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Abstract
Lead-free perovskites have drawn much attention of researchers in the field of electronics and photovoltaics due to the 
toxicity issue of the lead halide perovskites. The methylammonium tin iodide  CH3NH3SnI3 amongst others has become 
a viable alternative due to its eco-friendliness, as well as narrower bandgap and its wider visible absorption spectrum. In 
this study different theoretical approaches were employed in investigating the structural, electronic and thermodynamic 
properties of the orthorhombic phase (O-phase) of the  CH3NH3SnI3 perovskite. By using the first-principle calculations 
with the density functional theory, a direct bandgap was determined at gamma symmetry points with three exchange–
correlation functionals: PBE 1.12 eV, PBEsol 0.98 eV, and LDA 0.46 eV. Based on the comparison of lattice constants and 
bandgaps with the experimental values, the best performance resulted from PBE. The decomposition of the  CH3NH3SnI3 
perovskite into solid state products,  CH3NH3I and  SnI2, was considered; the enthalpy of the reaction ΔrH° (0 K) = 37 kJ mol−1 
and enthalpy of formation of the O-phase perovskite ΔfH°  (CH3NH3SnI3, 0 K) =  − 390 kJ mol−1 were evaluated, indicating 
the stability of the O-phase  CH3NH3SnI3 at low temperature, in agreement with experimental findings.
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1 Introduction

The rate of population growth and increase in industriali-
zation are reflected in the energy demand for day-to-day 
activities. Due to the number of years required to replenish 
the fossil fuels and the effects they pose to the environ-
ment, the search for viable renewable energy resources is 
of very importance. Solar energy is one of the most prom-
ising sources due to its availability. Currently, our market 
is dominated by silicon solar cells. These cells are suffering 
from the high cost in production and installation which 
leads to a long payback time in many areas and hence in 
one way or another tends to lower their widespread use.

Efforts have been made to find cheaper materials to 
replace silicon. Perovskite materials have recently gained 
popularity due to their higher power conversion efficiency 
(PCE) as compared to silicon [1–3]. The term ‘organic-
metal-halide pervoskites’ describes materials of the for-
mula  ABX3 where A stands for an organic cation, B for 
metal ion and X is a halide (Cl, Br, I). The hybrid perovskites 
are peculiar due to their lower cost, possession of strong 
optical absorption, high charge carrier mobility, and low 
temperature vapor assisted solution based processing; the 
cells based on perovskites have also a high power conver-
sion efficiency, a good potential to attain a stable struc-
ture with long carrier-diffusion length [4–6]. Kojima et al. 
[7] were the first who reported that perovskites solar cells 
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possess as high PCE as 3.9%. Later it was reported on even 
greater efficiencies of lead perovskite solar cells: 6.5% [8], 
17.9% [9–11] then to over 22.7% [12–14].

Lead perovskite materials have drawn significant 
attention of researchers because of the high ability to 
convert the energy from the sun to electricity as com-
pared to silicon materials. In the other fields of research, 
the perovskites have been widely applied in electrodes 
[15], high temperature superconductors [16], wearable 
electronics [17], optoelectronics (sensors, LEDs) [16, 18], 
fuel cells and as oxygen carriers [19, 20] and thermo-
electric materials [21]. The toxicity issue of lead among 
other issues has been a challenge in commercializing 
the lead perovskites and so banned from numerous 
technical applications in many countries [13, 22]. Alter-
natives to Pb, such as Sn, Ge, Cu, Bi, and Sb, have been 
explored [9, 13, 22]. Tin-based perovskites have shown 
excellent mobility in transistors [23] which gives them 
an opportunity to be explored more for solar cell appli-
cations. Both tin and lead belong to the same group 
all having similar valence configuration. Tin has shown 
some exceptional properties like having a smaller effec-
tive mass of holes as compared to lead and narrower 
bandgap which is useful in more photons absorption 
[24, 25]. A study by Umari and coworkers [25] has shown 
that  CH3NH3SnI3 has high potential in delivering high 
photocurrent density due to its reduced band gap when 
compared to  CH3NH3PbI3.

Different phases of the  CH3NH3SnI3 perovskite have 
been investigated including the cubic [22, 26–29], 
tetragonal [9, 19, 25, 26, 30, 31] and orthorhombic 
(O-phase) [32–34]. From the experimental data, the 
phase transitions are discovered through the tempera-
ture dependence of the single-crystal resistivity [35] as 
well as from the photoluminescence and absorption 
spectra measured in the temperature range between 8 
and 295 K [36], the  CH3NH3SnI3 phase transitions occur 
at ~ 110 K, O-phase to tetragonal, and at ~ 275 K, tetrag-
onal to cubic.

The characteristics of each phase are of importance 
because of phase transformations in the perovskite 
when subjected to different temperatures as observed 
for the methylammonium lead perovskite [36–41]. This 
study aimed at investigation of structural, electronic 
and thermodynamic properties of the O-phase of the 
methylammonium tin perovskite using different theo-
retical approaches to understand the photovoltaic per-
formance of the material. The O-phase was chosen due 
to the results of the experimental study by Peng and Xu 
[24] that the power conversion efficiency of the O-phase 
 CH3NH3SnI3 solar cells was higher compared to that of 
the tetragonal.

2  Methodology

Simulation of methylammonium tin iodide  (CH3NH3SnI3) 
was done using the Quantum ESPRESSO Software pack-
age (QE) [42]. The Crystallographic Information Files of 
 CH3NH3SnI3 were obtained from the Crystallography 
Open Database [43, 44] and Materials Project [45] which 
are free databases for crystal structures. The input files 
for QE were generated as described by the software 
manual [42]. The initial data for this simulation were 
generated through convergence tests on the struc-
ture done by self-consistent field (SCF) calculations to 
determine the convergence of the plane wave cut-off 
(ecutwfc), lattice parameters as well as the charge den-
sity cut-off (ecutrho) with the total energy. The ultrasoft 
pseudopotentials were employed with three different 
exchange–correlation (XC) functionals, i.e. Perdew, Burke 
and Ernzerhof (PBE) [46], Local Density Approximation 
(LDA) [47], and Perdew-Burke-Ernzerhof revised for sol-
ids (PBEsol) [48]. The ecutwfc and ecutrho were obtained 
through convergence tests as 50 with 450 Ry, 60 with 
600 Ry and 70 with 490 Ry, for the LDA, PBE, and PBEsol 
functionals, respectively.

Brillouin zone sampling was performed as described 
by Hinuma et  al. [49] and Setyawan and Curtarolo 
[50] for orthorhombic structures. The cell relaxation 
(cell optimization) was conducted as described by the 
Quantum ESPRESSO input file [42, 51] following the 
Broyden-Fletcher-Goldfarb-Shanno algorithm. The cell 
parameters and atomic positions of the structure were 
relaxed with each XC functional to a force convergence 
threshold of 1.0E-04 Ry/Bohr and energy convergence 
threshold of 1.0E-08 Ry which were enough to obtain 
a relaxed structure [42, 51]. Additionally, the ultrasoft 
pseudopotentials from QE database corresponding to 
the three exchange–correlation functionals (LDA, PBE, 
and PBEsol) were used for the band structures and den-
sity of states calculation.

3  Results and discussion

3.1  Structural parameters

An orthorhombic phase of  CH3NH3SnI3 with 48 atoms 
per cell was considered. Both the original structure from 
the database (before optimization) and optimized struc-
tures were simulated using the same values for ecutwfc 
and ecutrho to check the relevance of optimizing struc-
tures before simulation. The software, VESTA [52] and 
XCrySDen [53] were used to view the structures before 
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and after optimization. The structure contains a network 
of corner-sharing of  [SnI6] octahedrons with the Sn-
site cations and iodide anions, and the organic cation 
 [CH3NH3]+ which is located in between the octahedral 
corners (Fig. 1). The lattice parameters before and after 
optimization are compared as listed in Table 1. There 
was no noticeable deformation of the structures dur-
ing the structural relaxation, only a slight change can 
be observed on the lattice parameters and volume of 
the cell.

The relationship between the energy and volume of 
the orthorhombic perovskite cell is represented by the 
energy-volume diagram (Fig. 2); the PBE XC functional 
results to the minimum energy at the volume 1011.44 
Å3 (Table 1).

Fig. 1  The unit cell of the orthorhombic phase of  CH3NH3SnI3 visualization by VESTA [52] as balls and sticks (a) and polyhedral style (b)

Table 1  The calculated lattice 
parameters and energy gap 
of the orthorhombic phase 
of  CH3NH3SnI3 hybrid halide 
perovskite

a Eg calculated with original lattice parameters taken from the database [44, 45]
b Eg calculated with optimized parameters

Lattice parameters (Å) Volume (Å3) Eg (eV) XC functional References

a b c

8.505 13.156 9.149 1023.70 0.88 PBE This  worka

0.82 PBEsol This  worka

8.500 12.880 9.120 998.46 0.46 LDA This  workb

8.490 13.020 9.150 1011.44 1.12 PBE This  workb

8.500 13.000 9.140 1009.97 0.98 PBEsol This  workb

8.556 12.428 8.326 885.34 1.70 HSE06 [54]
8.56 12.41 8.43 895.52 1.27 HSE06 [34]
8.83 12.68 8.51 952.82 0.60 PBE(GGA) [24]

0.94 PBE [32]

Fig. 2  Energy–volume diagram for the orthorhombic  CH3NH3SnI3 
cell using PBE
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3.2  Electronic properties

The electronic structures of the hybrid halide perovskites 
are of crucial factors that need to be explored because 
these materials have the potential application as a light-
harvesting medium. The calculated band structures of the 
non-optimized and optimized orthorhombic  CH3NH3SnI3 
crystals along the high-symmetry lines in the first Brillouin 
zone are presented in Figs. 3, 4, 5 and 6.

The orthorhombic crystal has a direct bandgap at Γ 
symmetry points with different calculated bandgap ener-
gies from the LDA, PBE, and PBEsol DFT functionals. The 
Fermi levels for the three exchange–correlation function-
als are all located between the valence band maxima and 
the conduction band minima of the material. They were 
tuned to zero at the valence band maxima for proper visu-
alization of the bandgap. As is seen, the different values 
of  Eg result from the LDA, PBE, and PBEsol DFT function-
als. The bandgap energies for the optimized  CH3NH3SnI3 
structure, to the best accuracy of the XC functionals, are 
obtained: 1.12 eV (PBE) and 0.98 eV (PBEsol), which are 
comparable to the experimental data 1.2–1.35 eV [29, 
44]. The LDA functional brings to the  Eg = 0.46 eV which is 
much lower than experimental. This result is not surprising 

because generally, the LDA XC functional from stand-
ard DFT has been found to underestimate the bandgap 
energies of solid-state semiconductors and insulators by 
about 40% [55, 56] which originates from assigning physi-
cal meaning to the Kohn–Sham energy levels rather than 
from intrinsic errors of the DFT methods [57]. For the non-
optimized O-phase, the PBE and PBEsol functionals result 
in the bandgaps 0.88 eV and 0.82 eV, respectively, these 
values are substantially underestimated that apparently 
indicates the need to relax the crystal structure before 
calculating electronic properties. It is interesting to note 
that other DFT studies [24, 32, 34, 54] of the  CH3NH3SnI3 
orthorhombic structure conducted using different XC 
functionals reported bandgap values in a broad range, 
between 0.6 and 1.7 eV (Table 1).

3.3  Density of states

The total projected density of states (TPDOS) and the 
projected density of states (PDOS) of the orthorhombic 
 CH3NH3SnI3 were calculated using the projwfc.x code 
implemented in the QE package. The PDOS displays the 
interaction of the orbitals for interpretation of the bond-
ing mechanisms between the atoms in the system (Figs. 3, 

Fig. 3  The band structure and PDOS of original orthorhombic  CH3NH3SnI3 simulated with the PBE XC functional
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4, 5, 6, right-hand side). A higher density of states can be 
seen distributed in the valence band of the perovskite 
which indicates that the  CH3NH3SnI3 perovskite belongs 
to the family of semiconductors. The analysis provides a 
better understanding of the bandgap variations which is 
influenced by the electronic states of the Sn and I atoms. 
The 5p-states of the I atoms are the main contributors to 
the valence band maxima with a slight overlapping with 
the 5s-states of tin. On the other hand, the conduction 
band is populated by the 5p-states of Sn atoms respon-
sible for formation of the conduction band minima with 
small contribution from the 5p-states of the iodine atoms. 
In general, the location of the Fermi level in between the 
valence band and conduction band is governed by the 
electron density of the p-states of tin and iodine atoms in 
the perovskite.

3.4  Thermodynamic properties

The energy of decomposition reaction and enthalpy of for-
mation of photovoltaic materials are essential in determin-
ing the stability of materials when subjected to moisture, 
light, and heat. Both tin and lead halide perovskites basing 

on methylammonium experience a rapid conversion to the 
halides under the conditions of high humidity [58, 59].

The decomposition of the  CH3NH3SnI3 into the solid 
state products may proceed as follows:

The energy of this reaction ΔrE was found through the 
total energies E of the components:

The total energies E were computed for the relaxed 
structures of the participants using the three DFT XC func-
tionals (Table 2). As is seen, the XC functional affects sig-
nificantly the calculated values of ΔrE: − 22 kJ mol−1 (LDA), 
37 kJ mol−1 (PBE) and 9 kJ mol−1 (PBEsol). It is known that 
the orthorhombic  CH3NH3SnI3 is stable at temperature 
below 110 K [35, 36], hence the result from PBE seems 
most reasonable.

Based on the ΔrE, the enthalpy of formation of the 
O-phase perovskite can be determined through the 
enthalpies of formation of the precursors:

(1)CH3NH3SnI3(s) = CH3NH3I(s) + SnI2(s).

(2)ΔrE = E
(

CH3NH3I
)

+ E
(

SnI2
)

−E
(

CH3NH3SnI3
)

.

Fig. 4  The band structure and PDOS of optimized orthorhombic  CH3NH3SnI3 simulated with the LDA XC functional
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The reference values are available: ΔfH°  (SnI2, s, 
0  K) =  − 152.4  kJ  mol−1 [60] and ΔfH°  (CH3NH3I, s, 
298 K) =  − 200.7 kJ mol−1 [61]. Assuming that correction 
on lattice vibration energies is negligible for the reaction 
(1), we accept ΔrH° (0 K) ≈ ΔrE. In addition, we suggest 
that the enthalpy increment H° (298) − H° (0) for  CH3NH3I 
does not exceed few kJ  mol−1. Similar assumptions were 
opinioned by Ciccioli, Latini [62] for the decomposition 
of lead perovskites  CH3NH3PbX3(s) = CH3NH3X(s) + PbI2(s), 
X = Cl, Br, I. Thus we obtained the enthalpy of forma-
tion of the O-phase tin perovskite  CH3NH3SnI3 (Table 2). 
As it was discussed in the previous sections, the PBE 
XC functional outperformed the other two in evalu-
ation of the electronic properties, therefore we con-
sider the ΔrH° (0 K) = 37 kJ mol−1 and ΔfH°  (CH3NH3SnI3, 
0 K) =  − 390 kJ mol−1 to be reliable values.

It is worth to compare these results with the literature 
data for the lead perovskite. For the tetragonal phase 
of  CH3NH3PbI3, the enthalpy of decomposition reaction 

(3)

ΔfH
◦

(

CH3NH3SnI3, s, 0 K
)

= ΔfH
◦

(

CH3NH3I, s, 0 K
)

+ ΔfH
◦

(

SnI2, s, 0 K
)

−ΔrH
◦(0 K).

ΔrH° (298 K) = 34.5 ± 1.0 kJ mol−1 was determined by solu-
tion calorimetry [59]. Using the enthalpy of formation 
ΔfH°  (PbI2, s, 298 K) =  − 176 kJ mol−1 [60] the enthalpy 
of formation of the lead perovskite can be found as 
ΔfH°  (CH3NH3PbI3, s, 298 K) =  − 411 kJ mol−1. Taking into 
account the phase transition enthalpy from tetrago-
nal to orthorhombic 3 kJ mol−1 [63] and neglecting the 
enthalpy increment H° (298) − H° (0), we estimated the ΔfH° 
 (CH3NH3PbI3, O-phase, 0 K) ≈ − 414 kJ mol−1. Compared to 
this value, our result for the enthalpy of formation of the 
tin perovskite (− 390 kJ mol−1) is in a good accordance. 
Moreover, it is interesting to note that the difference 
in ΔfH° between tin and lead perovskites (24 kJ mol−1) 
appeared to be almost equal to that between  SnI2 and  PbI2 
(23 kJ mol−1), this equality also advocates correctness of 
our result.

4  Conclusion

Different exchange–correlation functionals LDA, PBE, 
and PBEsol have been used to study the structural, elec-
tronic and thermodynamic properties of the O-phase 
of the  CH3NH3SnI3 perovskite. The PBE XC functional 

Fig. 5  The band structure and PDOS of optimized orthorhombic  CH3NH3SnI3 simulated with the PBE XC functional
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outperformed the LDA and PBEsol in estimating the 
electronic and thermodynamic properties of the per-
ovskite. It was found that for the optimized structure, 
the bandgap determined by the PBE XC functional 
(1.12 eV), was much closer to the experimental value 
(1.2 eV) when compared to the other two. In addition, 
importance of the crystal structure relaxation proce-
dure, before calculating electronic properties, was cor-
roborated. From the projected density of states, it is 
observed that the valence band is mostly occupied with 
5p-electrons of the iodine atoms and the conduction 
band with 5p-electrons of the tin atoms. Considering 

the thermodynamic characteristics of the decomposi-
tion reaction, the methylammonium tin iodide perovs-
kite is confirmed to be stable material at low tempera-
ture that is in accordance with literature data on phase 
transformations in the crystals.
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Fig. 6  The band structure and PDOS of optimized orthorhombic simulated with the PBEsol XC functional

Table 2  Thermodynamic 
characteristics of 
decomposition reaction (1)

XC functional  − E, Ry ΔrH° (0 K), kJ 
 mol−1

 − ΔfH° 
 (CH3NH3SnI3, 
0 K), kJ  mol−1CH3NH3SnI3 CH3NH3I SnI2

LDA 303.095607 73.460970 229.651248 − 21.8 331
PBE 303.298946 73.449692 229.821122 36.9 390
PBEsol 302.377144 72.961524 229.408919 8.8 362
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