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ABSTRACT 

There is global concern regarding the increase of cyanobacteria and cyanotoxins in 

freshwater and their potential effects on human health. This study was conducted to 

determine the occurrence of cyanotoxins and assessed their risk of exposure to human. A 

cross sectional study of 432 subjects was conducted to assess related health risk due to 

cyanobacteria and cyanotoxins exposure in selected villages of the Ukerewe District in 

Mwanza, Tanzania. A total of 138 water samples and 432 serum samples were collected in 

two phases (February and December). Thirteen cyanotoxins namely; Microcystins (-LA, -LF, 

-LR, -LY, -LW, -RR, -YR, -WR, dm MC-RR and dm MC-LR), anatoxin-a (AT-A), nodularin 

(NOD) and cylindrospermopsin (CYN) were assessed in water and in human serum by 

UPLC-MS/MS. Cylindrospermopsin was the most abundant cyanotoxin detected in the lake 

water samples in both phases. Microcystin (MC) congeners; -RR, -LR and –YR were 

detected in phase I while MC-RR and MC-LR were detected in phase II. No cyanotoxins 

were detected in wells and treated pipe water samples. Furthermore, phycocyanin 

concentration detected in Lake Victoria ranged from 5 to 58.4 μg/L which is above the WHO 

limit. The concentrations of cyanobacteria cells were beyond WHO acceptable limits. Species 

of Microcystis aeruginosa and Anabaena spp were identified as the most abundant 

cyanobacteria. Acute illnesses such as throat, eye, skin irritation and gastrointestinal illnesses 

were highly reported by lake water users as compared to wells and pipe water (P<0.001). 

Cyanotoxins of CYN, NOD and MCs congener (-LR, -RR and dmMC-LR) were detected in 

human serum. The concentration of CYN detected in humans ranged from 0.02 to 0.15 

ng/mL and MCs ranged from 0.2 to 0.11 ng/mL. Concentration of cyanotoxin detected in 

human serum and liver biochemistry indices elevation, shows an association between the two 

with correlation coefficient of 0.33 for MC-LR while for combined cyanotixins of MC-LR, 

CYN and NOD is 0.78. This is the first study to report CYN, dm MC-LR and NOD in human 

serum, and CYN and NOD in freshwater of Lake Victoria. This study indicates the potential 

health risk of using lake water without any treatment for human consumption. 
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CHAPTER ONE 

INTRODUCTION 

1.1  Background of the problem 

Cyanobacteria have been present on the earth for more than three billion years.  

Subsequently, they have colonized almost all terrestrial and aquatic ecosystems. 

Cyanobacteria, also known as blue-green algae, are ancient Gram-negative prokaryotes with 

fossil records of 3500 million years of the Earth's history  (Falconer & Humpage, 2005). 

They are most abundant in aquatic habitats as part of the plankton and benthos, and some can 

be found on surfaces of plants, rocks and in extreme environments e.g. hot springs and artic 

ice (Whitton & Potts, 2007). Cyanobacteria causes a number of effects including being 

nuisance in water, change of water taste and odour due to compounds including geosmin and 

methyl isoborneol, discoloration, increased turbidity, foul smell and foam formation. 

Cyanobacterial blooms also interfere with water treatment work. Of particular concern, some 

cyanobacteria (toxic cyanobacteria) are known to produce cyanobacterial toxins 

(cyanotoxins) that can affect a variety of organisms, including humans, domestic animals and 

wildlife (Codd et al., 1999). 

Toxic cyanobacteria produce secondary metabolites known as cyanotoxins, which have 

adverse impacts on aquatic ecosystems and human health (Tomitani et al., 2006). 

Cyanotoxins have now been reported in several parts of the world including Africa, United 

Kingdom, USA, China, and Australia (Roegner et al., 2014). Toxic cyanobacteria produce a 

wide range of secondary metabolites (cyanotoxins), the leading producers being Microcystis, 

Cylindrospermopsis, Anabaena, Lyngbya, Nostoc, and Plantothrix (Boopathi & Ki, 2014). 

The most researched cyanobacteria are Microcystis aeruginosa, which produce over 90 

different types of toxins and are one of the most  widespread occurring cyanobacteria  

worldwide (Merel et al., 2013). 

Cyanobacteria including the harmful algal bloom Microcystis aeruginosa are found in lakes, 

ponds, rivers and other surface waters, which are used as sources of drinking water and other 

domestic activities. Harmful algal blooms (HABs) such as Microcystis aeruginosa, 

Anabaena, and Cylindrospermopsis in freshwater are of general concern owing to their 

ability to produce cyanotoxins that can potentially cause health problems. Cyanotoxins are 

classified based on their modes of action in invertebrates. They comprise of hepatotoxins 

such as microcystins (MC), nodularin (NOD) and cylindrospermopsin (CYN), neurotoxins 
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such as anatoxin-a (ATX-A), anatoxin-a (S) (ATX-a (S) and saxitoxins (STX), lastly 

dermatoxins includes; lipopolysaccharide (LPS) endotoxins and marine toxin (Carmichael et 

al., 2001). Among the cyanotoxins, MC is the most common one with the following congener 

MC-LR, MC-RR and MC-YR, which are potential contaminants of drinking water. 

Therefore, the World Health Organization (WHO) has proposed a provisional guideline for 

the acceptable limit of concentration of 1.0 μg/L for Microcystin-LR in drinking water 

(WHO, 2008). The International Agency for Research on Cancer (IARC) has categorized 

MC-LR as one of the possible human carcinogens in group 2B with strong evidence 

supporting that can exhibit tumor promotion mechanism (IARC, 2010). MC exposure can 

cause acute toxicity leading to several poisoning outbreaks. The most evident case of MC 

poisoning outbreak involved 131 patients at the kidney dialysis centre in Brazil. The report 

showed that 56 patients died and 44 presented symptoms related to MC intoxication such as 

acute neurotoxicity and hepatotoxicity symptoms (Pouria et al., 1998). Enlarged liver due to 

acute hepatitis and raised levels of blood bilirubin and alkaline phosphatase, are the indicators 

of MC (YR, LR and AR) in serum and liver tissues of the exposed patients (Yuan et al., 

2006). Cyanotoxins related exposure illnesses to human vary according to the type of toxins 

and the modes of exposure, including swimming, bathing, inhalation, haemodialysis and 

ingestion. Several acute effects such as nausea, vomiting, diarrhoea, mouth blisters, irritation 

of skin, throat, and eye are all related to exposure to cyanobacteria and cyanotoxins (Kibria, 

2016). Through absorption, microcystin is transported to the liver by organic anion transport 

proteins where they exert their toxicity via inhibition of protein phosphatases 1 and 2A and 

promote tumour formation (Runnegar et al., 1991). Cylindrospermopsin can also inhibit 

protein synthesis and is a potential carcinogen due to its cytotoxicity and genotoxicity 

(Moreira et al., 2013). 

Globally, few countries have set up surveillance systems that monitor incidences of HABs 

related illnesses as well as establishing country-specific tolerable limits for the concentration 

of cyanobacteria cell density in drinking water for humans. Many countries without such 

surveillance systems use the WHO general guidelines, which are not country-specific. The 

World Health Organization (WHO, 2003) has proposed guidelines for different cell densities 

of cyanobacteria bloom levels and related illnesses. Guideline for recreational waters 

cyanobacteria cell densities of 20 000 cells/mL is associated with risk of short-term illnesses, 

and at a higher cell density of 100 000 cells/mL an additional risk for long-term illness exists. 

Toxic cyanobacteria scum in bathing areas is associated with severe health outcomes such as 
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throat and skin irritation, headache, fever and gastrointestinal illness (WHO, 2003). Due to 

the non-specific nature of the symptoms of HABs related illnesses and lack of specific 

guidelines for surveillance and diagnosis, it is difficult for health-care providers to identify 

and report HABs associated illnesses. This causes a severe public health omission in the 

identification of HABs related effects in humans. Therefore, health care providers should be 

aware of the HABs and cyanotoxins similar symptoms as illness may present otherwise from 

other recreational water-associated illnesses, and onset may occur soon after exposure.  

Lake Victoria has been reported to face eutrophication for the last four decades, resulting in 

elevation of toxin-producing cyanobacteria levels in all seasons of the year (Ngupula et al., 

2011). Eutrophication is the process of increased primary production of a water body as it 

gets enriched with nutrients especially phosphorus (P) and nitrogen (N) (Mbonde et al., 

2004). Toxin producing cyanobacteria such as Microcystis and Anabaena which, produce 

microcystin (MC) and other toxins, has been identified and documented in all countries 

surrounding the Lake Victoria in East Africa. Studies conducted in Tanzania, Kenya and 

Uganda revealed the existence of HABs and cyanotoxins (Sekadende et al., 2005; Okello et 

al., 2010; Sitoki et al., 2012a). Rising temperatures have been considered to be a contributing 

factor to the increase in algal bloom globally and since  the continent of Africa is heating up 

faster than the rest of the world, its expected that the consequences of an increase in HABs 

and cyanotoxins in its freshwaters will be higher in most of African courtiers along the 

tropical (Liu et al., 2011). This emphasizes the importance of strengthening water safety 

surveillance on cyanobacteria bloom, especially by monitoring the concentration of existing 

and emerging cyanotoxins.  

In Tanzania, studies conducted in Lake Victoria reported the presence of cyanobacteria 

bloom and cyanotoxins which persist for more than one decade, the present of cyanotoxins  

might cause livestock, human health effects and endanger aquatic ecosystem (Miles et al., 

2013; Mbonde et al., 2015). There is a documented and observed seasonal variation of the 

concentration of the algal bloom in the rainy and dry seasons in Lake Victoria. This seasonal 

variation in algal bloom concentration is due to the availability of nutrient and temperature 

changes (Okello et al., 2010). The variation of water quality parameters concentrations in 

water may enhance cyanobacteria growth and increase the availability of toxins. These water 

quality parameters include phosphorus and nitrogen, pH, temperature, electrical conductivity 

(EC), and dissolved oxygen (DO) (Marion et al., 2012). Increase in human activities and 
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environmental contamination of the lake has led to the eutrophication of water and thus 

negatively affecting the water quality of the lake water. Portable water is essential for daily 

human activities worldwide; most of the world’s population depends on surface freshwaters 

as their primary source for drinking, food preparations, and other domestic use. Little 

information is available on the extent of exposure of the lake residents in Tanzania on the 

cyanobacteria and cyanotoxin. The aim of this study was therefore, to assess the occurrence 

of cyanotoxins and to assess the risk of exposure in human subjects through contaminated 

drinking water among Lake Victoria populations.  

1.2  Statement of the problem 

Studies conducted on Lake Victoria reported presence of cyanobacteria bloom for the past 

one decade (Miles et al., 2013). Despite this fact, very little is known on the occurrence of a 

wide range of cyanotoxins and their risk of exposure to human residing around Lake Victoria. 

This is due to the limited extensive epidemiological data regarding route and circumstances 

of exposure that can establish the linkage of exposure and human health effect, to date there 

is only one study conducted in China which detail health related risk due to exposure of 

cyanotoxins globally (Chen et al., 2009). Diseases related to cyanobacteria and cyanotoxins 

are largely ignored health problem hence. On other hand diagnosis of chronic exposure to 

cyanotoxins by estimating the consumed toxins in the human body is complicated and nearly 

impossible due to metabolic activities that take place in the body when exposed to 

cyanotoxins (Heussner et al., 2014). In this regard, development of cyanotoxins detection in 

human blood (serum) after exposure is critical for understanding the relationship between 

illness and toxin exposure. Therefore, this study determined the occurrence of cyanotoxins 

and assessed risk of exposure in human subjects through contaminated drinking water among 

Lake Victoria populations.  

 

1.3  Rationale of the study 

Cyanotoxins occurrence, exposure and its impact on human health are new research areas 

globally, which need scientists’ attention. Illness related to exposure to cyanobacteria and 

cyanotoxins is an ignored health problems in developing and developed countries. The 

problem might be more prominent in developing countries due to lack of well-established 

HABs-related illness surveillance systems to capture epidemiological data. Based on the 

nature of exposure and cumulative effect of low dose of cyanotoxins exposure to human it 

may take years to realize the chronic manifestation of the diseases such as liver and colon 
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cancer. Acute effects of cyanotoxins present similar symptoms like many other diseases, 

which make it difficult to be identified and recorded for proper assessment of the magnitude 

of HAB related illness in the country. Findings from this study have provided baseline 

information on the magnitude of cyanobacteria species diversity and human health effects.  

Information gathered in this study can be used as a baseline to improve water quality 

surveillance system in the country. Estimates for increased cancer cases around Lake Victoria 

can also be investigated from this perspective and establish evidence of cyanotoxins 

contribution to cancer cases by other researchers. 

1.4  Objectives 

1.4.1  Main objective  

To determine the occurrence of cyanotoxins in drinking water and assess their risk of 

exposure to human at Ukerewe District, Tanzania.  

1.4.2  Specific objectives 

(i) To determine cyanotoxins occurrences in surface waters of Ukerewe District 

(ii) To assess the influence of water quality parameters on cyanotoxins occurrences 

(iii) To identify cyanobacteria species and associated health risks among users of Lake 

Victoria freshwater 

(iv) To validate cyanotoxins detection method with comparison to liver biochemical 

indices 

1.5  Research question  

The main question was what are the risks of exposure in humans through cyanotoxin 

contaminated drinking water? 

This question will be answered through the answering of the following research questions: 

(i) What is the magnitude of cyanotoxins contamination in surface waters of Ukerewe 

district? 

(ii) What are the human illnesses associated with cyanobacteria/cyanatoxins 

exposures?  

(iii) What are proxy indicators for cyanotoxins existence? 

(iv) What are the species of cyanobacteria that exist in Ukerewe freshwater? 

(v) How does cyanotoxins exposure relate to biochemical liver indices 
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1.6  Significance of the study  

This study provides an excellent opportunity for understanding the cyanotoxins occurrence in 

Lake Victoria and the health effect related to toxins exposure. The study documents a 

statistical prediction model that is a proxy indicator of the presence of cyanotoxins, which 

can easily be used by the local authorities to notice the potential increase of cyanotoxins. The 

proxy indicator can be used without any extra cost or high-end technological equipment. This 

is the first study to assess multiple toxins existence other than microcystin in the lake 

whereby thirteen toxins were assessed, the study reports potential existence of multiple 

toxins, which are hepatotoxins. 

Moreover, acute health risks are well documented and the information gathered can be used 

to set up toxic cyanobacteria related illness surveillance systems in the country. Based on the 

fact that toxic cyanobacteria are expected to increase in tropical areas including Tanzania, it’s 

high time now for the country to set up standards for cyanotoxins limits in water used for 

drinking and recreational activities. Water and health surveillance systems are critical to be 

established to gather epidemiological data that indicate the magnitude of acute and chronic 

effect due to cyanotoxin exposure. The information documented in this study bridged 

knowledge gaps about cyanobacteria and cyanotoxins, it informs further studies to be 

directed in this new research area of public health concerns that will highlight the 

cyanotoxins contribution to observed cancer increase in lake zone.  

 

1.7  Delineation of the study 

Due to global concern on the increase of cyanobacteria and cyanotoxins in freshwater and 

their potential effects on human health, there was a need to conducted a study to determine 

the occurrence of cyanotoxins and assessed their risk of exposure to human. This study 

present for first time in Tanzania the co-occurrence of cyanotoxins such as 

cylindrospermopsin and nodularin in the freshwater of Lake Victoria and in human serum. 

This study did not assess other causative agents that could have contributed to the same 

health effect on human such as other bacterial that can lead to acute health effect and other 

toxins that can damage liver cells rather focused only on cyanotoxins. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1  What are the cyanobacteria 

The names "cyanobacteria" and "blue-green algae" (Cyanophyceae) are valid and compatible 

systematic terms. This group of micro-organisms comprises unicellular to multicellular 

prokaryotes that possess chlorophyll a and perform oxygenic photosynthesis associated with 

photosystems I and II (Castenholz & Waterbury, 1989). Cyanobacteria are one of the most 

diverse groups of gram-negative photosynthetic prokaryotes. Cyanobacteria are prokaryotes 

have a simple cell structure with a real nucleus Prokaryotic. Their body is made from a single 

cell, often clustered cells as colonies of different shapes. Cyanobacteria are typically much 

larger than bacteria in size, it contains many types of pigments such as carotenoids and 

phycocyanin. A characteristic of water-soluble pigment in cyanobacteria gives the group of 

cyanobacteria their blue green coloration. Cyanobacteria living in individuals places in fresh 

and salt water, and some other types live in moist soil. The water distinctive bluish colour is 

results for cyanobacteria blooms when it dies. Researchers found that only about 10% of all 

blooms types are considered toxins producer.  

Morphologically, cyanobacteria may be unicellular or their cells arranged in colonies while 

others form filaments in single trichomes or filaments with or without branching. The 

cyanobacterium cell diameter ranges from 2 μm to 40 μm (Osswald et al., 2007). Some 

species of cyanobacteria can form specialized cells like heterocyst’s, which are used for N2 

fixation, and akinetic, as resting cells that enhance the species to survive during unfavourable 

conditions. Most of the bloom forming species of cyanobacteria possesses gas vesicles. The, 

gas vesicles are the components of gas vacuoles, which provide buoyancy to cyanobacteria 

allowing them to position in the water column in response to physical and chemical factors 

(Walsby, 1994). The bloom-forming cyanobacteria, which also possess gas vesicles mainly 

belong to the genera Anabaena, Anabaenopsis, Aphanizomenon, Arthrospira, 

Cylindrospermopsis, Oscillatoria, Nodularia, and Microcystis (Oliver & Ganf, 2000). Several 

filamentous cyanobacteria also form short fragments of the filament called hormogonia, used 

for asexual reproduction and dispersal (Hoffmann et al., 2005)  
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2.2   Classification of cyanobacteria  

Due to their dual characteristics of plant that perform oxygenic photosynthesis and bacterium, 

there are two taxonomical classifications of cyanobacteria, the botanical and the 

bacteriological classification systems (Wilmotte, 1994). Cyanobacteria is a Phylum ascribed 

to the Bacterial Domain this is according to Bergey's Manual of Systematic Bacteriology 

(Guerrero, 2001) . The phylum Cyanobacteria is classified in five major divisions, namely I – 

V (Table 1) (Guerrero, 2001). Cyanobacteria classification based on botanical, can be 

categorized into five orders namely Chroococcales, Pleurocapsales, Oscillatoriales, 

Nostocales and Stigonematales (Van Apeldoorn et al., 2007).  
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Table 1: Botanical classification of cyanobacteria  

Botanical Classification  Bacteriological classification Common characteristic features Examples of cyanobacteria genera 

Order Chroococcales  

 

Subsection I 

 

Unicellular, aggregate in colonies, 

embedded in sheaths, capsules or 

slime, reproduce by budding or 

binary fission, may or may not 

possess gas vacuoles, they are 

planktonic and benthic species and 

some species have a potential to 

produce cyanotoxins like MCs  

Microcystis, Synechococcus, 

Gloeothece,Gloeobacter, Gloeocapsa, 

Synechocystis, Chroococcus, 

Aphanocapsa,Merismopedia, Woronichinia, 

Snowella  

 

Order Pleurocapsales  

 

Subsection II 

 

 

 

Pleurocapsa, Dermocarpa, Xenococcus, 

Dermocarpella, Myxosarcina, 

Chroococcidiopsis  

  vacuoles or not, cells are straight, 

loosely curved or tightly helical, 

reproduce by binary fission, some 

have gliding motility and some 

species have a potential to produce 

cyanotoxins like MCs, anatoxin-a and 

saxitoxins  

Leptolyngbya, Tychonema Pseudoanabaena, 

Planktolyngbya 

Order Nostocales  

 

 

Subsection IV 

 

Filaments, no true branching, straight, 

curved, spherical colonies, possess 

specialized cells: heterocysts and 

akinets, hormogonia, may have gas 

vesicles or not, they are ecologically 

diverse (planktonic, benthic, 

periphyton, terrestrial) and most 

species have a potential to produce 

cyanotoxins like MCs, nodularins, 

cylindrospermopsin, anatoxin-a and 

saxitoxins  

Anabaena, Anabaenopsis, Aphanizomenon,  

Nodularia, Cylindrospermum, Nostoc, 

Scytonema, Calothrix  
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Botanical Classification  Bacteriological classification Common characteristic features Examples of cyanobacteria genera 

Order Stigonematales  

 

Subsection V 

 

Filaments, false/true branching, have 

heterocysts and akinets, divide in 

more than one plane, occur in aquatic 

and terrestrial habitats, usually not as 

part of the phytoplankton and some 

species have a potential to produce 

cyanotoxins like MCs.  

Chlorogloeopsis, Hapalosiphon, 

Mastigocladopsis, Nostochopsis, 

Symphyonema, Westiellopsis  
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2.3  Factors influencing cyanobacteria occurrence and cyanotoxins production 

 Nutrient enrichment of freshwater has been associated with an increase of cyanobacteria 

bloom and hence cyanotoxins promotion, expansion and persistence. Moreover, the global 

rise in temperature due to climate change postulates an additional catalyst for more 

cyanobacteria proliferation  (Paerl & Otten, 2013).  

Daily human activity around water bodies, including agricultural runoff, inadequate sewage 

treatment, and runoff from roads can cause excessive fertilization (eutrophication) that might 

lead to cyanobacterial proliferation (de Figueiredo et al., 2004). There numerous factors that 

enhance cyanobacterial growth and increasing the possibilities for cyanotoxins production. 

The factors include chemical and physical properties of water quality, weather changes such 

as temperature increase and light intensity (Marion et al., 2012). Some more water quality 

parameters can further enhance cyanobacterial growth and these include pH, redox potential, 

dissolved oxygen, EC, total dissolved solids (TDS), total chlorophyll (total chl), nitrate-

nitrogen (NO3-N), nitrite nitrogen (NO2-N), phosphate (PO4
3-

)
 
and reactive phosphorus (P). 

Growth of cyanobacteria is fevered by warmer temperature whereby maximal growth rate 

occurs at an optimal temperature between 24°C and 28 
0
C. Temperature has been reported to 

have a direct relationship with algal blooms (Davis et al., 2009). Temperature increase is 

thought to be a factor contributing to the global rise in algal bloom globally, Africa is heating 

faster than the rest of the world hence the increase of cyanobacteria is expected to be higher 

than the rest of the world (Liu et al., 2011). Relative neutral to higher pH range favour 

cyanobacteria increase in water bodies (Ndlela et al., 2016; Dalu & Wasserman, 2018). 

Natural increases in nitrogen and phosphorus concentrations lead to eutrophication, causing 

algal proliferation and increase cyanotoxin production (Yang et al., 2008). Nitrogen and 

phosphorus ratio is vital in cyanobacteria growth, N:P ratio below 15 is considered as 

favorable on cyanobacterial growth and increased PC concentrations, as well as cyanotoxins 

(Lee et al., 2000; Harke et al., 2016). Other positive factors that influence cyanobacteria 

growth includes; sufficient iron, higher dissolved organic maters, low turbulence and higher 

light (Paerl & Otten, 2013). 

Like higher plants all phytoplankton need light for photosynthesis. However, geographically 

light intensity as well as the requirements of different phytoplankton species is not the same. 

In the tropics light availability is more predictable when compared with the temperate climate 
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and this enhances dense growth of phytoplankton in the epilimnion under eutrophic 

conditions. Due to this dense growth and other suspended matters, light will then become 

steeply attenuated vertically through the water column and phytoplankton growth will 

become light limited. Under light limiting conditions species with low light requirements will 

have competitive advantage in areas with high light attenuation over those with higher light 

requirements. Cyanobacteria have different light requirements. Some species like 

Planktothrix agardhii have a low critical light intensity and are considered to be better light 

competitors and therefore can dominate in various shallow eutrophic lakes. Other strongly 

buoyant cyanobacteria like Aphanizomenon and Microcystis are poorer light competitors but 

can tolerate highest irradiance at the surface (Huisman et al., 1999).   

Lake water may mix vertically or horizontally due to wind action. This wind induced mixing 

may affect nutrient distribution and changes in phytoplankton species composition. Vertical 

mixing may re-suspend nutrients deposited in the lake sediments like silicate and phosphorus 

into the water column, therefore enhancing the growth of diatoms. During mixing conditions 

buoyant cyanobacteria cannot efficiently accumulate at the surface and may become light 

limited resulting in poor growth. During calm conditions, buoyant cyanobacteria like 

Anabaena and Microcystis (potential toxin producers) concentrate on the water surface. 

Winds may sweep the bloom near the shore, resulting in an increase in cell densities by 

several orders of magnitude (Chorus & Bartram, 1999). The intensity of vertical mixing 

therefore is one of the major factors structuring a phytoplankton community.  

Apart from vertical mixing, wind-induced horizontal water mixing is also known to occur in 

Lake Victoria, especially in bays or gulfs (Haande et al., 2011). Like ocean tides which cause 

the water level to rise and fall within a day, in large lakes seiches are formed by the same 

principle although their amplitude is only a few cm. Seiches are defined as standing waves 

that move water down and up (Ji & Jin, 2006). At the shore these waves will cause water 

movement in and out of shallow bays (Haande, 2008). Studies conducted in Ugandan water 

of Lake Victoria (Murchison Bay) showed that seiches diluted phytoplankton density in the 

bay and thus influenced water quality at the bay due to horizontal mixing with the main lake.   

2.4  Cyanotoxins production and water contamination 

Cyanobacteria are considered to be the most widespread organisms of the first group of 

photosynthetic prokaryotes (Chorus et al., 2000). They are ubiquitous and can live in every 
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conceivable habitat ranging from aquatic to terrestrial environments. They occur primarily in 

surface water, where they can thrive on a variety of ecological niches of freshwaters, salinity, 

lower light intensity, high turbidity, in hot spring and ice-cold water (Rastogi et al., 2015). 

Cyanobacteria can grow massively in a favorable condition of high nutrient availability, light 

and temperature; this will give rise to bloom accumulation (Hilborn et al., 2014). These 

masses of excessive collections of blooms may contain Harmful Algal Blooms (HABs) that 

are capable of producing secondary metabolites known as cyanotoxins. Harmful Algal 

Blooms can occasionally occur and produce visible scam of algal on the surface of water 

bodies. Bloom mass occurrences in freshwaters are rapidly increasing globally and attracting 

the attention of human and animal health organizations, water and environmental agencies 

because cyanobacterial blooms pose water quality and treatment challenges (Chorus et al., 

2000).  

Cyanobacterial blooms cause significant problems to water quality surveillance and treatment 

management of lakes, rivers and water reservoirs. Cyanobacterial blooms and cyanotoxins 

have adverse impacts on human health and aquatic ecosystems leading further to ecological 

and economic effects (Carey et al., 2012).  Same bloom forming cyanobacteria produce a 

diverse of secondary metabolites know as cyanotoxins, which are toxic and a threat to 

drinking water and recreation activities, these blooms produce stinking compounds and can 

disrupt food web in the ecosystem (Cheung et al., 2013).  

Cyanotoxins are produced during and after cyanobacteria bloom occurrence, potentially 

dangerous concentrations of toxins may be present in water even when there are no visible 

blooms. Cyanotoxins can be enclosed in the cell walls, exist intracellular in the cytoplasm, or 

be released to become extracellular cyanotoxins. Their release can occur during the cell life 

nevertheless the release occurs predominantly after cell death, leading to a massive outflow 

of the cellular content (Chorus et al., 2000). Besides, there is a possibility of cyanotoxin 

accumulation in aquatic organisms because, as they live in water bodies they accumulate a 

small amount of cyanotoxin concentration that exceeds the surrounding environment over 

time (Sanchez et al., 2014). The toxin can be transported to higher levels of food webs with 

higher toxicity levels, ultimately endangering animal and human health (Peng et al., 2010). A 

study conducted by Chen et al. (2009) shows that the toxins observed in fish contribute 

significantly to the daily computation of toxins to the fisherman hence in-depth study of 

human exposure to cyanotoxin from aquatic organisms is important. 
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Cyanotoxins are classified based on their modes of action in invertebrates and on chemical 

composition. In their mode of action in invertebrate they comprise of hepatotoxins, a 

neurotoxin, and dermatotoxins. Hepatotoxins include; microcystin (MCs), 

cylindrospermopsin (CYN) and nodularin (NODs). Neurotoxin includes; anatoxin-a (ATX-

A), homoanatoxin-a (hATX-a), anatoxin a-(s) (ATX-a(S)) and paralytic shellfish poison 

(PSP) toxins. Finally are dermatotoxins, which are gastrointestinal and irritants toxins 

include; Lipopolysaccharidic (LPS) endotoxins and marine toxin lyngbyatoxin (Funari & 

Testai, 2008). Based on their chemical composition, cyanotoxins are grouped into alkaloids 

such as (ATXs), saxitoxins (STXs), CYN, aplysiatoxin, lyngbiatoxin-a), the second group is 

cyclic peptides such as MCs and NODs, the last group is lipopolysaccharides (Kotak & 

Zurawell, 2007; Kaplan et al., 2012). Most of the cyanotoxins are intracellular except CYN, 

which are extracellular they release a very high concentration of toxins after lyses, which 

exhibit allopathic properties that have effects to aquatic microorganisms and surrounding 

environment (Boopathi & Ki, 2014). 

Cyanotoxins are geographically distributed worldwide in freshwater systems, cyanotoxins 

have been found in Europe (Denmark, Norway, Finland, France, England), USA, Egypt, 

Japan, Australia, China and Brazil (Chorus & Bartram, 1999).  In Africa, MCs have been 

reported in the Nhlangzwane Dam, Kruger National Park, South Africa (Oberholster et al., 

2009). Studies conducted in East Africa around the Lake Victoria and other like Manyara 

reported the presence of cyanotoxins in same  surface water (Nonga et al., 2011; Miles et al 

2013). Seasonality variation of bloom and production of cyanotoxins in the freshwater has 

been reported in some studies conducted in Uganda, whereby massive blooms are observed 

during February and August (Okello et al., 2010).  Observed seasonal variations of 

cyanotoxins concentrations in water bodies during the rainy and dry season have been 

reported elsewhere in Africa (Ndebele-Murisa et al., 2010). The difference may be 

contributed by the nutrient content of freshwater and weather parameters, which have a 

substantial impact on the frequency and severity of blooms occurrence and cyanotoxin 

productions (Paerl & Paul, 2012). 

2.5  Cyanotoxins occurrence and classification  

There are number of reasons as to why cyanotoxins are produced by cyanobacteria that lead 

to bioactivation of secondary metabolites. Studies have shown that the possible functions of 

cyanotoxins include: (a) inducing alteration of population structures to gain ecological 
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advantage, (b) avoidance of grazing on cyanobacteria by other organisms such as 

zooplankton and higher animals, and (c) mediating cell signaling allelopathy and chemotaxy 

to establish trophic relationships with other cyanobacteria or other organisms (Wiegand & 

Pflugmacher, 2005). Several types of cyanotoxins are produced by different species of 

cyanobacteria as detailed in the following subsection  

2.5.1  Microcystins (MC) and Nodularins (NODs)  

Microcystins and Nodularins are both cyclic peptides and hepatotoxins found to be similar in 

structure and mode of action as discussed above; therefore, they will be discussed together in 

this section. Microcystins and NODs hepatotoxins have a common characteristic that is 

amino acid Adda (Fig. 1-2), which is unique for cyanobacteria and responsible for molecules 

toxicity (Funari & Testai, 2008; Greer et al., 2018). Microcystins  are produced by 

cyanobacteria of genera Microcystis spp, anabaena, Merismopedia, Limnothrix redekei, 

Phormidium formosum, Hapalosiphon hibernicus, Planktothrix spp, Nostoc, Synechocystis 

and Cyanobium bacillare. The structure of MC and NOD varies by changing two positions of 

amino acid(s) such as leucine and arginine variants, and these changes include other small 

side groups, as shown in Fig 1. Microcystin congeners includes; microcystin (-LA, -LF, -LR, 

-LY, -LW, -RR, -YR, -WR, dm MC-RR and dm MC-LR). This changes in different small 

side group result in more than 6 NOD and 70 MC variants (Sivonen & Jones, 1999). MCs are 

reported in varied regions like Africa, Asia, Europe, North America and Scandinavian 

countries while NODs appear to be confined to Australia, New Zealand and the Baltic Sea 

(Gehringer & Wannicke, 2014). The most common MC congener is MC-LR characterized by 

the presence of leucine (L) and arginine (R) as L-amino acids in positions 2 and 4 (Fig. 1). 

The positioning of the amino acid determines acute toxicity that why MC-LR is considered 

among the most potent hepatotoxins within the different variants due to amino acid profile 

attached to its adda and is by far the most studied (Mekebri et al., 2009). Based on this 

regards the World Health Organization (WHO) established a 1 μg/L guideline value for 

drinking water and a Tolerable Daily Intake (TDI) of 0.04 μg/kg body weight per day for 

MC-LR in contaminated water (WHO, 2006). 

Microcystins and Nodularins were found to target brain and liver cells by inhibiting the 

protein phosphatase that will result in the accumulation of phosphorylated proteins type 1 and 

2A in the liver cells, which triggers cell death through necrosis and tumor formation 

(Feurstein et al., 2009). As discussed previously, MCs and NODs bioaccumulation in tissues 
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and do this as unrestricted or bound through their conjugation to protein phosphatases (1 and 

2) in specific muscles. Binding of MCs to protein phosphatases is permanent and the damage 

can occur even in a small dose of exposure of which the effect will be realized after a very 

long time (Neffling et al., 2010). MCs transportation and uptake into the liver through the 

bile acid transport system in interaction with Organic Anion-Transporting Polypeptides 

(OATPS) that, expressed in liver cells. Additionally, OATPs can be revealed in other organs 

such as the stomach, kidney, brain, small and large intestines (Greer et al., 2018). On the 

other hand, MC considered affecting other organs as well based on the ability to damage 

DNA and promote tumours due to genotoxic characteristics (Ţegura et al., 2011). The 

evidence of the possible primary liver cancer (PLC) and promotion after exposure to MC-LR 

contaminated surface water as compared to well water have been reported in China and 

Asia (Chen et al., 2009). Furthermore, evidence of renal function implication and promotion 

of migration and invasion of colorectal cancer also was reported in China (Ren et al., 2017). 

More effect of MC-LR has been useful in mice studies that can lead to apoptosis and changes 

to the absorptivity of the mitochondrial membrane and suppress haemotopoiesis function (He 

et al., 2017). There is only one human study that provides epidemiological evidence of 

human exposure of cyanotoxin that has subsequent health effect in China as a result of 

prolonged exposure of 5-10 years (Chen et al., 2009).  
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Figure 1: Chemical structure of MC and its congener  

 

Figure 2: Chemical structure of nodularin  

2.5.2  Cylindrospermopsin 

Cylindrospermopsin (CYN) is alkaloid (Fig. 3) that is capable of producing both hepatotoxic 

and nephrotoxic effects and also can effect on other organs in the body such as brain  (Chorus 

et al., 2000). The  CYN toxins are produced by filamentous cyanobacteria includes; 

Cylindrospermopsis raciborskii, Raphidiopsis curvata, Anabaena bergii, Sphaerospermopsis 
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aphanizomenoides, Aphanizomenon ovalisporum, Umezakia natans, Aph. flos-aquae, 

Oscillatoria sp. PCC6506 and M. aeruginosa. In European countries, occurrence of CYN was 

reported in Germany and France by Fastner et al. (2003) as well as in Ireland by Greer et al. 

(2016). The detection of CNY toxin in freshwaters is a global concern as it is a new 

phenomenon and has similar mechanisms of action as MC, as demonstrated by Yoshizawa et 

al. (1990). The two toxins CYN and MC have been reported as potent protein phosphatase 1 

and 2A inhibitors which has been shown to have long term cumulative toxic effect for 

potential tumour formation (Rastogi et al., 2015).  Cylindrospermopsin  inhibits protein P450 

and glutathione synthesis, which lead to cell death of lung, intestine, liver and kidney, this 

occurs through irreversible inhibition of protein synthesis (Bernard et al., 2003). 

Additionally, CYN other effects reported are chromosome loss, micronucleus induction and 

tumour initiation (Humpage et al., 1994; Froscio et al, 2003).    

 

Figure 3: Cylindrospermopsin chemical structure 

2.5.3  Anatoxins (ATXs) 

Anatoxins are one of the cyanotoxins produced by cyanobacteria including, Anabaena flos 

aquae, Microcystis, Oscillatoria and Aphanizomenon (Cadel-Six et al., 2009). There are three 

main variants of anatoxins (Fig. 4), namely anatoxin-a (ATX-a), homoanatoxin-a (hATX-a) 

and anatoxin-a(s) –(ATX-a (s)). Anatoxin-a is the common one and widely reported in Asia, 

Europe and Africa while ATX-a (s) is observed to be in same areas like Brazil, Denmark, 

USA and Scotland (Merel et al., 2010). Anatoxin-a have also been reported in kenyan saline 

lakes and was involved in mortalities of lesser flamingos in the lakes (Ballot et al., 2004).  
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Anatoxin-a can potentially lead to neurotoxicity and imitation of the neurotransmitter 

acetylcholine. Anatoxin-a can cause several health effects, including tingling, burning, 

numbness, drowsiness, incoherent speech, and respiratory paralysis leading to death 

(Boopathi & Ki, 2014).  

 

Figure 4: Anatoxins chemical structures  

2.5.4  Saxitoxins (STX) 

There are several types of paralytic shellfish poisoning (PSP) including the common one that 

is saxitoxin and neosaxitoxin (Fig. 5). Many toxicological reports of STX are from marine 

organisms, and limited information is available for STX produced by cyanobacteria of 

freshwater. Nevertheless, the toxicological profile and a chemical structure or marine and 

freshwater STX are the same (Funari & Testai 2008). Saxitoxin mainly produced by 

cyanobacteria genera of Raphidiopsis, Scytonema, Anabaena, Aphanizomenon, Lyngbya, 

Planktothrix and dinoflagellates (Neilan et al., 2013). 

Saxitoxins are known to causes neurotoxicity and blockage of voltage-gated Na+ channels in 

humans and other vertebrates. The toxins also lead to numbness, burning, tingling, 

drowsiness, incoherent speech and respiratory paralysis resulting in death (Boopathi & Ki, 

2014).  
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Figure 5: Saxitoxins  chemical structures  

 

2.6  Cyanotoxins exposure and risk assessment  

Exposure of cyanotoxins to human can be through several routes such as ingestion of 

contaminated food, water and dietary supplements, inhalation of contaminated dusts/vapour 

hemodialysis, and dermal exposure (Buratti et al., 2017). Nature of exposure can determine 

to what extent the effects could be to human health and animals. Human diseases due to 

cyanotoxin intoxication vary based on related exposure, each scenario of exposure may affect 

the amount of internal dose of cyanotoxins in human. Based on the above explanation, the 

possible human exposure can be grouped in different cyanotoxins sources and exposure 

scenarios as follows.  

2.6.1  Drinking water 

Ingestion of contaminated water that contain cyanobacteria bloom or their metabolites have 

been associated with human illness and death (Ballot et al., 2004). Direct use of 

cyanobacteria or cyanotoxins contaminated water from water sources or poor treated piped 

water may result in health problems. In developing countries several people use untreated 

surface water for drinking; this can expose them to released toxins from cyanobacteria. 

Consumption of untreated water in area with cyanotoxins infestation  may lead to acute or 

chronic illnesses to human depend on cell-bound volume or cyanotoxins concentration of 

contaminated drinking water (Chorus et al., 2000).  In this regards, the World Health 

Organization (WHO) has, therefore proposed a provisional guideline for the suitable limit of 

MC-LR concentration in drinking water of 1.0 μg/L (Supply & Programme, 2014). On other 

hands, National Centre for Environmental Assessment (USA) has suggested the limit for 
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MC-LR need to be as lower as 0.1 μg/L (Oehrle et al., 2010). Tolerable daily intake (TDI) 

value of 0.04 μg MC-LR/kg bw/day provided by WHO (WHO 2004),  for an adult with 60 kg 

could be exposed orally up to 2.4 μg per day based on this TDI. In this bases the calculation 

of provisional guideline value (GV) was made, whereby it was assumed the daily water 

consumption of 2 L for an adult and allocation factor (AF) of 80% that contribute to total 

toxin intake of MC-LR comes from drinking water gives the limits of 1.0 μg/L as its show on 

the equation below: 

 GV = TDI x Bodyweight x AF 

            Daily consumption (C) 

  

GV = 0.04 μg/kg x 60kg x 0.8 

                         2L 

 GV=1 μg/L for MC-LR 

 

The provisional limit for CYN is 0.8 μg/L, which is considered as the same for MC-LR. The 

bases for this limit formulated from the following assumption and calculation. Tolerable daily 

intake (TDI) value of 0.03 μg/kg bw/day provided, an adult with 60 kg could be exposed 

orally up to 1.8 μg per day. In this base the calculation of provisional guideline value (GV) 

for CYN was made, whereby it was assumed the daily water consumption of 2 L for an adult 

and allocation factor (AF) of 90% (0.9) that contribute to total toxin intake of CYN comes 

from drinking water gives the limits of 0.81 approximately to 1 μg/L as its show in the 

equation below. 

 

     GV = TDI x Bodyweight x AF 

                 Daily consumption (C) 

  

      GV = 0.03 μg/kg x 60kg x 0.9 

                             2L 

       GV= 1μg/L for CYN 

Many countries have not yet set the limit for most of the cyanotoxins and cyanobacteria cells 

density. This may be due to same challenges including lack of trained personnel, the cost of 

taxonomic pigment extraction, and expensive equipment involving high-end technology for 

toxin detection (McQuaid et al., 2011). 
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2.6.2  Recreation  

Exposure through recreation can be in various ways such as professional activities (i.e., 

fishing), sport, swimming or any other domestic activities using cyanobacteria infested or 

cyanotoxins contaminated water. Exposure sources in recreation are through inhalation, direct 

contact and ingestion. In most cases, these types of exposures are associated with acute, or 

sub-chronic related illnesses depend on the amount and types of toxin in contaminated water. 

Unique report from England where 50% of exposed 50 soldiers become sick after coming in 

contact with the massive bloom of Microcystis spp. during swimming, whereby two soldiers 

presented with severe pneumonia. Finally, it was concluded that swimming skills and amount 

of water ingest are related to a degree in illness (Turner et al., 1990). World Health 

Organization proposed guidelines for different cell densities of cyanobacteria bloom levels 

and related health effects, such as for recreational waters cell densities of 20 000 cells/mL is 

associated with risk of acute adverse health outcomes, and at an advanced cell density of 100 

000 cells/mL, excess risk for chronic disease may occur. Harmful Algal Blooms (HABs) 

scum formation in bathing areas is associated with the risk of potentially severe health 

illnesses such as throat, skin and eye irritation, stomach upset, headache, nausea, diarrhea, 

fever, and vomiting (Kibria, 2016). In many developing countries where there is no such 

control of limits for the number of cyanobacteria cell density in recreation water, the 

magnitude of the illnesses must be underestimated and go unrecognized.  

2.6.3  Hemodialysis  

Water used for hemodialysis therapy can present a significant risk to the patient. Surface 

water used for hemodialysis must be free from any form of cyanobacteria infestation because 

this route of exposure presents the toxins direct to the bloodstream. Major fatal incident 

reported by Jochimsen et al. (1998) from Caruaru (Brazil) whereby a total of 131 dialysis 

patients exposed to MC contaminated water used in the process of hemodialysis treatment, of 

which 56 died and 44 presented symptoms related to MC intoxication. Hemodialysis 

exposures are quite a few events to be reported but have a significant impact on exposed 

group hence there is a need to develop a mandatory regulation of the quality of water used for 

this type of treatment. Awareness of the potential risk of cyanotoxins to be present when 

surface water is used for hemodialysis ought to be recognized by health sectors and necessary 

precaution must be taken to minimize or to avoid the risk. 

 



23 
 

 2.6.4  Food and dietary supplement  

The threat of cyanotoxins exposure through food and dietary supplementary is based on 

consumption of fish and other edible aquatic organisms, agriculture products and supplement 

that bioaccumulates cyanotoxins for the same time. Bioaccumulation of cyanotoxins in this 

context refers to the process whereby toxins concentration in tissues of aquatics organism 

exceeds the surrounding water body due to uptake by all exposure route. This process can 

occur in a wide range of aquatic organism used for human consumption when exposed to 

cyanotoxins contamination. Aquatic food chain and bioaccumulation enables toxicity 

enhancement of single or multiple cyanotoxins that ultimately reach humans in higher 

concentration (Ibelings & Chorus, 2007). A study conducted by Negri et al. (1995) reported 

bioaccumulation of paralytic shellfish poisoning (PSP) from cyanotoxin whereby MCs were 

detected in freshwater shrimps (Palemon modestus, Macrobrachium nipponensis), and red 

swamp crayfish (Procamburus clarkii) in China (Chen & Xie, 2005). 

Furthermore, saxitoxins and cylindrospermopsin were also reported in pearl oysters and 

bivalve hemolymphs, viscera and gonads of the freshwater snail (Drobac et al., 2013). 

However, most of the aquatic organisms are consumed after boiling, and it should be noted 

that the boiling process can’t destroy cyanotoxins (Dietrich & Hoeger, 2005). Fishes being on 

the top of the aquatic food chain are probably the most exposed to cyanotoxins, which may 

accumulate in the various part includes; liver, kidneys, gills, guts and muscles (Magalhaes et 

al., 2003). Cyanotoxin, especially MCs, can be taken in the liver, disrupting regular cellular 

activity by inhibiting protein phosphatases. This process impair fish embryogenesis since 

protein phosphatases are responsible for regulating these critical developmental processes 

(Malbrouck & Kestemont, 2006). 

Cyanotoxins could also be transmitted to plants from surface irrigating waters, whereby plant 

like lettuce and cabbage that require spray irrigation can potentially be contaminated with 

cyanobacteria bloom and cyanotoxins (McElhiney et al., 2001; Liu et al., 2016). However, it 

can be anticipated that the usual washing and rinsing procedure before eating could readily 

remove cyanobacteria cells. Concerning absorption of dissolved cyanotoxins present in 

irrigation water by the plant tissues, extracts from rice seedlings exposed to water with MC-

LR contamination can be observed in reaped rice (Chen et al., 2012). Climate change brings 

into attention that there will be water scarcity for irrigation hence, it will be difficult 

recommended not to use bloom and scum infested waters for irrigation, especially in hot 
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climate areas. In China they used bloom scums as organic fertilizer in agriculture, this can 

allow cyanotoxins to leach and contaminate groundwater that can be transferred to drinking 

water (Chen et al., 2006).  

 Dietary supplements from cyanobacteria known as Blue- Breen Algae Supplements (BGAS) 

made from Aphanizomenon flos-aquae and Spirulina spp, which are grown in artificial ponds 

or collected directly from the natural environment. Recently dietary supplements from 

cyanobacteria extract have become popular in developed countries and in the past years this 

practice was common in China and the same areas in Africa (Dietrich & Hoeger, 2005). 

BGAS are not drugs rather supplements; therefore, there is neither prescription nor indication 

for a specific daily dosage. It’s becoming difficult to correctly assess the actual exposure and 

effect of individual nutritional programs. BGAS have become popular due to presumed 

human health benefits, including support in losing weight during hypocaloric diets, 

increasing energy and elevated mood for people suffering depression (Dietrich & Hoeger, 

2005). Also, the supplements are used for children as an alternative, natural therapy to treat 

attention deficit hyperactivity disorders. The study conducted on several commercialized 

dietary supplements revealed presence of ATX-A, microcystins-LR and LA on BGAS (Vichi 

et al., 2012; Roy-Lachapelle et al., 2017).   

2.7  Health effect in human and animals 

 

Exposure to cyanobacteria and cyanotoxins through various routes can be of a significant 

threat to human and animal, and this causes human health effects and animal death (Codd et 

al., 1994). The first report of cyanobacterial blooms effect in animals was brought into 

attention in 1878 in South Australia, whereby the report of animal death after ingestion of 

cyanobacterial bloom was documented (Francis, 1878). To date numbers of animal’s death 

incidence have been reported that includes birds, dogs, domestic livestock and poultry 

(Wood, 2016). Evidence that cyanotoxins can cause human illness have been reported in the 

USA, Canada and Zimbabwe (Codd et al., 1999). All reported incidence involved several 

thousand cases of human, with liver cancer being the most common outcome. Several acute 

symptoms have been reported in humans such as stomach upset, vomiting, skin irritation, 

nausea, diarrhoea, fever, throat irritation, headache, mouth blisters, muscle and joint aches, 

eye irritation, and allergic reactions (Kibria, 2016). Chronic health effects include the 

possible human carcinogen for liver and colorectal malignancies (Table -2).  
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The International Agency for Research on Cancer (IARC) has categorized MC-LR as one of 

the possible human carcinogens in group 2B with substantial evidence supporting the fact 

that it can exhibit tumour promotion mechanism (IARC, 2010). Acute cases of microcystin 

poisoning can lead to humans and animal death (Cheung et al., 2013). Upon ingestion, 

microcystin is transported to the liver by organic anion transport proteins where they exert 

their toxicity via inhibition of protein phosphatases 1 and 2A (Runnegar et al., 1995). 

Inhibition of protein phosphatases leads to excessive phosphorylation of structural filaments, 

subsequent cytoskeletal degradation and breakdown of hepatic ultrastructure (Sahin et al., 

1995). Retraction of hepatocytes from neighboring cells and sinusoidal capillaries causes 

blood to become pooled in the liver tissues. This ultimately results in local tissue damage, 

organ failure and haemorrhagic shock (Sahin et al., 1995). A study by Nishiwaki-Matsushima 

et al. (1992) pinpointed this evidence of liver tumour promotion by microcystin-LR. All 

studies showed a positive association between the risk for hepatocellular carcinoma and MC 

contaminated water source.  A study conducted in China by Chen et al. (2009) is the only 

report that has linked daily exposure of MCs and subsequent health effect. All 35-selected 

study subject was positive for MCs, of which MCs (-RR, YR and LR) were detected in their 

serum with a mean and median concentration of 0.389 ng and 0.227 ng respectively. 

Furthermore, the study reported positive relationships between serum MC concentration and 

biochemical liver indices such as ALP, AST, ALT and LDH of serum test (Chen et al., 

2009). This is the evidence that MCs target cells of the liver and induce lesions hence causing 

elevation of liver enzymes, which can be detected in biochemical indices. The same finding 

was reported in rats/mice treated with MCs whereby increased serum activity was observed 

after inductive hepatocellular damage, this provided fundamental knowledge of MCs toxicity 

to mammalians (Weng et al., 2007; Billam et al., 2008).  

Acute intoxications with microcystins (MCs) is well documented; however, chronic exposure 

to these toxins is much less understood and importantly long-term exposure, while it has been 

linked to hepatocellular and colorectal cancer. This requires more definitive and non-invasive 

tests for reliable epidemiological studies (Meneely & Elliott, 2013). Microcystins also have 

been linked to possible primary liver and colorectal cancer (Ueno et al., 1996). Microcystins 

also can cause substantial health hazards and have been implicated in the deaths of birds, 

aquatic biota, livestock and wildlife (de Figueiredo et al., 2004). Recent experimental in pigs 

published in nature scientific report reviles that MC-LR could accumulate in the kidney and 
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large intestine after exposure through drinking contaminated water (Greer et al., 2018). The 

animal model was used to assess the human risk since pigs and human have similar digestive 

system hence it helps to understand uptake and accumulation of MC-LR.  More health effect, 

modes of action based on the different type of toxins are detailed in Table 2.  
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Table 2: Cyanotoxins from different cyanobacteria genera and their health effects 

 Cyanotoxin Producing Cyanobacteria Toxic Mechanism Health Effect Reference 

1 Microcystin (MC) Microcystis spp, anabaena, 

Merismopedia, Limnothrix 

redekei, Phormidium formosum, 

Hapalosiphon hibernicus, 

Planktothrix spp, Nostoc, 

Synechocystis, Cyanobium 

bacillare 

Hepatotoxic, inhibits 

eukaryotic protein 

phosphatases (PP1 and 

PP2A)  

Liver inflammation, and 

hemorrhage and liver failure 

leading to death, pneumonia, 

dermatitis, oxidative damage 

(DNA), Genomic instability, 

Apoptosis, Cytoskeleton 

alterations and cellular 

proliferation  

(Carmichael et al., 2003; 

Ballot et al., 2004) 

2 Nodularin (NOD) Nodularia Hepatotoxic, inhibits 

eukaryotic protein 

phosphatases (PP1 and PP2A 

and3) tumor promoter 

Gastrointestinal, liver 

inflammation, and  

hemorrhage and liver failure 

leading to death,  pneumonia, 

dermatitis 

(Rinehart et al., 1988) 

 

3 Cylindrospermopsin (CYN) Cylindrospermopsis raciborskii, 

Anabaena spp, Umezakia 

natans, Aphanizomenon 

ovalisporum, Aphanizomenon 

flos-aquae, Rhaphidiopsis 

curvata, Planktothrix 

Hepatotoxic, cytotoxic, 

neurotoxic; inhibition of 

glutathione synthesis, protein 

synthesis and cytochrome 

P450  

An irreversible inhibitor of 

protein and glutathione 

cytochrome P-450, 

overexpression of DNA 

damage repair protein, 

Apoptosis, morphological 

alteration. Gastrointestinal, 

liver inflammation and 

hemorrhage, pneumonia, 

dermatitis  

(Li et al., 2001; Schembri et 

al., 2001; Spoof et al., 2006; 

Fastner et al., 2007) 
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 Cyanotoxin Producing Cyanobacteria Toxic Mechanism Health Effect Reference 

4 Anatoxin-a Anabaena spp, Microcystis, 

Aphanizomenon, 

Cylindrospermum, Raphidiopsis 

mediterranea, Planktothrix spp 

Neurotoxic, mimics the 

neurotransmitter 

acetylcholine  

 

Depolarizing neuromuscular 

blocking, tingling, burning, 

numbness, drowsiness, 

incoherent speech, respiratory 

paralysis leading to death  

(Namikoshi et al., 2003; Wood 

et al., 2007) 

 

4 Saxitoxin (STX) Cylindrospermopsis, Anabeana 

spp, Aphanizomenon, Lyngbya 

Neuromuscular system 

(Membrane ion channel 

block)  

Blocking neuronal 

communication by binding to 

the voltage-gated Na
+
 

channel, respiratory paralysis 

leading to death  

(Humpage et al., 1994) 

5 LPS endotoxins  

 

All cyanobacteria Skin and mucosa (irritation, 

topic effects) 

Skin irritation  

 

(McElhiney & Lawton, 2005) 

6 Beta-Methylamino-L-alanine 

(BMAA) 

Microcystis, anabaena, Nostoc, 

Planktothrix 
Motor system disorder, 

glutamate agonist, increasing 

the intracellular 

concentration of calcium in 

neurons and cause 

hyperexcitation  

Increasing the intracellular 

concentration of calcium in 

neurons that cause 

hyperexcitation and motor 

system disorder  

(Lobner et al., 2007) 
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2.8  Strategic for control of cyanotoxin contamination in water bodies 

The use of freshwater for human drinking and other domestics activities is inevitable, 

cyanobacteria and cyanotoxins in freshwater must be controlled to minimize the adverse 

health effect on human and animals. There is economical implication on the cost related to 

prevention, control and mitigation of cyanobacteria in water bodies. For instance, the USA 

used about 2.2-4.6 dollars per annum for mitigation activities related to cyanobacteria and 

cyanotoxins (Dodds et al., 2008). There is a need for the development of new technologies 

which are economical and sustainable viable to mitigate cyanotoxins hence prevent the public 

health (Srivastava et al., 2013). The developed approaches must be environmentally friendly, 

which does not impair aquatic ecosystems. There are several mitigation strategies which can 

be used to control cyanobacteria includes, biological, physical and chemical means as 

explained below:  

2.8.1  Biological approaches 

Biological means of cyanobacteria control is of great advantage compared to chemical and 

physical ways. Natural approaches such as regulation of availability or nutrient uptake and 

alteration of the normal physiology of photosynthetic pigment and direct feeding of 

cyanobacterial biomass by some aquatic organisms is a hopeful way of natural ways 

ecological restoration (Xu et al., 2007; Zhu et al., 2014). Aquatic species like Radix swinhoei 

snail can feed on cyanobacteria cells and live well without loss infertility and disturbance of 

aquatic ecosystem (He et al., 2012). Natural manipulation of nutrient such as nitrogen and 

phosphorus by increasing aquatic plants that compete for nutrient and light with harmful 

cyanobacteria are assumed to be a limiting factor for algal growth (Wang et al., 2012). More 

investigations are essential on some aquatic plants that can release natural chemical with an 

allelopathic effect which prevent the growth of harmful cyanobacteria. Moreover, rival 

interaction with the naturally occurring compound in water bodies must be studied if they can 

overpower cyanotoxins production. There are some microorganisms like Bacillus spp, 

Sphingomonas spp and Stenotrophomonas acidaminiphila can biodegrade cyanotoxin such as 

MC- (LR, RR, LY, LF) natural (Xuan et al., 2017). 

2.8.2  Physical approaches  

Bloom control by physical approaches involves mechanical elimination techniques or short 

wavelength radiation treatment to control the incidence of harmful cyanobacteria. Artificial 

circulation by crating physical water flows and reduction residence can potentially eliminate 
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freshwater algal blooms of a reservoir even in nutrient-rich environments (Huisman et al., 

2004; Hudnell, 2010). Besides, a solar-powered circulation (SPC) has been designed to 

generate a long-distances flow of the epilimnion (>200 m) to suppress harmful cyanobacteria 

in freshwater (Hudnell, 2010). Information attained from a case study of nutrient-enriched 

water bodies revealed the role of SPC in the decrease of cyanobacterial highest concentration 

by about 82 and 95% (Hudnell, 2010). Applications of rapid wavelength ultraviolet radiation 

on the water that is infested by cyanobacteria and cyanotoxins, can quickly cause degradation 

of the cyanotoxins concentration in water treatment procedures (Beattie et al., 

1998). Simulated waterfalls or fountains may also be adequate to control the cyanobacterial 

blooms in smaller water bodies, hence reduce the risk of HABs exposures (Nally, 2011). 

Furthermore, cavitation treatment can fragment gas vesicles of cyanobacterial cells and 

filament, which eliminates up to 99% cyanobacteria growing in water bodies (Jančula et al., 

2014).  

 2.8.3  Chemical approaches  

Harmful cyanobacteria and their toxins can be controlled to a certain extent using some 

chemicals such as inhibitors or flocculants and algicides. Nevertheless, the use of these 

chemicals can certainly recontaminate water bodies again and impair water quality (Van 

Hullebusch et al., 2002). A research conducted by Dai et al. (2012) has shown to eliminate of 

MC-LR by a low-cytotoxic microgel- Fe (III) compound up to 99%. Pre-oxidation with 

chlorine dioxide, followed by flocculation and settling, was found advantageous in 

eliminating cyanobacterial cells and MCs toxins in contaminated water sources (Bogialli et 

al., 2012). The use of aluminium salts can be used as algicides for nuisance algae and 

cyanobacteria control management in a water treatment center (Lelkova et al., 2008). 

Application of slaked lime calcite (CaCO3) in infested water has also been reported to 

eliminate the algal cells and filament, including cyanotoxins (Prepas et al., 2001). Aluminium 

compounds can be used to reduce the nutrients from manufacturing industries and domestic 

wastewaters (De Julio et al., 2010). Likewise, other metals such as iron and copper can be 

used to control harmful cyanobacteria and reduce toxins in the water. The salt of copper 

(CuSO4.5H2O) is extensively used as an algicide in reduction of cell densities in water (Lee 

et al., 2002). In most cases chlorination is as a treatment choice in several developing 

countries for many water treatment plant whereby chlorination with 2 mg/L can breakdown 

cyanotoxins bonds and make water safe for human consuption (Lelkova et al., 2008; Bogialli 

et al., 2012).  
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2.9  Legislation maximum tolerable limits for cyanotoxins  

Cyanotoxins guidance value varies in each type of toxin and is country-specific most of the 

countries are yet to develop the limits for food, drinking and recreational water instead, they 

use WHO provisional guideline (Table 2). Microcystin -LR is the most referred cyanotoxins 

in terms of limit setting due to available data on animal’s studies that are used as a health-

based reference value. A provisional TDI of 0.04 μg/kg bw/day for MC-LR was given by 

WHO (2008). This is used for toxin exposure assessment for most countries. Moreover, other 

countries have developed their guidelines for varies limit in water for recreational activities, 

drinking water and aquatic food. Guidance value also differs in many ways based on their 

research experience and expert recommendation, e.g. USA has set a limit for infant, school-

age and adult this is different from other countries but also the restrictions vary between 

states. Table 3 below highlights the provisional limit for countries, which set up guideline.    
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Table 3: Recommended limit of cyanotoxins exposure to human for drinking water  

Countries/ 

organization 

Source of 

exposure 
Limit Reference 

WHO Recreation 

water 

Provisional given value 

>2000 μg/L   (Extreme high) 

20-2000 μg/L  (High) 

<10 μg/L (Low) 

WHO (2003) 

 

 Drinking water 1 μg/L WHO (2008) 

    

Europe     

Italy  Recreation >25 μg/L No Swimming  Ibelings and 

Chorus (2007) Hungary   <4 μg/L Acceptable limit 

France   25 μg/L Not acceptable 

    

Argentina,  Drinking water 1 μg/L WHO provisional given 

value 

Chorus (2012) 

 South Africa 

Uruguay 

Brazil 

Singapore 

 

New Zealand 

 

Recreation >12 μg/L Ibelings et al. 

(2016) 

    

US-EPA* (USA) Drinking 0.7 μg/L (Infants and Pre-school 

age for 10 days only) 

US-EPA (2015) 

  3 μg/L Adults 

    

Australia Fish 18 μg/kg Mulvenna et al. 

(2012) 

 

 Prawns 24 μg/kg 

 Molluscs or 

Mussels  

39 μg/kg 

    

Canada Food 0.02 μg/kg bw/d Testai et al. (2016) 

 

 

Recreation <20 μg/L Ibelings et al. 

(2016) 

 Drinking water 1.5 μg/L Chorus (2012) 

 

US-EPA* standard limit for cyanotoxins (MC-LR) in food, drinking water and recreations 

varies in the different state it's not uniform to all USA.  
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2.10  Cyanotoxins detection method 

There are different methods used to detect cyanotoxins, Table 4 summaries range of 

biological toxin and their detection method.   

Table 4: Detection method for different cyanotoxins  

Biological toxin Toxin  Detection method Reference  

Hepatotoxic Microcystin  ELISA, HPLC, 

PPIA, LC-MS/MS 

Mekebri et al. (2009) 

Neffling et al. (2010) 

Miles et al. (2012) 

 Cylindrospermopsin MS/MS, ELISA, 

HPLC 

Velichko and Pinevich 

(2019) 

Hepatotoxic Nodularin  ELISA, PPIA, 

MS/MS, HPLC 

Lundgren et al. (2012) 

Neurotoxic Anatoxin- 

a/homoanatoxin-a 

 

ELISA, MS/MS, 

HPLC-DAD 

He et al. (2012) 

Salmaso et al. (2017) 

 

Neurotoxic Anatoxin-a (S) AEIA, MS/MS Paerl and Otten (2013) 

Neurotoxic Saxitoxin   ELISA, HPLC, 

MS/MS 

Loftin et al. (2016) 

Cytotoxic, 

gastroenteritis and 

dermatotoxic 

Lyngbyatoxin HPLC, LC-

MS/MS 

Paerl & Otten (2013) 

Neurotoxic Beta-Methylamino-

L-alanine (BMAA) 

HPLC, ELISA, 

MS/MS 

Esterhuizen-Londt et al. 

(2011) 

 

HPLC-High performance liquid chromatography, MS/MS mass spectrometry mass 

spectrometry, AEIA acetylcholine esterase inhibition assay, ELISA enzyme-linked 

immunosorbent assay.   
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1  Study location  

3.1.1  Site selection  

The study was carried out in Ukerewe District in Mwanza region, Tanzania (Island in the 

LV). The Island was selected based on the nature of water sources, which is mainly Lake 

Victoria. Most of Island residents usually draw their water for drinking and domestic 

purposes from the lake rather than treated pipe water and borehole (wells). There were 23 

selected sampling sites for water quality assessment and cyanotoxins occurences, there were 

randomly selected from the most used Lake shores list for recreation activities and collection 

of domestic water. Furthermore, treated piped water and wells water samples (low risk of 

exposure) were collected for risk of exposure assessment with comparison to Lake water 

samples (higher risk of exposure) see Table 5 and Fig. 6: 

Table 5: Water sample collection sites 

Lakeshore Wells Treated pipe water 

1. Bugolora 1. Busiri 1. Household 1 (pipe water) 

2. Chabilungo 2. Buhima 2. Household 2 (pipe water) 

3. Galu beach 3. Kakerege A 3. Treatment Center (TC)-Treated  

4. Water st. Agency 4. Kakerege B  

5. Muhula lake 5. Kasalu A  

6. Nanumi 6. Kasalu B  

7. Treatment Center (TC)-Untreated  7. Muhula well  

8. Namagubo Female 8. Nakatunguru  

9. Managubo Male 9.  Kenonzo  

 10. Namagondo  

 11. Pius Msekwa  

 

3.1.2  Study sites   

Ukerewe district comprises 27 islands in Lake Victoria, in northern Tanzania between 

latitudes 10
o
 45’ and 20

o
 15’ S and longitudes 320

o
 45’ and 330

o
 45’ E (Fig. 6). Lake Victoria 

is the world’s second-largest freshwater body, measured by surface area, and the largest in 
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the developing world, with a surface area of 68 800 km
2
 and a catchment area covering of 

284 000 km
2
 (Fig. 6). 

 
Figure 6: Ukerewe District and sampling sites 

 

3.2  Study design and population 

This was a cross section study, whereby study subjects were selected from the same 

population in different seasons.  Selected study subjects were grouped based on their water 

sources, and random sampling was used to select study subject. Simple random sampling was 

used for selection of study subject was involved in both phases (I in Feb, 2018 and II in Dec, 

2018), whereby the cross-section study design was used to collect information and blood 

sample in the same study sample in deferent time interval of ten month-long (from Feb, – 

Dec, 2018).  
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Figure 7:  Sampling procedure for water and blood sample collection  

3.3  Sample size calculation  

Simple random sampling was used for the selection of study subject from Ukerewe 

population, the sample size was calculated with consideration of design effect and response 

rate adjustment.  The obtained sample size was used as a basis  to collect data in two groups 

(high/low risk) of population-based on drinking water source (Fig. 7). The sample size was 

calculated based on the formula developed by Kothari (2004). 

 

 

     

P = 

 

0.5 

  R = 

 

0.83 

  Deff=  

 

0.95 

  Z= 

 

1.95 

  E= 

 

0.05 

  N= 

 

350,146 (Total population) 

 

n= 0.95/0.95
2
  X 1.95

2
 x 0.5X (0.50/0.05

2
) X 350,146/ 350,146 + 1.96

2
 x (0.05x0.05)/0.05

2
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n= 432 

 

During dry season   = 432 

During wet season = 432 (same population same study subject) 

 High risk group were study subject that used water from the as their main source of water of 

which was regarded to have cyanotoxins while low risk was selected among those used wells 

and treated as the main source of water. Inclusion and exclusion criteria: Information was 

collected from study population in Ukerewe District, permanent resident only residing at the 

Island for a list more than five years and above 18 years old. This study did not involve a 

person below 18 years old and non-resident of Ukerewe Districts. 

3.4  Data collection and sampling  

3.4.1  Water sampling 

Water samples were collected in three different ways and purposes: The first the sampling 

focused on water quality parameter assessment whereby water samples were collected for six 

months consecutively from November 2017 to April 2018. The second water sampling 

focused on cyanotoxin assessment, whereby water was collected in phases (phase I in 

February, 2018 and phase II in December, 2018) for three weeks consecutive in each phase.  

The third samplings were for cyanobacteria species identification and cyanobacteria cells 

density assessment which was done in December 2018. 

(i) Water sampling for water quality parameters assessment  

Water samples were collected from 23 selected sites of Lake Victoria’s shores, shallow (<5 m 

deep) and deep wells (>6 m), a spring, and household water pipes (Fig. 6). One-liter water 

samples were collected from each site for six months, consecutively from November 2017 to 

April 2018. The samples were collected into bottles and preserved as per the standard 

methods for examination of water (APHA, 2012). They were stored in a cool box with ice 

cubes and transported to Nelson Mandela Africa Institution of Science and Technology in 

Arusha for analysis. 

A multiparameter meter (HI 9829, HANNA Woonsocket, RI, USA) was used on-site to 

determine temperature, pH, redox potential, DO, EC and TDS, and PC and total chl were 

measured in situ with an Aquafluor handheld field fluorometer model 8000-01 (Turner 

Designs, San Jose, CA, USA). Before use, the fluorimeter was calibrated according to the 
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manufacturer’s instructions; total chl and PC were both quantified using the intact cells 

without filtration or extraction. WHO water quality guidelines (Brient et al., 2008) were used 

to interpret the PC concentration on the basis that a concentration of 30 μg/L is equivalent to 

WHO alert level 1 (20 000 cyanobacterial cells/mL), and less than 30 μg/L means that the 

number of cyanobacterial cells/mL is below that level. In the laboratory, the inorganic 

nutrients analyzed include Nitrate nitrogen, nitrite nitrogen, phosphate and reactive 

phosphorus that were measured by spectrophotometer (HACH, DR2800). 

 

(ii) Water sample for cyanotoxins assessment  

A total of 138 water samples were collected from sites along Lake Victoria’s shores (n=54), 

wells (n=66), and treated pipe water (n=18) from 23 selected site. A volume of one-liter 

water-samples was collected at an interval of one week for three consecutive weeks from 

each site in two phases (dry – 69 samples and rainy season-69 samples), the samples were 

collected and preserved as per the standard methods for the examination of water (APHA, 

2012). Samples were stored in cool boxes with ice cubes and transported to Nelson Mandela 

Africa Institution of Science and Technology (NM-AIST) in Arusha where they were stored 

at – 20
0
C then shipped to Queens University of Belfast (QUB) for further analysis while 

frozen in dry ice containers. 

(iii) Water sample for cyanobacteria identification   

Samples for cyanobacteria species identification were collected from selected sites of the 

Lake Victoria shores, where water is fetched for drinking, domestic purposes and used for 

recreation activities at (depth ~ 0.5 m) at each of the established sampling. 

Water samples were collected at eight selected location along the Lake Victoria shore, 

namely Galu beach, Barazani, Namagondo, Water Agency Street, Bugolora, Kahama, 

Nebuye and Lugenzi. At each sampling site 20 L of water was concentrated using a 13 µm 

phytoplankton net to get the desirable sampling volume of 20 mL of water. The 

concentratedwater samples were preserved with Lugols solution (0.7%) in 20 mL vials.  

3.4.2  Blood samples collection for liver function and toxins analysis 

Simple random sampling was used to select human study subject whereby each person in the 

study population had equal chance to be chosen. Blood samples were collected to selected 

study subject in both high and low risk area as regards to water sampling sites. A semi-

structured questionnaire was administered to obtain key information about sources of 
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drinking water, fish-eating behaviour and other risky activities that increase exposure to 

cyanotoxin contaminated water. A 5 mL volume of whole blood from all selected study 

subjects was collected by a trained nurse in red top vacutainer tube and all blood samples 

were stored at the district hospital. A total of 732 vacutainers of whole blood were collected 

from elected study subject in ten wards namely Nansio, Kakerege, Bukongo, Mahande, 

Murutungura, Muhula, Chabilubgwa, Nakatunguru, Igala and Namagondo at Ukerewe 

district in two phases. The blood samples were centrifuged at 2 500 RPM for 10 min, and 

then the serum samples were separated and collected in aliquots of 1 mL at Ukerewe district 

hospital. Serum samples were transported to National Health Laboratory Quality Assurance 

and Training Centre (NHL-QATC) Dar es Salaam and were stored at -20
0
C refrigerator. 

Samples were screed for HIV, HCV and HBV and Liver function test then negative samples 

were transported to QUB for further toxins analysis. The remaining samples after serological 

test in two phases were as follows; Phase I was in dry season – February 2018 (n=374) and 

phase II in rainy season - December 2018 (n=264). Samples were stored at -20
0
C then 

shipped to Queens University Belfast (QUB) on dry ice for analysis. At QUB. 

3.5  Sample analysis 

Samples analysis were done in different methods based on the outlined objectives below. For 

each objective a detailed method is stipulated hereunder: 

3.5.1  Cyanotoxins assessment of different surface waters  

(i) Materials for cyanotoxin assessment  

Standards for microcystins (-LA, -LF, -LR, -LY, -LW, -RR, -YR, -WR, dm MC-RR and dm 

MC-LR) and nodularin were purchased from Enzo Life Science (UK).  Anatoxin-a was 

purchased from the National Research Council, Canada and cylindrospermopsin were 

obtained from n’Tox, France. Water was supplied from an in-house 18 MΩ Millipore water 

system, Millipore Ltd. (Hertfordshire, UK). Acetonitrile, Methanol and formic acid were 

purchased from Sigma Aldrich (Dorset, UK).   

(ii) Analytical Standard preparation 

Anatoxin-a was provided reconstituted at a concentration of 4.96 µg/mL, whereas the other 

toxins were in powder form (100 µg). Cylindrospermopsin was reconstituted in water 

whereas microcystin and nodularin standards were reconstituted in pure methanol (100 µL) to 

give stock standards of 1 mg/mL. Working standards of 10 µg/mL were further prepared by 
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diluting the stock standards of 1 mg/mL 1:100 (v/v) with 80% aqueous methanol (v/v) and 

water for cylindrospermopsin. The multi-toxin stock standard containing all thirteen 

standards was then prepared at a concentration of 500 ng/mL by dilution of the 10 µg/ mL 

working standards 1:20 (v/v) and in the case of anatoxin-a by 1:9.92 (v/v) with 80% aqueous 

methanol (v/v). 

(iii) Extraction method  

Sample extraction was conducted after lyophilisation of a 100 mL aliquot of water sample 

from 23 selected site. Samples were then extracted by resuspension in 5 mL of 75% aqueous 

methanol (v/v).  Samples were briefly vortexed for 1 minute, then transferred to a 15 mL 

falcon tube, whereby they were vortex mixed for a further 30 minutes at room temperature 

before was centrifuged at 4500 rpm for 15 minutes. The supernatant was collected and 

evaporated to dryness under a gentle stream of nitrogen using a turbovap, at 50 °C, then the 

residue was dissolved in in 200 µl of 80% aqueous methanol (v/v) and transferred to a micro 

vial for analysis. Quantification of any toxins present was attained by the use of a seven-point 

extraction solvent calibration curve with a range of 5 ng/mL to 1000 ng/mL based on an 

initial sample size of 100 mL. This was achieved by spiking with the MTS standard at 5, 50 

or 500 ng/mL. Calibrants used were prepared based on the method above in section 2.5. 

(iv) Water Sample Preparation and extraction 

A total of 138 water samples were collected from 23 field sites as shown of Fig. 6 at Ukerewe 

district. Samples collection was divided into two phases; Phase I was in dry season – 

February 2018 (n=69) and phase II in rainy season - December 2018 (n=69), whereby 54 

(39%) samples were from the Lake, wells 66 (48%) and treated piped water 18 (13%). At 

Queens University of Belfast (QUB) samples were separated in 100 mL aliquot from 1L 

collection bottles from the field then stored at -20
0
C before freeze-drying. Sample extraction 

was as per section (iii).  

(v) Analysis on TQ-MS 

Analysis of the thirteen toxins was performed using liquid chromatography mass 

spectrometry (UPLC-MS/MS) machine from Waters, (Manchester, UK). The system was 

operated in electrospray positive mode (ESI+) with the capillary voltage set at 1 kV, source 

and desolvation temperatures at 150 °C and 400 °C respectively, and desolvation gas flow at 

700 L/hr, optimised to give the best sensitivity across all analytes. Detection and 
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quantification were achieved using targeted analysis via Multiple Reaction Monitoring 

(MRM) (Table 6) involving fragmentation of specific precursor ions (parent) using argon as 

the collision gas, to at least two product ions (daughters), with the cone voltages and collision 

energies for each analyte optimised manually. The separation was achieved using a 

CORTECS UPLC T3 column, 100 mm x 2.1 mm i.d., 1.6 μm particle size, 120Å pore size 

(Waters, UK) with the column maintained at 45
o
C. The mobile phases A and B consisted of 

water containing 0.1% formic acid (v/v) and acetonitrile respectively. The flow rate of mobile 

phase was set at 0.45 mL/min with the acetonitrile held at 2% for 1min, followed by an 

increase to 70% over 9 min, washed for 1 min at 90% before returning to 2% for a 1min re-

equilibration before the next injection. L.M- resolution ranges from 1-2.85 and H.M 

resolution ranges from 1-14.8. The injection volume was set at 2 μL.   

Table 6: Optimised MRM/SRM transitions for the 13 freshwater cyanotoxins 

Analyte 
Precursor 

Ion(m/z) 

Cone 

(V) 

Base Fragment 

Ion (Q)(m/z) 

Collision 

Energy 

(eV) 

Qualifier 

fragment (q) 

Collision 

Energy 

(eV) 

Retention 

time 

(min) 

ATX-A* 166.10 25 149.0 15 131.05 15 1.79 

CYN 416.20 35 194.1 40 336.2 20 1.09 

dmMC-RR 512.95 35 135.2 40 107.2 50 5.43 

MC-RR 519.95 35 135.0 30 127.1 40 5.51 

NOD 825.50 65 135.1 65 70.0 75 5.89 

MC-LA 910.50 32 135.1 65 213.1 60 7.57 

dmMC-LR 981.55 50 135.1 70 107.1 70 6.33 

MC-LF 986.50 35 135.1 70 213.1 55 8.59 

MC-LR 995.60 55 135.0 75 107.05 80 6.29 

MC-LY 1002.5 35 135.15 70 163.1 60 7.72 

MC-LW 1025.6 25 135.1 65 107.1 65 8.40 

MC-YR 1045.5 60 135.2 70 107.1 75 6.14 

MC-WR 1068.55 60 135.1 75 107.1 75 6.53 

 
Optimised MRM/SRM transitions for the 13 freshwater toxins (cyanotoxins) including; 

quantifier ion (Q) and qualifying ion (q). *ATX-A has a second qualifier fragment (q1) which 

is the diagnostic ion and is used to prevent misidentification; q1 = 166.1 > 42.95 with a 

collision energy of 20 eV (not shown in table).  

3.5.2  Cyanobacteria species identification and health risks assessment  

(i)  Cyanobacteria identification 

Phytoplankton identification to the genus level was done on a light microscope following 

morphological descriptions given by Anagnostidis and Komárek (1988) and Komárek and 

Kling (1991). The counting of phytoplankton classification were done by using inverted 
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microscope at 400 x magnification, morphological species identification criteria were 

according to freshwater phytoplankton keys (Whitton et al., 2002). Ten fields were randomly 

selected during counting and observation of the species from the sedimentation chambers. 

Different species were counted by numbers of filaments and cells depending on the nature of 

the species. Phytoplankton abundance was calculated using the formula by (Greenberg, 

1992): 

  
VixVxFxAf

vxAtxC
Abundance   

Where:  

C = number of organisms counted, 

At = total area of bottom of settling chamber (mm
2
),  

V = volume of concentrated sample (20 ml),  

Af = area of field (mm
2
),  

F = number of fields counted,  

V = volume of sample observed (2 ml) and  

Vi = volume of the sedimented sample. 

 

3.5.3  Cyanotoxins detection method validation and biochemical indices analysis 

(i) Cyanotoxins detection in serum  

Cyanotoxins detection method was developed for the purpose of vadalidation its performance 

and then the method was test in the collected human serum samples using the following 

protocal 

Materials 

Standards for MCs (-LA, -LF, -LR, -LY, -LW, -RR, -YR, -WR, dm MC-RR and dm MC-LR) 

and NOD were purchased from Enzo Life Science (UK). Cylindrospermopsin was obtained 

from n’Tox, France. Water was supplied from an in-house 18 MΩ Millipore water system, 

Millipore Ltd. (Hertfordshire, UK). Methanol, acetonitrile, trifluoroacetic acid, formic acid, 

human serum (from male AB clotted whole blood) and ENVI-Carb SPE cartridges (250 mg, 

3 mL) were purchased from Sigma Aldrich (Dorset, UK).  OASIS PRiME HLB SPE 

cartridges (60 mg, 3 mL) were from Waters (Dublin, Ireland).  
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 Analytical Standard preparation 

Cyanotoxins was reconstituted in water whereas the MC and NOD standards were 

reconstituted in pure methanol (100 µL) to give stock standards of 1 mg/mL. Working 

standards of 10 µg/mL were further prepared by diluting the stock standards of 1 mg/mL 

1:100 (v/v) with 80% aqueous methanol (v/v) and water for cylindrospermopsin. The multi-

toxin stock standard containing all twelve standards was then prepared at a concentration of 

500 ng/mL by dilution of the 10 µg/mL working standards 1:20 (v/v).   

Extraction of cyanotoxins from serum for method validation 

Toxin extraction and enrichment were developed using 250 µL aliquots of human serum 

(from male AB clotted whole blood). Samples (250 µL of serum) were extracted by addition 

of 1.5 mL of 75% aqueous methanol (v/v), vortex mixed briefly and sonicated at room 

temperature for 30 min to extract any potential toxin(s) present, followed by centrifugation at 

16 000 g for 15 min to remove cell debris/matrix and protein. The supernatant was removed 

and diluted 5-fold with water to achieve a 15% methanol content for loading onto SPE 

cartridges; OASIS PRiME HLB and  ENVI-Carb. Before loading samples, SPE cartridges 

were conditioned with 3 mL of MeOH, followed by 3 mL of water, then 3 mL of 15% 

aqueous methanol (v/v). Samples were loaded onto the Oasis PRiME HLB cartridges, the 

flow-through collected then passed through the ENVI cartridges. Cartridges were cleaned 

with water and 20% aqueous methanol (v/v), then briefly dried before elution into clean glass 

tubes. 

The analytes were eluted with 2 x 1.5 mL of 80% aqueous methanol (v/v) containing 0.1% 

TFA for OASIS PRiME and and 2 × 1.5 mL methanol/dichloromethane (4:1 v/v) comprising 

5% formic acid (v/v) for the ENVI. The subsequent eluents were collective, dried under a 

stream of nitrogen before reconstitution in 75 μL of 80% aqueous methanol (v/v) and 

transported to a microvial for analysis. 

 Cyanotoxins extraction in serum samples for method validation  

Sera samples of 250 µL were extracted as detailed by Gree (2018). Quantification of any 

toxins present was attained by the use of seven-point extracted matrix matched calibration 

curve with a range of 0.01 ng/mL to 2.5 ng/mL. This was achieved by spiking with the multi-

toxins standard. 
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Analysis by UPLC-MS/MS of in serum samples 

Analysis of the twelve toxins in sera samples was performed using a liquid chromatography 

mass spectrometry (UPLC-MS/MS), Xevo TQ-S (triple quadrupole MS/MS) from Waters 

(Manchester-UK). The system was operated in electrospray positive mode (ESI+) with the 

capillary voltage set at 1 kV, source and desolvation temperatures at 150 °C and 400 °C 

respectively, and desolvation gas flow at 700 L/hr, optimised to give the best sensitivity 

across all analytes. Detection and quantification were achieved using targeted analysis via 

Multiple Reaction Monitoring (MRM) involving fragmentation of specific precursor ions 

(parent) using argon as the collision gas, to at least two product ions (daughters), with the 

cone voltages and collision energies for each analyte optimised manually. The separation was 

achieved using an ACQUITY UPLC Cortecs T3 column, 2.1 x 100 mm i.d., 1.6 μm particle 

size, 120 Å pore size (Waters, Ireland) with the column maintained at 45
o
C. The mobile 

phases A and B consisted of water containing 0.1% formic acid (v/v) and acetonitrile 

respectively. The flow rate of mobile phases was set at 0.45 mL/min with the acetonitrile held 

at 2% for 1 min, followed by an increase to 70% over 9 min, washed for 1 min at 90% before 

returning to 2% for a 1min re-equilibration before the next injection. The injection volume 

was set at 2 μL.  

 (ii) Serology and liver function test  

Liver function was performed to detect levels of biochemical indices as an indicator of liver 

damage using the following protocal and materials  

Materials 

Rapid HIV test 1 (SD Bioline) and HIV test 2 (uni-gold) were from Standard diagnostics, 

INC. (Republic of Korea). Rapid immunochromatographic test for detection of Hepatitis B 

surface Antigen in serum (HBsAg WB) and HCV were from Standard Diagnostics, INC. 

(Republic of Korea). 

The following list of reagent from Roche (Germany) used for liver function test on a Cobas: 

Integra 400 plus automated chemistry analyzer 

Cobas ISE Deproteinizer (6x21mil) 

Cobas (Activator Roche Diagnosis kit) 

Cobas C.f.a.s (Roche Diagnosis kit, C.f.a.s (12x3ml)) 

Cobas Precicontrol (PreciControl CC Multi 1 (4x5ml) 
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Cobas cleaner solution (1L) 

Cobas ALP (Alkaline Phos) 

Cobas BIL-D (Roche Diagnosis kit) 

Cobas BIL-T (T-Bilirubin total G.3) 

Cobas TP (Roche Diagnosis kit) 

Cobas ALB (Roche Diagnosis kit) 

Cobas ALTL (GPT) - (Roche Diagnosis kit) 

Cobas ASTL (GOT) (Roche Diagnosis kit)  

Sample preparation  

Serum samples were separated for liver function test and serological test. Blood sample used 

was free from haemolysis, lipemia and icterus. A volume of 250 µL of serum used for liver 

function test and 100 µL for serological test. 

Serology test  for for HCV, HBV and HIV 

Tests for HIV, HBV and HCV were done using rapid immunochromatographic HIV test (SD 

Bioline), HBsAg and HCV respectively. 

Analysis on Cobas Integra 400 plus 

Analysis of liver function test was performed using Cobas Integra 400 automated chemistry 

Analyzer plus from Roche diagnostic Basel (Switzerland). Also, transaminases (ALT & 

AST) were determined on Cobas Integra 400 plus automated clinical chemistry analyzer and 

the method was according to the IFCC, but without pyridoxal – 5- phosphate. The enzyme 

ALT / AST were catalyzed by the reaction between L- alanine/ aspartate respectively and 2- 

oxoglutarate. The pyruvate/oxaloacetate formed react with NADH, in the presence of 

dehydrogenase to form NAD. The rate of the Nicotinamide Adenine Dinucleotide (NADH) 

oxidation is directly proportional to the catalytic ALT/AST activities and determines by 

measuring the decrease in absorbance at 340 nm. The absorbance of test is directly 

proportional to the concentration of ALT/AST presence in the specimen.  

Method calibration was done according to each test requirement, controls calibrator for 

automated systems (Cfas) from Roche commercial control was used for quality control. 

Controls were run before processing patient sample for each day and/or after every 30 

samples have been run test for the field-collected sample. A volume of 250 µL was used for 
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all required test. An electronic database was created with patient ID, date of sample collection 

and demographic information as a requirement of automated result from Cobas Integra 400 

plus. The instrument was set to run the test in order of arrangement and results was 

automatically produced after the validation then printed. Interpretation of results was based 

on the normal ranges of biochemical liver indices whereby below and above the normal range 

were considered as abnormal range results hence used as proxy indicator for liver damage 

due to toxin exposure.  

The list of the range used as a reference for the liver function test result are shown in Table 6. 

All results that were out of range consider having liver problem. 

Table 7: Liver biochemical indices normal reference range 

  Index Gender Normal range 

1 ALP Men 40-129 U/L 

    Female 35-104 U/L 

2 Alb 

 

25-55 g/L 

3 ALT Men 4-41 U/L 

    Female 2-33 U/L 

4 AST Men 2-40 U/L 

    Female 2-32 U/L 

5 Total Protein 

 

66-87 g/L 

6 T.BIL 

 

0-21 μmol/L 

7 D.BIL 

 

0-3.4 μmol/L 

 

3.6  Statistical analysis 

3.6.1  Water quality parameters  

Data were collected and prepared using Microsoft Excel (MS) spreadsheet and analyzed 

using Open Source software, R statistical package version 3.5.0 (R. Core Team, 2018). 

Generalized linear mixed models (GLMMs) with a Gaussian distribution were used to model 

variations in the amount of PC for different environmental variables. The mixed model was 

used to account for pseudo-replication during sampling. The amount of PC was included in 

the model as a response variable, while different variables of interest were included as fixed 

factors. In the univariate analysis, means and their 95% confidence intervals were reported in 

tables while in the multivariate analysis adjusted means with their 95% confidence intervals 

were reported. The outcomes were considered significant when the p-value < 0.05. All graphs 

were generated using R statistical software with a ggplot2 (Gramma for Graphic plot) 

package (Wickham, 2016) 
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3.6.2  Health effect due to cyanobacteria exposure 

Data was collected through open data kit (ODK) then exported to and cleaned using 

Microsoft Excel (MS). The analysis was done by Epi Info Version 7.2.1 statistics software. 

The outcome of interest was the observed health effects such as stomach upset, vomiting, 

diarrhea, and skin, eye and throat irritation. Each outcome of interest was independently 

tested in Univariate analysis using two by two table and Chi-square - Mantel-Haenszel (2-

tailed p-value) was used to determine the level of significance. For the response with less 

than five in the two by two table, Fisher exact test was used to determine level of statistical 

significance. All statistically significant outcomes variables in the univariate analysis were 

further put together in the multivariate analysis.  

Multivariate analysis was done by a backward method where the outcome with the weakest 

association was removed in the model successively until the best-fit model was 

comprehended.  In the univariate analysis crude odds ratio (cOR) and their 95% confidence 

intervals (CI=95%) were reported, while in the multivariate analysis the adjusted odds ratio 

(AOR)  with their (CI=95%) were reported. The results were measured as significant when 

the P-value (<0.05.)  

3.6.3  Cyanotoxin associated illnesses assessment  

Health effects were self-reported by the study subjects, based on the following definition: 

Having diarrhea was considered when an individual reported having three or more loose 

stools in the duration of 24-hour. Vomiting; ejection of abdominal contents through the 

mouth, stomach upset; syndrome of digestive system functions characterized by uneasiness. 

All the three symptoms together (vomiting, stomach and upset diarrhea,) were regarded as 

gastrointestinal illness (GI) that interfere with regular activities. Skin irritation was defined as 

a condition of swelling, itching or reaction of the skin. Throat irritation, defined as pain, 

itchiness of the throat that can lead to cough and runny nose as general upper respiratory 

illness. Eye irritation was whichever eye infection, eye itching, or/and watery eyes (Collier et 

al., 2015)   

3.7  Ethical consideration  

The permission to carry out this study was sought from the Tanzania National Institute for 

Medical Research (NIMR) with reference number NIMR/HQR.8a/Vol. 1X/2436. Consent 

was obtained from each of the nominated study subjects before their involvement in the data 
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collection. Local authorities (Region, District, Village) were informed on purpose and 

importance of the study before study implementation and permission was granted to conduct 

the survey in their areas.  

Participants who agreed willingly to participate in the study signed the consent form, which 

abides the rules and regulations of research in human from NIMR. Confidentiality of the 

study participants was strictly observed and the findings of this research will be given to the 

Ministries responsible for human health, water authority, Regional and District Officers 

where this research was conducted. Material and data transfer agreement between QUB and 

NM-AIST was sought from NIMR.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION   

4.1  General results  on humans 

4.1.1  Questionnaires results 

A total of 432-study subjects were selected to participate in this study. The mean age of the 

participants was 42 years old with a range from 18 to 86 (SD=15) of which 186 (43%) were 

aged from 18 to 39 years and 246 (57%) were above 40 years. There were more male study 

subjects 234 (54.2%) than female 198 (45.8%).  Almost 80% of the study subjects completed 

primary school, more than 50% were farmers and 90 (20%) were fisherman (Table 7). The 

mean weight was 60 kg (SD=11).   

 

Table 8: Demographic characteristics of study subjects (N=432) 

Characteristics  Frequency Percentage (%) 

Sex   

Male 234 54 

Female 198 46 

   

Age group   

18-39 186 43 

40+ 246 56 

   

Level of education    

Never attended school 43 9.9 

Primary school 340 79 

Secondary school 44 10.1 

Tertiary education  5 1 

   

Occupation   

Fisherman 90 21 

Farmer 301 70 

Employed  17 4 

Unemployed  24 5 

 
 

4.1.2  Serological results for HCV, HBV and HIV 

The total of 732 blood samples were collected in both phases and screened for HCV, HBV 

and HIV.  In phase one 432 samples of blood were collected then screening, results indicated 

that 58 were positive for screening test of which 37 were positive for HBV, 3 for HVC and 

18 for HIV. In phase two, a total of 300 blood samples were collected, screen results show 
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that 36 were positive whereby one, 11 and 24 were positive for HIV, HCV and HBV 

respectively. The positive samples were removed from the list of serum stock and the total of 

638 negative samples remained, whereby in phase I were 374 and phase II were 264.  The 

negative samples from HIV, HBV and HCV were tested for presence of cyanotoxins in both 

phases. 

4.2  Results on surface water 

4.2.1  Cyanotoxins contaminations in surface water  

Table 5 and 6 shows the the cyanotoxin positive water samples from different collection sites 

during phase I and II. A total of 138 water samples were collected from the Lakeshores 54 

(39%), wells 66 (48%) and treated piped water 18 (13%) in both phases. Results indicate that 

cyanotoxins were detected in eight (89%) out of nine-selected sites from the Lakeshore 

waters. Several toxins such as CYN, microcystin congeners; (-RR, -LR and –YR) and NOD, 

were identified in phase I. In the phase II cyanotoxins were identified in 4 (44.4%) sites only, 

whereby CYN and MC (-RR and –LY) were detected. 

CYN was detected in 8 (89%) of Lakeshore collection sites with the concentration range from 

3.6 to 10.8 ng/L. NOD was detected in one site with the concentration of 10.4 ng/L. The 

study shows the presence of microcystin congeners -RR, -LR and –YR with the 

concentrations range from 2.8 to 8.6 ng/L for MC- RR, 10.2 to 11.8 ng/L for MC-LR and for 

MC-YR from 11.8 to 13 ng/L in phase I. Furthermore in phase one, MC-RR was detected in 

5 (55.6%) of the Lakeshore samples collection site while MC-LR in 2  (22.2%) and MC-YR 

in 4 (44.4%) (Table 8). There were no cyanotoxins detected in water samples from the wells 

and piped water.  
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Table 9: Positive sample showing toxins profile and their detection levels in phase I 

Sampling location  

Cyanotoxin concentrations 

CYN (ng/L)  MC-RR  (ng/L) MC-LR (ng/L) MC-YR  (ng/L) NOD (ng/L) 

 

WK1 WK2 WK3 WK 1 WK 2 WK3 WK1 WK2 WK3 WK1 WK2 WK3 WK1 WK2 WK3 

Bugorola 10.8 9 10 8.6 8 5.4 

        

10.4 

Chabilugwa 6.8 7.8 6.6 

            Galu Beach 

 

6.6 7.2 3.5 

           Water Agency Street  6.4 4.8 6 2.8 2.8 

      

12.8 

   Muhula  

 

6.3 6 

  

2.8 

  

11.8 

  

11.8 

   Nanumi 

               TC-Untreated  

 

3.6 

         

13 

   Namagubo Female 

 

5.4 4.8 

 

2.9 

     

11.8 

    Namagubo Male 

 

4.5 

    

10.2 
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Phase II results indicate that CYN was detected in the water sample from the Lake with the 

concentration range from 4 –12.2 ng/L in 3 (44%) collection sites. Microcystin-LR was 

detected in one site with the concentration of 9.6 ng/L while MC-RR was present in two sites 

with the concentration range from 3.8 to 4.2 ng/L (Table 9). No cyanotoxins were detected in 

water samples from the wells and treated pipe water in phase II. 

Table 10: Positive sample showing toxins profile and their detection in phase II 

Name 
CYN (ng/L) MC-RR (ng/L) MC-LR  (ng/L) 

WK1 WK2 WK3 WK 1 WK 2 WK3 WK1 WK2 WK3 

Bugorola 12.2 

  

4.2 

    

  

Chabilungwa  4 

       

  

Water Agency Street 

      

9.6 

 

  

Muhula Lake  7.8 

  

3.8 

    

  

 

Concentrations of cyanotoxins in phase I were very high as compared to phase II in general 

except for CYN where there is a slight increase of maximum levels of concentrations of 10.8 

ng/L in phase I to 12.2 ng/L in phase II. Microcystin congeners -RR, -LR and –YR, CYN and 

NOD were detected in phase I as compared microcystin congeners -RR, -LR and CYN 

detected in phase II.  

 

 

Figure 8: Cylindrospermopsin concentrations for three weeks period in phase I  

 

Cylindrospermopsin was the most abundant cyanotoxin observed in 89% of all the collection 

sites, and in week two it was detected in all eight sites while in week three it was detected in 

six sites (Fig. 8). 
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Figure 9: Mcrocystin-RR concentrations in samples collected for three weeks in phase I  

 

Samples from the lake indicated the presence MC-RR in 5 (55.6%) of the collection sites, and 

this makes it the second most abundant MC toxin in the collection sites (Fig. 9). Among the 

sites that MC-RR was detected, only one site exhibited the toxin in the entire period of three 

weeks.  

 
 

Figure 10: Cyanatoxins at the treatment center (TC) in phase I before and after 

treatment    

 

Water samples collected at the catchment area of the treatment plant in phase I were found 

with CYN and MC-RR toxin with the concentration of 3.6 ng/L and 13 ng/L of MC-YR, 

respectively. No toxin was detected after treatment in phase I however in phase II no toxins 

were detected before and after treatment (Fig. 10). 
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Figure 11: Chromatograms of the cyanotoxin CYN  

 
The chromatogram on top shows the CYN standard, with the bottom chromatogram 

indicating a sample positive for CYN (TZA_WO2A is water sample of week two from 

Bugolora site). 

 

Figure 12: Chromatograms of the cyanotoxin NOD 
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The chromatogram on top shows the NOD standard, with the bottom chromatogram 

indicating a sample positive for NOD (TZA W03A is a water sample of week 3 from 

Bugolora site). 

4.3  Results on water quality assessment 

4.3.1  Water quality parameters as a proxy indicator for cyanotoxins existence 

A total of 138 samples was collected from water sources, which were divided into four main 

categories – lake shores 54 (39%), deep wells 18 (13%), natural springs 12 (9%), shallow 

wells 36 (26%) and piped water 18 (13%).  

 
Figure 13: Phycocyanin concentration means from November 2017 to April 2018 

 

The mean PC concentrations found in December 2017 and March 2018 were higher than in 

other months (Fig. 13). The concentration was lowest in January 2018. Other studies 

conducted in Lake Victoria show th  at algal blooms vary slightly but can occur throughout 

the year (Okello et al., 2010).   

4.3.2  Water quality parameters from selected sampling site as shown below (11-14) 

Water quality parameters was measered from different selected sampling sites to look at their 

level of concentration  for six consecutive months as the data presented in sites specific in 

Table 11 – 14: 
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Table 11: Water quality parameters from selected sites on Lake Victoria’s shore 

Sample collection site   Temp (0C) Redox pH DO (mg/l) 
EC TDS PC Total chl NO3-N NO2-N PO4

3- P 

(mg/l ) (μS/cm) (mg/l ) (μg/L) (mg/l ) (mg/l) (mg/l) mg/l 

Bugorola Min 24 55 7 6 248 161 6 26 16 18 0.25 0.01 

  Max 29.6 298 9 7 641 416 24 138 30.8 43 0.55 0.26 

  SD 2 82.1 0.6 0.4 143.4 92.8 6.1 49.4 6 9.3 0.1 0.1 

Namagobo-Male Min 25 88 7 6 161 155 5 27 11 11.9 0.29 0.09 

  Max 29 297 9 8 372 249 40.2 160 30.9 51.8 0.81 0.38 

  SD 1.5 76.5 0.8 0.7 74.2 44 13.1 58.1 7.1 14.5 0.2 0.1 

Namagobo-Female Min 25 83 7 5.55 244 158 6 36 21.2 9.7 0.16 0.05 

  Max 28 251 8 8 387 285 33 176 33 33.9 0.96 0.55 

  SD 1 74 0.5 0.9 49.4 42.6 9.6 63.8 5.4 9.1 0.3 0.2 

Galu beach Min 24.9 97 7 6 198 128 5 33 17 7 0.17 0.05 

  Max 29 260 9 8 412 267 44 129 52 37 0.74 0.41 

  SD 1.5 66.8 0.8 0.8 76.3 49.5 13.2 39.6 14.2 10.4 0.2 0.1 

Water agency-Street Min 25 95 8 6.37 274 178 11 18 24 24.3 0.24 0.08 

  Max 29.5 387 9 8 398 413 48 201.3 60.9 64 2.04 1.06 

  SD 2 122.8 0.4 0.6 46.6 97.9 13.5 70.5 12.7 14.9 0.7 0.4 

Chabilugwa Min 25 81 8 6.4 200 97 14 23 24.6 16.6 0.14 0.05 

  Max 28 245 9 7 391 286 39 156 65.3 73 16.17 0.79 

  SD 1 62.6 0.4 0.2 75.1 77 9.6 52.5 15.9 18.9 6.4 0.3 

Muhula- Lake Min 24.5 80 7.6 5 170 89 25 29 27 17.8 0.14 0.04 

  Max 29 286 8 7 298 166 49 195 51 75 18.15 0.65 

  SD 1.6 84.9 0.2 1.1 50 28 9.5 65.7 9.7 20 7.1 0.2 

Nanumi Min 25.2 99 7 5 158 48 28 69 29.3 27.3 0.17 0.06 

 Max 28 271 8 7 301 183 58.4 213 72.9 84 22.14 0.96 

  SD 0.9 66.1 0.4 1.1 59.7 49.9 12 65.3 17.8 20.3 9.1 0.4 
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Sample collection site   Temp (0C) Redox pH DO (mg/l) 
EC TDS PC Total chl NO3-N NO2-N PO4

3- P 

(mg/l ) (μS/cm) (mg/l ) (μg/L) (mg/l ) (mg/l) (mg/l) mg/l 

 

Nebuye Intake 

 

Min 25 32.5 7 6 239 108 3 53 15 18 0.94 0.62 

 Max 29 191 9 7 440 271 32 159 53.9 59 2.32 1.9 

  SD 1.4 66.7 0.8 0.4 90.8 63.2 6 39.6 12.9 15.1 0.6 0.4 

 

 

 

Table 12: Water quality parameters from selected deep wells 

 
Water quality parameter 

Sample collection 

site 
  

Temp 

(
0
C) 

Redox pH 
DO 

(mg/l) 

EC TDS PC Total chl NO3-N NO2-N PO4
3- 

P (mg/l) 
(μS/cm) (mg/l) (μg/l) (mg/l) (mg/l) (mg/l) mg/l 

Bogombe Min 25 33 5 6 185 119 0.1 0.36 1.4 11.6 0.19 0.06 

  Max 28 232 7 8 440 286 1.21 23 5.7 25 0.59 1 

  SD 1 74.3 0.8 0.7 101.6 68 0.4 8.7 1.9 5 0.2 0.5 

Mahula well Min 25 78 5 5 73 52 0 0.06 0.3 1.6 0.19 0.03 

  Max 28 251 8 8 284 185 0.7 27 10.4 34.2 1.25 0.44 

  SD 1 61.9 1.2 1 85.3 46 0.2 10 4.2 13.4 0.4 0.1 

Nakatunguru  Min 25 84 6 5 879 490 0.01 0.02 9 25.8 0.83 0.76 

 Max 28 237 7 7 3733 2426 0.5 6.3 35.6 98 4.25 1.5 

 SD 1.3 55.1 0.5 0.7 1004.1 670.1 0.2 2.5 9.5 27.2 1.3 0.3 
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Table 13: Water quality parameters from selected shallow wells 

 
  Water quality parameter 

Sample collection 

site 
  

Temp 

(0C) 
Redox pH Do (mg/l) 

EC TDS PC Total chl NO3-N NO2-N PO4
3- P 

(mg/l ) (μS/cm) (mg/l ) (μg/l) (mg/l ) (mg/l) (mg/l) mg/l 

Namagondo Min 23 44 5 3 60 78 0.3 8 0.9 24.1 0.21 0.07 

  Max 27 257 7 8 226 187 2.9 39 8.4 52 0.42 0.9 

  SD 1.4 83.4 0.6 1.7 53.9 37.9 1.2 13 3.1 10.2 0.1 0.3 

Kakerege A Min 25 75 6 6 321 178 0.11 1.84 4.3 6.1 0.17 0.06 

  Max 28 256 8 7 1092 710 0.65 15 39 97.2 1.8 0.41 

  SD 1.2 62.5 0.8 0.5 312.8 193.7 0.2 5.3 11.7 39.5 0.6 0.1 

Kakerege B Min 25 76 6 5 166 143 0.1 2.5 8.4 22.3 0.31 0.1 

  Max 27 324 7 7 1125 732 0.9 13 16.7 56 1.9 0.49 

  SD 1 82.2 0.5 0.8 402.2 205.2 0.3 4.6 3 15.2 0.6 0.1 

Kinonzwe Min 25 111 6 6 701 100 0.2 16 2 3.1 0.14 0.04 

  Max 27 210 7.2 8 786 510 2 47 5 11 1.3 0.42 

  SD 0.8 42.4 0.6 0.8 32.1 171.2 0.7 12.1 1.1 3 0.4 0.1 

Kasalu A Min 25 78 6 6 31 147 0.01 8 1.3 2.8 0.12 0.04 

  Max 28 239 7 8 914 594 0.9 41 6.1 24 0.71 0.3 

  SD 1.3 78.4 0.5 0.8 342.9 166.5 0.4 11.3 1.8 8.4 0.2 0.1 

Kasalu B Min 25 66 5 5 294 105 0.1 4 0.5 3 0.16 0.05 

  Max 27 226 8 8 951 497 0.5 35.6 7 12.3 0.76 0.13 

  SD 1 75.6 1 1 325.3 134.3 0.2 10.7 2.3 3.6 0.2 0.08 
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Table 14: Water quality parameters from springs 

 
  Water quality parameter 

Sample collection 

site 
  

Temp 

(
0
C) 

Redox pH 
Do 

(mg/l) 

EC TDS PC Total chl NO3-N NO2-N PO4
3- 

P (mg/l) 
(μS/cm) (mg/l ) (μg/l) (mg/l ) (mg/l) (mg/l) mg/l 

Buhima Min 25 37 5 5 117 76 0 0.01 1 9.3 0.14 0 

  Max 27 256 7 8 269 174 0.5 34 5.2 21 0.48 0.81 

  SD 0.8 78.6 1 1.2 59.5 37.3 0.2 14.2 1.5 4 0.1 0.3 

Busiri Min 26 42 5 6 88 57 0 0.03 1.4 12.3 0.12 0.02 

  Max 27 277 7 8 288 187 0.6 7 11 38.3 0.82 0.27 

  SD 0.5 82.5 0.9 0.7 73.4 44.2 0.3 3.1 3.7 11.9 0.3 0.1 

 

 

Table 15: Water quality parameters from selected piped water supplies 

 
  Water quality parameter 

Sample collection 

site 
  

Temp 

(0C) 
Redox pH Do (mg/l) 

EC TDS PC Total chl NO3-N NO2-N PO4
3- 

P (mg/l) 
(μS/cm) (mg/l) (μg/l) (mg/l ) (mg/l) (mg/l) mg/l 

Nebuye WTP Min 26 131 6 6.1 112 163 0.03 6.52 0.3 3.1 0.14 0.04 

  Max 27 266 7 8 395 272 0.58 15 11 21.1 0.8 0.5 

  SD 0.4 49.5 0.4 0.7 99.4 50.3 0.2 3.4 4.8 6.8 0.3 0.2 

Household 1 Min 25 92 6 6 266 167 0.01 1 0.7 3.01 0.12 0.04 

  Max 27 665 7 8 483 314 0.33 12 9.4 12.2 0.56 0.18 

  SD 0.8 212.5 0.5 0.7 90.8 59.2 0.1 4.2 3.2 3.8 0.2 0.1 

Household 2  Min 26 112 6 6 265 168 0.01 0.95 0.7 3 0.13 0.04 

  Max 27 171 7.4 8 407 266 0.3 12 8.8 11.2 0.4 0.15 

  SD 0.7 21.3 0.6 0.6 69.3 44.4 0.1 4.3 3 3.9 0.1 0 
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Figure 14: Phycocynin distribution by water source 

 

Table 16: Analysis for different water sources associated with the presence of PC 

Water Sources 

 Univariate 

P-value 
 

 Comparison 

  Factors (μg/L) 
95% CI 

 

Spring 

 

Ref - - 

Deep Well 

 

0.24 -9.67, 10.17 0.962 

Lake 

 

28.61 20.11, 37.11 <0.001 

Piped supply  

 

-0.02 -9.94, 9.91 0.998 

Shallow Well 

 

0.4 -8.47, 9.28 0.93 

 

 

(ii) Phycocynin association with water quality parameters  

Table 17: Analyses of water quality parameters and their association with PC 

Variable 

Univariate 

P-value 

Multivariate  

P-value 

 
Comparison factor 

(μg/L) 
95% CI Comparison factor 

(μg/L) 
95% CI 

Temperature  -3.04 -3.95, -2.13 <0.001* -1.26 -2.21, -0.32 <0.05* 

Redox 1.6 0.43, 2.77 <0.01* 1.33 0.42, 2.23 <0.05* 

pH -0.62 -2.44, 1.19 0.507    

DO -0.19 -1.45, 1.08 0.773    

EC -0.16 -2.07, 1.74 0.867    

TDS -0.17 -2.01, 1.66 0.856    

Total Chl 5.67 4.12, 7.23 <0.001* 4.6 2.98, 6.23 <0.001* 

Nitrate (NO3-N) 9.55 7.62, 11.48 <0.001* 5.06 3.12, 6.96 <0.001* 

Nitrite (NO2-N) 4.74 3.21, 6.26 <0.001* 0.89 -0.51, 2.29 0.217 

Phosphate (PO4
3-) 2.57 1.28, 3.87 <0.001* 0.07 -1.01, 1.15 0.898 

Phosphorus (P) 4.38 2.76, 5.99 <0.001* 0.31 -0.97, 1.60 0.633 

*Refers to statistically significance variable where P<0.05 
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The univariate relationship between water quality parameters and PC indicates statistically 

significant associations with temperature, redox potential, total chlorophyll, nitrate nitrogen, 

nitrite nitrogen, phosphate and reactive phosphorus, for all of which P<0.001 (Table 16).   

All water quality parameters reported as statistically significant in the univariate analysis 

were subjected to the multivariate model. Redox potential, Temperature, total chl and nitrite 

nitrogen all correlated with PC with P<0.05 (Table 17). 

 

  
A        B 

    
  D       C 
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E       F 

 

       
G 

Figure 15: Predictions of PC and its association with water quality parameters  (B-G) 

4.4  Harmful Algal Bloom and associated health risks  

Result of cyanobacteria identification in different selected samples collection site are 

presentent based on their concentration in cell density in each site in the Table below: 
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Table 18: List of Phytoplankton species found at Ukerewe area in Lake Victoria 

  
List of Phytoplankton species found at seven selected Lake Victoria lake shores 

 

  Taxa 

Chlorophyceae  

(Green algae) 

Unit 

Selected Sites Along Lake Victoria Shores 

 
Lugenzi 

Water 

Agency St. 
Namagobo Barazani Bugolora Nebuye Kahama Galu Beach 

1 Ankistrodesmus sp cells/ml 90.25 150.9 75 33.85 22 10 21 80 

2 Coelastrum microporum cells/ml 0 12.10 33.85 0 33.85 4 2 13 

3 Pediastrum sp cells/ml 0 0 0 33.85 0 0 0 0 

4 Scenedesmus spp cells/ml 0 0 0 135.41 270.83 1 218.72 1 624.96 3 656 

 
Cyanophyceae (Cyanobacteria)             

     5 Anabaena spp cells/ml 677 068 4 814 702 142 316.75 174,054 112 310 67 321 73 292 13 310 

6 Chroococcus dispersus cells/ml 32 42.00 812.48 12 812.48 31 11 54 

7 Merismopedia spp cells/ml 2 843.69 201 113 2 843.69 1 421 2 447.60 4 361.00 32 562.00 189 815 

8 Microcystis aeruginosa cells/ml 90 361.63 3 032 031 148 139.02 111 239 136 104 92 302 104 032.00 154 212 

9 Microcystis flos aquae cells/ml 14 387.70 443 507 10,156.02 5 078 8 463.34 100 950 100 239.86 203.12 

10 Microcystis sp cells/ml 110 21 202 302 13 541 6 770.68 321 2 761.00 5 211 

11 Planktolyngbya circumcreta filament/ml 118.49 0.00 67.71 50.78 78.98 0 0 0 

12 Planktolyngbya spp filament/ml 50.78 0 169.27 50.78 0 0 0 0 

 
Bacillariophyceae (Diatoms)             

    13 Aulacoseira spp cells/ml 1 692.50 1 402 6 1 777.30 4,824 761.7 0 0 3 046.80 

14 Cyclotella sp cells/ml 84.63 308.13 67.71 50.78 67.71 101.56 203.12 541.62 

15 Fragilria spp cells/ml 33.85 0 50.78 67.71 33.85 0 101.56 372.32 

16 Navicula sp cells/ml 0 0 67.71 0 67.71 101.56 101.56 101.56 

17 Nitzschia acicularis cells/ml 1 263.85 0.00 1 218.72 220 327.23 0 0 203.12 

18 Synedra cunningtonii cells/ml 440.09 210 293.37 84.63 67.71 0 0 0 

 
Dinophyceae  

 

                

    19 Glenodinium sp cells/ml 0 0 0 203 33.85 0 0 0 
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Figure 16: Image of different cyanobacteria species under light microscopy  

 

During this study, while collecting the samples, water colour was observed to be greenish 

with bloom on the surface, which was a clear indication that cyanobacteria member 

dominated the areas, four main groups of phytoplankton namely cyanobacteria, dinophyceae, 

diatoms and chlorophyceae (Table 18). Results indicate that Cyanobacteria (Cyanophyceae) 

were flourishing in all eight sample collection sites; they formed more than 97% of all 

phytoplankton in the Lake Victoria. The most common members were Microcystis, 

Anabaena and Merismopedia Fig. 16. The concentration of Microcystis aeruginosa class 

ranged from 90 361 to 3 032 031 cells/mL, on selected eight sample collection sites 5 

(62.5%) had above 100 000 cells/mL and 3 (37.5%) had less than 50 000 cells/mL. Anabaena 

spp. cells abundance with the maximum concentration levels of  4 814 702 cells/mL of which 

7 (87.5%) sites had above 100 000 cells/mL and 1 (12.5%) less than 100 000 cells/mL.  

Merismopedia spp cells concentration maximum levels were 201 113 cells/mL where only 2 

(25%) sites had cells above 100 000 cells/mL (WHO) safety limit and 6 (75%) sites had less 

than 100 000 cells/mL (Table 18). Treated pipe and well water were not tested for availability 

of cyanobacteria.  

4.4.1  A reported health effect from the study population 

The study was conducted in December 2018, and a total of 432-study subject participated in 

this study. Of the studied population 134 (31%) stated using LV water as their primary source 

of water, while 229 (53%) used well water and 69 (16%) used treated supplied pipe water as 

their primary source of water for drinking and domestic usages. Reported health effects 

among study subject were; 78 (18.06%) did not report any health effect while 71 (16.44%) 

reported one health effect, 81 (18.75%) reported two health effects, 124 (28.70%) reported 13 
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illnesses and 4 (0.98%) specified all six-health results. The study observed that there is a 

mixture of water uses and different exposure whereby a person can use treated distributed 

pipe water from Ukerewe water authorities for cooking or drinking but use LV water for 

bathing and other water activities and the vice versa is true. More than 50% of the study 

subject reported skin irritation, stomach upset and eye irritation followed by diarrhoea 32% 

while vomiting 9% and throat irritation 10% was minimum reported in total. 
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Table 19: Reported health effect from various water sources 

 

Health Effect 

 

Water source 

 

Response 
Univariate 

cOR (95% CI) 

P-

value 

Multivariate 

AOR (95% CI) 

P- 

value 
Yes No 

Vomiting Lake 27 107 6.1 (2.8-13.58) <0.001 2.8 (1.18-6.4) 0.01 

  Wells 9 220 
    

  
       

Diarrohea Lake 48 86 1.5 (0.95-2.38) 0.08 
  

  Wells 62 167 
    

  
       

Skin Irritation Lake 80 54 1.21 (0.78- 1.86) 0.3 
  

  Wells 126 103 
    

  
       

Eye irritation Lake 69 65 0.86 (0.56-1.33) 0.5 
  

  Wells 126 103 
    

  
       

Throat irritation Lake 23 111 6.57 (2.74-15.79) <0.001 4.3 (1.5-11.76) 0.004 

  Wells 7 222 
    

  
       

Stomach upset Lake 119 15 8.14 (4.49-14.78) <0.001 7.7 (4.2-14.4) <0.001 

  Wells 113 116 
    

  
       

Vomiting Lake 27 107 17 (2.28-127.2) <0.001 
  

  Pipe 1 68 
    

  
       

Diarrohea Lake 48 86 1.19 (0.64-2.2) 0.5 
  

  Pipe 22 47 
    

  
       

Skin Irritation Lake 80 54 0.65 (0.35-1.2) 0.16 
  

  Pipe 48 21 
    

  
       

Eye irritation Lake 69 65 0.46 (0.24-0.85) 0.01 0.2 (0.07-0.57) 0.002 

  Pipe 48 21 
    

  
       

Throat irritation Lake 23 111 Undefined 0.005 
  

  Pipe 0 69 
    

  
       

Stomach upset Lake 119 15 45.2 (19.72-111.81) <0.001 58.96 (21-162.73) < 0.001 

  Pipe 10 59 
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In univariate analysis, individuals who used the lake as their source of drinking water were 

six times more likely to have vomiting compared to those individuals who used wells as their 

primary source of drinking water, this was statistically significant P< 0.001. The risk of 

getting throat irritation when using the lake as a source of drinking water was six times higher 

than when using wells as the main source of drinking water OR= 6.57 (95% CI= 2.74-15.79), 

P< 0.001. 

Those who had used the LV as their primary water source were reviled to be associated with 

more stomach upsets (OR=8.4, P< 0.001) compared to those using wells as their significant 

consumption source water (Table 19). The odds of vomiting when an individual consumed 

lake water was observed to be seventeen times higher compared to when an individual used 

treated supplied piped water (95% CI=2.28-127.2) P< 0.001. Bathing using treated supplied 

pipe water was protective against eye irritation as compared with contaminated LV water 

source with cyanobacteria OR=0.46, 95% CI=0.24-0.85 this statistically significant P=0.01. 

Reporting GI when a person drinks cyanobacteria contaminated LV water was 45.2 folds 

higher than when they used treated supplied pipe water for drinking, P< 0.001.  

Table 20: Reported health effect based on bloom availability 

 

Health Effect 

 

 

Variable 

  

Response Univariate 

cOR (95% CI) 
P-value 

Multivariate 

AOR (95%CI) 
P-value 

Yes No 

Vomiting Bloom 29 220 3.95 (1.49-10.44) 0.003 
  

  No bloom 5 150 
    

    
      

Diarrohea Bloom 85 164 2.25 (1.39-3.6) < 0.001 2.4 (1.5-4) < 0.001 

  No bloom 29 126 
    

    
      

Skin Irritation Bloom 159 90 1.5 (1-2.3) 0.04 
  

  No bloom 81 74 
    

    
      

Eye irritation Bloom 140 109 1.2 (0.8-1.8 0.36 
  

  No bloom 80 75 
    

    
      

Throat irritation Bloom 24 225 4 (1.37-11.8) 0.006 
  

  No bloom 4 151 
    

    
      

Stomach upset Bloom 171 78 3.4 (2.28-5.28) < 0.001 3.39 (2.2-5.2) < 0.001 

  No bloom 60 95 
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The odds of vomiting when consuming water with visible bloom was almost four times 

higher compared to drinking water without visible bloom, P<0.05 (Table 20). The odds of 

getting diarrohea when drinking water with visible bloom is two times higher as compared 

with consuming water source without cyanobacteria bloom (95% CI=1.39-3.6), P<0.001.  

The likelihoods of getting skin irritation among those individuals using water with visible 

bloom was almost two times higher as related to those who used water for bathing without 

visible bloom, 95% CI=1.0-2.3, P<0.05. Study subjects who reported drinking water with 

visible bloom were four times more associated with throat irritation than those who 

consumed water with no visible bloom OR=4, P<0.05. The study showed that the 

probabilities of getting stomach upset when drinking water with visible bloom was three 

folds higher than those who drank water with no visible bloom this was statistically 

significant OR=3.4, P< 0.001. 

Table 21: Reported health effect based on occupation   

 

Health Effect 

  

 

Variable 

  

 

Response 
Univariate 

cOR (95%CI) 
P-value 

  Multivariate 

AOR (95% CI) 

 

P-value 

Yes No 
 

 
Vomiting Fisherman  13 77 2 (1-4.5) 0.02 2.2(1.05-4.4) 0.03 

  Non-fisherman 24 318 
  

      
    

  Diarrohea Fisherman  40 50 2 (1.2-3.3) 0.003 2 (1.2-3.2) 0.004 

  Non-fisherman 97 245 
  

      
    

 

  

Skin Irritation Fisherman  63 27 1.8 (1-2.9) 0.02 

 

  

  Non-fisherman 194 148 
  

 

  

    
    

 

  

Eye irritation Fisherman  53 37 1.1 (0.7-1.8) 0.5 

 

  

  Non-fisherman 190 152 
  

 

  

    
    

 

  

Throat irritation Fisherman  11 69 2.4 (1.1-5.1) 0.02 

 

  

  Non-fisherman 19 323 
  

 

  

    
    

 

  

Stomach upset Fisherman  53 37 1.1 (0.7-1.9) 0.53 

 

  

  Non-fisherman 189 153 
  

 

  

 

The study subject occupation was compared between fishers and those with non-fishing 

activities such as employed in areas other than fishing activities.  Individuals who were in the 

fishing activities were more likely to have reported symptoms of vomiting as compared with 

their counterparts who were related to other jobs rather than fishing activities OR=2, 95% 
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CI=1-4.5, P< 0.05. This study reveals that being a fisherman was two times more likely to 

have reported symptoms of diarrhoea as compared with other non-fishing occupations with 

95% CI=1.2-3.3, P=0.003. The odds of getting skin irritation among fishers were almost two 

folds higher (95% CI=1-2.9, P=0.02) as related to persons with other non-fishing occupations 

(Table 21).  

Study subjects with a fishing occupation were more than two times related to getting throat 

irritation as compared to those with other jobs (95%1.1-5.1, P< 0.05).  

Table 22: Reported health effect based on the amount of water consumption 

 

Health Effect 

  

 

Variable 

  

Response Univariate 

cOR (95%CI) 
P-value 

Multivariate 

AOR (95% CI) 
P-value 

Yes No 

Vomiting Less than 1lt 19 204 1 (0.5-2) 0.88 

    > 1lt 17 192 
  

    
     

   

Diarrhoea 
Less than 1lt 79 144 1.6 (1.06-2.44) 0.023 

    > 1lt 53 156 
  

    
     

  Throat irritation Less than 1lt 35 188 4 (2-7.7) < 0.001 3.3 (1.6-7) 0.001 

  > 1lt 10 199 
  

    
     

  Stomach upset Less than 1lt 121 102 0.86 (0.58-1.26) 0.44 

    > 1lt 121 88 
  

   

Diarrhoea and throat irritation were reported to be mainly associated with the consumption of 

more than one liter of lake water OR=2, 95% CI=1-2.4, P=0.02 and OR=4, 95% CI=2.11-8.9, 

P<0.001 respectively as shows in the table above. 

4.5  Validation of cyanotoxins detection method and biochemical liver indices 

Liver biochemical indices were measure with reference to nomal rangers for each specific 

index, the result differ in each phases as its shows in Table 23: 

Table 23: Liver biochemical indices test result 

 Index Normal range No. Out of range (%) 

   Phase I Phase II 

 ALP 35-129 U/L 119 (28) 1 (0.3) 

 Alb 25-55g/L 31 (7) 1 (0.3) 

 ALT 2-41 U/L 7 (1.5) 2 (0.7) 

 AST 2-40 U/L 32 (7.4) 20 (6.6) 

 Total Protein 66-87g/L 80 (18.5) 15 (5) 

 T.BIL 0-21 μmol/L 1 4 (1.2) 

 D.BIL 0-3.4 μmol/L 0 26 (8.6) 
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Results indicate that there were more liver biochemical indices elevations observed in phase I 

as compared to phase II. Liver biochemical indices such as ALP, ALb, Total protein and AST 

were highly detected whereby in phase II direct DB, AST and total TP were mostly recorded. 

The observed liver function result corresponds well with the variation of toxins, as reported 

previous that more toxins were detected in phase I as compared to phase II (Table 23). 

Table 24: The potential risk that associate with elevation of liver biochemical indices   

Variables                OR 95% CI           P-Value 

Occupation     

Fisherman  5 1.01-32.6 0.04 

Farmers  0.9 0.1- 5 0.99 

Employed  0.38 0.2-5.6 0.49 

    

Water sampling location 

Chabilugwa 14 3 – 66.9 0.001 

Bugorola 25 4 - 141 0.000 

Muhula lake 5 1.1- 23.9 0.02 

Namagubo 9 2 - 58 0.013 

Water St. Agency 5.2 1.6 - 17 0.005 

Galu beach 9.3 1.5 - 56 0.015 

 

 

The fishermen are five times more likely to have their liver biochemical indices evaluated 

than other occupation P< 0.04 (Table 24).  Liver biochemical indices elevation were strongly 

related with the concentration of toxins level observed at different collection paint whereby 

the odds of were 25, 14, 9 for Bugorola, Chabiligwa and Galu beach respectively P<0.05. The 

higher observed toxins concentration at samples collection points, the higher the liver 

biochemical indices elevation.  
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Table 25: Level of cyanotoxins detected in human serum and liver biochemistry index 

ID CYN MC-LR 
dm MC-

LR 
MC-RR NOD 

Liver biochemistry 

index 

20 < LOD < LOD < LOD < LOD 

Trace <0.2 

ng/mL ALP 

22 < LOD < LOD < LOD 

Trace <0.2 

ng/mL < LOD 

 

23 < LOD 

Trace <0.2 

ng/mL < LOD < LOD < LOD 

 
25 < LOD 0.11ng/mL < LOD < LOD < LOD 

 
26 < LOD 0.10 ng/mL 0.05 ng/mL < LOD < LOD ALP 

27 < LOD < LOD < LOD < LOD < LOD ALP 

28 < LOD < LOD < LOD < LOD < LOD 

 
31 < LOD 0.11 ng/mL < LOD < LOD < LOD 

 
32 Trace 0.07 ng/mL < LOD < LOD < LOD ALP 

40 Trace 0.08 ng/mL < LOD < LOD < LOD ALP, Alb 

11

0 

Trace 0.02 

ng/mL < LOD < LOD < LOD < LOD 

 11

1 

Trace 0.03 

ng/mL < LOD < LOD < LOD < LOD 

 11

3 Trace < LOD < LOD < LOD < LOD 

 11

4 

Trace 0.09 

ng/mL < LOD < LOD < LOD < LOD D-Bill 

11

5 

Trace 0.08 

ng/mL < LOD < LOD < LOD < LOD D-Bill 

11

6 Trace < LOD < LOD < LOD < LOD 

 12

1 

Trace 0.02 

ng/mL < LOD < LOD < LOD < LOD 

 12

2 

Trace 0.03 

ng/mL < LOD < LOD < LOD < LOD 

 14

3 

Trace 0.12 

ng/mL < LOD < LOD < LOD < LOD 

 14

5 

Trace 0.07 

ng/mL < LOD < LOD < LOD < LOD ALP, AST 

14

8 

Trace 0.08 

ng/mL < LOD < LOD < LOD < LOD 

 15

4 

Trace 0.03 

ng/mL < LOD < LOD < LOD < LOD ALP 

15

5 

Trace 0.14 

ng/mL < LOD < LOD < LOD < LOD ALP 

15

7 

Trace 0.01 

ng/mL < LOD < LOD < LOD < LOD ALP, TP 

16

0 

Trace 0.15 

ng/mL < LOD < LOD < LOD < LOD ALB, TP 

17

5 

Trace 0.06 

ng/mL < LOD < LOD < LOD < LOD 

ALP, Alb, TP, ALT, 

AST 

 

Cyanotoxins detection in human serum shows the presence of CYN, NOD and MCs congener 

(-LR, -RR and dmMC-LR) toxins, which have potential to damage liver cells (hepatotoxins). 

The concentration of CYN detected range from 0.02 to 0.15 ng/mL. The concentration of 

MC-LR range from 0.2 to 0.11 ng/mL, MC-RR  < 0.02 ng/mL and dmMC-LR <0.0.5. 

Concentration of NOD detected was < 0.05 ng/mL (Table 25). Cyanotoxins detected in 

human serum and liver biochemistry indices elevation, indicate that there is an association 

between the two with correlation coefficient of 0.33. Liver biochemical indices elevations 



72 
 

depend on variation of unit increase of toxins concentration or number of cyanotoxins 

detected in the serum. Therefore, coefficient of determination of liver biochemical indices is 

0.78. 

The distribution of cyanotoxins in water samples in the district indicated that its mainly 

around the Lake shores, whereas detections of cyanotoxins in human serum shows that it’s 

distributed even in the area where no toxin detected in water samples (Fig. 17).  There are 

possibilities that the exposure of cyanotoxins to human at Ukerewe is more than water 

source, it may be fish and other aquatic organism are the source of exposure of toxins to 

human.  

 

Figure 17: Distribution of cyanotoxins in water samples and from human serum  

Analytical performance of the developed cyanotoxins detection method was assessed using 

MS/MS machine whereby the results of thirteen cyanotoxins are detailed on the (Table 25-

36) below. Signal 1 (+intense) is a signal from the parent compound and signal 2 is the 

daughter ion, the split facilitates the machine to detect more accurately the compound of 

interest. The linearity of the coefficient of determination was measured in relation to 1 as 

reference for perfect liner equation, whereby R
2
 =0.99 was referred to as acceptable 

coefficient of determination.  
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Repeatability, signal relative standard diversion (rsd%) was referred to be acceptable when is 

less than 15%. Relative Retention Time (rsd) referred as the time where the compound of 

interest elutes from the colum. Ratio (rsd) is the proportion between the intensity of signal 

one and two whereby the lower the concentration the lower the intensity, the higher the picks 

and vice versa.  

Trueness: Added concentration ppb (ng/mL) is the added concentration of toxin to be 

detected by the method. Observed concentration ppd is the observed concentration of toxin 

detected by the method and shift is the change or different of observed and added 

concentration of the toxin. Limit of quantification (LOQ) is referred to as minimum amount 

of analyte in a sample that can be quantified with the acceptable precision and accuracy 

understated operation condition of the method. Limit of qualification is determined by the 

analysis of sample with known concentration of analytes and establishing the minimum level 

at which the analyte can be reliably quantified. Limit of Detection (LOD) is the lowest 

amount of the analytes in a sample that can be detected but not necessarily quantified. The 

following table are the results of cyanotoxins detection method validation (Table 26-37). 

Table 26: Validation report cylindrospermopsin toxin (CYN) 

 Analytical 

Parameters 

Validatation  

Parameters 
Signal 1  (+ intense) Signal 2 (- intense) 

Linearity Coefficient of determination (R
2
) 0.9987 0.9980 

  Slope (a) 1156.0000 587.5000 

  Intercept (b) 8.5500 5.6500 

Repeatability Signal (rsd %) 7.5% 10.0% 

  RRT (rsd %) 2.0% 

  Ratio (rsd %) 4.4% 

Trueness Added conc. (ppb) 2.00 

  Observed conc. (ppb) 2.11 2.05 

  Shift (%) 5.6% 2.7% 

Limits CCα 0.02 0.04 

  CCβ 0.03 0.04 
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Table 27: Validation report MC-RR toxin 

 Analytical 

Parameters 

Validatation  

Parameters 
Signal 1 (+ intense) Signal 2 (- intense) 

Linearity Coefficient of determination (R
2
) 0.9970 0.9928 

  Slope (a) 9458.0000 3165.0000 

  Intercept (b) 17.2000 6.3000 

Repeatability Signal (rsd %) 3.1% 4.6% 

  RRT (rsd %) 1.6% 

  Ratio (rsd %) 3.4% 

Trueness Added conc. (ppb) 2.00 

  Observed conc. (ppb) 2.02 2.06 

  Shift (%) 0.9% 2.9% 

Limits CCα 0.004 0.005 

  CCβ 0.005 0.005 

 

Table 28: Validation report dm MC-RR 
 Analytical 

Parameters 

Validatation  

Parameters 
Signal 1 (+ intense) Signal 2  (- intense) 

Linearity Coefficient of determination (R
2
) 0.9980 0.9950 

  Slope (a) 7000.9000 2348.4000 

  Intercept (b) 12.1500 7.6000 

Repeatability Signal (rsd %) 4.9% 5.5% 

  RRT (rsd %) 0.1% 

  Ratio (rsd %) 3.2% 

Trueness Added conc. (ppb) 2.00 

  Observed conc. (ppb) 1.88 1.73 

  Shift (%) -5.8% -13.6% 

Limits CCα 0.004 0.011 

  CCβ 0.005 0.012 

 

Table 29: Validation report NOD toxin 
 Analytical 

Parameters 

Validatation  

Parameters 
Signal 1 (+ intense) Signal 2 (- intense) 

Linearity Coefficient of determination (R
2
) 1.0000 0.9997 

  Slope (a) 18892.0000 8068.0000 

  Intercept (b) 8.2000 7.3500 

Repeatability Signal (rsd %) 8.5% 8.0% 

  RRT (rsd %) 0.1% 

  Ratio (rsd %) 2.2% 

Trueness Added conc. (ppb) 2.00 

  Observed conc. (ppb) 1.84 1.77 

  Shift (%) -8.0% -11.5% 

Limits CCα 0.001 0.003 

  CCβ 0.001 0.003 
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Table 30: Validation report MC-LA 
 Analytical 

Parameters 

Validatation  

Parameters 
Signal 1 (+ intense) Signal 2 (- intense) 

Linearity Coefficient of determination (R
2
) 0.9990 0.9981 

  Slope (a) 2598.0000 1049.0000 

  Intercept (b) 17.4000 21.3000 

Repeatability Signal (rsd %) 10.7% 9.4% 

  RRT (rsd %) 0.1% 

  Ratio (rsd %) 5.4% 

Trueness Added conc. (ppb) 2.00 

  Observed conc. (ppb) 1.87 1.82 

  Shift (%) -6.6% -8.9% 

Limits CCα 0.02 0.07 

  CCβ 0.02 0.08 

     

Table 31: Validation report of dm MC-LR toxins  
 Analytical 

Parameters 

Validatation  

Parameters 
Signal 1 (+ intense) Signal 2     (- intense) 

Linearity Coefficient of determination (R
2
) 0.9991 0.9984 

  Slope (a) 2239.8000 843.0000 

  Intercept (b) 3.7500 3.0500 

Repeatability Signal (rsd %) 6.7% 7.1% 

  RRT (rsd %) 0.1% 

  Ratio (rsd %) 4.6% 

Trueness Added conc. (ppb) 2.00 

  Observed conc. (ppb) 1.89 1.91 

  Shift (%) -5.3% -4.6% 

Limits CCα 0.01 0.01 

  CCβ 0.01 0.02 

     

Table 32: Validation report of MC-LF toxins 
 Analytical 

Parameters 

Validatation  

Parameters 
Signal 1 (+ intense) Signal 2 (- intense) 

Linearity Coefficient of determination (R
2
) 0.9999 0.9996 

  Slope (a) 1465.8000 842.0000 

  Intercept (b) 18.1500 26.4500 

Repeatability Signal (rsd %) 5.5% 9.5% 

  RRT (rsd %) 0.1% 

  Ratio (rsd %) 5.8% 

Trueness Added conc. (ppb) 2.00 

  Observed conc. (ppb) 1.90 1.74 

  Shift (%) -4.8% -12.8% 

Limits CCα 0.02 0.05 

  CCβ 0.03 0.07 
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Table 33: Validation report of MC-LR toxin 

 Analytical 

Parameters 

Validatation  

Parameters 
Signal 1  (+ intense) Signal 2  (- intense) 

Linearity Coefficient of determination (R
2
) 0.9993 0.9982 

  Slope (a) 1687.7000 752.7300 

  Intercept (b) 8.2000 6.9000 

Repeatability Signal (rsd %) 5.4% 9.4% 

  RRT (rsd %) 0.1% 

  Ratio (rsd %) 5.4% 

Trueness Added conc. (ppb) 2.00 

  Observed conc. (ppb) 1.88 1.83 

  Shift (%) -6.2% -8.6% 

Limits CCα 0.01 0.03 

  CCβ 0.01 0.03 

 

Table 34: Validation report of MC-LY toxin  

 Analytical 

Parameters 

Validatation  

Parameters 
Signal 1 (+ intense) Signal 2 (- intense) 

Linearity Coefficient of determination (R2) 0.9999 0.9991 

  Slope (a) 1810.9000 681.9300 

  Intercept (b) 8.2500 8.8000 

Repeatability Signal (rsd %) 10.4% 12.2% 

  RRT (rsd %) 0.1% 

  Ratio (rsd %) 4.4% 

Trueness Added conc. (ppb) 2.00 

  Observed conc. (ppb) 1.88 1.83 

  Shift (%) -6.0% -8.3% 

Limits CCα 0.01 0.05 

  CCβ 0.02 0.06 

 

Table 35: Validation report MC-LW toxin 

 Analytical 

Parameters 

Validatation  

Parameters 
Signal 1 (+ intense) Signal 2 (- intense) 

Linearity Coefficient of determination (R
2
) 0.9994 0.9990 

  Slope (a) 532.0000 270.0000 

  Intercept (b) 7.3500 5.4500 

Repeatability Signal (rsd %) 11.4% 13.1% 

  RRT (rsd %) 0.1% 

6.3% 

2.00 

  Ratio (rsd %) 

Trueness Added conc. (ppb) 

  Observed conc. (ppb) 2.28 2.27 

  Shift (%) 14.1% 13.6% 

Limits CCα 0.05 0.08 

  CCβ 0.06 0.11 
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Table 36: Validation report of MC-YR toxin 

 Analytical 

Parameters 

Validatation  

Parameters 
Signal 1 (+ intense) Signal 2 (- intense) 

Linearity Coefficient of determination (R
2
) 0.9999 0.9997 

  Slope (a) 4926.4000 1877.7000 

  Intercept (b) 24.1500 24.6500 

Repeatability Signal (rsd %) 5.7% 8.1% 

  RRT (rsd %) 0.1% 

  Ratio (rsd %) 5.4% 

Trueness Added conc. (ppb) 2.00 

  Observed conc. (ppb) 1.75 1.75 

  Shift (%) -12.6% -12.5% 

Limits CCα 0.01 0.02 

  CCβ 0.01 0.03 

 

Table 37: Validation report of MC-WR toxin 

 Analytical 

Parameters 

Validatation  

Parameters 
Signal 1  (+ intense) Signal 2 (- intense) 

Linearity Coefficient of determination (R
2
) 0.9996 0.9996 

  Slope (a) 838.7500 333.9500 

  Intercept (b) 3.7000 5.3500 

Repeatability Signal (rsd %) 23.5% 24.3% 

  RRT (rsd %) 0.1% 

  Ratio (rsd %) 9.3% 

Trueness Added conc. (ppb) 2.00 

  Observed conc. (ppb) 1.89 1.96 

  Shift (%) -5.7% -2.0% 

Limits CCα 0.02 0.06 

  CCβ 0.03 0.11 

 

4.6  Discussion 

4.6.1  Cyanotoxins in water 

This study presents for the first time the detection of CYN and NOD toxins in Lake Victoria 

(Fig. 11 and 12). In this study, 13 cyanotoxins were analysed and of these, CYN was the most 

abundantly detected in 8 (89%) and 3 (33%) of the collection sites in phase I (dry season) and 

phase II (wet season), respectively. Originally it was thought that CYN was predominantly 

found in toxic blooms of subtropical, tropical or arid zone freshwater bodies; however, the 

hepatotoxin has been increasingly identified in temperate European waters such as Germany 

and France (Fastner et al., 2003) and Ireland (Greer et al., 2016). Nodularin have similar 

mechanisms of action as MC, as demonstrated by Yoshizawa et al. (1990). The hepatotoxins 

have been reported to be potent protein phosphatase 1 and 2A inhibitors which have been 

shown to have long term cumulative toxic effect for potential tumour formation (Rastogi et 
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al., 2015). However, comprehensive studies have been carried out on MC in comparison to 

NOD. The toxicity and carcinogenic potential of NOD in humans has not been well 

characterized and therefore, the findings of this investigation emphasize the need for further 

work in the detection and effects of NOD on human health.  

This study further found Microcystins in seven (78%) of the sites, and the main variants 

identified included MC-LR, MC-RR and MC-YR, which was slightly higher than the results 

reported in cyanotoxin surveillance in European countries by Greer et al. (2016). The 

occurrence of MC-LR, MC-RR and MC-YR toxins has been related with the presence of 

dominant cyanobacteria species Anabaena and Microcystis that produce microcystins. This 

was also reported in a study conducted in Lake Victoria in the Mwanza and Musoma regions 

in Tanzania by Mbonde et al. (2015). Furthermore, the occurrence of these toxigenic 

cyanobacteria has been documented in studies carried out in Kenya and Uganda on the Lake 

Victoria shores (Okello et al., 2010; Sitoki et al., 2012).  

It has been shown that MC-RR and MC-LR are the most occurring types of MC toxins in 

Lake Victoria (Okello et al., 2010; Mbonde et al., 2015), which was the case in this study. 

However, the variation of MC detection and concentration in different location of the 

lakeshores may be due to the life cycle of different cyanobacteria species as well as bloom 

concentration. Microcystin toxins concentration have been shown to exhibit seasonal 

variation, whereby it has been observed to be higher during the dry season compared to the 

rainy season. In this study it was found the concentrations of microcystin congeners -RR, -LR 

and -YR ranged from 2.8 to 13 ng/L in phase I, considered as the dry season, while in phase 

II (rainy season), only MC-RR and MC-LR were observed with a concentration ranging from 

3.8 to 9.6 ng/L. 

The concentrations of cyanotoxins detected in this study were below the WHO provisional 

acceptable limit of 1.0 μg/L for MC-LR in drinking water (Organization & others, 2008). In 

this study, however, it was found to be far lower concentrations of MCs in Lake Victoria 

waters compared to studies conducted in other locations along Lake Victoria (Sekadende et 

al., 2005; Okello et al., 2010; Mbonde et al., 2015). This could be due to seasonal variation, 

influenced by the nutrients load of the water body, as well as the levels of eutrophication 

during different sampling periods and selected sites. This seasonal variation of cyanotoxins 

has been observed in studies done elsewhere in Uganda along the Lake Victoria shores. 

(Okello et al ., 2010).  
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The cyanotoxins detected included the cyclic peptides MC and NOD, as well as tricyclic 

alkaloid CYN, which are all hepatotoxic. Microcystin and NOD work by causing inhibition 

of protein phosphatase type 1 and 2A (PP1 and PP2A) in the liver cells (Runnegar et al., 

1991). International Agency for Research on Cancer (IARC) characterized MC-LR as Group 

2B carcinogen with substantial evidence supporting the fact that it can exhibit tumor 

promotion mechanism (IARC, 2010).  

The existence of multiple toxins in Lake Victoria freshwaters may be compounded with 

multiple exposures to the human population from recreational activities, fishing and 

consumption of contaminated aquatic organisms and water (Rastogi et al., 2015). Existence 

of multiple toxins in the Lake increases the consequence of toxicity enhancement and 

therefore an increased possibility of bioaccumulation. The risk of an increase in toxin 

production in Africa is expected to be higher due to the rise in temperature (Liu et al., 2011). 

In the developing countries little has been done to develop strategies for cyanotoxin 

prevention and control in food and water supplies. This raises concerns that multiple toxins 

exist and which have been detected, therefore increasing the risk to human health (Rastogi et 

al., 2015).  

Microcystins are reported to have cumulative effects by Fitzgeorge et al. (1994), which may 

be explained by the irreversible covalent binding of the toxin to the protein phosphatases and 

subsequent substantial damage to the cell structure (Greer et al., 2018). The cumulative 

effects of toxins may cause sub-acute liver cell injury, which is likely to go unnoticed up to a 

level closer to severe acute toxicity. In most cases, the lack of apparent symptoms at 

moderate exposure to these toxins is likely to continue, as individuals are unaware of the 

repeated exposure they are subjected to. The repetitive and multiple toxin exposures, even at 

relatively low doses may cause cumulative liver damage, which in the extensive-term may 

lead to chronic liver diseases such as cancer (Chorus et al., 2000; Chen et al., 2009). 

Samples from treated piped water in different distribution sites in Ukerewe district did not 

show the presence of cyanotoxins, whereas in the catchment (Lake Victoria) area of this 

water before treatment both CYN and MC-RR were detected. Water treatment at the district 

involves the application of Aluminium Sulphate (5 mg/L) followed by flocculation then 

chlorination (2 mg/L). Chemical water treatment approaches have proven to be the most 

effective means of treating cyanobacterial blooms and cyanotoxins (Bogialli et al., 2012). 

Lelkova et al. (2008), observed similar findings where aluminium sulphate was found to be 
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effective in the treatment algae and cyanobacteria. Based on these finding it is therefore 

crucial for the Tanzanian water authority to acknowledge the occurrence/existence of 

cyanotoxins and its potential health risk to the population that consumes water from Lake 

Victoria freshwaters and mitigation measures to control cyanobacteria blooms.  

4.6.2  Water quality parameters 

(i) Temperature and pH 

The temperature ranged from 25 to 29.6 
0
C in the lake water and from 24 to 28 

0
C in the 

shallow wells, the temperature recorded from the lake exceeding that in 2004 (Kishe, 2004). 

Temperature has been reported to have a direct relationship with algal blooms and toxin 

production (Davis et al., 2009). The temperature increase is thought to be a factor 

contributing to the global rise in algal bloom globally – continental Africa is heating up faster 

than the rest of the world (Liu et al., 2011). The pH recorded was between 7 and 9 in the lake 

water samples, and 5 and 8 from the deep wells (Table 11-14). Springwater had the lowest 

pH range (5 to 7) and piped the narrowest (6 to 7). The pH range of the lake water is that 

most favoured for PC and cyanobacterial production. Other studies have also reported that 

this pH range contributes to increased cyanobacterial bloom (Ndlela et al., 2016; Dalu & 

Wasserman, 2018). 

(ii) Electro conductivity, total dissolved solid and dissovelved oxygen 

Electro conductivity  varied significantly between the sampling sites, the highest range was in 

the deep wells, from 73 to 3 733 μS/cm , followed by shallow well water ranging from 31 to 

1 125 μS/cm (Table 8). The narrowest range recorded was in spring water, ranging from 88 

to 288 μS/cm.  

The TDS concentration varied substantially in all sources, from 52 to 2 426 mg/l, 78 to 732 

mg/l, and 48 to 416 mg/l in water from deep and shallow wells, and lake water, respectively. 

The DO concentration in the lake water ranged from 5.5 to 8 mg/l and from the shallow wells 

from 3 to 8 mg/l. Dissolved oxygen is an important water quality parameter reflecting the 

physical and biological processes prevailing in the water (Trivedy & Goel, 1984). Waters 

with low DO concentrations can be aesthetically displeasing in colour, taste and/or odour, as 

well as resulting in the microbial reduction of nitrate to nitrite WHO (2006). 
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(iii) Total chlorophyll and Phycocyanin pigment  

Total chlorophyll reported high concentrations in the lake and shallow well samples, with 

ranges of 18 to 213 mg/l and 4 to 47 mg/l, respectively. Other water sources generally 

reported much lower concentrations. Phycocyanin reported the to have highest levels in lake 

water samples with a range of 5 to 58.4 μg/L (Fig. 14) as compared to shallow well waters 

with a range of 0.01 to 2.9 μg/L. PC concentrations in other sources were very low, ranging 

from 0 to 1.21 μg/L, 0 to 0.6 μg/L and 0.01 to 0.58 μg/L in deep well, spring and piped 

waters respectively. The maximum PC concentration in a lake water source was 58.4 μg/L, 

which exceeds WHO’s ―alert level 1‖ (Brient et al., 2008). Univariate analysis for the 

different water source types associated with PC indicated that lake water could contain 

concentrations of almost 30 μg/L (P < 0.001) – as shown in Table 16. The lake environment 

favours cyanobacterial growth leading to PC and chlorophyll production due to the inflow of 

effluents from human habitats. Because of the high PC concentrations in the lake, it is crucial 

to institute control measures to help lake water users. 

(iv) Nitrate, Nitrite and Phosphate  

The nitrate (NO3-N) concentration varied from different water sources with a range of 11 to 

72.9 mg/l in the lake, 0.3 to 35.6 mg/l in deep wells and 0.9 to 39 mg/l in shallow wells. The 

nitrite concentration also varied – ranges of 1.6 to 97.2 mg/l in deep wells, 2.8 to 97.2 mg/l in 

shallow wells, and 7 to 84 mg/l in lake waters. 

Phosphate (PO4
3-

) was found at high concentrations in lake water, ranging from 0.14 to 22.14 

mg/l. Spring waters reported lower levels ranging from 0.12 to 0.82 mg/l. It is thought that 

the higher phosphate concentrations in the lake might be related to the elevated pH, which 

could promote desorption of sedimentary inorganic phosphorus (Gao et al., 2012).  

4.6.3  The predictive and association between PC and water quality parameters 

The statistical model developed in this study shows that some water quality parameters are 

associated with the presence of PC. Those with univariate association include temperature, 

redox potential, total chl, NO3-N, NO2-N, PO4
3-

 and P, with p<0.001. The same finding was 

reported for the same parameters in a study conducted by Marion et al. (2012). The 

multivariate model indicates that; temperature, redox potential, total chl and NO3-N are all 

statistically significant, with p<0.001 (Table 17). The associations were extra enumerated 

concerning the extent that the parameters contribute to increases in PC. 
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Nitrate contributes highly to PC occurrence, with a unit increase (1 mg-N/l) causing an 

increase in PC concentration of 9.55 μg/L (P<0.001), while a unit increase of P (1 mg/l) can 

increase PC concentration by 4.38 μg/L (P<0.001). Other parameters such as total chl, nitrite, 

PO4
3- 

and redox potential all also have positive correlations with PC concentration (P<0.001) 

as presented in Fig. 15. It was shown that, in essence, the nitrate and phosphorus loads 

determine the rate and magnitude of cyanobacterial growth (PC concentration). The higher 

the loads the greater the potential for algal growth (Wetzel, 2001). The associations observed 

can be used as water quality surveillance indicators that can be invoked easily and cheaply 

using simple detection methods. 

4.6.4  Harmful Algal Bloom identification and associated health risks 

Based on WHO guideline cyanobacteria cell concentration at 20 000 cells/mL is associated 

with the danger of short-term adverse health outcomes and at 100 000 cells/mL, risk for long-

term illness exists; possibly severe health consequence. Detected levels of cyanobacteria’s 

scum concentration are very high and utilization of water from the LV may lead to severe 

health problem. The predominance of cyanobacteria in the plankton of Lake Victoria has 

been related to eutrophication of the lake that may be stimulated by extreme nutrients inflow 

such as nitrogen and phosphorus nutrient (Hecky, 1993). Studies conducted in LV have 

indicated that occurrence of Anabaena and Microcystis species in higher abundances in Lake 

Victoria has threatened the water quality due to the ability of these species to produce toxins 

(Sekadende et al., 2005; Mbonde et al., 2015). The leading class of cyanobacteria observed 

like Anabaena and Microcystis when are consumed by an aquatic organism and human can 

result to health and ecological problems (Chorus & Bartram, 1999; Semyalo et al., 2010). 

(i) Microcystis, Anabaena and Merismopedia and their health effect  

The observed dominant cyanobacteria of genera Anabaena, Merismopedia and Microcystis, 

(Fig. 17) can produce variants of Microcystin toxin that can lead to hepatotoxicity, inhibits 

eukaryotic protein phosphatases in human. These toxins have potential health effects such as 

gastrointestinal illness, liver inflammation, and hemorrhage and liver failure leading to death, 

pneumonia, and dermatitis (Chorus, 2000; Boopathi & Ki, 2014). Anabaena spp can also 

produce cylindrospermopsin toxins that are hepatotoxic, cytotoxic, neurotoxic, which will 

increase inhibition of glutathione synthesis, protein synthesis and cytochrome P450 in 

human. Cylindrospermopsin toxin has the following health effect; pneumonia, liver 

inflammation, and hemorrhage, gastrointestinal and dermatitis (Carmichael, 2001). Anatoxin-
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a toxins are one of the cyanobacteria toxins, which are produced by Anabaena spp, which 

lead to neurotoxicity and imitation of the neurotransmitter acetylcholine. Anatoxin-a toxins 

can cause number of health effects include: tingling, burning, numbness, drowsiness, 

incoherent speech and respiratory paralysis leading to death. The observed dominant 

Anabaena ssp in the lake can potentially produce Saxitoxin, which causes neurotoxicity and 

blockage of voltage-gated Na+ channels in humans and other vertebrates. The toxin can cause 

numbness, burning, tingling, drowsiness, incoherent speech and respiratory paralysis leading 

to death (Boopathi & Ki, 2014). Apart from the long-lasting health effect, the dominant 

species can potentially cause acute symptoms such as stomach upset, vomiting, skin 

irritation, nausea, diarrohea, fever, throat irritation, headache, mouth blisters, muscle and 

joint aches, eye irritation and allergic reactions (Kibria, 2016). 

(ii) Health effect reported from different water sources utilization   

Assessment of water use among study subjects indicates that 31% use Lake water as the 

primary source of water, 53% use well water and 16% used treated supplied pipe water as the 

main water source for drinking. Study participants identified vomit as one of the health 

effects occurs after consumption water from the lake source, which is infested with 

cyanobacteria; the risk of getting vomit is 6.1 folds higher compared to those drinks water 

from the boreholes sources P<0.001. The risk of vomiting when consuming bloom 

contaminated water is 17 folds compared to treated supplied pipe water P<0.001- (Table 19). 

The same result that cyanobacteria infested water can cause vomiting was reported in 

Australia (Pilotto et al., 1997) and UK (Turner, 1990). Vomiting was still statistically 

significant in multivariate analysis P<0.05 (Table 19). The likelihoods of getting throat 

irritation when drinking cyanobacteria contaminated water from the lake source is 6.57 

higher than drinking from the boreholes (well) source P<0.001, this association was also 

strong in multivariate analysis P< 0.05 (Table 19). Throat irritation is one of the documented 

health effects after ingestion of cyanobacteria infested water in most recreation activity or 

water-related exposure (Kibria, 2016). 

The gastrointestinal illness was significantly higher among study subject used water from the 

Lake as compared to pipe and well water users. Having stomach upset when drinking 

cyanobacteria contaminated water from the lake source is 45.2 and 8.4 folds higher than 

drinking treated supplied pipe and well water respectively P<0.001. This finding was also 

reported by  Hilborn et al. (2014) and Collier et al. (2015). The association between stomach 



84 
 

upset and infested LV water was perceived to be strong in multivariate analysis P<0.001. 

Bathing using treated supplied pipe water is protective against eye irritation as compared to 

contaminated lake water source OR=0.46, P<0.05. The association was the same on 

multivariate analysis P<0.05. The Acute and short- term health effects can be preventable 

with adequate treatment that significantly reduce cyanobacteria cell number up to 99% hence 

make the water safe for human use (Dietrich & Hoeger, 2005; Funari & Testai, 2008). World 

Health Organization reported that swimmers in water containing cyanobacteria might suffer 

from allergic reaction such as eye irritation (WHO, 2014).   

(iii) Bloom availability on the Lake water source 

 

The evidence of an epidemiological link to the physical and visible bloom for most HAB-

related illness is critical, documented domination of Anabaena spp and Microcystis spp in the 

Lake Victoria, which forms scums of blooms is associated with several health effects. The 

scum of cyanobacteria may be visible at some time during the day and disappear. Therefore, 

it was essential to associate the illnesses risk with the visible algal scum in the water. The 

study reveals the odds of vomiting when consumed water with visible bloom is almost four 

times compared to drinking water without visible bloom, P<0.05. The likelihoods of GI were 

higher when consuming water with visible bloom, for diarrohea and stomach upset the 

chances were 2 and 3.4 respectively P<0.001 as compared with water source with no visible 

bloom. The same association was reported on multivariate analysis that diarrohea and 

stomach upset were still statistically significant link with bloom availability P<0.001.  The 

same finding was reported by Stone and Bress (2007) and Collier et al. (2015). The 

probabilities of reported skin and throat irritation among water users with visible bloom is 

almost two and four times higher as linked with those used water without visible bloom 

respectively, P<0.05 (Table 20). Harmful Algal Bloom-related Illness Surveillance System 

(HABISS) of USA reported an association of bloom availability in water with the related 

infection for the year 2009-2010 (Hilborn et al., 2014). 

(iv) Occupation risk and amount of water consumption  

Occupation of the study subject was compared between fisherman and other non-fishing 

activities, which include (employed, non-employed and farmers). Fishing is reported to be 

one of the risk activities of contracting health effect related to cyanobacteria bloom and 

cyanotoxins. Gastrontatinal illinesses (GI) was strongly related to fishing occupation whereby 

vomiting and diarrohea were reported among fisherman as compare to non-fisherman, OR=2, 



85 
 

P<0.05, vomiting and diarrohea show strong association in multivariate also P<0.05. Fishing 

occupation is strongly linked exposure factor of getting throat irritation 2.4 higher as compare 

to non-fisherman, P<0.05 (Table 21). The higher risk to fisherman was also reported in china 

(Chen et al., 2009). Amount of water consumption was reported to be one of the factors that 

may contribute to reported health risk, whereby the use of more than one liter is more risk 

than less than one liter. Diarrohea and throat irritation was reported to be associated with the 

amount of water consumption were the likelihoods was 2 and 4 time more than these reported 

to consume less than one liter respectively P<0.05, throat irritation was a strong link with the 

amount of water intake in multivariate analysis P<0.05 (Table 21). The association of the 

amount of water ingested and the degree of infections was also described in the UK were 

military soldiers become sick after ingestion of bloom water contain Microcystis spp (Turner 

et al., 1990) and in the USA (Wade et al., 2008; Collier et al., 2015). 

4.7  Cyanotoxin in human serum and liver damage 

Detection and quantification of cyanotoxins from human serum are of the challenges due to 

handling of samples and extraction procedures. Water safety and risk of exposure assessment 

after human intoxications is of concern to human health. Therefore, the development of 

cyanotoxins detection method from human tissues is critical to estimate the exposure risk. 

The challenges for proper detection of cyanotoxins in human tissues occurs during; sample 

collection, handling, storage, and extraction. These challenges may be attributed by chemical 

properties of different cyanotoxins and their behaviour related to chemical and biological 

systems. Cyanotoxins, especially MC congeners exhibit different biochemical properties 

based on the position of amino acids such as leucine, arginine, tryptophan, alanine, tyrosine 

and phenylalanine. The variation of amino acids position makes the MC congeners to have 

two main characters of hydrophobicity and surface adhesion capacity (Heussner et al., 2014).    

Based on the reported linearity, the detection method proved to be usefully for detection of 

thirteen cyanotoxins as results show the coefficient of determination (R
2
)
 
 =0.99, which is 

close to 1 as a reference for perfect coefficient.  The method is capable of detecting almost 

similar amount of added concentration in the sample, this is demonstrated by the small 

percentage or shift between the added and observed concentration by the method. For all 

thirteen cyanotoxins detected by this method the signal relative standard diversions (rsd%) 

were less than 15%, this signifies that the method is perfect to be used (Table 26-37).   
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This is the first study to report the presence of cyanotoxins in the human serum in Tanzania 

and Africa. The study reports for the first the detected of CYN, dmMC-LR and NOD from 

human serum after exposure from contaminated water. Presence of cyanotoxins such as MCs 

(-LR, -RR) in human serum was also reported in Caruaru from haemodialysis patients, which 

were exposures in MC-LR contaminated water used for dialysis (Azevedo et al., 2002). The 

first and only study that report the presence of cyanotoxins after exposure from drinking 

contaminated water in China documented detected of MCs (-LR, -YR) from the fisherman 

after exposure of 5 to 10 years (Chen et al., 2009). The maximum (0.15 ng/mL) concentration 

of cyanotoxins detected in this study is small as compared to other two studies with 

concentration of 31.4 ng/mL and 1.83 ng/mL in Brazil and China respectively (Azevedo et 

al., 2002), this difference may be attributed to the amount of toxins present in water and 

detection method used.   

The study reveals the fishermen are more likely to have their liver biochemistry indices 

evaluated than other occupation.  Liver biochemical indices elevation was strongly related to 

the concentration of toxins level observed at different collection point. These findings relate 

with study conducted in China (Chen et al., 2009) whereby ALT, AST and ALP were 

reported to have positive relationship with cyanotoxins. Furthermore, the study demonstrates 

liver damage is relatively proportion with the increase in cyanotoxins concentration or 

existence of multiple toxins in serum hence toxicity enhancement has potential in level 

damage.   In this study the Pearson correlation test shows the moderate relationship between 

liver biochemistry indices such as ALP, Alb, TP, ALT and AST. The moderate relationship is 

due to low concentration of toxins observed in sample. Studies conducted on mice treated 

with MC toxins indicated there were increase serum activities of enzymes that indicate 

hepatocellular damage due to toxins exposure. Concentration of cyanotoxin detected in 

human serum and liver biochemistry indices elevation, shows an association between the two 

with correlation coefficient of 0.33 for MC-LR while for combined cyanotixins of MC-LR, 

CYN and NOD is 0.78. This provides knowledge of cyanotoxin toxicity of mammalians so as 

human (Billam et al., 2008). Human liver damage and elevation of liver biochemical  indices 

such as ALT, AST, and ALT can occur even in a relatively low dose of prolonged MC-LR 

exposure was confirmed by Chen et al. (2009) in China. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1  Conclusion 

This is the first study to report CYN and NOD cyanotoxins in the freshwater of Lake 

Victoria. Existence of multiple toxins in Lake Victoria poses a higher risk to humans when 

water is consumed without treatment. Multiple and repeated exposures to humans may 

enhance levels of toxicity and synergistic effects. There is a need for development of 

structured surveillance systems for detection of toxins in freshwaters used for human 

consumption and recreation purposes. Long-term studies should be conducted to enhance our 

understanding of the effects that attribute to the increase of cyanotoxins and emerging toxins 

such as CYN and NOD.  

This is the pioneering study to detect CYN, dmMC-LR and NOD in human serum globally 

and it is the second report documenting the existence of MCs cyanotoxins in human serum 

from population study in world. A validated method for cyanotoxins detection by MS/MS can 

be used to detect and quantify the existence of cyanotoxins in human serum. This is a ground-

breaking study in Tanzania and Africa at large indicating that cyanotoxins is ignored public 

health problem that requires special attention. The observed cyanotoxins in Lake Victoria 

freshwater were also detected in human serum from general study population and reveal that 

the problem could be bigger to the highest risk group. Existences of multiple toxins, which 

are particularly hepatotoxins, enhance toxicity level hence accelerate liver damage.  More 

studies are required providing evidence that cyanotoxins may attribute the increased observed 

cancer in Lake zone.  

The PC proxy indicator is a surveillance tool that enables anticipation of water body 

contamination by cyanobacteria. The concentrations of parameters like redox potential, total 

chlorophyll, nitrate, nitrite, phosphate and reactive phosphorus all have positive correlations 

with PC concentration and can be measured and monitored easily, to enable prediction of 

increasing PC. This will address the challenges of lack of advanced technological equipment 

in district-level government bodies in most developing countries for identifying, monitoring 

and managing cyanobacterial blooms. The predictive model developed in this study has 

quantified the water parameters that affect PC concentrations based on a case study in 

Ukerewe District. To validate this approach, more long-term studies are needed on several 

water bodies, which will also enable it to be used more efficiently.  
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The concentration of cyanobacteria blooms found in this study goes beyond WHO 

acceptable. Consequently, water uses from the lake source was found to be associated with 

acute health outcomes. The result indicates there are potential health risks associated by using 

lake water without any treatment for human consumption. It is therefore advised to continue 

to monitor the water quality at Ukerewe area to understand its spatial and temporal dynamism 

of phytoplankton. The long-term study of Phytoplankton helps to understand the nature of 

nutrients or pollution entering the water body because phytoplankton’s are the good and 

cheaper indicator of environmental change as compared to chemical indicators. The 

documented illness associated with cyanobacteria infested water can be used as a baseline to 

improve case detection at the district and contribute to the development of evidence-based 

prevention strategies to mitigate adverse health outcome that may result to long-term 

exposure to HABs.  

5.2  Recommendations 

(i) Awareness creation to community, stakeholders, public health researchers and 

governments on the health risks associated with existence of Cyanobacteria and 

Cyanotoxins in the Lake 

(ii) Reducing cyanotoxins exposure to human through provisional of safe and clean water 

will reduce the health risk of exposure and decreases illnesses  

(iii) Proper water quality management must be instituted in the area where have been 

identified with a high risk of infestation of cyanobacteria. Cyanotoxin monitoring 

should be part of the water quality parameters monitored by water authorities  

(iv) Establishment of a health surveillance system that will be able to capture and record 

the illnesses associated with cyanobacteria. 

(v) More research should be conducted in this new research area whereby less is known 

on the diversity of cyanobacteria along Lake Victoria shores. Moreover, a cohort 

studies should be conducted to monitor long term effects of prolonged exposure to 

cyanotoxins 

(vi) Solution for portable water treatment to the community that can not access treated 

pipe water is critical to be researched on and developed. 

(vii) Recommendation of further research on the following:  

 Synergistic or antagonistic effects of cyanotoxins 

 Health effect due prolonged exposure to cyanotoxins  

 Diversity of cyanobacteria’s and their abundance around the lake  
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 Development of actual biomarker for detecting toxins in human serum 

 To explore more on other sources of exposure of toxins rather than drinking water 

 The association between liver damage and exposure toxicity levels  

 Mapping of risk areas in relation to seasonal variation on cyanobacteria and 

cyanotoxins occurrence  
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