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In this study, an optimal control theory was applied to a nonautonomous model for Newcastle disease transmission in the village
chicken population. A notable feature of this model is the inclusion of environment contamination and wild birds, which act as
reservoirs of the disease virus. Vaccination, culling, and environmental hygiene and sanitation time dependent control strategies
were adopted in the proposed model. This study proved the existence of an optimal control solution, and the necessary conditions
for optimality were determined using Pontryagin’sMaximum Principle.The numerical simulations of the optimal control problem
were performed using the forward–backward sweep method. The results showed that the use of only the environmental hygiene
and sanitation control strategy has no significant effect on the transmission dynamics of the Newcastle disease. Additionally, the
combination of vaccination and environmental hygiene and sanitation strategies reduces more number of infected chickens and
the concentration of the Newcastle disease virus in the environment than any other combination of control strategies. Furthermore,
a cost-effective analysis was performed using the incremental cost-effectiveness ratio method, and the results showed that the use
of vaccination alone as the control measure is less costly compared to other control strategies. Hence, the most effective way to
minimize the transmission rate of the Newcastle disease and the operational costs is concluded to be the timely vaccination of the
entire population of the village chicken, improvement in the sanitation of facilities, and the maintenance of a hygienically clean
environment.

1. Introduction

Newcastle disease (ND) is a contagious viral disease that
affects domestic and other wild avian species [1–4]. It is a
seasonal disease of poultry and occurs mostly during the wet
seasons [5, 6]. Among other avian species, the ND in chicken
is caused by the avian paramyxovirus of serotype 1 (APMV-
1) [1, 4, 5, 7–9]. The transmission routes of ND in village
chicken include air, direct contact with infected chicken,
and contaminated water, food, droppings or discharges of
the infected chicken, and other equipment in the flock [4,
7]. Another topic of interest is the interaction of domestic
chicken with other wild birds as the second transmission
route of the ND among the avian species [7, 10, 11]. The
symptoms of the ND in chicken include paralysis in legs and
wings, coughing, head twitching, greenish white diarrhea,

difficulty in breathing, nasal and eye discharges, decreased
egg production, and loss of weight [4, 7, 12]. ND is a
very fatal disease, causing approximately 100% death rate in
young birds [13]. The main goal of this study is to develop
a deterministic model of ND transmission and apply the
optimal control theory to study the effect of the control
practices of the disease while minimizing the cost of its
implementation.

Recently, several scholars in the epidemiology field have
used the optimal control theory to study various diseases
such as vector-borne diseases [14],Malaria [15–17], RiftValley
fever [18], Tungiasis disease [19], ND [20], and HIV-AIDS
[21]. However, to the best of our knowledge, only one study
focused on the optimal control of ND in chicken [20] by
incorporating three control strategies: vaccination, human
education campaign, and treatments of the infected human.
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The analysis from this work showed that the combination of
these three strategies is the best way to control the spread of
ND. Reference [12] modeled the transmission of ND in the
presence of wild birds as the reservoir of the disease. The
results of this paper suggested that contaminated environ-
ment plays a crucial role in the transmission of Newcastle
diseases in the village chicken population and hence reducing
the rate of spread is better to increase the clearance rate of
NDV from the environment.

This study extended the model by [12] by incorporating
three time-dependent control measures: vaccination of the
susceptible chicken, culling of the infected chicken, and
environmental hygiene and sanitation. Vaccination is applied
to protect the susceptible chicken against the ND for a
sufficient period [4, 22]. The current available vaccines for
ND virus are thermostable vaccines such as I-2 strain and the
heat-resistant V4 (NDV4-HR) vaccine [7]. Culling involves
the identification of the infected chicken and its removal
from the population by killing and deposing the remains
safely [23, 24]. The environmental hygiene and sanitation
involves increasing the awareness of people about biosecurity
measures to free the environment of the ND virus. This is
achieved by ensuring cleanliness in the chicken’s yard and
its surroundings so as to avoid indirect transmission of the
virus to the chicken from the unhygienic environment [4].
Furthermore, environmental hygiene and sanitation can be
applied by safely disposing the manure from the infected
chickens, avoiding contaminated feeds, and improving san-
itation for the caretakers of chickens. Application of these
three control measures helps in the reduction and possibly
eradication of the ND in the village chicken but has economic
implications. Owing to the scarcity of resources for most
village chicken growers, the design of a control strategy that
is economically viable but also reduces the adverse effects of
the ND in chicken flocks is of paramount importance.

2. Mathematical Model

2.1. Model Formulation. In the current study, the determinis-
tic model for ND in the village chicken by [12] is extended by
adding a compartment of the vaccinated chicken𝑉(𝑡) and the
time-dependent control variables 𝑢𝑖(𝑡) for (𝑖 = 1; 2; 3). In this
model, variable 𝑢1(𝑡) measures the control efforts to reduce
infections to the susceptible chicken through vaccination.
According to [30], the LASOTA vaccine provides 100%
protection to chicken against ND. Also according to [31, 32],
protection of the birds against ND reaches 90-100% efficacy
rate to all kinds of the vaccines used in the study. Therefore,
the vaccine efficacy to be 100% depends on the vaccine brand
either local produced (live vaccines) or imported brands [26,
31]. In our case, we consider the heat-resistance vaccinewhich
is administered to chicken in drinking water and is applied
four times in a year. Variable 𝑢2(𝑡) measures the control
efforts aimed to reduce transmission of infections from
infected chicken to susceptible chicken by identifying and
killing of the infected chicken. The measure of all the efforts
of controlling the spread of ND geared toward sanitation and
improved hygiene of the environment 𝐻(𝑡) is represented
by variable 𝑢3(𝑡). The environment 𝐻(𝑡) is considered to

be the surroundings including all equipment in the chicken
yard which can accommodate the NDV in different weather
conditions. NDV can survive in the environment but its
activeness to cause severity of the disease to the hosts depends
on weather conditions. Studies have shown that the NDV
become active during the summer seasons [5]. Vaccination
removes 𝜐𝑢1(𝑡)𝑆𝑐(𝑡) chicken from the susceptible class to
the vaccinated compartment where 𝜐 is the efficacy rate of
vaccines with value ranging from 0 < 𝜐 < 1. Culling
removes 𝜏𝑢2(𝑡)𝐼𝑐(𝑡) from the infected chicken population
where 𝜏 is the culling rate considered between 0 < 𝜏 <1. Environmental hygiene and sanitation reduces the avian
paramyxovirus-1 (APMV-1) from the environment at the
rate 𝜎𝑢3 where 𝜎 is the clearance rate of virus through
environmental hygiene and sanitation which varies between0 < 𝜎 < 1. Hence we assume that environmental hygiene and
sanitation leads to the increased clearance rate of the virus
from the environment given by (𝜇V + 𝜎𝑢3(𝑡))𝐻(𝑡) with 𝜇V as
the natural hibernation rate of the NDV. Chicken population𝑁𝑐(𝑡) is divided into four subpopulations: the susceptible
chicken 𝑆𝑐(𝑡), the latently infected 𝐸𝑐(𝑡), the severely infected
chicken 𝐼𝑐(𝑡), and the vaccinated village chicken population𝑉(𝑡). It is assumed that the chicken population does not have
a mildly infected class which means that chicken are not
carrier of the NDV.Thus, the total village chicken population
becomes 𝑁𝑐(𝑡) = 𝑆𝑐(𝑡) + 𝐸𝑐(𝑡) + 𝐼𝑐(𝑡) + 𝑉(𝑡). The chicken
is recruited by birth into a susceptible class at a density
dependent rate Λ 1𝑁𝑐(𝑡). The disease incidence term for the
village chicken is given by

𝜆1 (𝐼𝑐 (𝑡) , 𝐼𝑟 (𝑡) , 𝐻 (𝑡))
= (𝜓 𝐼𝑐 (𝑡)𝑁𝑐 (𝑡) + 𝑏 𝐼𝑟 (𝑡)𝑁𝑏 (𝑡) + 𝑑𝐻 (𝑡)𝑘 + 𝐻 ) 𝑆𝑐 (𝑡) (1)

where 𝜓, 𝑏, and 𝑑 are the transmission rates of infection
to susceptible chicken when they come into contact with
the severely infected chicken, mild infected wild birds, and
environment, respectively. After a few days, individuals in the
latently infected population of the village chicken progress
to the severely infected population at the rate 𝛾𝐸𝑐(𝑡). The
severely infected population of village chicken is reduced at
the rate (𝜇 + 𝛿𝑐 + 𝜏𝑢2)𝐼𝑐(𝑡). The model assumes that the
vaccine has a warning rate 𝜂 and thus a portion 𝜂𝑉(𝑡) of the
vaccinated chicken becomes susceptible again due to the loss
of the acquired immunity.

Thepopulation ofwild birds is divided into four subpopu-
lations: the susceptible population 𝑆𝑏(𝑡), the latent population𝐸𝑏(𝑡), the severely infected wild bird population 𝐼𝑏(𝑡), and
the mildly infected wild bird population, 𝐼𝑟(𝑡), which gives its
total population as 𝑁𝑏(𝑡) = 𝑆𝑏(𝑡) + 𝐸𝑏(𝑡) + 𝐼𝑏(𝑡) + 𝐼𝑟(𝑡). Here
it is assumed that wild birds have strong immunity against
Newcastle disease; hence, it has a mild class which is consid-
ered as the carrier population. The susceptible population of
wild bird is recruited at the rate Λ 2𝑁𝑏(𝑡) through birth. The
susceptible wild birds acquire NDV when they interact with
the severely infected wild birds 𝐼𝑏(𝑡), the mildly infected wild
birds 𝐼𝑟(𝑡), and the unhygienic environment 𝐻(𝑡) and move
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Figure 1: Flow diagram showing the dynamics of NDwith vaccination, culling, and environmental hygiene and sanitation control measures.

to the latently infected class at the transmission rate defined
by

𝜆2 (𝐼𝑏 (𝑡) , 𝐼𝑟 (𝑡) , 𝐻 (𝑡))
= ( 𝜑𝐼𝑏 (𝑡) + 𝑎𝐼𝑟 (𝑡)𝑁𝑏 (𝑡) + 𝑑𝐻 (𝑡)𝜅 + 𝐻 (𝑡) ) 𝑆𝑏 (𝑡) (2)

where 𝜑, 𝑑, and 𝑎 are the transmission coefficients measuring
the transmission of infection upon contact or exposure
between the susceptible and severely infected wild birds,
mildly infected wild birds, and unhygienic environment,
respectively. After one or two weeks of exposure period (1/𝛾),
we assume proportion 𝜌 of the latently infected wild bird
population progresses toward the severely infected popula-
tion and the remaining proportion, 1 − 𝜌, progresses to the
mildly infected population of wild birds. The model assumes
that village chicken and wild birds do not recover from the
ND but die at disease-induced mortality rates of 𝛿𝑐 and 𝛿𝑏,
respectively. We further assume that the mildly infected wild
birds do not die because of infection but at a natural death
rate of 𝜇. In ourmodel, parameter 𝜅 represents half saturation
constant of the ND virus in the environment. All parameters
as well as state variables are assumed to be nonnegative. It is
also assumed that the hosts (chicken and wild birds) do not
recover once infectedwith theNewcastle disease. Graphically,
we represent the interactions between village chicken, wild
birds, and ND virus-infested environment by the schematic
flow diagram in Figure 1.

Following the aforementioned assumptions and descrip-
tions, the transmission model for the ND in the village
chicken with controls is represented by system (3) of nonlin-
ear differential equations.

2.2. Model Equations

𝑑𝑆𝑐 (𝑡)𝑑𝑡 = Λ 1𝑁𝑐 (𝑡) + 𝜂𝑉
− (𝜓 𝐼𝑐 (𝑡)𝑁𝑐 (𝑡) + 𝑏 𝐼𝑟 (𝑡)𝑁𝑏 (𝑡) + 𝑑𝐻 (𝑡)𝜅 + 𝐻 (𝑡) + 𝜇 + 𝜐𝑢1 (𝑡))

⋅ 𝑆𝑐 (𝑡)
𝑑𝐸𝑐 (𝑡)𝑑𝑡 = (𝜓 𝐼𝑐 (𝑡)𝑁𝑐 (𝑡) + 𝑏 𝐼𝑟 (𝑡)𝑁𝑏 (𝑡) + 𝑑𝐻 (𝑡)𝜅 + 𝐻 (𝑡) ) 𝑆𝑐 (𝑡)

− (𝜇 + 𝛾) 𝐸𝑐 (𝑡)
𝑑𝐼𝑐 (𝑡)𝑑𝑡 = 𝛾𝐸𝑐 (𝑡) − (𝛿𝑐 + 𝜇 + 𝜏𝑢2 (𝑡)) 𝐼𝑐 (𝑡)
𝑑𝑉 (𝑡)𝑑𝑡 = 𝜐𝑢1 (𝑡) 𝑆𝑐 (𝑡) − (𝜇 + 𝜂) 𝑉 (𝑡)
𝑑𝑆𝑏 (𝑡)𝑑𝑡 = Λ 2𝑁𝑏 (𝑡)

− ( 𝜑𝐼𝑏 (𝑡) + 𝑎𝐼𝑟 (𝑡)𝑁𝑏 (𝑡) + 𝑑𝐻 (𝑡)𝜅 + 𝐻 (𝑡) + 𝜇) 𝑆𝑏 (𝑡)
𝑑𝐸𝑏 (𝑡)𝑑𝑡 = ( 𝜑𝐼𝑏 (𝑡) + 𝑎𝐼𝑟 (𝑡)𝑁𝑏 (𝑡) + 𝑑𝐻 (𝑡)𝜅 + 𝐻 (𝑡) ) 𝑆𝑏 (𝑡)

− (𝜇 + 𝜌𝛾) 𝐸𝑏 (𝑡)
𝑑𝐼𝑏 (𝑡)𝑑𝑡 = 𝜌𝛾𝐸𝑏 (𝑡) − (𝛿𝑏 + 𝜇) 𝐼𝑏 (𝑡)
𝑑𝐼𝑟 (𝑡)𝑑𝑡 = (1 − 𝜌) 𝛾𝐸𝑏 (𝑡) − 𝜇𝐼𝑟 (𝑡)
𝑑𝐻 (𝑡)𝑑𝑡 = 𝛼𝑐𝐼𝑐 (𝑡) + 𝛼𝑏 (𝐼𝑏 (𝑡) + 𝐼𝑟 (𝑡)) − (𝜇V + 𝜎𝑢3 (𝑡))

⋅ 𝐻 (𝑡)
(3)

with initial conditions, 𝑆𝑐(0) > 0, 𝐸𝑐(0) ≥ 0, 𝐼𝑐(0) ≥ 0, 𝑉(0) ≥0, 𝑆𝑏(0) > 0, 𝐸𝑏(0) ≥ 0, 𝐼𝑏(0) ≥ 0, 𝐼𝑟(0) ≥ 0, 𝐻(0) ≥ 0, 𝑢1(0) ≥0, 𝑢2(0) ≥ 0, 𝑢3(0) ≥ 0; 𝑁𝑐(𝑡) = 𝑆𝑐(𝑡) + 𝐸𝑐(𝑡) + 𝐼𝑐(𝑡) + 𝑉(𝑡);𝑁𝑏(𝑡) = 𝑆𝑏(𝑡) + 𝐸𝑏(𝑡) + 𝐼𝑏(𝑡) + 𝐼𝑟(𝑡) + 𝑉(𝑡).
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3. The Cost Functional

In this section, we present the cost functional that balances
the competing objectives of minimizing the costs associated
with the preventions of village chicken from the transmis-
sions of ND. Our purpose is to minimize the number of the
severely infected village chicken 𝐼𝑐(𝑡) and concentration of
NDV in the environment 𝐻(𝑡) while minimizing the cost of
the controls. Therefore, to reach this goal we formulate an
optimal cost functional of our problem as follows:

J = min
𝑢𝑖(𝑡)∈U

∫𝑡𝑓
𝑡0

(𝐴1𝑢1 (𝑡) 𝑆𝑐 (𝑡) + 𝐴2𝑢2 (𝑡) 𝐼𝑐 (𝑡)

+ 𝐴3𝑢3 (𝑡) + 12
3∑
𝑖=1

𝐷𝑖𝑢2𝑖 (𝑡)) 𝑑𝑡
(4)

subject to the state equation (3), the initial condition 𝑋(0) =𝑋0 and the set of controls 𝑢𝑖(𝑡) ∈ U. In (4), the
time-dependent control constraints are Lebesguemeasurable𝑖.𝑒, {𝑢𝑖(𝑡) ∈ U | 0 ≤ 𝑢𝑖(𝑡) ≤ 1} at the time interval 𝑡 ∈ [𝑡0, 𝑡𝑓].𝐴1, 𝐴2, and 𝐴3 are per unit costs associated with the control
of the susceptible village chicken, severely infected village
chicken, and the unhygienic environment, respectively, while𝐷1, 𝐷2, and 𝐷3 are relative or additional cost weights for
each control measure 𝑢1(𝑡), 𝑢2(𝑡), and 𝑢3(𝑡), respectively.
This control program is applied within the prescribed time
horizon, that is, from initial time 𝑡0 to final time 𝑡𝑓. 𝐴1
includes the costs of buying and administering the vaccines
while 𝐴2 includes identification (laboratory tests), veterinary
experts, transportation, and the disposing area as well as
the official permit for killing the infected chicken. On the
other hand 𝐴3 includes the costs of buying the cleaning
equipment, paying laborers for disposing the wastes and
carcases of the infected chicken. We choose quadratic cost
function in the objective functional the same way as in [16,
19, 33–36] so as to indicate the nonlinear control costs arise
at higher intervention levels. The optimal control is the set(𝑢∗1 (𝑡), 𝑢∗2 (𝑡), 𝑢∗3 (𝑡)) such that

J (𝑢∗𝑖 (𝑡)) = min
𝑢𝑖(𝑡)∈U

{J (𝑢𝑖 (𝑡)) : 0 ≤ 𝑢𝑖 (𝑡) ≤ 1} ;
𝑓𝑜𝑟 𝑖 = 1, 2, 3 (5)

We then apply the Pontryagin’s Maximum Principle as
described in [37–39], to find the optimal solution of system
(3). Firstly, the Hamiltonian function H(𝑡, 𝑋, 𝑢, 𝜆) is formu-
lated by introducing the adjoint variable, 𝜆(𝑡), which saves
as the Lagrangian multiplier of our optimal control system
(3) constrained with the control variables {𝑢𝑖(𝑡) ∈ U | 0 ≤𝑢𝑖(𝑡) ≤ 1}, 𝑡 ∈ [𝑡0, 𝑡𝑓] and the state variables 𝑋(𝑡) ∈ R9. We
then apply the Pontryagin’s Maximum Principle necessary
conditions to find the optimal solutionJ(𝑢∗𝑖 (𝑡)) of system (3).

3.1. Existence of the Control Problem. An optimal control
problem exists if the five necessary conditions that
define the optimal solutions J(𝑢∗1 (𝑡), 𝑢∗2 (𝑡), 𝑢∗3 (𝑡)) =
min𝑢𝑖(𝑡)∈U{(J(𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡))} of problem (3) derived
using the Pontryagin’s Maximum Principle are satisfied.

Theorem 1. Given an optimal problem N(𝑡, 𝑋(𝑡), 𝑢𝑖(𝑡)) of
system (3), subject to its initial boundary condition for state
variable 𝑋(𝑡) ∈ R9 and a control variable 𝑢𝑖(𝑡) ∈ U, then
there exists an optimal solutionJ(𝑢∗𝑖 (𝑡)) such thatJ(𝑢∗𝑖 (𝑡)) =
min𝑢𝑖(𝑡)∈U{(J(𝑢𝑖(𝑡))} for 𝑖 = 1, 2, 3 if the following necessary
conditions are satisfied.

(1) The set of controls and the corresponding state variables
are nonempty.

(2) The control setU is convex and closed.
(3) The right hand side of the state system is bounded by

the linear function in the state and control variables.
(4) The integrand of the objective function is convex.
(5) There exist constant numbers 𝑎1, 𝑎2 > 0 and𝜔 > 1 such

that the integrand of the objective function is bounded
below by 𝑎1(|𝑢1| + |𝑢2| + |𝑢3|)𝜔/2 − 𝑎2.

Proof. The existence of an optimal control is verified by
conditions stated in [40]. From our optimal problem
N(𝑡, 𝑋(𝑡), 𝑢𝑖(𝑡)) of system (3), the set of all state variables𝑋(𝑡) ∈ R9 and the control variables {𝑢𝑖(𝑡) ∈ U | 0 ≤ 𝑢𝑖(𝑡) ≤1}, 𝑡 ∈ [𝑡0, 𝑡𝑓] are nonnegative; hence, the first condition
is satisfied. By the definition, the optimal solution 𝑢∗𝑖 (𝑡) is
convex and bounded in U and thus the second condition is
also satisfied [18, 41, 42].

The optimal system (3) is bounded which determines the
compactness needed for the existence of the optimal control
[15] and hence the third condition holds. In addition, the
integrand in the functional (4) is clearly convex on the control
set U which proves the fourth condition. According to [42],
since the state variables are bounded, therefore the integrand
is also bounded below by

𝐴1𝑢1 (𝑡) 𝑆𝑐 (𝑡) + 𝐴2𝑢2 (𝑡) 𝐼𝑐 (𝑡) + 𝐴3𝑢3 (𝑡)
+ 12
3∑
𝑖=1

𝐷𝑖𝑢2𝑖 (𝑡) ≥ 𝑎1( 3∑
𝑖=1

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨)
𝜔/2

− 𝑎2 (6)

for 𝑖 = 1, 2, 3 which satisfies the last condition. With those
five conditions satisfied we therefore conclude that there exist
control variables 𝑢∗1 (𝑡), 𝑢∗2 (𝑡), and 𝑢∗3 (𝑡) such that

J (𝑢∗1 (𝑡) , 𝑢∗2 (𝑡) , 𝑢∗3 (𝑡))
= min
𝑢𝑖(𝑡)∈U

{(J (𝑢1 (𝑡) , 𝑢2 (𝑡) , 𝑢3 (𝑡))} (7)

3.2. Characterization of the Optimal Control. Here we apply
the Pontryagin’s Maximum Principle to derive the necessary
conditions that optimal control solutions must satisfy [39,
43, 44]. To obtain the minimum Lagrangian of the optimal
problem we establish the Hamiltonian H(𝑋, 𝑢, 𝜆) as follows:

H (𝑋, 𝑢, 𝜆) = 𝐴1𝑢1 (𝑡) 𝑆𝑐 (𝑡) + 𝐴2𝑢2 (𝑡) 𝐼𝑐 (𝑡)
+ 𝐴3𝑢3 (𝑡) + 12

3∑
𝑖=1

𝐷𝑖𝑢2𝑖 (𝑡) + 9∑
𝑗=1

𝜆𝑗𝐹𝑗 (8)
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where 𝐹𝑗 stands for the right hand side of the 𝑗𝑡ℎ equation of
the optimal control problem (3). Now, in the expanded form
(8) become

H (𝑋, 𝑢, 𝜆) = 𝐴1𝑢1 (𝑡) (𝑡) 𝑆𝑐 (𝑡) + 𝐴2𝑢2 (𝑡) (𝑡) 𝐼𝑐 (𝑡)
+ 𝐴3𝑢3 + 12𝐷1𝑢21 (𝑡) + 12𝐷2𝑢22 (𝑡) + 12 𝐷3𝑢23 (𝑡)
+ 𝜆𝑆𝑐(𝑡) (Λ 1𝑁𝑐 (𝑡) + 𝜂𝑉 (𝑡)
− (𝜓 𝐼𝑐 (𝑡)𝑁𝑐 (𝑡) + 𝑏 𝐼𝑟 (𝑡)𝑁𝑏 (𝑡) + 𝑑𝐻 (𝑡)𝜅 + 𝐻 (𝑡) + 𝜇 + 𝜐𝑢1 (𝑡))
⋅ 𝑆𝑐 (𝑡)) + 𝜆𝐸𝑐 ((𝜓 𝐼𝑐 (𝑡)𝑁𝑐 (𝑡) + 𝑏 𝐼𝑟 (𝑡)𝑁𝑏 (𝑡) + 𝑑𝐻 (𝑡)𝜅 + 𝐻 (𝑡) )
⋅ 𝑆𝑐 (𝑡) − (𝜇 + 𝛾) 𝐸𝑐 (𝑡)) + 𝜆𝐼𝑐 (𝛾𝐸𝑐 (𝑡)
− (𝛿𝑐 + 𝜇 + 𝜏𝑢2 (𝑡)) 𝐼𝑐 (𝑡)) + 𝜆𝑉 (𝜐𝑢1 (𝑡) 𝑆𝑐 (𝑡)
− (𝜇 + 𝜂) 𝑉 (𝑡)) + 𝜆𝑆𝑏 (Λ 2𝑁𝑏 (𝑡)
− ( 𝜑𝐼𝑏 (𝑡) + 𝑎𝐼𝑟 (𝑡)𝑁𝑏 (𝑡) + 𝑑𝐻 (𝑡)𝜅 + 𝐻 (𝑡) + 𝜇) 𝑆𝑏 (𝑡))
+ 𝜆𝐸𝑏(𝑡) (( 𝜑𝐼𝑏 (𝑡) + 𝑎𝐼𝑟 (𝑡)𝑁𝑏 (𝑡) + 𝑑𝐻 (𝑡)𝜅 + 𝐻 (𝑡) ) 𝑆𝑏 (𝑡)
− (𝛾 + 𝜇) 𝐸𝑏 (𝑡)) + 𝜆𝐼𝑏 (𝜌𝛾𝐸𝑏 (𝑡) − (𝛿𝑏 + 𝜇) 𝐼𝑏 (𝑡))
+ 𝜆𝐼𝑟 ((1 − 𝜌) 𝛾𝐸𝑏 (𝑡) − 𝜇𝐼𝑟 (𝑡)) + 𝜆𝐻 (𝛼𝑐𝐼𝑐 (𝑡)
+ 𝛼𝑏 (𝐼𝑏 (𝑡) + 𝐼𝑟 (𝑡)) − (𝜇V + 𝜎𝑢3 (𝑡)) 𝐻 (𝑡))

(9)

Theorem 2. Given U∗ = {𝑢∗1 (𝑡), 𝑢∗2 (𝑡), 𝑢∗3 (𝑡)} is the set of the
optimal control and 𝑆∗𝑐 , 𝐸∗𝑐 , 𝐼∗𝑐 , 𝑉∗, 𝑆∗𝑏 , 𝐸∗𝑏 , 𝐼∗𝑏 , 𝐼∗𝑟 and 𝐻∗
are the corresponding solutions minimizing 𝐽(𝑢𝑖) overU, then
there exists a costate variable, 𝜆(𝑡), such that

𝑑𝜆𝑆𝑐𝑑𝑡 = − 𝜕H𝜕𝑆𝑐 ,
𝑑𝜆𝐸𝑐𝑑𝑡 = − 𝜕H𝜕𝐸𝑐 =, . . . , = 𝑑𝜆𝐻𝑑𝑡

= − 𝜕H𝜕𝐻 (𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
(10)

𝜆𝑆𝑐 (𝑡𝑓) = 𝜆𝐸𝑐 (𝑡𝑓) =, . . . , 𝜆𝐻 (𝑡𝑓) = 0
(𝑡𝑟𝑎𝑛𝑠V𝑒𝑠𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) (11)

𝜕H𝜕𝑢𝑖 = 0
𝑎𝑡 𝑢∗𝑖 = 0, 𝑖 = 1, 2, 3, (𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)

(12)

From (9) and (10) we get the following adjoint equations:
𝑑𝜆𝑆𝑐𝑑𝑡 = − 𝜕H𝜕𝑆𝑐 = −𝐴1𝑢∗1 (𝑡) + (𝜆𝑆𝑐 − 𝜆𝐸𝑐) Δ 1

+ 𝜆𝑆𝑐 (𝜇 + 𝜐𝑢∗1 (𝑡) − Λ 1) − 𝜆𝑉𝑢∗1 (𝑡)

𝑑𝜆𝐸𝑐𝑑𝑡 = − 𝜕H𝜕𝐸𝑐 = −𝜆𝑆𝑐Λ 1 − 𝜆𝐼𝑐𝛾 + (𝜇 + 𝛾) 𝜆𝐸𝑐
+ (𝜆𝑆𝑐 − 𝜆𝐸𝑐) 𝜓𝑆∗𝑐 (𝑡) (𝑁∗𝑐 (𝑡) − 𝐼∗𝑐 (𝑡))

𝑁2𝑐 (𝑡)
𝑑𝜆𝐼𝑐𝑑𝑡 = − 𝜕H𝜕𝐼𝑐 = −𝐴2𝑢∗2 (𝑡) − 𝜆𝑆𝑐Λ 1 + (𝜆𝑆𝑐 − 𝜆𝐸𝑐)

⋅ 𝜓𝑆∗𝑐 (𝑡) (𝑁∗𝑐 (𝑡) − 𝐼∗𝑐 (𝑡))
𝑁2𝑐 (𝑡) + 𝜆𝐼𝑐 (𝛿𝑐 + 𝜇 + 𝜏𝑢∗2 )

− 𝜆𝐻𝛼𝑐
𝑑𝜆𝑉𝑑𝑡 = − 𝜕H𝜕𝑉 = −𝜆𝑆𝑐Λ 1 + 𝜇𝜆𝑉 − (𝜆𝑆𝑐 − 𝜆𝑉) 𝜂

− (𝜆𝑆𝑐 − 𝜆𝐸𝑐) 𝜓𝐼∗𝑐 (𝑡) 𝑆∗𝑐 (𝑡)
𝑁2𝑐 (𝑡)

𝑑𝜆𝑆𝑏𝑑𝑡 = − 𝜕H𝜕𝑆𝑏 = −𝜆𝑆𝑏Λ 2 + 𝜇𝜆𝑆𝑏
+ (𝜆𝑆𝑐 − 𝜆𝐸𝑐) 𝑏𝐼∗𝑟 (𝑡) 𝑆∗𝑐 (𝑡)

𝑁2
𝑏 (𝑡) + Δ 2

𝑑𝜆𝐸𝑏𝑑𝑡 = − 𝜕H𝜕𝐸𝑏 = −𝜆𝑆𝑐Λ 2 + 𝜆𝐸𝑏 (𝛾 + 𝜇) − 𝜆𝐼𝑟𝛾

− (𝜆𝐼𝑏 − 𝜆𝐼𝑟) 𝛾𝜌 − (𝜆𝑆∗𝑐 − 𝜆𝐸𝑐) 𝑏𝐼∗𝑟 (𝑡) 𝑆∗𝑐 (𝑡)
𝑁2
𝑏 (𝑡) − Δ 3

𝑑𝜆𝐼𝑏𝑑𝑡 = − 𝜕H𝜕𝐼𝑏 = −𝜆𝑆𝑏Λ 2 − 𝜆𝐻𝛼𝑏 + 𝜆𝐼𝑏 (𝛿𝑏 + 𝜇)

− (𝜆𝑆𝑐 − 𝜆𝐸𝑐) 𝑏𝐼∗𝑟 (𝑡) 𝑆∗𝑐 (𝑡)
𝑁2
𝑏 (𝑡) + Δ 4

𝑑𝜆𝐼𝑟𝑑𝑡 = − 𝜕H𝜕𝐼𝑟 = −𝜆𝑆𝑏Λ 2 − 𝛼𝑏𝜆𝐻 + 𝜆𝐼𝑟𝜇

+ ( 𝑏𝑆∗𝑐 (𝜆𝑆𝑐 − 𝜆𝐸𝑐)𝑁2𝑏 ) + (𝜆𝑆𝑏 − 𝜆𝐸𝑏) 𝑆𝑏 (𝑡)

⋅ ( 𝑎 (𝑁∗𝑏 (𝑡) − 𝐼∗𝑟 (𝑡)) − 𝜑𝐼∗𝑏 (𝑡)
𝑁2
𝑏 (𝑡) )

𝑑𝜆𝐻𝑑𝑡 = − 𝜕H𝜕𝐻 = (𝜆𝑆𝑐 − 𝜆𝐸𝑐) 𝑑𝜅𝑆∗𝑐 (𝑡)
(𝜅 + 𝐻∗ (𝑡))2

+ (𝜆𝑆𝑏 − 𝜆𝐸𝑏) 𝑑𝜅𝑆∗𝑏 (𝑡)
(𝜅 + 𝐻∗ (𝑡))2 + (𝜇V + 𝜎𝑢∗3 ) 𝜆𝐻

(13)
whereas

Δ 1 = (𝜓 𝐼∗𝑐 (𝑡) (𝑁∗𝑐 (𝑡) − 𝑆∗𝑐 (𝑡))
𝑁2𝑐 (𝑡) + 𝑏𝐼∗𝑟 (𝑡)

𝑁𝑏 (𝑡)
+ 𝑑𝐻∗ (𝑡)𝜅 + 𝐻∗ (𝑡) ) ,
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Δ 2 = (𝜆𝑆𝑏 − 𝜆𝐸𝑏)
⋅ ( (𝑁∗𝑏 (𝑡) − 𝑆𝑏 (𝑡)) (𝜑𝐼𝑏 (𝑡) + 𝑎𝐼𝑟 (𝑡))

𝑁2𝑏 (𝑡) )

Δ 3 = (𝜆𝑆𝑏 − 𝜆𝐸𝑏) (𝜑𝐼∗𝑏 (𝑡) + 𝑎𝐼∗𝑟 (𝑡)) 𝑆∗𝑏 (𝑡)
𝑁2
𝑏 (𝑡) ,

Δ 4 = (𝜆𝑆𝑏 − 𝜆𝐸𝑏) 𝑆𝑏 (𝑡)
⋅ ( 𝑁𝑏 (𝑡) 𝜑 − (𝜑𝐼𝑏 (𝑡) + 𝑎𝐼𝑟 (𝑡))

𝑁2
𝑏 (𝑡) )

(14)

From (9) and (12) we obtain the optimal solution given by

𝑢∗1 (𝑡) = 1𝐷1 (V (𝜆𝑆𝑐 − 𝜆𝑉) − 𝐴1) 𝑆∗𝑐 (𝑡) (15)

𝑢∗2 (𝑡) = 1𝐷2 (𝜏𝜆𝐼𝑐 − 𝐴2) 𝐼∗𝑐 (𝑡) (16)

𝑢∗3 (𝑡) = 1𝐷3 (𝜆𝐻𝜎𝐻∗ (𝑡) − 𝐴3) (17)

With the transversality condition 𝜆𝑟(𝑡𝑓) = 0 (𝑓𝑜𝑟 𝑟 = 𝑋(𝑡) ∈
R9) and the boundedness condition of our control variables,
U = {𝑢∗𝑖 (𝑡) | 0 ≤ 𝑢∗𝑖 (𝑡) ≤ 𝑢∗𝑚𝑎𝑥(𝑡)} (with 𝑖 = 1, 2, 3). Now, let
us consider the control bound, 0 ≤ 𝑢∗𝑖 (𝑡) ≤ 1. By using the
bounds for the control 𝑢∗1 (𝑡) we get the following solution:

𝑢∗1 (𝑡) =
{{{{{{{{{{{{{

0 if 1𝐷1 (V (𝜆𝑆𝑐 − 𝜆𝑉) − 𝐴1) 𝑆∗𝑐 ≤ 0
1𝐷1 (V (𝜆𝑆𝑐 − 𝜆𝑉) − 𝐴1) 𝑆∗𝑐 if 0 ≤ 𝑢1 (𝑡) ≤ 1

1 if 1𝐷1 (V (𝜆𝑆𝑐 − 𝜆𝑉) − 𝐴1) 𝑆∗𝑐 ≥ 1
(18)

and therefore 𝑢∗1 (𝑡) is expressed as

𝑢∗1 (𝑡)
= min{1, max(0, 1𝐷1 (V (𝜆𝑆𝑐(𝑡) − 𝜆𝑉) − 𝐴1) 𝑆∗𝑐 (𝑡))} (19)

Similarly the controls 𝑢∗2 (𝑡) and 𝑢∗3 (𝑡) are therefore written as

𝑢∗2 (𝑡) = min{1, max(0, 1𝐷2 (𝜏𝜆𝐼𝑐 − 𝐴2) 𝐼∗𝑐 (𝑡))}
𝑢∗3 (𝑡) = min{1, max(0, 1𝐷3 (𝜆𝐻𝜎𝐻∗ (𝑡) − 𝐴3))}

(20)

4. Numerical Solution and Discussion

In this section, we investigate and compare numerical results
of the following control strategies when applied for reducing
the spread of the ND among the village chicken population.
The strategies are

(i) Strategy S: vaccination of the susceptible chicken,
(ii) Strategy U: culling of the infected chicken from their

flocks,
(iii) Strategy V: environmental hygiene and sanitation,
(iv) Strategy W: the combination of vaccination and

culling,
(v) Strategy X: the combination of vaccination and envi-

ronmental hygiene and sanitation,
(vi) Strategy Y: the combination of the culling and the

environmental hygiene and sanitation,

(vii) Strategy Z: the combination of vaccination, culling,
and the environmental hygiene and sanitation.

As explained in [16, 19, 39, 45], the adjoint system is solved
by using the backward in time Runge-Kutta scheme with
terminal conditions 𝜆𝑖(𝑡𝑓) = 0, where 𝑡𝑓 = 365 days and
initial conditions 𝑆𝑐(0) = 20000; 𝑉(0) = 0; 𝑆𝑏(0) = 300000;𝐸𝑐(0) = 120; 𝐼𝑐(0) = 500, 𝐸𝑏(0) = 1000; 𝐼𝑏(0) = 400; 𝐼𝑟(0) =500; 𝐻(0) = 5000.The controls are considered to be bounded
in the interval 𝑢𝑖(𝑡) ∈ [0, 1] and the weights in the objective
functional are estimated to be 𝐴1 = 0.01 USD per vaccinated
chicken, 𝐴2 = 20 USD per culled individual chicken, and𝐴3 = 2 USD per square sanitation level. With initial value of
controls 𝑢𝑖(0) and the initial condition 𝑋(0) = 𝑋0, the state
solutions system is solved forward in time using the Runge-
Kutta method of order four. The update of the control is
done using a convex combination of the current and previous
controls to obtain the new solution for 𝑋 and 𝜆. The method
continues by using these new updates aiming at finding a
fixed point (𝑋, 𝜆, 𝑢). This iterative process terminates when
the last and preceding iterations are negligible close and
the last iteration is the solution of the optimal problem.
The parameter values in the state system and the objective
function are obtained from different literatures and others
are estimated depending on the epidemiology of the ND as
shown in Table 1. In this paper all plots for state variables are
in the logarithmic form.

4.1. Strategy S: Control ND with Vaccination (𝑢1). In this
strategy, only vaccination (𝑢1(𝑡)) is used to optimize the
objective functional J in (4) while 𝑢2(𝑡) and 𝑢3(𝑡) are set
to zero. The control strategy shows a significant difference
in the dynamics of the susceptible chicken, infected chicken,
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Table 1: The Parameter values used for running system (3).

Parameter Value Source
𝑎 0.01𝑑𝑎𝑦−1 [12]𝛼𝑐 1.667 × 10−3V𝑖𝑟𝑢𝑠−1𝑐ℎ𝑖𝑘𝑒𝑛−1𝑑𝑎𝑦−1 [12]𝛼𝑏 2.0 × 10−5V𝑖𝑟𝑢𝑠−1𝑤𝑖𝑙𝑑𝑏𝑖𝑟𝑑−1𝑑𝑎𝑦−1 Estimated𝜓 0.08.3 × 10−2 − 3𝑑𝑎𝑦−1 [12]𝜇 5.80 × 10−4 − 0.00136𝑑𝑎𝑦−1 [8, 25]𝑏 0.21𝑑𝑎𝑦−1 [7, 10]𝜙 0.02𝑑𝑎𝑦−1 [12]𝜑 0.0001𝑑𝑎𝑦−1 Estimated𝜌 0.8 − 1 [12]𝑑 0.001𝑑𝑎𝑦−1 [12]𝜐 0.9 − 1 [26]𝜏 0 − 1 Estimated𝜎 0 − 1 Estimated𝜇V 0.00219𝑑𝑎𝑦−1 [12]𝛾 0.067 − 0.625𝑑𝑎𝑦−1 [4, 27]𝛿𝑏 0.025𝑑𝑎𝑦−1 [28]𝛿𝑐 0.01989𝑑𝑎𝑦−1 [20]Λ 1 0.0001 EstimatedΛ 2 0.0001 Estimated𝜅 100000 virus cells/𝑚3 Estimated𝐷1 20 USD /vaccinated individual chicken Estimated𝐷2 10 USD/proportional of chicken culled Estimated𝐷3 10 USD /square of sanitation level [20, 29]

and the concentration of the NDV in the environment when
compared with the case without any control measure (see
Figures 2(a)–2(d)). Using this control strategy, the number of
severely infected chicken (Figure 2(b)) and the concentration
of NDV in the environment (Figure 2(c)) have been signifi-
cantly reduced. In Figure 2(d) the control 𝑢1(𝑡) is maintained
at its maximum value for about 396 days and thereafter
decreases to zero. This means that by using this control
strategy the vaccination needs to be applied at 100% effort
almost throughout the control period.

4.2. Strategy U: Control ND with Culling (𝑢2) of the Infected
Chicken. Here, the culling control (𝑢2(𝑡)) is used to optimize
the objective functional J in (4) while 𝑢1(𝑡) and 𝑢3(𝑡) are
set to zero. This strategy shows a significant increase in
the number of susceptible chicken (see Figure 3(a)) and a
significant reduction in the number of infected chicken and
the concentration of the NDV in the environment (Figures
3(b) and 3(c)) when compared with the case with no control
measure. According to Figure 3(b), incubation periods of the
NDV differ among host populations. When implementing
the culling strategy, the removed chicken are those which
show the clinical symptoms of the disease. This implies that
some infected chicken which do not yet show symptoms will
not be removed. Also due to the presence of carrier wild birds
and contaminated environment which are other infectious
agents, immediately after lowering the culling effort to zero,
the disease rebounds. Thus the bending of the curves in
Figures 3(b) and 6(b) toward the end of the controlmeans that

the culling strategy cannot be maintained at the maximum
effort (100%) until the end of the control program. In the
Figure 3(d) the control 𝑢2(𝑡) is maintained at its upper bound
for about 375 days and thereafter decreases to zero. This
shows that the control strategy can be used to reduce the rate
ofNDV in the population but also needs to be applied at 100%
effort almost throughout the control period which may be
unachievable goal.

4.3. Strategy W: Control with Vaccination and Culling (𝑢1(𝑡)
and 𝑢2(𝑡)). In this strategy, the vaccination (𝑢1(𝑡)) and
culling (𝑢2(𝑡)) controls are applied together to optimize the
objective functional J in (4) while 𝑢3(𝑡) is set to zero. We
observed in Figures 4(a)–4(c) that due to the combination of
these controlmeasures, the number of the susceptible chicken
increases while the number of the infected chicken and the
concentration of NDV in the environment decreases. The
control profile in Figure 4(d) shows that the controls 𝑢1(𝑡)
and 𝑢2(𝑡) are maintained at 100% effort for first 396 and 49
days respectively before declining to their lower bound. The
results of this strategy favors vaccination over the culling
due to the low cost and effectiveness of the vaccines against
Newcastle disease. Thus more effort must be invested in the
vaccines after killing the infected chicken in the first few days
of the control program.

4.4. Strategy X: Control with Vaccination and Environmental
Hygiene and Sanitation (𝑢1(𝑡) and 𝑢3(𝑡)). In this strategy, the
vaccination (𝑢1(𝑡)) and environmental hygiene and sanitation
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Figure 2: Optimal solutions for model variables 𝑆𝑐, 𝐼𝑐, 𝐻 and the control profiles for 𝑢1, 𝑢2, 𝑢3 with (𝑢1 ̸= 0, 𝑢2 = 0, 𝑢3 = 0).
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Figure 3: Optimal solutions for model variables 𝑆𝑐, 𝐼𝑐, 𝐻 and the control profiles for 𝑢1, 𝑢2, 𝑢3 with (𝑢1 = 0, 𝑢2 ̸= 0, 𝑢3 = 0).
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Figure 4: Optimal solutions for model variables 𝑆𝑐, 𝐼𝑐, 𝐻 and the control profiles for 𝑢1, 𝑢2, 𝑢3 with (𝑢1 ̸= 0, 𝑢2 ̸= 0, 𝑢3 = 0).

(𝑢3) controls are applied together to optimize the objective
functional J in (4) while 𝑢2(𝑡) is set to zero. There is a
significant difference in the dynamics of susceptible chicken,
the infected chicken and the concentration of NDV in the
environment when this control strategy is used (See Fig-
ures 5(a)–5(c)). The population of susceptible chicken have
increased (Figure 5(a)) while we observed a decline in the
population of infected chicken and the concentration of NDV
from the environment (Figures 5(b) and 5(c)) respectively.
The control profile in Figure 5(d) shows that, the vaccination(𝑢1(𝑡)) remains at its upper bound throughout a control
period while the environmental hygiene and sanitation con-
trol (𝑢3(𝑡)) is maintained at its upper bound for the first49 days and thereafter steadily decline to its lower bound.
From these results we can conclude that to control Newcastle
disease it is important to invest more on the provision of the
vaccines than the sanitation and hygiene of the environment.

4.5. Strategy Y: Control with Culling and Environmental
Hygiene and Sanitation (𝑢2(𝑡) and 𝑢3(𝑡)). In this strategy, the
culling (𝑢2(𝑡)) and environmental hygiene and sanitation (𝑢3 )
controls are used to optimize the objective functionalJ in (4)
while 𝑢1(𝑡) is set to zero. In Figure 6(a) we observe that the
number of susceptible chicken increases while in the Figures
6(b) and 6(c) there is significant decrease of both infected
chicken and the NDV in the surroundings respectively. The
increase of the susceptible chicken is due to the fact that,
when the culling and environmental hygiene and sanitation
are done effectively the population become free from the

disease and thus, recruitment of chicken become higher and
death is only through natural death. However, the increase
of the clearance rate of NDV in the environment reduces
the rate of spread of the disease in chicken population hence
lowers the number of infected chickens. Figure 6(d) shows
the control profile for 𝑢2 and 𝑢3(𝑡). The control profile for𝑢3 drops to its lower bound and maintains it until the end
of the control period. This result reveals that environmental
hygiene and sanitation has little contribution in the control of
the Newcastle disease when applied together with the culling
strategy.

4.6. Strategy Z: Control with Vaccination, Culling, and Envi-
ronmental Hygiene and Sanitation (𝑢1(𝑡), 𝑢2(𝑡), and 𝑢3(𝑡)).
In this strategy, all controls 𝑢1, 𝑢2, and 𝑢3 are used together
to optimize the objective functional J in (4). In Figure 7(a)
it can be seen that susceptible chicken population increases
while the infected chicken population and the concentration
of NDV in the environment were greatly reduced (Figures
7(b) and 7(c)) respectively. In Figure 7(d), the vaccination
control (𝑢1) is maintained at its maximum value for the
whole year while the culling control (𝑢2) is maintained at
its maximum value for 47 days and then decline slowly for373 days before it further decline to zero. The environmental
and sanitation strategy (𝑢3(𝑡)) has very low contributions
in this strategy as it maintained at zero throughout the
control program.This strategy managed to reduce the rate of
transmission of the disease to a very low level and maintain it
at this same level for the entire period of the control program.
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Figure 5: Optimal solutions for model variables 𝑆𝑐, 𝐼𝑐, 𝐻 and the control profiles for 𝑢1, 𝑢2, 𝑢3 with (𝑢1 ̸= 0, 𝑢2 = 0, 𝑢3 ̸= 0).
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Figure 6: Optimal solutions for model variables 𝑆𝑐, 𝐼𝑐, 𝐻 and the control profiles for 𝑢1, 𝑢2, 𝑢3 with (𝑢1 = 0, 𝑢2 ̸= 0, 𝑢3 ̸= 0).
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Figure 7: Optimal solutions for model variables 𝑆𝑐, 𝐼𝑐, 𝐻 and the control profiles for 𝑢1, 𝑢2, 𝑢3 with (𝑢1 ̸= 0, 𝑢2 ̸= 0, 𝑢3 ̸= 0).

Table 2:The arrangement of the strategies in ascending order of the
total infection averted.

Strategy Infection averted Total Cost in US Dollar ICER
No control 0 0 -
Strategy U 3.6719 × 108 4.057 × 105 +0.0011
Strategy Y 3.8262 × 108 4.038 × 105 −0.000123
Strategy S 4.8263 × 108 7.7633 × 103 −0.00396
StrategyW 4.8405 × 108 2.2098 × 105 +0.1502
Strategy Z 4.8435 × 108 2.9658 × 105 +0.0252
Strategy X 4.8449 × 108 3.3525 × 105 +0.27621

4.7. Cost-Effectiveness Analysis. The cost-effective analysis
helps identify the control strategy that is less costly toward the
control of ND. In this section, the cost-effectiveness analysis
is conducted using the incremental cost-effectiveness ratio
(ICER) method. In this method, the costs and effects of two
interventions competing under the scarcity of resources were
compared [34, 36, 46]. To quantify the cost effectiveness of
the control strategies, we obtained the ratios for the difference
of cost between the two control strategies and the difference
of the total number of infections averted by these strategies
[34, 47]. By using the parameter values given in Table 1, the
ICER numerical values are obtained in Table 2.

Referring to Table 2, the comparison of strategies U and Y
shows that the ICER of strategy Y is less than that of strategy
U, indicating that strategy U is more costly and less effective.
Therefore, we omitted strategy U and recalculated ICER for
the remaining strategies.

Table 3: The cost and infection averted for controls Y, S, W, Z, and
X.

Strategy Infection averted Total Cost in US Dollar ICER
Strategy Y 3.8262 × 108 4.038 × 105 +0.00106
Strategy S 4.8263 × 108 7.7633 × 103 −0.00396
StrategyW 4.8405 × 108 2.2098 × 105 +0.1502
Strategy Z 4.8435 × 108 2.9658 × 105 +0.0252
Strategy X 4.8449 × 108 3.3525 × 105 +0.27621
Table 4: The cost and infection averted for controls S, W, Z, and X.

Strategy Infection averted Total Cost in US Dollar ICER
Strategy S 4.8263 × 108 7.7633 × 103 +0.0000161
StrategyW 4.8405 × 108 2.2098 × 105 +0.1502
Strategy Z 4.8435 × 108 2.9658 × 105 +0.0252
Strategy X 4.8449 × 108 3.3525 × 105 +0.27621

From Table 3, the comparison of strategies S and Y shows
that the ICER of strategy S is less than that of strategy Y,
implying that strategy Y is more costly and less effective.
Therefore, we omitted strategy Y and recalculated ICER for
the remaining strategies.

The comparison of strategies S and W in Table 4 shows
that the ICER of strategy S is less than that of strategy W,
indicating that strategy W is more costly and less effective.
Therefore, we omitted strategy W and recalculated ICER for
the remaining strategies.
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Table 5: The cost and infection averted for controls S, Z, and X.

Strategy Infection averted Total Cost in US Dollar ICER
Strategy S 4.8263 × 108 7.7633 × 103 +0.0000161
Strategy Z 4.8435 × 108 2.9658 × 105 +0.167917
Strategy X 4.8449 × 108 3.3525 × 105 +0.276214

Table 6: The cost and infection averted for controls S and X.

Strategy Infection averted Total Cost in US Dollar ICER
Strategy S 4.8263 × 108 7.7633 × 103 +0.0000161
Strategy X 4.8449 × 108 3.3525 × 105 +0.276214

The comparison of strategies S and Z in Table 5 shows
that the ICER of strategy S is less than that of strategy W,
indicating strategy W to be more costly and less effective.
Therefore, we omitted strategy W and recalculated ICER for
the remaining strategies.

Using the infection averted and the total costs as in
Table 6, the ICER values are computed as follows:

ICER (Strategy S) = 7.7633 × 1034.8263 × 108 = +0.0000161
ICER (Strategy X) = 3.3525 × 105 − 7.7633 × 1034.8449 × 108 − 4.8263 × 108

= +0.276214
(21)

The comparison of strategies S and X in Table 6 shows that
the ICER of strategy S is less than that of strategy X, indicating
that the application of vaccination alone as a control measure
of ND in village chicken (strategy S) is less costly and more
effective than the strategy that combines vaccination and
environmental hygiene and sanitation (strategy X).

5. Conclusion

This work presented a mathematical model describing the
dynamics of ND in the village chicken population. The
purpose of this study was to analyze the effects of vaccination,
culling, and environmental hygiene and sanitation control
strategies on the village chicken population. The efficiency
of each strategy: susceptible, culling, environmental hygiene
and sanitation, combination of the vaccination and culling
strategies, combination of culling and environmental hygiene
and sanitation and the combination of vaccination, culling
and hygiene and sanitation control strategies was evaluated
using Pontryagin’sMaximumPrinciple.Our analysis revealed
that strategy X, a combination of vaccination and environ-
mental hygiene and sanitation, reduces the population of
infected chicken and ND virus concentration more than
the other control strategies. Therefore, we recommend the
adoption of vaccination and environmental hygiene and
sanitation strategies for the village chicken growers at 100%
effort as the most effective way to combat the devastating
effects of ND. Moreover, the cost-effective analysis suggests
that strategy S (vaccination) is the most cost effective of all
the combinations of strategies under the scarcity of resources.

Although strategy S seems to be less costly than other control
strategies, we suggest the adoption of strategy X as the best
control practice for reducing the risk of the disease to the
village chicken population. In the future, the study will be
extended by considering the age structure of the chicken and
will include the investigation of the role of temperature and
humidity on the transmission of ND in the village chicken
population.
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The data used to support the findings of this study are
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operational costs of vaccines and clearing equipment as in
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