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An algorithm to detect small solutions in
linear delay differential equations

Neville J Ford 1 and Patricia M Lumb

Mathematics Department, University College Chester, Parkgate Road, Chester,
CH1 4BJ, UK

Abstract

This paper presents an algorithm that provides a simple reliable mechanism for
the detection of small solutions in linear delay differential equations. We provide
background that emphasises the importance of detecting small solutions, we review
existing experimental results and provide a mathematical justification for our choice
of algorithm. The paper concludes with some examples.

1 Introduction and Background

This paper focuses on the development of a computer program that will determine whether
or not a linear delay differential equation of the form

x′(t) =
N∑

j=0

aj(t)x(t− τj) where τ0 = 0, τj+1 > τj, j = 0, . . . , N − 1 (1)

admits small solutions. Our aim is to produce an automatic detection algorithm so that
the user does not need to understand the methodology underlying the process by which
the decision is made. We developed the program using Matlab.

The detection of small solutions, that is solutions x(t) for which limt→∞ ektx(t) = 0, for
all k ∈ R (see [3,9,11]), is important in the qualitative analysis of delay differential equa-
tions ([1]). It has been shown that delay differential equations that have small solutions
are particularly difficult to analyse and one needs to beware of applying certain stan-
dard analytical methods when small solutions are present. Unfortunately, the detection
of small solutions by direct analysis is, in general, a hard problem and therefore the idea
of using a numerical routine is attractive. In previous work ([4–7,9]) various theoretical
and experimental results have been presented that justify our belief that the detection
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of small solutions can be accomplished effectively through numerical methods and these
techniques now form the basis for the algorithm that we present in this paper.

For some non-autonomous problems of the form (1) there exists an equivalent autonomous
problem in the sense that the dynamics of the solutions of the two problems are the
same (see [9]). It turns out that such an equivalent autonomous problem exists if and
only if the underlying equation has no small solutions. In our previous work we built
on this fundamental idea: We began by finding the candidate autonomous problem that
may be equivalent to the given non-autonomous equation, then ([4–7]) we considered
the eigenspectra of the solution maps of the two problems after they had each been
subjected to numerical discretisation (using the trapezium rule, for example). We were
able to deduce, by examining plots of these eigenspectra, that there were characteristic
shapes in the figures that enabled us to identify correctly the presence, or otherwise, of
small solutions, and hence determine whether or not an equivalent autonomous problem
existed.

The task that we descibe in this paper is of automating the process to remove the vi-
sualisation step that requires human intervention/interpretation and provide a reliable
and robust automatic procedure for determining whether a given linear delay differential
equation has small solutions.

The problem of looking for small solutions is made harder by the fact that they cannot
usually be seen when the solution of the equation is plotted. This is because the actual
solution in any given case is a linear combination of the (generalised) eigenfunctions of
the differential equation, and the coefficients are dependent upon the initial function.
Therefore unless all the coefficients corresponding to non-small eigenfunctions are zero,
one cannot expect the actual solution to the differential equation with a given initial
function to be small even though the equation may possess small solutions

Small solutions of linear delay differential equations obviously correspond to eigenvalues
close to the origin and therefore when we consider the eigenspectra our attention focuses on
the eigenvalues near the origin. In our previous work we needed to vary the magnification
of the eigenspectra near to the origin to suit the equation under consideration and we found
that we could then draw reliable conclusions. Even for those equations close to critical
parameter values where the property of having small solutions changes, our visualisation
methods were effective. As would be expected, one needs to use quite a small step length
in the numerical approximation to reflect accurately the true behaviour of the dynamical
system. We experimented with even smaller step lengths but found that this did not
improve detection even close to critical parameter values.

In section 2 we use the cartesian form of the eigenvalues in our consideration of a one
to one mapping between two ordered sets of eigenvalues. We illustrate how differences
between the results depend upon whether or not the problem admits small solutions. In
section 3 we show how using the polar form of the eigenvalues provides greater reliability
and motivates the the development of our algorithm.

In section 4 we introduce our algorithm and explain the underlying methodology. We
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consider its use and reliability and provide illustrative examples.

2 Using the cartesian form of the eigenvalues

2.1 The basic delay equation

We first restrict ourselves to equations of the form (2), (a simple case of (1)), which we
considered in our previous work (see [4]). It is well-known (see [11,13]) that if b(t) does
not change sign then equation (2) does not admit small solutions and in this case (2) and
(3) are equivalent.

ẋ(t) = b(t)x(t− 1) with b(t + 1) = b(t) (a non-autonomous problem). (2)

ẋ(t) = b̂x(t− 1) where b̂ =
∫ 1

0
b(t)dt (an autonomous problem). (3)

2.2 Fundamentals of our approach

We will use (discrete) numerical approximations to derive information about the exact
analytical properties of the underlying continuous equation. This is a normal approach
in cases where direct analysis does not yield the required information. However in the
analysis of delay equations in general and small solutions in particular, the approach
poses particular challenges and therefore we shall spend a little time here reviewing what
is already known and quoting a Theorem that justifies our methods.

As is well known, delay equations are infinite dimensional problems, requiring as they do
the specification of a function over an initial interval to derive a unique solution. The use
of a fixed step length numerical scheme to approximate the solution of the delay equation
results in a reduction of the dimension of the problem to some fixed finite order (depen-
dent on the step length chosen) and therefore the infinite dimensionality of the problem is
sacrificed. The existence of small solutions to an equation is an infinite dimensional prop-
erty and this cannot be precisely represented in the numerical approximation because of
this loss of dimensionality. Therefore one might surmise that a numerical method cannot
be used to detect the presence of small solutions. The major theme of the paper [8] is to
show that (perhaps surprisingly) numerical methods of this type can be used efficiently
in small solution detection.

The key idea is to consider whether the equations (2) and (3) are equivalent as dynamical
systems and we do this by considering how a numerical approximation would be used to
solve each equation. This means that we need to be concerned with the extent to which
we can rely on the numerical scheme to give a true representation of each of the dynamical
systems. Once we can be sure that the numerical scheme represents the dynamical systems
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faithfully then we can compare the eigenspectra of the two numerical schemes as a means
of comparing the eigenspectra of the underlying continuous problems. Reassurance on this
point is provided by the following Theorem:

Theorem 1 (see Theorem 3.1 of [8] and Theorem 3.2 of [10]) Apply a strongly stable
linear multistep method of order p ≥ 1 to the autonomous delay differential equation

y′(t) = αy(t− τ) (4)

with characteristic roots that satisfy

λ− αe−τλ = 0. (5)

For each fixed step length h = τ
m

> 0 the numerical method has a set Sh of m + 1
characteristic roots of the equation

λmρ(λ)− hασ(λ) = 0, (6)

where ρ(λ) and σ(λ) are, respectively, the first and second characteristic polynomials of
the linear multistep method being used. Let λ be a root of equation (5) and define dh to be
the distance given by

dh = mins∈Sh
|eλ − sm| (7)

then dh satisfies
dh = O(hp) as h → 0. (8)

This Theorem answers several key questions for us. Firstly it tells us that we should choose
a strongly stable linear multistep method for our approximation. Following experimen-
tation, we have chosen to use the trapezium rule. Secondly it tells us that characteristic
roots with large negative real parts in the continuous case will show up as roots close to
the origin for the discrete problem. Finally it tells us that, in the limit as h → 0 we shall
recover the countably infinite set of characteristic roots of the underlying continuous prob-
lem. As we shall see later, we use the idea of the limiting process in our decision-making
by considering several different small values of h.

2.3 Examples of eigenspectra from our previous work

We have successfully detected the presence of small solutions to (2) by comparing the
eigenspectra arising from discretisations of (2) and (3). In our diagrams we use ‘+’ and
‘*’ to indicate the eigenspectra arising from the non-autonomous problem and the au-
tonomous problem respectively.

When small solutions are not present we expect the eigenvalue trajectory arising from
the discretisation of the non-autonomous problem (2) to lie close to that arising from
the equivalent autonomous problem (3). In fact, we can go further. When there are no
small solutions, the (exact) characteristic values all lie on one curve (see [8]. Therefore
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the existence of more than one trajectory of characteristic values can be taken to imply
the presence of small solutions. The left-hand eigenspectra in Figure 1 are illustrative
of the case where no small solutions are present. When (2) admits small solutions the
two problems cannot be regarded as equivalent and we observe clear differences in the
eigenspectra. We take the presence of closed loops to indicate that the equation admits
small solutions and illustrate this in the right-hand eigenspectra of Figure 1. Further
examples can be found in [4,5].
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Fig. 1.
Left: The eigenspectra are very similar. The equation does not admit small solutions. The two
problems are equivalent.
Right: Clear differences in the eigenspectra are visible. The equation admits small solutions. An
equivalent autonomous problem does not exist

Our aim now is to see how the process of distinguishing the different cases from the figures
can be automated.

2.4 Applying a numerical method

We obtained the eigenspectra in Figure 1 using the following approach: we applied a
numerical method (the trapezium rule, in this case) with step-length h = 1

N
to (2) to give

an equation for yn+1 of the form

yn+1 = A(n)yn, (9)

5



where A(n), with A(n) = A(n − N) for all n > N , is a companion matrix (see [4]). It
follows that

yn+N = Cyn, for n = 1, 2, ... (10)

where

C =
N∏

i=1

A(N − i). (11)

In the autonomous problem (3) A(n) = A is a constant matrix. This leads to a comparison
of the eigenvalues of C with those of AN .

We introduce
Λ1 = {eigenvalues of C} = {z1,j, j=1, 2,...,N+1 : z1,j is an eigenvalue of C with |z1,j| ≥
|z1,j+1|and if |z1,j| = |z1,j+1| then arg(z1,j) < arg(z1,j+1)}.
Λ2 = {eigenvalues of AN} = {z2,j, j=1, 2,...,N+1 : z2,j is an eigenvalue of ANwith |z2,j| ≥
|z2,j+1|and if |z2,j| = |z2,j+1| then arg(z2,j) < arg(z2,j+1)}.

We examine whether the two (ordered) sets of eigenvalues, Λ1 and Λ2, arise from equivalent
problems.

When the two problems are equivalent, that is equation (2) does not admit small solu-
tions, then we expect each eigenvalue arising from discretisation of (2) to approximate
an eigenvalue arising from discretisation of (3). The approximation should improve as the
step size decreases (and the dimensionality of the problem increases).

We concentrate for the moment on the case where the two problems are equivalent. Let
z1,j = x1,j + iy1,j, z2,j = x2,j + iy2,j. We set up a one-one mapping between these two
sets of eigenvalues (after choosing the ordering as above) and, for j = 1, ..., N + 1 we

evaluate the usual distances dj where dj =
√

(x2,j − x1,j)2 + (y2,j − y1,j)2. We expect the

improvement in the approximation as the step size decreases to be reflected in measures
of location and dispersion of the distribution of the dj. As the step length decreases we
expect the values of dj to tend to zero.

Now we apply some basic statistical methods in our analysis of the dj. We use the mean,
standard deviation, skewness and kurtosis. Skewness reflects the degree to which a distri-
bution is asymmetrical. Kurtosis reflects the degree to which a distribution is ‘peaked’,
providing information about the height of the distribution relative to the value of its stan-
dard deviation. Now it is quite clear, from looking at the figures, that when there are no
small solutions, the values of all the dj should satisfy dj → 0 as h → 0 while when there
are small solutions present, the ordering will match up the wrong pairs and so dj 6 →0
for some j. We explore whether differences (in the shape of the distributions of the dj)
according to whether the problem admits small solutions can be identified easily through
calculations of mean, standard deviation, skewness or kurtosis.
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2.5 Examples

Example 2.1 We consider first the distributions of the distances dj for equation (2) with
b(t) = sin(2πt)+c for different values of c and as h = 1

N
varies. In this case small solutions

are known to arise if and only if b(t) changes sign on [0, 1], that is, if and only if |c| < 1
([11]). In Figure 2 the box plots illustrate the cases c = 0.5 and c = 1.5. In both cases we
observe a decrease in the range of values of dj and in the median value as the step size
decreases. The interquartile range is seen to decrease steadily as the step length decreases
when small solutions are not admitted but the situation is less clear when c = 0.5 and the
equation admits small solutions.

Value of N
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Fig. 2. A Comparison of the Distributions of the dj for varying values of N , with (left) c = 1.5
and (right) c = 0.5

There is a prima facie case for arguing that the distributions show clearly distinct be-
haviour in the two cases. Where there are small solutions both the mean and standard
deviation are much larger in every case than in the corresponding plots for the problem
without small solutions. Therefore we propose to investigate whether one can impose a
threshold (which may be dependent on N) leading to the automatic detection of small
solutions in this way.

As the step length decreases we expect the mean and standard deviation of the distribution
of the dj to decrease. This is evidenced in Figure 3 which shows the ninety-five per cent
confidence intervals for the mean value of the distance between corresponding eigenvalues
in Λ1 and Λ2 for b(t) = sin(2πt)+ c and c = 0.5, 1.5. We observe the much wider intervals
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and higher value for the mean when small solutions are present.

Value of N
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Fig. 3. The 95% Confidence interval for the mean distance between corresponding eigenvalues
for varying values of N , with c = 0.5 and c = 1.5.

Example 2.2 Figures 4 and 5 illustrate differences in the distributions of the dj for
different values of c, dependent upon whether or not |c| < 1. Again, a much greater
variation in the values of dj is observed for values of c for which the equation admits
small solutions. When c = 0 almost all solutions are small. In Figure 4 we observe an
increase in both the presence of outliers and in the mean distance as c approaches 0.

However, Figures 4 and 5 also show the limitations of using the distribution of the dj as the
basis for making decisions. If we look at the values of c close to the critical values of ±1 we
observe that there are very similar distributions of dj on either side of the boundary and
that therefore it will be difficult to draw any reliable conclusions using either a threshold
for the mean or one for the standard deviation of the dj.

Example 2.3 In Tables 1 and 2 we present the values of the kurtosis and skewness of
the distribution of the dj for varying values of c. Values of c equal to -1.5, 1.1. 1.5 and
3 correspond to problems which do not admit small solutions and in this case we observe
similar values for different values of the step-length. Values of c of -0.5, 0.1 and 0.5
correspond to problems which admit small solutions. The situation here is very different.
Considerable variation is observed for different step lengths. The evidence in favour of a
one-one correspondence between the ordered sets of eigenvalues, Λ1 and Λ2 turns out to
be weak.
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Fig. 4. Distribution of dj for different values of c
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Fig. 5. 95% Confidence intervals for the mean distance between corresponding eigenvalues for
different values of c

Remark 2.1 When N is even we have chosen to disregard the one real eigenvalue of each
of the matrices C and AN since it is an outlier for the distribution and has the potential
to affect the conclusions which we may be able to draw.
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Value of the constant c

N -1.5 -0.5 0.1 0.5 1.1 1.5 3

20 -0.9805 -1.3494 -0.8987 -1.0654 -0.7645 -1.0068 -1.1627

40 -1.1103 -0.8628 -1.1396 -0.3964 -1.0624 -1.1287 -1.1593

60 -1.1212 -0.1906 -1.2311 -0.7312 -1.0962 -1.1307 -1.1397

80 -1.1170 -0.4978 -0.5819 0.1171 -1.0981 -1.1227 -1.1256

100 -1.1110 0.1868 -0.5294 -0.8360 -1.0940 -1.1145 -1.1157

120 -1.1053 -0.8658 0.9663 -0.8150 -1.0890 -1.1080 -1.1080
Table 1
Values of the kurtosis of the distribution of dj for different values of c and N

Value of the constant c

N -1.5 -0.5 0.1 0.5 1.1 1.5 3

20 -0.4977 -0.1484 -0.4673 0.1665 -0.5702 -0.4754 -0.4248

40 -0.4647 0.4142 -0.3549 0.5712 -0.4866 -0.4565 -0.4487

60 -0.4682 0.6600 0.1157 0.4281 -0.4840 -0.4642 -0.4626

80 -0.4736 0.7745 0.6337 0.7630 -0.4883 -0.4713 -0.4710

100 -0.4780 0.8656 0.8861 0.6758 -0.4926 -0.4766 -0.4764

120 -0.4814 0.6019 1.3091 0.6755 -0.4963 -0.4804 -0.4801
Table 2
Values of the skewness of the distribution of dj for different values of c and N

Finally in this section we consider the use of Spearman’s rank-order correlation coeffi-
cient to help us determine the degree to which a monotonic relationship (increasing or
decreasing) exists between the two variables |z1,j| and |y1,j| (see [12] for example). A visual
comparison of the eigenspectra indicates that, for the equations we are considering, the
relationship between the magnitude of the eigenvalue and the magnitude of the imagi-
nary part would be expected to be monotonic when the equation does not admit small
solutions, but not otherwise. We explore in the examples below whether the (automatic)
calculation of an appropriate Spearman’s rank correlation coefficient can reliably answer
the question ‘Does an equation admit small solutions?’

Remark 2.2 This approach, if it was successful, would be extremely attractive. Notice
that the calculation of the statistic involves calculations only in terms of features of
the eigenspectrum of the original delay differential equation under discretisation, and no
longer relies on the computation of eigenspectra for an equivalent autonomous problem.
For more general equations, we might be unable to write down an equivalent autonomous
problem (for many equations, the formula is unknown analytically) yet this type of method
would remain applicable.

In Table 3 we present values of Spearman’s rank correlation coefficient between the mag-
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nitude of the eigenvalue and the magnitude of its imaginary part for the non-autonomous
equation (2), with b(t) = t − 0.5 + c, b(t + 1) = b(t), and for the autonomous equation

(3) with b̂ = c. For this example small solutions are admitted if |c| < 0.5. We observe
that the relationship is monotonic when small solutions are not admitted. A similar pat-
tern emerged for other b(t), including b(t) = sin 2πt + c, b(t) = t(t − 0.5)(t − 1) + c and
b(t) = sin 2πt + t(t− 0.5)(t− 1).

(non-autonomous) (autonomous) (non-autonomous) (autonomous)

c rs rs c rs rs

-1 1 1 0.1 0.871913 1

-0.9 1 1 0.2 0.893179 1

-0.8 1 1 0.3 0.935066 1

-0.7 1 1 0.4 0.967120 1

-0.6 1 1 0.5 1 1

-0.5 1 1 0.6 1 1

-0.4 0.954099 1 0.7 1 1

-0.3 0.851343 0.961307 0.8 1 1

-0.2 0.845831 0.963283 0.9 1 1

-0.1 0.836725 0.962309 1.0 1 1

0 0.829479 1
Table 3
Values of Spearman’s rank-order correlation coefficient between the magnitudes of the eigenval-
ues and their imaginary part using the eigenvalues of (2) with b(t) = t− 0.5 + c and c varying

For those cases where c is chosen far from the critical value where small solutions appear
the calculations provide some indication of their presence. However we can see quite clearly
that close to the boundary, Spearman’s rank correlation co-efficient does not provide the
sensitivity we need to make predictions.

In conclusion, in this section we have reviewed the elementary statistics that could be
calculated to determine whether small solutions arise for a particular problem. While the
approaches we have considered provide useful insight, they are (somewhat unexpectedly)
poor tools for distinguishing cases close to the critical values, and therefore we explore a
quite different approach in the next section.

3 Insight from visualisation: consideration of the eigenvalues in polar form

Based on our experimental results (see [4–7]), we believe that results arising from the use
of the polar form of the eigenvalues might be more easily extended to other classes of
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equation, in particular to equations of the form ẋ(t) =
∑m

j=0 bj(t)x(t − jw) and to those
higher dimensional systems when the eigenvalues of A(t) in equation y′(t) = A(t)y(t −
1) are always real. Therefore we are motivated, both by the disappointing outcome of
the investigation described in the previous section and the desire to produce a widely
applicable algorithm, to consider the polar form.

When the analytical theory tells us that there should be small solutions, we have observed
consistently some of the eigenvalues arising from discretisation of the non-autonomous
problem lying close to the real axis and others lying on the negative real axis ([9]). In
our work, (see [4,5]), we used the presence of closed loops that cross the x-axis to be
characteristic of the cases where small solutions arise. We observe that the sizes of the
arguments of the eigenvalues whose representation forms the ‘additional’ trajectory lie
closer to 0 or 2π than those represented in the trajectory lying close to that arising from
the autonomous problem. We use this idea as a basis for developing our method:

We use z1,j and z2,j as defined in section 2.4 and introduce
M1 = {α1,j : α1,j = arg(z1,j), j = 1, 2, ..., N + 1}.
M2 = {α2,j : α2,j = arg(z2,j), j = 1, 2, ..., N + 1}.
L1 = {α : 0 ≤ α < 0.5, α = |α1,j|, α1,j ∈ M1}.
L2 = {α : 3 < α ≤ π, α = |α1,j|, α1,j ∈ M1}.

We focus our interest on the distribution of α = {|α1,j| : α1,j ∈ M1} for α lying in the
intervals [0, 0.5], (0.5, 1.0], (1.0, 1.5], (1.5, 2.5], (2.5, 3.0], (3.0, π].

Decreasing the step length from 1
N1

to 1
N2

increases the dimensions of the matrices C

and AN and leads to the calculation of N2 + 1 eigenvalues instead of N1 + 1 eigenvalues.
We consider the question ‘Where does the larger set of eigenvalues lie in relation to the
previous set of eigenvalues?’. We investigated a range of step-lengths, observing where the
additional eigenvalues fitted into the distribution and whether this depended upon the
presence, or otherwise, of small solutions.

3.1 Mathematical basis for the algorithm

There is a simple mathematical justification for our approach. It is straightforward to
show that only one characteristic value (the real root itself) of the autonomous problem
lies close to the real axis (see, for example, [2] p. 305-316). We apply the approach in [10]
to show that for the numerical scheme, as h → 0, there will be only a single characteristic
root close to the real axis. Therefore an equation without small solutions should have
characteristic roots all but one of which lie away from the real axis. Thus when we detect
more than one characteristic root in a neighbourhood of the real axis, this is sufficient to
indicate the presence of small solutions.
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3.2 Numerical Results

In the case when (2), with b(t) = sin 2πt + c, does not admit small solutions then, for
h ≥ 1

300
, all the additional eigenvalues have arguments whose magnitudes lie in the range

0.5 to 2.5. This is not the case when (2) admits small solutions and we illustrate this
difference in Tables 4 and 5. We note also that in Table 4 where the problem does not
admit small solutions we observe no values of α > 2.5, but in Table 5, when small solutions
are possible, we observe values of α > 2.5 for all values of N .

N α < 0.5 0.5 < α < 1.0 1.0 < α < 1.5 1.5 < α < 2.5 2.5 < α < 3.0 3 < α ≤ π

30 1 2 26 2 0 0

60 1 2 56 2 0 0

90 1 4 52 34 0 0

120 1 4 48 68 0 0

150 1 4 48 98 0 0

300 1 4 48 248 0 0

500 3 2 50 446 0 0

1000 3 4 54 940 0 0
Table 4
Distribution of |argument| of the eigenvalues for c = −1.4. No small solutions are present.

N α < 0.5 0.5 < α < 1.0 1.0 < α < 1.5 1.5 < α < 2.5 2.5 < α < 3.0 3 < α ≤ π

30 15 0 0 0 2 14

60 30 0 0 2 18 11

90 25 18 0 18 20 10

120 20 38 0 40 14 9

150 19 40 12 54 18 8

300 18 26 98 136 12 11

500 16 24 196 240 16 9

1000 18 20 432 498 24 9
Table 5
Distribution of the |argument| of the eigenvalues for c=0.1. Small solutions are present.

We now consider equation (2) with b(t) = sin 2πt + c for a range of values of c. In this
case the critical values of c are when c = ±1. In Table 6 we present the number of
eigenvalues of C for which the magnitude of the argument lies in each specified range
and, in brackets, the corresponding figure for AN . The divisions in the table effectively
discriminate between the middle section where |c| < 1 and the non-autonomous equation
admits small solutions and the other cases where small solutions are not present. It is
clear that for equations of the form (2) which admit small solutions then the two sets of
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figures are very dissimilar. We observe that (using h = 1
128

):

(1) n(L2) = 0 and n(L1) = 1 except near the critical functions when c = ±1.
(2) Near the critical functions when c = ±1 at least one of the statements n(L2) =

0, n(L1) = 1 is true.

Further detailed experimentation leads us to present the following tool as the basis on
which our program makes the decision between small solutions and no small solutions.

Decision Tool 3.1 Let M1 be the set of eigenvalues arising from discretisation of x′(t) =
b(t)x(t− 1), b(t + 1) = b(t) using the trapezium rule (as in section 2.4). and define
L1 = {α : α ∈ M1, 0 ≤ |α| < 0.5},
L2 = {α : α ∈ M1, 3 < |α| ≤ π}.

When the equation x′(t) = b(t)x(t− 1), b(t+1) = b(t) does not admit small solutions then
at least one of the following statements is true:

(1) L2 = φ (or n(L2) = 0)
(2) n(L1) = 1.

It is worth mentioning that we have also considered the distribution of the magnitudes
of the arguments of the eigenvalues after discretisation using the backward Euler and
forward Euler methods. The shape of the distributions differed from that obtained using
the trapezium rule but distinguishing between problems which admitted small solutions
and those for which an equivalent autonomous problem exists can be achieved using a
similar approach to that described here and it is just as effective.

4 Introducing the Program

The program ‘smallsolutiondetector1’ is written to answer the question ‘Does an equation
of the form

x′(t) = b(t)x(t− p), b(t + p) = b(t) (12)

admit small solutions?’ The program allows the user to detect small solutions to equations
of the form (12) but actually transforms that equation to an equation of the form

y′(t) = b1(t)y(t− 1), b1(t + 1) = b1(t) (13)

using the transformation b1(t) = pb(pt). This transformation is internal to the program
and transparent to the user.

The methodology underlying the algorithm is based on Decision Tool 3.1. We use the
term critical function to refer to a function at the bifurcation point when the behaviour
of the equation changes from admitting small solutions to not admitting small solutions
and vice-versa. The program consists of the following stages:
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(1) The user is asked to state the period/delay and to input their function b(t).
(2) The eigenvalues of the matrix C, with C as defined in section 2.4, are calculated.
(3) The numbers of these eigenvalues with arguments lying in the intervals [0, 0.5) and

(3, π] are calculated. The algorithm refers to these numbers as n1 and n6 respectively.
(4) If n6 = 0 we conclude that the equation does not admit small solutions.
(5) If n6 > 0 we also consider the value of n1.

(a) If n6 > 0 and n1 = 1 we conclude that the equation does not admit small
solutions but the user is warned that their function is near to a critical function.

(b) If n6 > 0 and n1 > 1 we conclude that the equation admits small solutions.
(c) We note that, to date, we have not experienced the situation when n6 > 0 and

n1 = 0. If this case does arise then the user is informed that a decision cannot
be made using the algorithm.

We have considered the reliability of our algorithm with paricular reference to the decisions
made near a critical function. In Table 7 we show, for three different b(t), the value of c
at which the algorithm’s decision changes and the absolute difference between that value
and the theoretically correct value to eight decimal places.
We make the following observations for the step lengths that we have considered:

(1) For b(t) = sin(2πt) + c the error is zero to 8 decimal places.
(2) For b(t) = t − 0.5 + c the reduction in the error as the step length h decreases is of

order h.
(3) For b(t) = t(t− 0.5)(t− 1) + c the error is at most of the order of 10−5.

The algorithm we present is based on months of experimentation and refinement. It would
be attractive to base the algorithm purely on the number of eigenvalues with magnitude
lying in (3, π], a result of 0 implying that the equation does not admit small solutions
and a value > 0 implying that the equation admits small solutions. The magnitude of
the errors was considered in a similar way to that in Table 7. However, including the
number of eigenvalues with magnitudes less than 0.5 in the decision-making process led
to a significant increase in the reliability of our algorithm in detecting the presence of
small solutions.

A modified algorithm is also available. It provides even greater reliability than before,
but at the cost of additional time in calculating the outcome. Essentially it is based on
the idea that if the decision is not very clear for a particular equation, then it is worth
recalculating for neighbouring problems to see whether the combination of results provides
greater clarity of decision. The modified algorithm repeats the decision-making process
outlined above, but this time with each of the three functions b(t) and b(t)± ε. For each
of the three functions the program decides whether the equation admits small solutions.
Three decisions are possible for each of the three functions. We will refer to these decisions
as:

Yes: The equation admits small solutions.
No: The equation does not admit small solutions.
No/Near: It is unlikely that the equation admits small solutions but you are near to a

critical function.
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The algorithm considers all 27 possibilities and a decision is made for the function b(t)
dependent on the decisions using the nearby functions b(t)± ε. The user can choose their
own value of ε, referred to in the program as the tolerance, or use the pre-selected value
of ε. The decisions made by the algorithm are reflected in Table 8.

If the user chooses to run the modified algorithm the program then compares the two
answers produced. A re-run of the modified algorithm with a reduced tolerance, (pre-
selected or of the user’s own choice), is advised when appropriate. The user can elect
whether or not to accept the advice.

4.1 Illustrative Examples

Example 4.1 Input: period = 1, b(t) = t(t−0.5)(t−1)
1000

The algorithm decides that the equation admits small solutions. Running the modified
algorithm with the specified tolerance results in the advice to re-run the modified algorithm
with a reduced tolerance. Re-running the modified algorithm with the tolerance reduced by
a factor of 10 results in confirmation of the first decision. We can see from figure 6 that
adjusting the function by a constant amount of 0.0001 will result in a function which does
not change sign, hence the advise to reduce the tolerance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5
x 10

−5

Fig. 6. Graph of b(t) = t(t−0.5)(t−1)
1000 on [0, 1]

Example 4.2 Input: period = 4, b(t) = t− 3.5, the decision is that the equation admits
small solutions.
Input: period = 3, b(t) = t − 3.5, the decision is that the equation does not admit small
solutions.
In this case b(t) changes sign when t=3.5, hence when we force the period to equal 3 there
is no change of sign.
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Example 4.3 In examples 4.1 and 4.2 the decision was easily predictable. If

b(t) = sin(πt)− e0.4t + log(2.6t + 0.1)− t

2 + 4t

the decision is less obvious. The algorithm returns a decision that the equation admits
small solutions. This result is confirmed by the graph of b(t) in figure 7.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
−3.5
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−2.5
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−1.5

−1

−0.5

0

Fig. 7. Graph of b(t) = sin(πt)− e0.4t + log(2.6t + 0.1)− t
2+4t on [0, 4.3]

5 Summary

We have developed and tested an algorithm which automates the decision concerning the
existence, or otherwise, of small solutions to the equation x′(t) = b(t)x(t− p), with b(t +
p) = b(t). Consideration has been given to its reliability and any reservations about the
decision are communicated to the user.

The algorithm extends immediately to the multi-delay equation of the form

x′(t) =
m∑

j=0

b0(t)x(t− jw). (14)

The mathematical justification for this extension is based on the Floquet theory which can
be used to show that the underlying dynamics of the multi-delay equation are equivalent
to those of a single delay equation (see, for example, [6]).

Good progress has also been made in the extension of the program to certain systems of
delay equations of the form

y′(t) = A(t)y(t− 1). (15)

However further work is needed before this can be fully automated.
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c α < 0.5 0.5 < α < 1.0 1.0 < α < 1.5 1.5 < α < 2.5 2.5 < α < 3.0 3 < α ≤ π

-1.5 1 (1) 4 (4) 46 (40) 78 (84) 0 (0) 0 (0)

-1.4 1 (1) 4 (4) 48 (42) 76 (82) 0 (0) 0 (0)

-1.3 1 (1) 4 (4) 52 (44) 72 (80) 0 (0) 0 (0)

-1.2 1 (1) 4 (4) 60 (44) 64 (80) 0 (0) 0 (0)

-1.1 1 (1) 4 (4) 68 (48) 56 (76) 0 (0) 0 (0)

-1.0 4 (1) 6 (4) 74 (48) 45 (76) 0 (0) 0 (0)

-0.9 16 (1) 4 (4) 60 (48) 30 (76) 0 (0) 19 (0)

-0.8 24 (1) 4 (4) 62 (50) 12 (74) 14 (0) 13 (0)

-0.7 30 (1) 4 (4) 62 (52) 0 (72) 22 (0) 11 (0)

-0.6 28 (1) 14 (6) 50 (52) 0 (70) 28 (0) 9 (0)

-0.5 26 (1) 20 (6) 40 (54) 12 (68) 22 (0) 9 (0)

-0.4 26 (3) 26 (4) 30 (56) 18 (66) 20 (0) 9 (0)

-0.3 24 (3) 32 (4) 22 (60) 26 (62) 16 (0) 9 (0)

-0.2 20 (3) 38 (4) 16 (68) 28 (54) 20 (0) 7 (0)

-0.1 20 (5) 44 (2) 6 (78) 34 (44) 18 (0) 7 (0)

0 18 (1) 46 (0) 0 (0) 40 (128) 20 (0) 5 (0)

0.1 18 (1) 42 (0) 0 (0) 42 (126) 18 (2) 9 (0)

0.2 18 (1) 38 (0) 0 (0) 44 (126) 18 (2) 11 (0)

0.3 20 (1) 32 (0) 0 (0) 50 (126) 16 (2) 11 (0)

0.4 20 (1) 28 (0) 0 (0) 48 (126) 22 (2) 11 (0)

0.5 22 (1) 16 (0) 0 (0) 52 (126) 26 (2) 13 (0)

0.6 22 (1) 16 (0) 0 (0) 52 (126) 26 (2) 13 (0)

0.7 30 (1) 4 (0) 0 (0) 64 (126) 20 (2) 11 (0)

0.8 28 (1) 0 (0) 0 (0) 76 (126) 14 (2) 11 (0)

0.9 20 (1) 0 (0) 0 (0) 92 (126) 4 (2) 13 (0)

1.0 1(1) 0 (0) 0 (0) 123 (126) 2 (2) 3 (0)

1.1 1(1) 0 (0) 0 (0) 126 (126) 2 (2) 0 (0)

1.2 1(1) 0 (0) 0 (0) 126 (126) 2 (2) 0 (0)

1.3 1(1) 0 (0) 0 (0) 126 (126) 2 (2) 0 (0)

1.4 1(1) 0 (0) 0 (0) 126 (126) 2 (2) 0 (0)

1.5 1(1) 0 (0) 0 (0) 126 (126) 2 (2) 0 (0)
Table 6
The distribution of the magnitudes of the arguments of the eigenvalues, α, arising from discreti-
sation of (2) and (3) with b(t) = sin 2πt + c for different values of c19



b(t) = sin(2πt) + c b(t) = t− 0.5 + c b(t) = t(t− 0.5)(t− 1) + c

CV c = 1 c = 1
2 c =

√
3

36

N Actual |Error| Actual |Error| Actual |Error|
32 1 0 0.46875000 0.03125 0.04806519 0.00004733

64 1 0 0.48437500 0.015625 0.04806519 0.00004733

96 1 0 0.48958333 0.01041667 0.04810475 0.00000777

128 1 0 0.49218750 0.0078125 0.04811239 0.00000013

160 1 0 0.49375000 0.00625 0.04811133 0.00000119
Table 7
Values of c at which the decision changes
NB. CV = the value of c which gives the critical function.
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Decision: Re-run algorithm

b(t)− ε b(t) b(t) + ε Does the equation with a

admit small solutions? reduced tolerance?

Yes Yes Yes Yes

No/Near Yes Yes Very Likely

No Yes Yes Very Likely

Yes Yes No/Near Very Likely

Yes Yes No Very Likely

No/Near Yes No/Near Likely

No Yes No/Near Likely Yes

No/Near Yes No Likely Yes

No Yes No Likely Yes

Yes No/Near No Unlikely Possibly

No/Near No/Near No Very Unlikely

No/Near No/Near NoNear Unlikely

No/Near No/Near Yes Unlikely

Yes No/Near Yes Very Unlikely Yes

Yes No/Near No/Near Very Unlikely

No No/Near Yes Very Unlikely

No No/Near No/Near Very Unlikely

No No/Near No Unlikely Yes

No No No No No

No/Near No No Very Unlikely Yes

No No No/Near Unlikely Yes

Yes No No Very Unlikely Yes

No No Yes Unlikely Yes

Yes No No/Near Unlikely Yes

No/Near No No/Near Very Unlikely No

No/Near No Yes Unlikely Yes

Yes No Yes Unlikely Yes
Table 8
Decisions made using the modified algorithm
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