of albumin 

(Alburex® 50 g/L, CSL Behring AB, Danderyd, Sweden) was diluted in 960 mL Ringer’s 

Acetate (Baxter International Inc, Deerfield, U.S.), giving a concentration of 3 g albumin/L. 

A new mixture with the same concentration, for each Sippi® peristaltic pump system, was 

produced for every 24 h measurement. The mixture was stored in a 2500 mL container as 
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described above. The peristaltic pump was calibrated to achieve a flow rate of 

approximately 42 mL/h, resulting in an estimated total protein concentration of 3 g/24 h. 

The albumin-Ringer’s Acetate solution was conducted with two parallel groups, 20 times 

with silicone oil and 20 times without. Moreover, two additional experiments with a lower 

albumin concentration, 0.3 g/L and 1.0 g/L, respectively, were conducted.  

3.3.3.3 Free hemoglobin solution 

The second part of Study IV investigated the effect of fHb on capacitance measurement 

with and without silicone oil released from a capsule. fHb was acquired from blood 

remaining in syringes after routine arterial blood gas analysis in patients. Thirty-nine 

separate syringes were used. The residual blood from the syringes was centrifuged with a 

Sigma 1A (Axel Johnson Instruments AB, Stockholm, Sweden) at 3200 RPM for 10 

minutes. The bottom layer, consisting of erythrocytes, was then extracted with a RAININ 

Pipet-lite SL1000 dropper (Rainin Instruments LLC, Oakland, U.S). In order to achieve 

lysis through osmosis, the erythrocyte concentrate was mixed with sterile water giving a 

volume of 10 mL. The fHb concentration was then measured with HEMOCUE® 

PLASMA/LOW Hb 201+ Hemoglobin spectrophotometer (HemoCue America, Brea, 

U.S.). The 10 mL fHb mixture was added to 990 mL of Ringer’s Acetate and stored in 2500 

mL containers as described above. Every 24 h, a new mixture, for each Sippi® peristaltic 

pump system, was produced and used in the same way as before with continuous 

capacitance measurements for 24 h. The fHb solution experiments were conducted 20 times 

with silicone oil and 20 times without. 

3.3.3.4 Extraction of data from the AU 

Measurements of capacitance in the measuring chamber were conducted 60 times/h, i.e. 

1440 times/24h, and data were stored on a removable micro-SD memory card inside the 

device. Analysis of the data was carried out after each 24 h run. In order to reach the micro-

SD memory card, the batteries of the Sippi® base unit were removed with a SANDVIK 

7890 nippers (SNA Europe, Enköping, Sweden). The card was then inserted into a micro-

SD card reader and data transferred to an Excel file. Every 24h, a new disposable set was 

used, except for the 2500 mL container, which was reused after cleaning in a GETINGE 

600 series industrial washer (Getinge Group, Gothenburg, Sweden). Before new tubes and 

disposable sets were connected, the hardware unit was reset and the WELCO pumps and 

the SPS 8041 power unit were calibrated so that all used pumps operated at the same speed 

at 4.5 volt. The containers were refilled with new solutions and the pumps were restarted. 
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Careful initial monitoring of the circuit ensured that it worked as expected and that fluid 

dissolved the silicone oil capsule correctly. 

3.3.3.5 Analysis of capacitance data 

The Sippi® registers capacitance twice every second. Capacitance is the ability to store 

electrical charge and is affected by the height of urine in the measuring chamber, which can 

then be converted by the device to a volume. A mean of the two measurements is logged to 

the micro-SD card of the device once every minute. From these raw data (1440 

measurements/day) the lowest value from every 60-minute period was extracted and stored 

in an Excel file, resulting in 24 measurements from every pump system a day. Twenty runs 

with two parallel systems (one with and one without a silicone oil capsule) yielded a total 

of 480 measurements for each group (24x20). Each stored capacitance value was the lowest 

starting point of every hourly capacitance measurement and represented, compared with the 

initial starting point, the increase in capacitance due to biofilm coating of the inner surface 

of the measuring chamber by albumin or fHb. When the baseline value went up, it indicated 

the growth of biofilm coating. Eventually it reached a critical point after which 

measurement of urine was no longer possible. 

3.4 ETHICS 

The research papers in the thesis followed the principles of the Helsinki Declaration. The 

Regional Ethical Review Board in Stockholm endorsed the studies (Study I: 2012/31-31/2; 

Study II: 2015/666-32; Study IV: 2015/666-32, 2015/2351-32). In Study I, patients were 

included after giving written informed consent, whereas in Study II, involving 12 children, 

informed consent was obtained from at least one parent before inclusion. Study III was a 

pure in vitro study on bacteria without need of ethical approval.  

3.5 STATISTICS  

Data were analyzed with SPSS® statistical program (IBM Corporation, Armonk, NY, USA) 

(Study I, II and IV) and with GraphPad Prism version 5.02 (GraphPad Software, San 

Diego, CA, USA) (Study III).  

Study I and II. We compared variables of patient groups with Student’s t-test when 

normally distributed and the Mann-Whitney U-test when not and Fisher’s exact test if data 

were binary. We used Bland-Altman plots to calculate agreement of the AU and the MU, 

respectively, with cylinder measurements (92-94). Data points show the difference between 

paired measurements. The mean deviation between the respective urinometer and the 
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cylinder formed the mean bias. We drew horizontal lines at mean bias as well as the upper 

and lower limits of agreement (LOA). The LOAs consisted of mean bias ±1.96 x standard 

deviation (SD). The mean bias and the SD are equivalent to the agreement of the AU and 

the MU. We applied an independent samples t-test to test for equality of mean bias, and 

Levene’s test to test for equality of variances in the sample. We estimated absolute value of 

the deviation from exactly one hour between measurements and analyzed by mean, SD and 

95%-limits of agreement. We used the one-sample t-test to test for significance of the staff 

evaluations. 

Study III. Statistical analysis was performed with One-way ANOVA and Bonferroni post-

hoc test to compare multiple groups. One sided difference with p<0.05 was considered 

significant. 

Study IV. Mean and SD were used for descriptive purposes. Group differences were 

assessed with the Mann-Whitney U-test (unpaired) when non-normal distribution in 

continuous variables was ascertained. A p-value of <0.05 was considered significant. All p-

values were two-sided.  
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4 RESULTS 
4.1 STUDY I 

We included in total 408 hourly UO measurements, 220 with the AU and 188 with the MU, 

respectively, from 34 patients, 18 in the AU group and 16 in the MU group (Table 3). 

 
TABLE 3. Clinical variables of the patients in the automatic urinometer (AU) group and the manual 
urinometer (MU) group.  

Variable 
 

AU (n=18) MU (n=16) p 

Female % 28  50  0.29 

Age (years) 68.0 (64.3-75.5) 66.5 (63.5-73.5) 0.75 

Weight (kg) 79.2 ±15.3 80.3 ±7.9 0.83 

Height (cm) 174 ±5.8 172 ±9.8 0.48 

BMI (kg/m²) 1.9 ±0.2 2.0 ±0.2 0.74 

Euroscore II (%) 1.7 (0.9-2.6) 1.6 (0.9-3.1) 0.85 

Preoperative albumin (g/L) 39.0 (36.0-40.3) 38.0 (36.0-39.8) 0.60 
Preoperative creatinine (µmol/L) 82.5 (67.8-97.8) 86.5 (62.5-100) 0.83 

Preoperative eGFR  (mL/min) 78.0 (62.4-104) 75.4 (67.8-89.4) 0.91 

IDDM % 6  6  1.00 

COPD % 6  6  1.00 

LVEF <50% % 33  31  1.00 

Procedure       

    CABG % 28  25  1.00 

    Single valve % 44  44  1.00 
    Valve + CABG % 11  19  0.65 

    Other % 17  13  1.00 

ECC (min) 84.5 (71.5-133) 79.5 (67.0-127) 0.56 

ICU stay (hours) 22.5 (18.8-25.0) 23.0 (18.5-25.3) 0.77 

Ventilation time in ICU (hours) 3.0 (1.0-4.3) 2.5 (1.0-4.8) 0.96 

Inotropes in ICU % 0  6  0.47 
Data are presented as percentages, medians (25th-75th percentile) or means ±SD. 
Abbreviations: BMI = Body mass index; eGFR = Estimated glomerular filtration rate (Cockcroft-Gault equation); IDDM 
= Insulin dependent diabetes mellitus; COPD = Chronic obstructive pulmonary disease; LVEF = Left ventricular 
ejection fraction; CABG = Coronary artery bypass grafting; ECC = Extracorporeal circulation; ICU = Intensive care unit 

 

 

We excluded 5.6% (13/233) of the measurements in the AU group from analysis, almost 

completely because of inappropriate positioning of the AU, e.g. after the patient had 

changed position from the hospital bed to a chair. The median (25th-75th percentile) number 

of UO measurements for each patient was akin for both groups with 10.5 (9.0-16.3) for the 

AU and 12.5 (8.3-14.8) for the MU. We paired every measurement with a reference 
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measurement performed with the measuring cylinder. The mean of the cylinder 

measurements was 65 mL in the AU group and 96 mL in the MU group. Bland-Altman 

calculations (Table 4) and plots (Figure 17) displayed a mean bias of +1.9 mL for the AU 

and +5.3 mL for the MU (p<0.0001).  

 

 

 

 

 

TABLE 4. Performance parameters of the automatic urinometer (AU) and the manual urinometer (MU)  
measured in milliliters (mL).  

Urinometer parameters (mL) Upper LOA Bias Lower LOA 

 Urinometer n SD SE CI + 𝒙" CI - CI + 𝒙" CI - CI + 𝒙" CI - 

 AU  All 220 7.7 0.5 +18.9 +17.1 +15.4 +2.9 +1.9 +0.9 -11.6 -13.3 -15.1 

  <100mL 176 6.4 0.5 +15.4 +13.8 +12.2 +2.2 +1.3 +0.3 -9.7 -11.3 -12.9 

  ≥100mL 44 11 1.7 +33.5 +27.6 +21.6 +8.0 +4.5 +1.0 -12.6 -18.6 -24.5 

 MU  All 188 8.4 0.6 +23.9 +21.8 +19.8 +6.5 +5.3 +4.1 -9.2 -11.3 -13.4 

  <100mL 124 4.5 0.4 +13.1 +11.6 +10.4 +3.6 +2.8 +2.0 -4.8 -6.2 -7.6 

  ≥100mL 64 12 1.4 +38.1 +33.1 +28.2 +13 +10 +7.2 -8.0 -12.9 -17.9 

For each urinometer, data are presented for all measurements combined, as well as subdivided at a volume of < or 
≥100mL. 
Abbreviations: AU = Automatic urinometer; LOA = Limit of agreement; MU = Manual urinometer; n = Number of 
measurements; SD = Standard deviation; SE = Standard error; CI = Confidence interval; 𝐱$ = Mean 
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Figure 17. Bland-Altman plots of the agreement of each urinometer. Volumes are in milliliters (mL). In each 
plot the red lines depict (from above): Upper 95% limit of agreement; Mean bias; Lower 95% limit of 
agreement. Dotted lines depict confidence intervals of each parameter. Three measurements with x-axis 
volumes > 400 mL were omitted for the purpose of visibility. 
 

 

The SD was 7.7 mL and 8.4 mL (p=0.108), respectively, presented by 95% limits of 

agreement intervals placed at ±15.2 mL and ±16.6 mL from the mean. The mean relative 

percentage deviation of the urinometers compared with their paired cylinder measurements 

were ±12.8% for the AU and ±12.7% for the MU (p=0.94). The scatter of the AU did not 

show any obvious change in bias with increasing urine volumes (Figure 17), and displayed 

estimated normality when mapped in a histogram (Figure 18). The MU scatter presented a 

propensity of a greater positive bias with rising UO (Figure 17), and depicted an inclination 

to skewness with a greater and longer tail to positive bias when mapped in a histogram 

(Figure 18). 
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Figure 18. Histograms of the agreement of each urinometer. Volumes are in milliliters (mL). Each bar 
represents an increment of 2 mL. A positive value characterizes an overestimation by the urinometer 
compared with a reference measurement by the measuring cylinder. 
 
 
 
 
Of the 408 measurements, 146 (36%) were recognized as an UO of <40 mL/h by either the 

used urinometer or the reference measurement. In this group of small urine volumes, the 

AU had a sensitivity of 90%, a specificity of 99%, a positive predictive value of 97% and a 

negative predictive value of 94%. The MU had a sensitivity of 98%, a specificity of 96%, a 

positive predictive value of 92% and a negative predictive value of 99% (Table 5).  

 

 
Table 5. Evaluation of diagnostics of urine output <40mL/h. The automatic urinometer (AU) and the 
manual urinometer (MU) are compared with the measuring cylinder (gold standard). 

Urinometer AU MU 

Sensitivity (%) 90.4 98.2 

Specificity (%) 98.5 96.2 

Positive predictive value (%) 97.4 91.7 

Negative predictive value (%) 94.4 99.2 

 

 

We measured the duration between two sequential measurements and computed the 

absolute difference from exactly a full hour (n=108). The mean time-based variation of the 

MU was ± 7.4 minutes (±12.4%), 95% limits of agreement ±23.9 minutes (±39.8%), which 

should be compared with an absent temporal variation with the AU (p<0.0001).  
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All the 28 participating nurses filled out the questionnaires (Table 6) and 93 percent of 

them regarded the AU to be either easy or very easy to learn (question 1). The aggregate 

mean score of question 2 to 5 was 3.8 (SD ±0.9, p<0.0001 compared with mean=3), with 

86% of the nursing staff judging the AU superior to the MU (personal mean>3) (p<0.0001). 

Altogether, 63% of the nurses were in favor of the AU, 5% were in favor of the MU and 

32% graded the devices as equivalent. 

 

 
 
Table 6. Staff opinion (n=28) of the automatic urinometer (AU) compared with the manual urinometer (MU). 

Question Grading 

  5 4 3 2 1 

  Very 

easy 
Easy Fair 

Not 

easy 
Hard 

1. How easy was it to learn to use the automatic 

urinometer? 
39% 54% 7% 0% 0% 

2. Was the collection of urine output data from 

the automatic urinometer easier compared 

with the manual urinometer? 

32% 43% 14% 11% 0% 

  
A lot less Less Same More 

Much 

more 

3. Did you feel that you had less contact with 

the urine bags with the automatic urinometer 

compared with the manual urinometer? 

36% 25% 39% 0% 0% 

  Much 

more 
More Same Less 

Much 

less 

4. Do you think the reliability of the urine output 

data is higher with the automatic urinometer 

than with the manual urinometer? 

21% 64% 7% 0% 7% 

5. Does using the automatic urinometer give you 

more time for other activities? 
0% 32% 68% 0% 0% 
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4.2 STUDY II 

We included 210 measurements, 127 with the AU and 83 with the MU from 12 patients (six 

AU, four MU, and two patients who used both devices) (Table 7). The mean weight of the 

children was 4.8 kg in both groups and the mean of the cylinder measurements was 18.7 

mL in the AU group and 15.9 mL in the MU group, respectively (p=0.24).  

 

 
Table 7. Characteristics and clinical variables of pediatric patients and number of urine output 
measurements on each patient by the automatic urinometer (AU) and the manual urinometer (MU). 

Patient 
characteristics 

Data at ICU admission ICU stay Urinometer 
recordings  

Age Sex Kg Reason for ICU 
admission 

PDR 
(%) 

Albu
min 
(g/L) 

Creatinine 
(µmol/L) 

LOS Time in 
respirator 

AU MU 

4 d M 3.6 Post-op 
esophageal 
atresia 

1.4 22 81 3 d 24 h 10 ⎯ 

4 d M 3.6 Post-op 
diaphragmatic 
hernia 

N/A 21 97 4 d N/A ⎯ 9 

2 m M 3.7 Hypoxic cerebral 
injury 

11.
7 

23 82 6 d 5 d 16 ⎯ 

21 
d 

M 3.9 Upper respiratory 
tract infection 

1.8 23 28 3 d 2 d 5 ⎯ 

3 d M 4.1 Post-op 
esophageal 
atresia 

1.0 21 113 3 d 2 d 8 19 

13 
d 

M 4.2 Post ECMO, 
meconium 
aspiration 

7.5 26 35 N/A N/A ⎯ 5 

8 d M 4.3 Post-op 
suspected 
meningocele 

1.1 24 47 3 d 2 d 3 ⎯ 

3 m F 4.4 Cerebral 
hemorrhage, 
seizures 

3.9 12 43 4 d 4 d 13 ⎯ 

2.5 
m 

M 5.2 Post-op biliary 
atresia 

0.4 26 24 13 
h 

N/A ⎯ 7 

3 m M 5.6 Respiratory 
failure in 
VACTERL patient 

1.4 24 29 26 
d 

20 d 65 31 

9 m F 6.0 Bocha virus in 
premature child 

35.
8 

38 25 10 
d 

N/A ⎯ 12 

17
m 

F 9.0 Bacterial 
meningitis 

2.2 21 13 24 
h 

N/A 7 ⎯ 

Abbreviations: d = days; F = female; h = hours; LOS = length of stay; M = male, m = months; PDR = 
predicted death rate. VACTERL = vertebral defects, anal atresia, cardiac defects, tracheo-esophageal 
fistula, renal anomalies, limb abnormalities 
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The absolute mean bias was -1.1 mL (CI: -0.6; -1.5) and −0.6 mL (CI: ±0.0; -1.2) for the 

AU the MU, respectively (p=0.21). The SD:s were 2.6 mL and 2.8 mL, respectively (Table 

8). The spread of the MU measurements did not show any obvious change of bias with 

increasing urine volume, while the AU had a small propensity to a larger negative bias with 

rising urine volume (Figure 19). When depicted in a histogram, the deviations from the 

reference cylinder values of the AU and the MU displayed near normality (Figure 20). 

 

 
Table 8. Performance parameters of the automatic urinometer (AU) and the manual urinometer 
(MU) measured in milliliters (mL).  

Urinometer parameters Upper LOA Bias Lower LOA  
n SD SE CI + 𝒙# CI - CI + 𝒙# CI - CI + 𝒙# CI - 

AU 127 2.6 0.2 +4.9 +4.1 +3.3 -0.6 -1.1 -1.5 -5.4 -6.2 -7.0 

MU 83 2.8 0.3 +6.1 +5.0 +4.0 ±0.0 -0.6 -1.2 -5.1 -6.2 -7.2 

  p=0.96      p=0.21     

Abbreviations: LOA = Limit of agreement; n = Number of measurements; SD = Standard deviation;  
SE = Standard error; CI = Confidence interval; 𝐱% = Mean 
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Figure 19. Bland-Altman plots of the agreement of both urinometer. Volumes are given in milliliters. In each 
plot, the red lines depict (from above): upper 95% limit of agreement; mean bias; lower 95% limit of 
agreement. Dotted lines depict confidence intervals of each parameter. 
 
 

 
 
Figure 20. Histograms of the agreement between each urinometer. Volumes are given in milliliters (mL). 
Each bar represents an increment of 2 mL. A positive value represents an overestimation of the urinometer 
compared with a reference measurement by the measuring cylinder.  
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18 nurses included in the study filled out the evaluation questionnaire (Table 9). 94% of the 

nurses regarded the AU very easy or easy to learn (Question 1). For Questions 2-5 the 

aggregate mean score was 4.1 (SD ±0.8, p<0.0001 when compared with a mean of 3). 

Approximately 79% of the nurses preferred the AU, 1% preferred the MU and 19% graded 

the two urinometers as equivalent. 
 
 
 
Table 9. Staff opinion (n=18) of the automatic urinometer compared with the manual urinometer. 

Question Grading 

  5 4 3 2 1 

  Very 

easy 
Easy Fair 

Not 

easy 
Hard 

1. How easy was it to learn to use the automatic 

urinometer? 
50% 44% 6% 0% 0% 

2. Was the collection of urine output data from 

the automatic urinometer easier compared 

with the manual urinometer? 

50% 44% 0% 6% 0% 

  
A lot less Less Same More 

Much 

more 

3. Did you feel that you had less contact with 

the urine bags with the automatic urinometer 

compared with the manual urinometer? 

56% 22% 22% 0% 0% 

  Much 

more 
More Same Less 

Much 

less 

4. Do you think the reliability of the urine output 

data is higher with the automatic urinometer 

than with the manual urinometer? 

11% 61% 28% 0% 0% 

5. Does using the automatic urinometer give you 

more time for other activities? 
16% 56% 28% 0% 0% 
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4.3 STUDY III  

4.3.1 Biofilm formed on polypropylene compared with polystyrene plastic 
In Study III we studied if the type of plastic influenced biofilm formation, and compared 

polypropylene plastic, used in the AU, with polystyrene. We found that the wild type E. 

coli #12 strain and C. albicans formed significantly less biofilm when cultured on 

polypropylene compared with polystyrene plastic (Figure 21A and Figure 21B; p<0.05 

and p<0.01).  

 

Figure 21. Polypropylene plastic prevented formation of biofilm better than polystyrene, whereas viscosity 
of silicone oil had no impact. The effect of polypropylene compared with polystyrene on biofilm formation 
was analyzed for E. coli #12 (A) and C. albicans (B). Both low and medium viscosity silicone oils significantly 
decreased biofilm formation of E. coli #12 on a polypropylene plate (C). L = Low viscosity. M = Medium 
viscosity. P-value: * ≤0.05; ** ≤0.01; *** ≤0.001; **** ≤0.0001. 
 

4.3.2 Viscosity of silicone oil did not affect prevention of biofilm 

Both low and medium viscosity silicone oil prevented biofilm formation similarly, as 

depicted in Figure 21C for E. coli #12 (p<0.0001). We concentrated on the medium 

viscosity silicone oil, as the water-soluble capsule in the antechamber of the AU contains 

this specific oil. However, we did test all bacteria and C. albicans with both silicone oils 

and found comparable results (Figure 23 and Figure 25).  

4.3.3 Medium viscosity silicone oil decreased biofilm formation  

To explore if silicone oil may prevent the formation of new biofilm by microorganisms, we 

examined the Gram-negative bacteria E. coli CFT073, P. aeruginosa, Prot. mirabilis and K. 

pneumoniae, known to form biofilm (95-97). We found that medium viscosity silicone oil 

significantly inhibited biofilm production in all the tested bacteria (Figure 22A-D; p<0.01 

and p<0.001).  

Figure 1
A CE. coli #12 E. coli #12B C. albicans
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Figure 22. Medium silicone oil significantly reduced biofilm formation from common pathogens. This effect 
was demonstrated on E. coli CFT073 (A), P. aeruginosa (B), Prot. mirabilis (C), K. pneumoniae (D), ESBL E. coli 
(E), MDR K. pneumoniae (F), S. aureus (G), Ent. faecalis (H) and C. albicans (I). M = Medium viscosity.  
P-value: * ≤0.05; ** ≤0.01; *** ≤0.001; **** ≤0.0001. 
 

Furthermore, medium viscosity silicone oil also decreased biofilm formation of an ESBL-

producing E. coli strain (Figure 22E; p<0.001) and a multidrug resistant K. pneumoniae 

strain (Figure 22F; p<0.0001), giving additional support that silicone oil generally inhibits 

bacterial biofilm formation. In addition, silicone oil significantly decreased biofilm by two 

Gram-positive bacteria, S. aureus and Ent. faecalis (Figure 22G; p<0.001 and Figure 22H, 

p<0.001). Finally, silicone oil significantly inhibited biofilm formation by C. albicans 

(Figure 22I, p<0.05).  

A E. coli CFT073 B P. aeruginosa C P. mirabilis

D K. pneumoniae E E. coli ESBL F MDR K. pneumoniae

G
E. faecalis

H
S. aureus C. albicans

I
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Figure 23. Low silicone oil significantly reduced biofilm from common pathogens like E. coli CFT073 (A), P. 
aeruginosa (B), Prot. mirabilis (C), K. pneumoniae (D), ESBL E. coli (E), MDR K. pneumoniae (F), Ent. faecalis 
(H) and C. albicans (I), whereas we did not find a significant impact on S. aureus (G). L = Low viscosity. 
P-value: * ≤0.05; ** ≤0.01; *** ≤0.001; **** ≤0.0001. 
 

A P. aeruginosaBE. coli CFT073 C P. mirabilis

D K. pneumoniae E E. coli ESBL F MDR K. pneumoniae

G
E. faecalis

H
S. aureus C. albicans

I
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Figure 24. Medium viscosity silicone oil affects curli fimbriae. There was a significant reduction of biofilm 
formation of E. coli #12, E. coli (curli+/cellulose−/type 1 fimbriae (fim D+)) and E. coli (curli+/cellulose+/type 
1 fimbriae (fim D−)). Medium viscosity silicone oil did not have a significant effect on biofilm formation of E. 
coli (curli−/cellulose+/type 1 fimbriae (fim D+)) nor on that of the double knock-out E. coli 
(curli−/cellulose/type 1 fimbriae (fim D+)). T1F = Type 1 fimbriae. M = Medium viscosity.  
P-value: * ≤0.05; ** ≤0.01; *** ≤0.001; **** ≤0.0001. 
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Figure 25. Low viscosity silicone oil targets curli fimbriae. A significant reduction of biofilm from E. coli #12, 
E. coli (curli+/cellulose−/type 1 fimbriae (fim D+)) and E. coli (curli+/cellulose+/type 1 fimbriae (fim D−)) was 
noticed. No significant effect of the oil was seen on E. coli (curli-/cellulose+/type 1 fimbriae (fim D+)) nor on 
the double knock-out E. coli (curli−/cellulose−/type 1 fimbriae (fim D+)). The effect on E. coli isogenic strains 
were studied for both medium (Figure 24) and low viscosity silicone oil at the same time. Thus, the 
untreated controls were the same. T1F = Type 1 fimbriae. L = Low viscosity.   
P-value: * ≤0.05; ** ≤0.01; *** ≤0.001; **** ≤0.0001. 
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4.3.4 Curli fimbriae is a major target for biofilm formation by Gram-negative 
bacteria 

We used the isogenic mutants of E. coli #12 lacking curli, cellulose or type 1 fimbriae (fim 

D), alone or in combination, to evaluate to what degree different bacterial virulence factors 

influenced biofilm formation on polypropylene plastic. The combination of all three 

virulence factors promoted most new biofilm formation, whereas absence of type 1 

fimbriae significantly decreased biofilm formation. E. coli expressing type 1 fimbriae with 

or without cellulose only added to a low degree to biofilm formation (Figure 24 and Figure 

25). Silicone oil did not influence the growth rate of E. coli #12, S. aureus nor C. albicans 

(Figure 26). Thus, we postulated that silicone oil has a direct impact on at least one of these 

main biofilm mechanisms (87). 

 

 
 

Figure 26. Number of colony forming units (CFU) analyzed using viable count. Increase in CFU is depicted 
with and without silicone oil in polypropylene tubes demonstrated with a log scale/mL for (A) E. coli #12, (B) 
S. aureus and (C) C. albicans. Control, bacteria only, cultured in polypropylene tubes: Black line; Bacteria 
grown with medium viscosity silicone oil in polypropylene tubes: Dotted line. 
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When exposing the curli-expressing E. coli strains to medium viscosity silicone oil, we 

found a significant decrease in biofilm growth (Figure 24 and Figure 25; p<0.0001), but 

this was not seen in isogenic curli deficient strains. Likewise, medium viscosity silicone oil 

did not alter biofilm production by type 1 fimbriae or cellulose. Overall, our results showed 

that medium viscosity silicone oil targeted curli fimbriae and decreased biofilm formation.  

 

 

 

 
 
 
Figure 27. Medium viscosity silicone oil did not have a significant impact on the attachment of E. coli #12, S. 
aureus or C. albicans to polypropylene or on fungal hyphae. Nevertheless, P. aeruginosa adhered less to 
polypropylene (p<0.05). Number of colonies in mature biofilm after 72 hours of growth determined by 
viable count are depicted in log scale CFU/mL. (A) E. coli #12 (B) P. aeruginosa (C) S. aureus (D) C. albicans. C. 
albicans staining was achieved from overnight growth in yeast-peptone-dextrose (YPD) broth in 30°C. (E; 
upper panel) C. albicans cultured in polypropylene tubes, (E; lower panel) C. albicans cultured in medium 
viscosity coated polypropylene tubes. We used Blankophor p to stain C. albicans (E; right panel). Septum are 
highlighted with white arrows. We did not notice differences in the fungal hyphae. P-value: * ≤0.05. 

C. albicans

A E. coli #12 B P. aeruginosa C S. aureus

D E C. albicans Zoom

C
on
tr
ol

Si
lic
on
e
oi
l(
M
)

C
FU

/m
l

Control Silicone oil (M)
100

101

102

103

104

105

106

107

108 0.0855

C
FU

/m
l

Control Silicone oil (M)
100

101

102

103

104

105

106

107 *

C
FU

/m
l

Control Silicone oil (M)
100

101

102

103

104

105

106

107
0.4775

C
FU

/m
l

Control Silicone oil (M)
100

101

102

103

104

105

106

107

108 0.1198



 

50 

4.3.5 Mature biofilm induces less P. aeruginosa adhesion  

We did not find any significant difference of viable count (CFU/mL) for E. coli #12, S. 

aureus and C. albicans in mature biofilm (Figure 27A, C-D). Nevertheless, P. aeruginosa, 

adhered to a lower extent to polypropylene (p<0.05) (Figure 27B).  

4.3.6 Morphology of C. albicans hyphae after exposure to silicone oil 

We did not observe any change in C. albicans hyphae after overnight exposure to medium 

viscosity silicone oil. Budding cells and septum were clearly seen with and without silicone 

oil (Figure 27E). 

4.4 STUDY IV  

4.4.1 Effect on capacitance measurement by albumin  

We analyzed 477 measurements without and 472 measurements with silicone oil, 

respectively. During the 24th hour, 29 measurements were excluded as readings were too 

few to extract a reliable average. Moreover, in a few cases the liquid container was emptied 

and the pump ran dry before the end of the 24th hour measurement period. The maximum 

capacitance value was 790 in the group without and 633 in the group with silicone oil, 

respectively. The mean increase in capacitance was 257±96 in the group without and 

105±32 in the group with silicone oil, respectively. After ten hours of registration 

differences between the groups reached statistical significance (p=0.011, Table 10). The 

buildup of albumin coating over time is summarized in Figure 28, shown as the mean of 

the minimum capacitance, with and without silicone oil. The additional experiments with 

0.3 g/L and 1.0 g/L albumin solution with 379 and 190 measurements, respectively, did not 

show significant differences in capacitance with and without silicone oil during the 23-hour 

time frame (data not shown).  
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 Table 10. Capacitance parameters and change over 23 hours with albumin solution (3 g/L).                                        

Abbreviations: Min cap = Minimum capacitance; Max cap = Maximum capacitance; SD = Standard deviation. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

 With silicone oil (n=472) Without silicone oil (n=477) 
 

Hour Min 
cap 

Max 
cap 

Medi
an 

Mean  
min 
cap  

SD Min 
cap 

Max 
cap 

Medi
an 

Mean  
min 
cap  

SD P-value 
(mean  

min cap) 
1 381 433 405 406 12 382 415 406 401 10 0.176 

2 413 458 433 433 11 406 464 438 434 17 0.56 

3 417 471 439 439 15 407 482 437 441 18 0.839 

4 417 479 447 444 17 418 488 443 449 19 0.756 

5 406 510 454 451 21 426 506 446 456 26 0.914 

6 422 497 452 453 19 416 554 450 459 36 0.903 

7 426 506 457 457 19 420 566 457 468 39 0.675 

8 426 508 455 458 19 418 583 460 477 45 0.386 

9 423 499 454 457 17 423 590 479 488 48 0.062 

10 425 500 458 458 18 419 614 485 496 51 0.011 

11 419 507 460 461 19 436 614 503 511 52 <0.001 

12 425 508 461 462 19 437 627 522 523 57 <0.001 

13 428 505 473 468 20 454 649 524 534 58 <0.001 

14 436 487 469 467 15 467 670 524 541 66 <0.001 

15 441 500 480 476 17 456 716 560 561 71 <0.001 

16 430 503 478 476 19 447 727 545 567 76 <0.001 

17 440 513 485 481 19 454 760 572 585 81 <0.001 

18 441 520 488 483 22 452 754 596 600 79 <0.001 

19 440 544 490 493 24 452 759 645 615 81 <0.001 

20 437 535 497 496 24 479 729 659 639 65 <0.001 

21 439 554 502 504 32 470 788 659 652 71 <0.001 

22 440 556 502 501 27 494 790 670 665 63 <0.001 

23 400 660 503 503 56 472 785 677 674 67 <0.001 
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Figure 28. A. Mean capacitance measurements caused by an albumin solution during 23 hours coating 
for devices without (green) and with (blue) addition of silicone oil. B. Median, maximum and minimum 
capacitance values caused by an albumin solution for each hour with and without addition of silicone oil. 
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4.4.2 Effect on capacitance measurements by free hemoglobin  

In total 484 measurements without and 414 with silicone oil were compared. The mean 

concentration of fHb in the prepared mixtures was 0.0141 g/L, ranging from 0.0056 g/L to 

0.0173 g/L. The mean concentration in the group with silicone oil was 0.0113 g/L and 

0.0125 g/L in the group without. The mean increase in capacitance was 190±174 with 

silicone oil and 324±78 without. A significant difference between the groups was seen after 

20 hours and onwards (Table 11). The last two hours of measurements were excluded from 

the analysis as the readings during the 23th and 24th hours did not result in sufficient number 

of readings to test for differences. Figure 29 depicts the mean increase in capacitance due 

to buildup of fHb coating over time in the group with and without silicone oil, respectively.  
 
 
Table 11. Capacitance parameters and change over 22 hours with free hemoglobin solution (0.01 g/L). 

 
With silicone oil (n=414) Without silicone oil (n=484) 

 

Hour Min 
cap 

Max 
cap 

Medi
an 

Mean  
min 
cap  

SD Min 
cap 

Max 
cap 

Medi
an 

Mean  
min 
cap  

SD P-value 
(mean  

min cap) 
1 379 414 396 396 11 378 411 393 393 10 0.09 

2 406 641 449 449 49 404 496 451 451 26 0.266 

3 398 650 462 462 51 416 563 470 470 33 0.272 

4 427 530 467 467 22 417 534 472 472 31 0.542 

5 432 539 479 479 24 417 561 476 476 35 0.649 

6 432 561 490 490 27 408 691 490 490 58 0.642 

7 433 575 499 499 30 414 773 511 511 89 0.652 

8 434 591 505 505 31 414 798 507 507 87 0.327 

9 435 601 505 505 32 411 843 540 540 125 0.724 

10 430 752 522 522 66 415 881 579 579 158 0.622 

11 429 779 523 523 74 404 880 596 596 175 0.922 

12 431 765 522 522 73 404 874 612 612 177 0.518 

13 433 767 520 520 74 410 873 638 638 177 0.257 

14 431 761 516 516 73 403 862 646 646 179 0.232 

15 438 783 518 518 79 399 866 666 666 178 0.164 

16 451 777 521 521 79 422 873 676 676 179 0.176 

17 456 767 516 516 81 421 877 686 686 183 0.091 

18 454 776 516 516 83 402 880 700 700 179 0.058 

19 448 784 522 522 83 406 873 703 703 181 0.06 

20 433 775 528 528 93 420 878 707 707 183 0.031 

21 428 818 557 557 113 409 897 711 711 186 0.037 

22 428 824 564 564 117 412 907 716 716 189 0.028 

Abbreviations: Min cap = Minimum capacitance; Max cap = Maximum capacitance; SD = Standard deviation. 
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Figure 29. A. Mean capacitance measurements caused by a free hemoglobin solution during 22 hours 
coating for devices without (blue) and with (green) addition of silicone oil. B. Median, maximum and 
minimum capacitance values caused by a free hemoglobin solution for each hour with and without addition 
of silicone oil. 
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5 DISCUSSION 

5.1 VALIDATION OF A CAPACITANCE-BASED AUTOMATIC URINOMETER 

The best way to evaluate a new measuring device is to compare it with preferably the gold 

standard methods. Thus, in Study I and II we measured hourly measurement UO with the 

gold standard, a laboratory cylinder, and compared it with data acquired with the MU or the 

AU. The chosen study design permitted the comparison between the MU and the AU. The 

scientific scale is an alternative to the measuring cylinder and has two advantages as it is 

automatic and avoids visual assessment of UO. However, we chose not to use a scale as, 

based on our earlier studies (98), it is very sensitive to movements, which will easily distort 

measurements. 

5.1.1 Evaluation of a new automatic urinometer in adults (Study I) 

In brief, the new AU, using a capacitance measuring technique, was non-inferior to the 

MU, and scored significantly better regarding bias, temporal deviation and nursing staff 

judgement.  

In Study I, the bias of the AU was significantly lower when compared with the MU. This 

corresponds to a 24-hour bias of 46 mL with the AU compared with 126 mL with the MU. 

Both these values may be good enough in clinical use, while a smaller bias is desirable. 

Single errors of this size would not change clinical therapy in our view. The level of 

precision did not disagree significantly between the AU and the MU. Both urinometers 

were in our view equivalently effective in detecting oliguria, although the number of 

patients were too few to give a conclusive answer in this respect. 

As depicted in Figure 17, the bigger range of the dots at larger volumes in both plots 

indicates a worse precision at larger volumes. With the AU this may possibly be caused by 

a minor mismeasurement reoccurring for each siphon measurement, while with the MU this 

may be due to the inexact grading of the MU at large volumes and to an incorrect angle 

between the evaluator’s eyes and the horizontal surface level of the urine in the MU. When 

a Bland-Altman plot deviates at larger means, the ratio of the difference and the mean can 

be drawn on the y-axis in place of the difference (99). We believed this method unsuitable, 

as this alternative would have transferred the error from high absolute divergences among 

large means to large relative divergences midst small means. Furthermore, we prefer 

absolute values clinically. The propensity towards skewness in the histogram of the MU 
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may imply that visual reading of the analogue scale of the MU largely overestimates the 

UO (Figure 18).  

The possible question is what happens when the level of urine increases in the container 

(which would happen within 72 hours). However, only 16-18 mL of urine is collected in the 

measuring chamber of the AU before it is emptied automatically by a siphon mechanism 

into the collection bag. Although urine is emptied into the collection bag, oil will remain 

stuck onto the walls of the measuring chamber. Otherwise, the addition of the oil capsule 

would not have prevented the signal loss of the capacitance measurement that was 

registered and clinically observed before its introduction. 

Hersch et al. used a similar study design when assessing an AU using a droplet counting 

technique (100). They also found their AU superior to the MU regarding bias, precision and 

user friendliness. When comparing their AU, based on droplet counting, with our tested AU 

which uses capacitance measurements, one should consider the following: The bias with the 

capacitance technique was +1.9 mL (SD ±7.7 mL), which is comparable with +0.08 mL 

(SD ± 14 mL) with the droplet counting technique. However, the bias of the MU in our 

study was +5.3 mL (SD ±8.4 mL) compared with the much higher value +13 mL (SD ±68 

mL) in the study by Hersch et al. While the brand of the MU was identical in both studies, 

we do not know if the same models were applied, because Hersch et al. did not specify 

which model they utilized.  

Goldman et al. compared an AU based on a temperature exchange electronic sensor 

technique (Clarity RMSÔ, RenalSense, Israel) with an MU using a scientific scale instead 

of a measuring cylinder as a gold standard. They found a mean UO difference for the AU-

scale of −2.55 mL (95% CI, −4.3 to −0.8), and a mean difference for the MU-scale of +8.5 

mL (95% CI, 5.4 to 11.7). Whereas the Clarity RMSÔ slightly underestimated the 

measured volume, the capacitance-based AU Sippi® that we tested slightly overestimated 

the volume, but to a nearly identical degree (−2.55 mL vs. +1.9 mL). The bias of the MU 

was somewhat smaller in our study compared with their study (+5.3 mL vs. +8.5 mL). 

Notably, the measurement precision was considerably and significantly lower with the 

Clarity RMSÔ (SD 25.8 mL) compared with the Sippi® that we tested (SD +7.7 mL).  

5.1.1.1 Temporal deviation of measurements with a manual urinometer  

One error which may occur when assessing UO is temporal deviation of measurements that 

additionally may lower the precision of the MU. Conversely, this error is intrinsically 

circumvented with the AU using its built-in precision clock. In Study I, the mean time-
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based variation of the MU was ±7.4 minutes, compared with no temporal variation with the 

AU (p<0.0001). This is equivalent to a mean time error of ±12.4% and similar to the 16% 

found by Kramer et al. in manual monitoring UO in a standard ICU (24). In our view, this 

type of error may have clinical consequences. 

5.1.2 Evaluation of a new automatic urinometer in children (Study II) 

In Study II we investigated the capacitance-based AU in children, whereby we specifically 

adapted the AU by using a double-lumen tube instead of the normal single-lumen tube 

between the patient´s urinary catheter and the AU measuring device without changing the 

type or length of the tube. We did this for two reasons. Firstly, we kept both setups as 

similar as possible excluding for the measuring component, to improve the transit of small 

urine volumes. When a long single-lumen tube is used, small volumes of urine may get 

trapped without getting to the measuring chamber because of a negative pressure. Secondly, 

with a double-lumen tube, large urine volumes may flood the measuring chamber too 

quickly, when pressure differences between the two tubes are even out, resulting in 

miscalculation.  

In Study II, the bias of the AU when extrapolated for 24 hours was 26.4 mL versus 14.4 

mL for the MU group. Such daily biases are in our view acceptable in clinical practice and 

should likely not change clinical decisions. Largely, the AU underestimated UO somewhat, 

opposing the results in Study I. Conceivably, the double-lumen tube induced a too fast 

urine flow for the AU sensors when very high volumes occurred, depicted by a negative 

bias in the weightiest children with large urine volumes.  

To our knowledge, this is the first and only published study evaluating an AU among 

pediatric patients. 

5.1.3 Nursing staff´s evaluation of a manual versus an automatic urinometer 

A prerequisite to get a new device accepted in clinical routine is that the staff get the 

necessary theoretical and practical training education. Thus, the staff’s judgment of the new 

device after the training is of paramount significance. Both Study I and II began with a 15 

minutes theoretical summary of the device including its handling, where after the nursing 

staff used the device during 3 days. Finally, the nursing staff filled out the questionnaire 

about the devices.  

In Study I, the AU, while indeed at large preferred by the staff, did not score 

extraordinarily much better than the MU (Table 6). This is plausible because the AU device 
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at the time of the study did not automatically transfer UO data to the patient data 

management system. One may expect that the use of automatic data transfer would have 

increased the ratings of questions 2, 3 and 5, indicating an additional increase in staff 

satisfaction with the AU.  

Compared with the cardiothoracic ICU nursing staff’s evaluation in Study I (Table 6), the 

pediatric ICU nursing staff (Study II) (Table 9) generally rated the AU slightly higher, 

except for question 4 about reliability of UO measurement. Here, 85% of the cardiothoracic 

ICU nursing staff graded the AU higher, compared with 72% for the pediatric ICU nursing 

staff. Interestingly though, 28% of the pediatric ICU nursing staff thought the reliability 

was the same between the AU and the MU, compared with 7% of the cardiothoracic 

nursing staff. Also, for question 5, 68% of the adult cardiothoracic ICU nursing staff 

compared with 28% of the pediatric ICU nursing staff considered that neither of the devices 

gave them more time for other activities. Interestingly, 72% of the pediatric ICU nursing 

staff considered that the AU rendered more or much more time for other activities. These 

differences between our two studies may have many explanations. The introduction and 

teaching of the new AU may have differed between the ICUs. It is of uttermost importance 

that all the staff is familiar with all the features of the AU before starting the study, 

otherwise this might take extra time and energy. The fact that the system at the time of the 

studies was not linked to PDMS and thus obliged the nurse to manually record the UO may 

also have played a role. The more positive view of the pediatric nursing staff regarding the 

use of the AU may also be due to the fact that the UO are lower in children and that the 

measuring procedure, including making sure that the urinary catheter and the tube between 

the catheter and the UO measuring device is not kinked, is easier. Although a majority of 

the nurses in both the adult and the pediatric ICU regarded that they had a lot less or less 

contact with the urine bag of the AU compared with the MU, a fair part of the participating 

nurses in both ICUs felt they had the same degree of contact with both the AU and the MU. 

Normally, regular physical contact should not be needed with the AU. However, in this 

case, it may be explained by the novelty of the product and the need of reassuring its 

functionality. The argument that the AU saves time for the staff was demonstrated in the 

evaluation for both the adult and pediatric ICU patient. The nursing staff’s positive opinion 

of the AU in Study I and II are in line with the study by Hersch et al (23), where the 

nursing staff evaluated a droplet-based AU called Urinfo 2000, which, however, is no 

longer commercially available. 
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5.2 REDUCTION OF BIOFILM FORMATION 

Biofilm is a vital part of many infections. It weakens the penetration of antimicrobials and 

obstructs the response of the intrinsic immune system (39, 101). There is a need to decrease 

biofilm formation as it may promote infection of medical equipment, including temporary 

urinary and central venous catheters, permanent pacemakers and prosthetic heart valves 

(102). Thus, new efficacious methods to prevent biofilm formation are sought for. In Study 

III, we found that the type of used plastic material affected the growth of biofilm. The least 

quantity of biofilm was produced when bacteria were cultured on silicone oil covered 

polypropylene plastic. Additionally, curli fimbriae of E. coli were recognized as the 

principal target of silicone oil. 

5.2.1 Impact of plastic and silicone oil on microbial biofilm formation 

In Study III we studied polypropylene plastic as this is the plastic used in the measuring 

chamber of the studied AU. Polypropylene plastic alone reduced biofilm formation by E. 

coli #12 and C. albicans more than polystyrene, an alternative plastic applied in many 

medical equipment and devices. This polypropylene effect is deemed to its relatively 

slippery surface (81, 82). Due to the non-polar and hydrophobic properties attributed to 

polypropylene, silicone oil will accumulate as droplets on the surface of polypropylene. 

Based on the chemical structure and an initial pilot study using Raman microscopy 

(unpublished data), some amount of the hydrophobic oil will attach to the polypropylene 

plastic surface, in the form of droplets, and in doing so exerts the long lasting clinically 

observed effect despite surfaces being intermittently exposed to air between each emptying 

of the measuring chamber. Clinical observations and Study IV, suggest that supplementing 

silicone oil to polypropylene plastic impedes biofilm formation, prolonging adequate 

function of the AU.  

One also has to consider the biofilm formation at the liquid/air interface, where biofilms 

like pellicles are formed. This can be selectively advantageous for aerobic or facultative 

aerobic bacteria. Wang et al. have previously demonstrated that loss of O-antigen was 

associated with enhanced pellicle formation (103). In Study III we observed that biofilm 

was formed on the liquid/air interface. Moreover, we observed biofilm components like 

pellicles on the surface of the liquid. We carefully stained the biofilm at the liquid/air 

interface. 

In Study III, we found that the low as well as the medium viscosity silicone oils equally 

prohibited biofilm formation by common bacteria, implying that the grade of the silicone 
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oil viscosity did not have a significant impact on biofilm formation. In our view, silicone 

oil has a direct effect on biofilm formation, as silicone oil did not affect the bacterial 

growth. Our data indicate that silicone oil affects the biofilm promoting structure curli, 

without or with only minor impact on type 1 fimbriae or cellulose. Moreover, our viable 

count data corroborates that the decrease of biofilm is due to inhibition of extracellular 

matrix production and in the case of E. coli, this seems to be mediated via curli fimbriae.  

Fungi, including C. albicans, can similarly to bacteria form biofilm and initiate lower 

urinary tract infections (38). Our finding in Study III that both polypropylene and silicone 

oil significantly decreased biofilm formation expressed by C. albicans is of clinical 

importance. In fact, Odabasi and Mert reported that 22% of patients remaining more than 

one week in an ICU had candiduria that in turn could significantly be linked to increased 

mortality (104).  

The new AU contains a silicone oil capsule, which is liquefied by urine, where after 

silicone oil covers the surface of the polypropylene plastic measuring chamber. In Study 

III we demonstrated that the polypropylene plastic silicone oil interaction significantly 

decreased biofilm formed by common bacteria and candida, whereby the function of the 

device was prolonged and possibly may reduce the risk of an ascending urinary infection.  

In Study III, we chose to focus on the polypropylene plastic used in the actual device. The 

choice of polypropylene plastic originally was made after clinical observations that 

polypropylene in combination with silicone oil proved benefits in terms of functional 

duration of the device. We decided to include polystyrene primarily to investigate whether 

the plastic on its own, without oil, could impact the amount of biofilm formation. However, 

including a plastic that could serve as a “better” positive control would most probably have 

been relevant, both in order to study the underlying mechanisms and to identify the main 

target. 

Silicone oil could potentially target other components of the bacteria and the bacterial 

biofilm, which we did not test in Study III. Instead, we focused on E. coli, being an 

important pathogen and the major biofilm components curli, cellulose and type 1 fimbriae. 

To elucidate the bacterial biofilm targets we created knock out strains, allowing us to 

investigate the impact of these components. In Study III, we were able to clearly 

demonstrate the impact of curli. However, Klebsiella spp have not been shown to be 

equipped with curli or cellulose (105) and other components are therefore relevant for the 

biofilm formation. This merits further investigation, but that was beyond the scope of 

Study III. 
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5.2.2 Impact of silicone oil on biofilm caused by albumin and free 
hemoglobin  

The main finding of Study IV was that silicone oil significantly decreased the capacitance 

increase produced by coating of albumin or fHb solutions on the surface of the measuring 

chamber of the studied capacitance-based AU, which already had been validated to 

continuously measure UO in Study I and II (30, 106, 107). However, before performing 

Study I and II we had clinically experienced that biofilm coating of the AU by fHb and 

albumin in urine from patients undergoing cardiac surgery with CPB affected AU 

measurements. This initiated the manufacturer to include a water-dissolvable capsule 

containing silicone oil in its antechamber before we conducted Study I and II. However, 

we still wanted to investigate the impact of fHb and albumin on the new version of the AU 

with an enclosed silicone oil (Study IV). 

In Study IV, both the albumin (3 g/L) and the fHb solution significantly amplified the 

capacitance measurement in the AU. Silicone oil released from the antechamber of the AU 

significantly decreased those increases in capacitance during the 23-hour study period, by at 

least partially prevent biofilm formation in the measuring chamber. To our knowledge, this 

is the first investigation indicating at least partial protection of an albumin and fHb biofilm, 

respectively, on plastic surfaces by use of silicone oil. 

In a large clinical study involving 1200 patients undergoing coronary surgery (52), 80% of 

patients had early postoperative albumin levels in urine of 0.05 g/L or lower. Thus, our 

studied albumin solution 3 g/L had a significantly higher concentration than the 

concentration of albumin in urine found postoperatively in at least 80% of patients 

undergoing conventional cardiac surgery, implying that the beneficial effect of silicone oil 

should apply to the vast majority of conventional postoperative cardiac patients. 

5.3 CLINICAL IMPLICATIONS 

5.3.1 Study I and II 

When using an MU for measuring UO, the staff is required to read and empty the MU 

manually at specific time intervals. This is unfortunately frequently impractical or 

impossible due to shortage of nursing staff. However, if this is possible, Study I and Study 

II show that the MU measures hourly UO adequately and similarly to the AU. Yet, 

irrespective of staff number, the AU may give the staff the opportunity to perform other 

responsibilities. Likewise, using the AU in normal wards may allow hourly UO 

measurements in all patients with a urinary catheter, and not restrict measurements to 
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infrequent daily episodes. This may, together with laboratory kidney parameters, enable a 

faster and more accurate diagnosis using current AKI criteria. Theoretically, the higher 

measurement resolution that may be obtained with the AU should benefit early detection of 

an upcoming AKI. The AU may also potentially decrease the risk of retrograde urinary tract 

contamination, as it will minimize the nursing staff´s direct contact with the system and 

avoid the requirement for the nursing staff to bend down with possible contamination of 

clothes or hands from the floor or bed while reading the scale of the MU. Another 

disadvantage of the MU may ensue during high UO. If the UO tops 500 mL/hour, the MU 

will not include the complete volume in the measuring chambers, and the volume above 

500 mL with be drained directly into the urine bag. Thus, this surplus volume can only 

roughly be judged hourly if the urine bag is emptied or measured with the inexact scale of 

the urine bag. However, in Study I we circumvented this potential problem by emptying 

the urinary bag hourly.   

We are not aware of the costs of the AU but according to the manufacturer the price setting 

will probably be close to that of the MU. When the exact cost is known, one could conduct 

a cost-effectiveness study. The clinician has to evaluate the potential added value of the 

AU, when taking into consideration its potential advantages including time saving in low 

staffed wards and possibility of automatic data transfer avoiding human errors in data 

entries. 

In addition to the silicone oil of medium viscosity applied in the measuring chamber of the 

AU, a supplementary low viscosity silicone oil that coats the proximal end of the tubing 

towards the AU could potentially have additional advantages. Moreover, reiterating silicone 

oil would recoat the surface. 

5.3.2 Study III  

The findings in Study III may support the development of novel surfaces that repel biofilm 

formation. Upcoming studies need to investigate the duration of silicone oil on biofilm 

formation and the potential clinical benefit in this respect of the new AU. Silicone oil, in 

contrast to silicone, has so far not been used in the urinary catheters, but we believe this 

may be beneficial. However, this has to be evaluated in a follow-up trial and the effect will 

probably depend on the plastic used in the urinary catheter, the amount of delivered silicone 

oil and the frequency of oil replenishment. 
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5.3.3 Study IV 

The clinical importance of Study IV is that supplementation of silicone oil in the 

capacitance-based AU allows for prolonged measurements of trustworthy UO until its 

throwaway part has to be substituted. This would be of value in patients with fHb and/or 

albumin in urine, which often is the case for example in patients who have undergone 

cardiac surgery with CPB, in patients with diabetes mellitus, and in patients with renal 

dysfunction. Indeed, we have not seen failed AU measurements early after cardiac surgery 

since silicone oil was included in AU. 

5.4 LIMITATIONS 

5.4.1 Study I 

First, we did not randomize the patients. Instead, we allocated patients to the urinometer 

that was currently in use. Thus, we performed Study I during two stages, whereby we first 

investigated the MU, followed by an evaluation of the AU. Second, there was a difference 

in the mean of the hourly urine cylinder reference measurements between the MU and the 

AU groups whereby a higher mean was found in the MU group. This may have been a 

potential bias. However, we found similar results in both ranges compared to the overall 

result when we performed subgroup analyses that demarcated each urinometer group at 

hourly UO values of 100 mL (Table 4). Furthermore, we omitted measurements if the 

nursing staff had unintentionally placed the AU or the MU erroneously. This occurred 

almost solely when the nursing staff mobilized the patient from the bed to a chair. 

Additional education should help to prevent this problem with both the AU and the MU, 

although this drawback is likely not distinguished as clearly with the MU as with the AU. 

Third, one could argue that only 408 comparisons were made in 36 post cardiac surgery 

patients (less than 12 hours per patient). This seems to be short compared with the ICU 

length of stay for cardiac surgery patients. However, a similar study with a droplet-based 

AU (23) included 453 measurements and was the base for our power calculation. Our 

measurements were for practical reasons not conducted during nighttime, as a laboratory 

technician was needed to conduct the reference measurements. 

5.4.2 Study II 

First, as in Study I, we did not randomize patients in Study II and instead allocated the 

patients to either the MU or the AU. Second, one might see the variation of number of 

measurements per patient as a selection bias. Third, there were fewer measurements with 
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the MU than with the AU (83 vs. 127), and the number of patients in each group, though 

similar, were few, with six patients in the MU group and eight patients in the AU group. 

Study II should rather have included more patients and several centers. Fourth, more 

diverse patients and specifically patients with manifest oliguria would have been preferable. 

However, assuming a cutoff for oliguria at <0.5mL/kg/h, 9% and 7% of the measurement in 

the AU and MU group, respectively, were oliguric. Anyway, we consider performing a 

larger study taking these points into consideration. Fifth, one may ask why there were wide 

fluctuations with both the AU and the MU, specifically in the nine cases with biases above 

10 mL. In fact, there were five instances with biases of more than 10 mL, three with the AU 

and two with the MU in four patients. Regarding the AU, the measurements surrounding 

the measurements with high bias (measurements one hour before and one hour after) were 

normal (<5mL bias). We can only speculate about the reasons. Of course, there may have 

been inaccurate measurements involved with any of the measuring methods including the 

cylinder. 

Lastly, as the AU adapts the measurement of urine to the position of the device and sets off 

an alarm should the position interfere with measurement, it is conceivable this is a potential 

issue given the often very frequent movement of the pediatric ICU patient. However, before 

the start of Study II, we had a rather large experience of using the AU in the adult ICU, and 

the alarm set off for position interference with measurement very infrequently, in fact only 

when the patients were transported for external evaluations, like CT-scans. Neither in 

pediatric nor in adult patients did we experience alarms due to movements by the patient 

while still in the bed. 

5.4.3 Study III 

First, we did not measure the exact width of the silicone oil coating and how the silicone oil 

was dispersed in the wells. One could presume that there should be more oil in the bottom 

of the well than on the walls, as oil is likely to slide down. Indeed, we detected more 

biofilm on the walls compared with the bottom of the wells. Conversely, this may as well 

be explained by how biofilm is formed (108). Anyway, we assumed that the quantity of oil 

on the walls was similar between wells. Still, further studies should quantify the spreading 

of silicone oil in the measuring chamber of the AU as well as if oil thickness varies over 

time. Second, we do not know for how long the influence of silicone oil lasts. In Study III, 

we recorded measurements for 72 hours, because most patients using the AU will not stay 

longer in the ICU after cardiac procedures. Furthermore, we found that the biofilm 

formation reached a plateau phase after 72 hours.  
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5.4.4 Study IV 

First, in Study IV we applied Ringer’s acetate as a surrogate for normal urine. Admittedly, 

we may have utilized more complex formulas for artificial urine (109), but we chose to use 

Ringer’s acetate as it is cheap and clinically accessible and mixes well with albumin and 

fHb. Moreover, it is both difficult and expensive to make large quantities of sterile artificial 

urine. There were several arguments against using humane urine. We would have needed 

approximately 80 L of human urine, which also may have a large interpersonal variation in 

electrolyte composition and pH, and it is complicated to keep such large volumes sterile. 

Indeed, other investigators have applied similar solutions as we did to replace human urine, 

e.g. Rasmussen et al. studied ascending infections using 0.9% saline (110). Second, our 

experiments were restricted to 24 hours, and with a longer follow-up time we might have 

seen significant effects with both the 0.3 and 1.0 g/L albumin solution. Third, the 

concentration of fHb varied somewhat between each run. However, the mean difference in 

concentration in fHb was very similar between both groups and should accordingly only 

marginally have had an impact on the results (0.0113 g/L with silicone oil and 0.0125 g/L 

without silicone oil). Interestingly, fHb concentrations in urine in patients with discolored 

urine in the first hours after cardiac surgery with CPB, typically fluctuate between 0.1 to 5 

g/L in our cardiothoracic ICU, after which it regularly drops. Thus, in our study we used a 

fHb concentration that was approximately 10% of the real values at most. Conversely, we 

have not experienced malfunctioning measurements in our clinical routine since we started 

to use the new AU Sippi® device with an enclosed water-soluble capsule with silicone oil. 

Fourth, Study IV was neither randomized nor blinded, but as data measurements were 

automatic, this should not have influenced the results.  
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6 CONCLUSIONS 

The specific conclusions were: 

 

• This study compared the performance of a new capacitance-based AU with that of an 

MU in adult patients in a cardiothoracic ICU. The AU was non-inferior to the MU 

regarding precision, and significantly better than the MU in terms of bias, temporal 

deviation and staff opinion.  

 

• When the modified capacitance-based AU was compared with a standard MU in a 

pedatric intensive care unit for children weighing ≤10 kg, the urinometers were 

comparable regarding bias of measurements. Staff consistently rated the modified AU 

significantly higher than the MU in terms of user friendliness, time-consumption and 

duration of contact with the urine bag.  

 

• A silicone oil-coated polypropylene plastic surface, as used in an AU, significantly 

decreased early biofilm formation by pathogenic bacteria, including ESBL-producing 

and multidrug resistant strains, as well as C. albicans. Both low and medium viscosity 

silicone oils significantly reduced early biofilm formation to a similar extent. 

 

• Curli fimbriae appeared to be the tentative silicone oil target and addition of silicone 

oil led to a 50% reduction in biofilm formation in curli-positive strains. No additional 

reduction in biofilm formation could be detected when adding silicone oil to curli 

deficient strains.  

 

• Albumin or free hemoglobin coating of the capacitance measurement membrane of 

the AU decreased the capacitance measurement capability of the AU, and this could 

significantly be attenuated by addition of silicone oil to the measuring chamber of the 

device.  
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