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Abstract:
Cassava is a strategic crop, especially for developing countries. However, the presence of cyanogenic com-
pounds in cassava products limits the proper nutrients utilization. Due to the poor availability of structure
discovery and elucidation in the Protein Data Bank is limiting the full understanding of the enzyme, how to
inhibit it and applications in different fields. There is a need to solve the three-dimensional structure (3-D) of
linamarase from cassava. The structural elucidation will allow the development of a competitive inhibitor and
various industrial applications of the enzyme. The goal of this review is to summarize and present the available
3-D modeling structure of linamarase enzyme using different computational strategies. This approach could
help in determining the structure of linamarase and later guide the structure elucidation in silico and experi-
mentally.
Keywords: linamarase, cassava, structural determination, computational strategies
DOI: 10.1515/psr-2019-0098

1 Introduction

Cassava (Manihot esculenta Crantz) (Euphorbiaceae), also known as mandioca, yucca, tapioca or manioc. It is the
leading supplier of energy ranked after rice and corn [1]. It is the most grown crop in the tropics and subtropics
regions. The tuber is the primary source of carbohydrate while leaves provide protein as a vegetable. About
105 countries grow cassava as a strategical crop against famine since it can sustain and produces in drought
and poor soil, can stay within the farm and be harvested at the time of demand [2]. The roots are the primary
source of carbohydrate while leaves provide vitamins, minerals, and protein, as well as a vegetable that is
available throughout the year. The leaves have high crude protein, and the amino acids, which are well balanced
and its amount is beyond the minimal amount recommended by the Food and Agriculture Organization [2].
Leaves also have various minerals like iron, zinc, manganese, magnesium and calcium, vitamin B1, B2, C and
carotenoids [2, 3], The combination of cassava roots and leaves can provide a meal with almost all essential
dietary needs.

All body parts of the cassava except seeds contain cyanogenic glucosides compounds known as linamarin
and lotaustralin. Linamarase hydrolyses these compounds to hydrogen cyanide as the main product [4]. There
are about 5,000 varieties of cassava; all of them are known to contain cyanogenic glucosides which range from
10 to 500 mg HCN/kg. Based on the amount of hydrogen cyanide (HCN) released, cassavas are classified into
three groups: group one those with greater than 100 mg HCN/kg are called very bitter and very toxic, group

Lucas Paul is the corresponding author.
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two those with between 50 to 100 mg HCN/kg are regarded as moderate bitter and moderate toxic while those
with less than 50 mg HCN/kg are sweet cassava [5].

Cyanogenic glucosides are mainly composed of Linamarin (95%) and Lotaustralin (5%) [6], enzymatic hy-
drolysis of cyanogenic glucosides by linamarase is initiated by any physical damage of cassava tissue this allows
interaction between enzyme from cell wall which is physically separated from substrate found in cell vacuole so
are not compartmentalized [7]. Interaction between enzymes and substrate (mainly Linamarin) start by the re-
lease of glucose and acetone cyanohydrin at pH > 4 and temperature >35 °C is converted to hydrogen cyanide
[8], Figure 1. The presence of hydroxynitrile lyase (HNL) helps to complete the reaction of acetone cyanohydrin
to cyanide. This enzyme is highly available in cassava leaves and very little in the roots [9]. The study by [10]
has reported that processed cassava flours contain high levels of acetone cyanohydrin but little linamarin or
HCN, this is due to the little amount of HNL in the roots, which brings about this accumulation.

Figure 1: A complete enzymatic reaction between linamarase and linamarin.

Linamarin is a chemically stable compound, soluble in water and resists boiling in acid. Acetone cyanohydrin is
also soluble in water and has a boiling point of 82 °C. But, HCN is a volatile compound, which evaporates only at
27 °C so volatilize at ambient temperature. So for effective processing techniques to be useful, we should reduce
cyanogens to a safe level. The methods should maximize cassava tissue rupture to ensure effective enzyme-
substrate interaction, to release acetone cyanohydrin and finally, volatile cyanide [11, 12].

The potential concentration of HCN determines the toxicity of the cyanogenic product consumed. If inad-
equately processed food is ingested, the HCN concentration is expected to be high within the body. For the
toxicity of cyanogens depends on the following factors:

a. Unsufficient processing of plant which causes linamarin or HCN to remain in the food.

b. When raw cassava is consumed or insufficiently processed cassava product.

HCN, when released continuously until when low pH value from the stomach, deactivates the enzyme (lina-
marase). Cyanide ingested into the body always follows the metabolic pathway of detoxification, whereby
rhodanese works by converting it to thiocyanide which later excreted in the urine [13]. When HCN ingested
in the body gets absorbed quickly into the blood and combines with all forms of iron (methemoglobin and
hemoglobin) which are present in erythrocytes [14]. The body eliminates the toxic cyanide by using the en-
zyme rhodanese, which contains an active disulfide group. It works by reacting with thiosulphate and cyanide,
which converts cyanide to excretable thiocyanate, for this process to be complete sulfur donors that usually is
provided by dietary sulfur amino acids are highly required [15, 16]. HCN binds to the Fe3+/Fe2+ present in
cytochrome and inactivates its activity.

This HCN inhibits the oxygen uptake and then causes glucose and lactic acid accumulation and deficiency
of Adenosine triphosphate (ATP)/adenosine diphosphate (ADP), which brings the body to anaerobic instead
of aerobic respiration [17]. HCN in the body inhibits many enzymatic reactions; if they contain iron, copper
or molybdenum and its effect is highly and immediately appreciated in the respiratory system and heart. The
amount recommended for cassava products, should not exceed 10 mg HCN/kg [4]. Any consumption of cas-
sava products beyond the recommended amount can cause the following health problems vomiting, nausea,
diarrhoea, dizziness, headache, stomach pains and sometimes death.

Linamarase is among the β-glucosidase belonging to the GH1 family which can convert glucosyl group from
a glycoside (nonreducing) or carbohydrate by hydrolysis resulting in water or by transglycosylation gives alco-
hol. It has the (β/α)8 barrel structure, the properties of acid-base catalysis and the nucleophilic are contributed
by the two carboxylic acid residues at β-strands 4 and 7 [18]. One most crucial property of linamarase which
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differentiate it from other GH1 family is the ability to effectively catalyze the transglycosylation using primary,
secondary and tertiary alcohol as acceptors [19]. However, cannot synthesize oligosaccharides and glycosides
by reverse hydrolysis [20].

The detailed crystal structure of enzyme linamarase is still lacking [21]. The only effort has been done is
to obtain function active-site amino acid residues, which has been modeled using homology modeling by the
MODELLER9v4 program (Figure 2) [22]. In the study by [21], they modeled the residues which are likely to
be involved in the activity of dalcochinase in an effort to identify the amino acids which bring about enzyme
specificity as compared to linamarase which have 47% sequence similarities.

Figure 2: The generated three-dimensional models by MODELLER 9v4 of dalcochinase and Wild-type linamarase mu-
tant’s (1185A/N189F/V255F) (adapted from reference [22]).

There is the inclusion of linamarin in the 1185A/N189F/V255F mutant of dalcochinase as well as linamarase
models. The catalytic acid/base (E198) and nucleophile (E413) of linamarase are shown in pink its docked
linamarin is in yellow. The residues of linamarase and its docked linamarin are shown in green adopted from
[22].

This review describes the computational approach toward the development of linamarase inhibitor, which
is more competitive than natural substrate linamarin. For the development of linamarase inhibitor, we need first
to develop in silico model structure of the enzyme (linamarase) by homology modeling. Then steps to discover
the best and stable inhibitor, this will involve virtual screening (VS), molecular docking and finally, molecular
dynamics. The details of these steps are analyzed below.

2 Determination of the three-dimension linamarase structure prediction

Generally, there are several computational methodologies and algorithms which are currently used to solve the
problems of three-dimensional (3-D) structure of the protein which have not yet experimentally determined.
The only available information is the sequence of amino acid, these provide essential information that relates
to the 3-D macromolecules structures which are obtained by the experimental method like Protein Crystallog-
raphy (X-ray diffraction), electron microscopy or nuclear magnetic resonance (NMR) [23]. There are four main
methods that can be used as an approach of obtaining the linamarase 3-D structure these include the following.

2.1 Method without database information

The method uses the ab initio method which uses the concept from thermodynamics assuming all native protein
structure always corresponds to the global minimum free energy [24–26]. Here, it does not use the structural
templates from a database like Protein Data Bank (PDB). It mainly considers the potential energy functions in
integrating the parameters of all atoms. The general goal is to obtain a global minimum free energy that corre-
sponds to the native protein [26–28]. Using this approach, we can predict the new folds, since it is not limited to
template from PDB. This principle uses the following simulation package; AMBER (Assisted Model Building
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with Energy Refinement) [29, 30], CHARMM (Chemistry at HARvard Molecular Mechanics) [31], UNRES [32],
GROMACS (Groningen Machine for Chemical Simulation) [33], TINKER (Software tools for Molecular Design)
[34].

2.2 Methods with database information

The starting point here is the 3-D protein structure is obtained from the database, and it compares the fragments
of the target sequences to that of known protein. The short amino acid sub-sequence of the target structure
against the known protein’s structure fragments [35]. The newly discovered protein structure will be composed
of a similar structure of motifs like the known protein. Therefore, this method is based on fragments of amino
acid sequence with a different motif which, when combined, they form the 3-D protein structure [26]. The
homology fragments are used for finding the structures which are achieved through scoring functions and
algorithm optimization to get the structure with the lowest potential energy [36]. The fragment-based approach
always needs to look for a criterion that exists between the fragments so that the final fragment will have a
high chance of being inserted at the final structure predicted as summarized in illustration  (Figure 3) [37].
This method is similar to ab initio when it finds polypeptide structures with the lowest energy, but the main
difference is that it uses the database to predict the structure of polypeptide [38].

Figure 3: Schematic representation of the method based on fragments (adapted from reference [23]).

2.3 Fold recognition and threading methods

The method involves using the amino acid sequence and evaluates how well it fits the 3-D structure of the pro-
tein of the known. This approach is used because structures are more evolutionary preserved than the sequence
[35, 39–41]. The sequential order is followed in placing the target amino acid sequences and is governed by two
procedures; first searching the correct replacement between the target sequence versus the model which is in
the space of possible sequence-structure alignment. The threads tried to find the templates with a similar fold
that have or don’t have direct evolutionary relations (analogue).

2.4 Comparative modeling method and sequence alignment strategies

This method use target protein’s amino acid sequences to align against know protein’s amino acid sequence
(used as a template). The information of a known protein is experimentally determined and deposited in PDB
[42]. If there are high similarities between the two amino acid sequences, then the structural information of the
known (template) can be used to modal the target protein of interest [43, 44]. The homology protein with full
information obtained experimentally are the ones to be used to model the target protein, and their amino acid
residue is similar as they occupy the same position in the homology protein and have similar physic-chemical
properties. Currently, comparative modeling is highly used because it is useful in protein structure prediction,
which has more impact in the field of drug discovery [45]. The sequence alignment can either be pairwise which
is the sequence–sequence comparison or multiple sequence comparison. The first approach uses the target
sequence to compare with sequences in the database independently [46]. It uses methods like FASTA [47, 48],
PSI-BLAST [49] and BLAST [50], while multiple sequence comparison allows multiple sequence alignments
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whereby the sensitivity of the search is maximized [51–53]. The methods used here include CLUSTALW [54],
PSI-BLAST [49] and T-COFFEE [55].

In the study by [21]identify the specific residues with similarities but have different catalytic properties. So
eight amino acid residues in the glycine binding pocket of dalcochinase were replaced with respective residues
of linamarase. Since the crystal structure of both enzymes is unavailable, then homology modeling of dalcochi-
nase which has 47% amino acid sequence identity with linamarase, were performed by using ClustalW 2.0
with similar procedures as reported by [54]. The 3-D structure of wild-type dalcochinase was obtained us-
ing the template with a 45% identity to dalcochinase from Maize β-glucosidase 1 (Figure 4) with its substrate
DIMBOA-β-D-glucoside with PDB code 1E56A as also reported by [56].

Figure 4: The three-dimensional structure of Maize β-glucosidase (from N terminus dark blue to C terminus dark red)
(adapted from reference [56]).

The structure was built using the Sybyl 7.2 molecular modeling package, the overall structure of the model
was checked by the PROCHECK, ProSA, Verify-3D and WHATIF programs [57–60]. Whereby PROCHECK
showed 97% of the residues in the homology were located in the most favorable regions of the Ramachandran
plot, whereby only 1.5% was in the rejected region when compared with the template with 98.5% and 0%.
PROCHECK was also used to obtain G-factor, which was 0.22 above −0.5 which shows the model was reliable
as compared to 0.34 of a template.

The ProSA Z-scores is explained well by its application to check the errors of the 3-D models. It can be
used to determine errors of the experimentally and theoretically determined structures. It uses the coordinates
then the structure’s energy is evaluated by using a distance-based pair potential as well as the potential that
relates to solvent exposure. The Z-scores validates the quality of the model and measures the total energy of
the structure with regards to energy distribution derived from random conformations. The obtained Z-score
which appears outside a range property of native proteins verifies erroneous structure [58]. In general positive
value correspond to problematic or erroneous parts of a model. For example the model showedProSA Z-score
of −8.15 while template −9.68 this is within the acceptable range [58]. The compatibility of the residues with the
surrounding environment was done by verify-3D which scored above 0.2 (91.2%) shows reliable as compared
with 93.9% for the template. WHATIF program managed to bring the confidence of the packing quality which
scored above −5.0 and the picture of the 3-D model of the active site pocket of dalcochinase was generated by
using PyMOL version 0.99.

Another study by [22] used the report of single mutation brought by replacing eight amino acid residues in
the dalcochinase’s binding pocket using residues from linamarase. The mutants namely 1185A, N189F, V255F

5

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td

Paul et al. DE GRUYTER

which have been identified to contribute to the hydrolytic and transglycosylation specificity of dalcochinase.
The 1185A and V255F mutants have a low contribution to natural (Dal-Glc) substrate while all three mutants
have more significant transglycosylation activities by using primary and secondary alcohol as acceptors, but
none of these mutants demonstrated linamarase activities of transglycosylation; glucose to tertial alcohol and
hydrolyzing linamarin. So in the standing study by [22], it brought an intention of further mutating the residues
of dalcochinase in order to attain the linamarase specificities (transglycosylation and hydrolysis reaction). So
the 3-D model of the previously reported mutants (1185A, N189F, V255F) of dalcochinase [61] and wild-type
linamarase [18] were created using MODELLER9v4 [62], using the template of cyanogenic β-glucosidase from
Trifolium repens L with (PDB code 1CBG), which have a similarity of 60% to dalcochinase and 51% to wild-type
linamarase [56]. The model’s quality was checked using PROCHECK, ProSA and Verify-3D programs [58, 59]
where the active site was defined as 15 Å which is at the center of residues E182 and E396 of dalcochinase.

3 Identification and validation of linamarase inhibitors

The approach of identifying the inhibitor of a specific enzyme uses the same approach of drug discovery which
targets to obtain a small molecule, known as the entity that can preferentially interact with the valid target. The
target which has identified to cause or have a link with the disease or biological effect and need to be inhibited
[63].

3.1 Virtual Screening for the identification of linamarase inhibitors

This is described as the step by step approach of searching novel compounds that referred to as hit and led
with potential biological effects is achieved by filtering and narrowing down until the lead is obtained as an
alternative to the natural ligand. Depending on the intended application the databases for VS consist of up to
about 10 million compounds and they can be obtained from compound libraries that are provided from com-
mercial venders, public and commercial databases. The application of VS depends mainly on the availability of
the validated structural target (3-D structure). VS is categorized into either structural-based virtual screening
(SBVS) or ligand-based Virtual Screening (LBVS).

3.1.1 Structure-based virtual screening

This approach is used in identifying the best ligand through searching to the chemical library for identifying its
interaction with drug target, and it uses the 3-D structure of the protein which obtained either experimentally
using X-ray crystallography, NMR or computational modeling [64]. Where the candidate is docked then ranked
based on the binding affinity to the binding site [65].

3.1.2 Ligand-based virtual screening

The approach uses information obtained from the known ligand rather than structural protein for led identifi-
cation as well as optimization, and it typically applied when there is no 3-D structure of the protein. It depends
on the pharmacophores and relies on the knowledge of the ligand that will bind the active site of the biological
target. The primary goal is to come up with the structure which retains the physicochemical properties. The
approach is based on the principle that structurally similar molecules will always have similar properties [66].

3.2 Molecular docking

A method is an essential tool in the field of drug discovery and design. The main objective is to predict the
best ligand’s conformation in a target binding site/protein of known 3-D structure [67]. It concentrates much
on either accuracy of the structure or correct prediction activity. The algorithms and scoring function allows
the evaluation of the interaction of compounds and potential targets. It starts from simple, then advances to its
complicated stage of the scoring function. It depends mainly on electrostatic and van der Waals of the interaction
of solvation or entropic effects.
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There are basic ways of representing the protein and ligands during the docking process these ensure evalu-
ation of their methods used, which include; atomic, surface, and grid [68]. Atomic representation is mainly for
evaluating pair-wise atomic interaction which brings the complexity so it uses potential energy function [69].
Surface-based is used to minimize the angles of the opposite or different interacting molecules [70, 71]. Rigid
body access the energy contribution of receptor specifically on grid points which are used in ligand scoring
and stores electrostatic and van der Waals (potentials) [72].

3.2.1 Searching methods for ligands

These are methods that allow molecular flexibility by focusing on the algorithms which treat ligands flexible
but in a few cases, protein. These methods are divided into (a) systematic approach, (b) random or stochastic
method and (c) shape matching.

3.2.1.1 Systematic searching
A method is used for flexible ligand docking whereby all number of possible conformations for ligand binding
to the active site is measured, visiting the degrees of freedom of ligand. It can be considered in three approaches;
Exhaustive, incremental/fragment, and assembling of conformation. The exhaustive is done by rotating all
bonds of the ligand at a specific time allocated. They generate good conformation. To avoid the exhaustive
search, the screening is done initially for different poses, filtered and then optimized. It uses Glide [73, 74] and
FRED [75] for the sampling method. The fragment method is used to avoid the combinatorial explosion. So the
algorithm uses the fragments which may be generated by three steps.

(i) Core fragment selection (ii) Core fragment ligand placement (iii) Incremental ligand placement.
By incrementally growing of the ligand into the binding site at a specific time, it is covalently linked, the pro-

grams used include Dock [76], LUDI [77], FlexX [77], ADAM [78] and eHiTs [79]. The conformational ensemble
methods search for the pre-generated ligand confirmation with the libraries. The binding mode is compared
by ranking them by considering the scoring energy. Programs used include FLOG [80], DOCK 3.5 [81], PhDock
[82], MS-DOCK [83], MDock [84, 85] and Q-Dock [86].

3.2.1.2 Random search (stochastic algorithms)
The algorithms consider the conformation of ligands at the active site, whether individually or populated. It
examines the translational/rotational space and conformational space of ligand. The approach includes;

The first is the Monte Carlo method (MC); the algorithms allows the generation of random conformation
with translation and rotation at an initial stage of ligands docking at the active site. The new configuration is
generated after scoring of the initial one and the probability of being accepted is achieved by considering the
Boltzmann probability function,

𝑃 ∼ 𝑒𝑥𝑝 [− (𝐸1 − 𝐸0)
𝑘𝐵𝑇 ] (1)

where E0 and E1 are the energy scores of the ligand before and after the random change.
Respectively, kB is the Boltzmann constant, and T is the absolute temperature of the system. MC uses pro-

grams like DockVision [87], ICM [88], Prodock [89] and MCDOCK [90].
The second approach is genetic/evolutionary algorithms, and this uses the approach of biological com-

petition and population dynamics. The varying parameters are included in the chromosome and randomly
varied. The result produced is evaluated by its fitness. The chromosomes that produce optimal characteristics
are crossed to produce the next generation. This uses GOLD [91, 92], AutoDock [93], DIVALI [94], DARWIN
[95], MolDock [96], PSI-DOCK [97], FLIPDock [98], Lead finder [99] and EADock [100].

The third approach is Tabu search algorithms, and this considers the Tabu (those rejected conformation).
It operates by making random changes on available conformations then each change is ranked. The Tabu is
determined, and their changes that have the lower value are going to be accepted even if it was in tabu otherwise
the non-tabu change is accepted. The program uses PRO_LEADS [101] and PSI-DOCK [97].

3.2.1.3 Shape matching
This method is used at the initial stage of docking, and it is the simplest approach. It places the ligand in
the position that its molecular surface is in complementary with the surface of the binding site of the protein
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involves translation and rotational which allow different orientations of ligands at the binding site. So, it mainly
looks at which the ligands will be easily placed at the binding site as quickly as possible. Programs used include
DOCK [102], FRED [103], FLOG [104], LigandFit [105], Surflex [106] MS-Dock [67] and MDock [107, 108].

3.2.2 Scoring functions

For determining the accuracy of the docking algorithm, it is important to consider the scoring function. So it
is the fundamental element for the protein-ligand algorithm. It looks at the reliability and efficiency of any
algorithm. The scoring functions can be grouped into three categories: Force field, empirical and knowledge-
based scoring functions.

3.2.2.1 Force field scoring function
It uses the molecular mechanics’ force field to consider the interaction between the ligand and receptor. Basi-
cally, the Van der Waals energies, the bond bending/stretching/torsional energies, are used at this strategy.
The program which can be used here include AMBER [109] or CHARMM [110, 111]. The effect of water for
the force field is accounted for by the inclusion of distance-dependent dielectric constant 𝜀(rij), which uses a
program like DOCK [112] and implements eq. (2) below.

𝐸 = ∑
𝑖

∑
𝑗

⎛⎜⎜
⎝

𝐴𝑖𝑗

𝑟12𝑖𝑗
−

𝐵𝑖𝑗

𝑟6𝑖𝑗
+

𝑞𝑖𝑞𝑗

𝜀 (𝑟𝑖𝑗) 𝑟𝑖𝑗

⎞⎟⎟
⎠

(2)

where rij stands for the distance between protein atom i and ligand atom j, Aij and Bij are the VDW parame-
ters, and qi and qj are the atomic charges. 𝜀(rij) is usually set to 4rij, reflecting the screening effect of water on
electrostatic interactions.

3.2.2.2 Empirical scoring function
This method is useful for reproducing the experimental data by summation of the binding energy of ligand to a
receptor such as VDW, electrostatic, hydrogen bonding, desolvation, entropy and hydrophobicity represented
by eq. (3) below:

Δ𝐺 = ∑
𝑖

𝑊𝑖 ⋅ Δ𝐺𝑖 (3)

where {∆Gi} is for individual empirical energy and {Wi} produced by the binding affinity after training the com-
plex ligand-protein from the known 3-D structures. So, this method mainly depends on the information from
the crystal structure of different protein-ligand complex whose binding affinities are known. It uses programs
like Glide Score [74, 113], LUDI [114–117], SCORE [118–120] X-SCORE [121], ChemScore [122, 123], SFscore
[124, 125].

3.2.2.3 Knowledge-based scoring function
These are scoring functions which aim at reproducing the experimental structures of protein-ligand complexes.
It uses the potential of mean force which is given by inverse Boltzmann eq. (4).

𝑤 (𝑟) = −𝑘𝐵𝑇𝐼𝑛 [𝜌 (𝑟) /𝜌∗ (𝑟)] (4)

where kB is the Boltzmann constant, T is the absolute temperature of the system, 𝜌(r) is the number density
of the protein-ligand atom pair at distance r in the training set, and 𝜌∗ (𝑟) is the pair density in a reference
state where the interatomic interactions are zero. Different from the field and empirical scoring function have
a right balance between the accuracy and speed because the potentials from eq. (4) above are obtained from a
larger number of structures rather than generating the known affinity, it uses a programs like PMF [126, 127],
DrugScore [128], SMOG [129].
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3.2.2.4 Consensus scoring function
The approach is not a specific type of scoring function; it combines and balances the scoring information by
removing/minimizing errors of each scoring function. So it makes the true binder to be distinguished from the
others [130, 131]. Programs used include X-Score and MultiScore [132, 133].

3.2.2.5 Clustering and entropy-based scoring methods
This method also used to improve the performance of different scoring functions. It includes the entropic ef-
fect by taking the ligand binding modes then divided into various clusters [134, 135] The impact of entropic
contribution in each of the clusters is considered, and it uses AutoDock [135, 136].

A case study for docking was reported by [21], after homology modeling and identification of the struc-
ture of Thai rosewood dalcochinase which have high similarity to linamarase. The natural substrate (Dal-Glc)
of dalcochinase were docked into the active site pocket of dalcochinase obtained using homology modeling,
the docking program used was GOLD 3.1 [137]. Maize β-glucosidase was used by docking with DIMBOA-β-
D-glucoside, which achieved a fitness score of 69.15, and when as compared with the fitness of the score for
docking Dal-Glc into the dalcochinase it gave score 61.41. The interaction of the substrate positioned it by stack-
ing π–π interaction between the phenyl ring of substrate and indole ring of the conserved Trp368. The distance
between amino acid residues and Dal-Glc (substrate) specifically in the binding pocket of dalcochinase model
was predicted by molecular docking as summarized in Table 1.

Table 1: The binding pocket of dalcochinase model showing the distances between Dal-Glc and amino acid residues ob-
tained by molecular docking, (adapted from reference [21]).

Dal-Glc position Amino acid position Distance (Å)

Sugar ring
O2 Y325-HH 2.49
O3 N181-HD22 2.89
O4 W453-He1 1.48
O6 W445-He1 2.16
H at O2 E396-Oe1 1.72
C
Methylene H235-He1 2.34
Methylene W368-Hz3 2.51
Ring-A
Ring-B π–π (3.52–4.09)
Ring-C
OH W368-He1 2.35

In different studies [22] and [21], the authors considered the single mutation, whereby residues Ile185, Asn189,
and Val255 in dalcochinase binding pocket were replaced by Ala201, Phe205, and Phe271 from linamarase
consider Figure 2. This affected dalcochinase by increasing transglycosylation, mainly primary and secondary
alcohol. However, this replacement of single mutation did not change dalcochinase activities to be similar to
that of linamarase specifically transglycosylation to tertiary alcohol.

To bring dalcochinase specificity to linamarase multiple mutations of the identified key amino acid residues.
The homology models of the 1185A/N189F/V255F which considered a triple mutation of the respective en-
zyme were obtained and docked to linamarin which its structure was driven from PubChem (CID 11128) using
the AutoDock version 4.2 [138]. The analysis of the docked conformation was analyzed by Accelrys DsVisual-
izer 3.0 consider Figure 2.

The results of docking of these multiple mutations show that for both enzymes when were docked with
linamarin the covalent bond glycosidic and the C1 atom are proposed to be at the same location.

4 Conclusion

The enzymatic reaction of linamarase is associated with application in biotechnology like transglycosylation
and hydrolysis by using acceptors. The most important and which has more concern is in cassava which the
hydrolysis of cyanogenic glucoside and ultimately leads to the release of toxic product hydrogen cyanide. To
get the insight of linamarase’s potential and how can be used to different productive reaction, there is a need
to elucidate the structure experimentally. However, due to the improvement of computational approaches
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in carrying out structural modeling, this work has reviewed and analyzed the approaches to be used predict the
structure of linamarase. Homology modeling is mainly used then other techniques can be applied to identify
the competitive inhibitor against the natural substrate and inhibits the enzymatic reaction. These are mainly
molecular docking and molecular dynamics. In homology modeling of dalcochinase, it has proved that the
enzyme shares 47% amino acid sequence with dalcochinase, which its structure is now available. So it can be
used as a template to generate the 3-D structure of linamarase.

Regardless, of these similarities the enzymes they have the different catalytic ability as linamarase works
by hydrolyzing the natural substrate linamarin and dalcochinase the substrate dalcochinin-8-O-β-D-glucoside,
but not the reverse. Their distinct also is that dalcochinase can catalyze the transglycosylation of primary and
secondary alcohol but not tertiary while linamarse can work effectively on both. Additionally, linamarase cannot
synthesize oligosaccharides and glycosides by reverse hydrolysis while dalcochinase can do.

Therefore, regardless of the availability of amino acid sequences similar to linamarase, there is a great need
to find out the crystal structure experimentally. This will unlock more scientific understanding, research, and
application of linamarase especially in food processing like products with glycosides residues retained during
the processing.
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