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ABSTRACT 

The availability of clean and safe water is still a big challenge in most parts of the world. 

Drinking water should be free of harmful microorganisms and should contain the required 

amount of minerals based on the set standards.  In this study, silver nanoparticles (Ag-n) 

embedded in Activated Carbon (AC) electrodes for capacitive deionization (CDI) were 

evaluated for desalination and also for anti-microbial activities against Escherichia coli and 

Salmonella enteritidis. The novel AC/Ag-n electrodes were prepared by mixing Activated 

Carbon powder together with silver nanoparticles. The morphology, surface functional 

groups, and porosity were characterized by Scanning Electron Microscope (SEM), Fourier-

transform infrared (FT-IR), and nitrogen adsorption studies which affirm the formation of 

disinfecting electrode material. The desalination and disinfection performance of the 

fabricated electrodes were evaluated by Capacitive Deionization batch mode experiment 

using natural water collected from the Nganana stream while applying the potential of 2 V for 

3h. The AC/Ag-n Capacitive Deionization (CDI) electrodes achieved 100% Escherichia coli 

and 98% Salmonella enteritidis removal and 45% salt removal efficiency, and electrosorption 

capacity of 2.56 mg/g and the ions removal efficiency of 89%, 40%, 2.4%, 57.9%, 50%, 8% 

and 33% for Na
+
, K

+
, Ca

2+
, Mg

2+
, PO4

3-
, NO3

- 
and Cl

- 
respectively. The microbial disinfection 

mechanisms were through electrosorption process and physical contacts with the embedded 

Ag-n. Thus, it is possible to disinfect the water while also removing salt simultaneously using 

Capacitive Deionization. Therefore, AC/Ag-n are considered as novel electrode material with 

an excellent antimicrobial agent for the Capacitive Deionization process. 
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CHAPTER ONE 

INTRODUCTION 

This chapter explains the background of the problem about capacitive deionization technique, 

statement of the problem, rationale of the study, objectives, research questions and 

significance of the study. The general objective of this study is to investigate the viability of 

silver nanoparticle in CDI electrodes as anti-microbial agent for water purification and 

completed with the three specific objectives in which silver nanoparticles (Ag-n) was 

synthesized and coated into the Activated Carbon (AC) electrode during fabrication process 

followed by characterization of the materials, finally the performance of CDI electrodes for 

salt and bacterial removal was evaluated. 

 1.1 Background of the Problem 

The availability of safe and clean water is a worldwide problem. Clean water is that water 

which doesn’t contain any toxic chemicals and pathogens (Savage & Diallo, 2005). Water 

can be contaminated by an organic and inorganic compound such as industrial by-products, 

personal care products, pesticides, heavy metal, bacteria, parasitic protozoa and even enteric 

virus (Gordon, 2016). Also, water from underground can have higher salinity compared to the 

recommended value, which is not suitable for human consumption (Porada et al., 2013). 

According to the World Health Organization report 2012, about 780 million people 

worldwide lack access to clean and safe drinking water and 2.5 billion lack improved 

sanitation (WHO, 2012). Since clean and safe water is essential to human health, reliable 

access to clean and affordable water remains a major global challenge for the 21
st 

century 

(Laxman et al., 2015). Due to the scarcity of fresh water sources, the desalination of water is 

becoming more important. 

 To remove salts and specific ions from water, a wide range of technologies can be used 

(Limpt et al., 2010). The main desalination technologies are distillation, reverse osmosis 

(RO), electrodialysis (ED) and ion exchange (IE), but these technologies have some 

limitations, for example, more energy consumption for desalinating brackish water using RO 

(Jande et al., 2014), ED and IE may cause fouling hence they require pre-treatment such as 

coagulation, flocculation and filtration (Anderson et al., 2010; Xu et al., 2008) hence their 

operation consume high cost. New desalination technique needed to overcome those 

limitations of existing desalination technologies.  
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Capacitive Deionization (CDI) is an emerging technique used for desalination of low saline 

(brackish) water with concentration is below 10 g/L to obtain fresh water (Porada et al., 

2013).  This process involves the application of two porous electrodes using direct current 

(DC) power (Jande et al., 2013). The electrodes are made of carbon-based materials that are 

highly porous and have a large surface area. The electrode plates are separated by an ionic 

solution, which transmits an electrical current. Ions suspended in the solution are attracted to 

the electrodes of opposite charge and are absorbed into the pores of the electrodes, while the 

solution elutes from the cell with a lower ionic concentration (Huang et al., 2013). 

Several studies use CDI electrode materials for desalination and removal of ionic impurities 

in water, but the problem of microbes in the desalinated water still challenges. Some 

antimicrobial agents such as hypochlorite and ozone commonly used in water disinfection 

produce harmful by-products which can be carcinogenic, mutagenic and are extremely irritant 

and toxic to human health and environment (Wang et al., 2015), so there is great interest in 

finding ways to create new types of safe and cost-effective biocidal materials. Antimicrobial 

tests in the form of nanoparticles can be used as effective bactericidal materials (Sondi & 

Sondi, 2004). Nanoparticles with antimicrobial activity have been studied in CDI and show 

the improvement of electrosorption and efficiency for salt removal. 

Yasin et al. (2017) used nitrogen-doped tin oxide intercalated activated carbon 

nanocomposite (N-AC/SnO2) electrodes for disinfection and the results show good 

antibacterial performance. Wang et al. (2015) also use capacitive deionization disinfection 

(CDID) electrode made by coating an activated carbon (AC) with cationic nanohybrids of 

graphene oxide-graft-quaternized chitosan (GO-QC), (GO-QC/AC CDID electrode) and 

achieve to kill 99.9999% of Escherichia coli in water. It is widely known that silver ions and 

it’s compound are highly toxic to microorganisms (Kim et al., 2007) such as Escherichia coli 

and Staphylococcus aureus and nontoxic to human body at low concentration (Abdel Hameed 

et al., 2013; Mavani et al., 2013; Theivasanthi et al., 2011; Xu et al., 2008). Since Ag-n can 

kill microbes and shows strong biocidal effect hence they can be embedded in AC to make 

AC/Ag-n electrodes and used as CDI electrodes which can be applied to increase efficiency 

and enhance bacterial removal in treated drinking water without compromising its salt 

removal efficiency. Therefore, this study was intended to investigate electrodes made by AC 

embedded with Ag-n (AC/Ag-n) in CDI electrodes for bacteria removal. 
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 1.2 Statement of the Problem 

Many studies use CDI for desalination and removal of ionic impurities in water, but the 

problem of microbes in the desalinated water is not yet solved. Some antimicrobial agents are 

extremely irritant and toxic and there is great interest in finding ways to create new types of 

safe and cost-effective biocidal materials. Antimicrobial tests in the form of nanoparticles can 

be used as effective bactericidal materials (Sondi & Sondi, 2004). It is widely known that 

silver ions and its based compound are highly toxic to microorganisms (Kim et al., 2007) 

such as Escherichia coli and Salmonella enteritidis and nontoxic to human body at low 

concentration (El-Aassar et al., 2013; Harikumar et al., 2011; Theivasanthi et al., 2011). 

Since Ag-n can kill microbes and shows the strong biocidal effect it can be used in CDI 

electrodes to increase the efficiency of salt and bacterial removal in treated drinking water. 

So, this study is intended to use electrodes made by AC coated with Ag-n (AC/Ag-n) in CDI 

for desalination and bacteria removal. 

1.3 Rationale of the Study 

Water is very important for human consumption and for life in general. Capacitive 

deionization technology and silver nanotechnology are easy to use, has high efficiency, 

utilize low energy and environmentally friendly. Therefore, there is a need to apply these new 

and modern technologies for water purification. This study will solve the problem of saline 

water and water contaminated with microbes for the production of safe and clean water. 

1.4 Objectives 

1.4.1 General Objective 

The general objective of this study is to investigate the viability of silver nanoparticle in CDI 

electrodes as an anti-microbial agent for water purification.  

1.4.2 Specific Objectives 

(i) To synthesize and characterize silver nanoparticles (Ag-n) 

(ii) To synthesize and characterize CDI electrodes coated with silver nanoparticles (Ag-n) 

(iii) To evaluate the performance of the CDI electrodes in salt and bacterial removal. 
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1.5 Research Questions 

(i) What are the characteristics of Ag-n that make them effective in desalination and 

disinfection? 

(ii) What is the efficiency of AC coated Ag-n (AC/Ag-n) electrodes in CDI for salt and 

bacteria removal? 

(iii) Can Ag-n remove bacteria without affecting the performance of CDI AC electrodes in 

salt removal?  

1.6 Significance of the Study 

The potential demand for water increases as the global population increases. Currently, there 

are many methods used for desalination and removal of other ionic impurities, but researchers 

still try to find alternative methods to overcome the constraints. Other desalination methods 

have high energy consumption for brackish water desalination such as Reverse Osmosis. 

Capacitive deionization technology is a novel method which has the potential of utilizing low 

energy during desalination and also it is environmentally friendly. Therefore, this study uses 

the modified AC/Ag-n electrodes as precursor materials for CDI application, which will help 

to solve the problem of saline water contaminated with microbes for the production of safe 

and clean water for domestic use. 

1.7 Delineanation of the Study  

This study covered the wide part of desalination, removal of gram negative bacteria 

(Escherichia coli and Salmonella enteritidis) and removal of some other ionic impurities, 

hence using Capacitive Deionization technique with sufficient AC/Ag-n electrode materials 

can be used for large scale water treatment plantation which will help to solve the water 

demand challenges facing the worldwide. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Water scarcity and water quality are the big issues facing the global population worldwide, in 

order to overcome these, low cost and energy efficient desalination technologies become the 

focal point of recent researches. Capacitive Deionization (CDI) is the one among the 

promising technologies for water desalination because it is safe, uses low energy,  cost-

effective, economic and environmentally friendly and the material can be regenerated easily, 

compared with other conventional desalination technologies, such as reverse osmosis, 

thermal distillation and electrodialysis (Limin et al., 2012; Xu et al., 2008; Yasin et al., 

2017). Recently, Ag-based AC electrode materials have been used in CDI and enhance the 

electrosorption capacity from 2 to 5.3 mg/g and salt removal efficiency from 42 to 67% 

(Alencherry et al., 2017; Yoon et al., 2017). However, the availability of novel CDI electrode 

materials with low-cost for salt and bacteria removal is still a challenge. Thus, in order to 

improve the CDI performance, suitable CDI electrode materials which have low cost and 

easily available are needed to overcome those challenge. This section describes different 

technologies used for desalination and different materials which have been used in the CDI 

technology for salt, bacteria and ionic contaminant removal and their challenges on CDI 

application. 

2.2 Basic Principle of CDI 

Capacitive Deionization (CDI) studies started since the 1960s, using the porous electrode 

made by activated carbon powder (ACP) in which inflow through mode applied for water 

desalination.  CDI adsorb salt ion in electrical double layer (EDL) (Fig. 1) of high surface 

area electrodes with potential difference voltage (PDV) applied across the electrodes (Saleem 

et al., 2018). Electrical Double Layer (EDL) are the two layers exist at the surface of the solid 

and liquid interface; those layers are the surface layer and diffuse layer. The surface layer 

called the Helmholtz Outer Layer is closest to the solid (carbon matrix) and is made up of 

counter-ions interacting with the surface via chemical bonds, and the outside surface layer is 

diffuse layer which is made up of ions attracted to the surface by electrostatic charge. The 

electrical capacity of the electrodes to store energy depends on the capacity of both 
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components of the EDL (Anderson et al., 2010; Gordon, 2016; Oren, 2008; Porada et al., 

2013). 

 

Figure 1: The structure of an electrical double layer 

As the electrode surface areas become saturated with ions, the electrodes become less 

efficient at removing ions from the solution. The electrodes can be regenerated by reversing 

the charges, which repels the ions from the surface of the electrode to the interstitial space 

and are subsequently removed from the cell as a highly concentrated solution (Fig. 2). 

Following regeneration, the electrodes can then begin a new cycle of ionic adsorption. The 

concentrated effluent is typically discarded, but it can also be used for the recovery or 

sampling of components which may be very dilute in the influent water (Jande & Kim, 2014; 

Limin et al., 2010; Porada et al., 2013).  

The passage of water through the CDI cell can occur through two different mechanisms: 

flow-through mode or flow-by mode. In flow-through mode, water passes through the pores 

of the electrode whereas, in flow-by mode, water passes through the gap or flow channel 

between the electrodes (Suss et al., 2015). Capacitive Deionization units can be operated 

using either constant current (CC) or constant voltage (CV), the latter being more commonly 

used. CC can be used when a specified effluent concentration is required (Jande & Kim, 

2014; Oren, 2008; Porada et al., 2013). 

Some studies thought that, the addition of membranes to the cell will improve ion adsorption 

by allowing only ions which has the opposite charge as the polarized electrode (counter ions) 

to go through and finally being absorbed by the electrode (Porada et al., 2013; Saleem & 

Kim, 2018). Instead, the co-ions are expelled out of the micropores but are retained on the 
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electrode by the membrane, which attracts more counter-ions on to the surface of the 

electrode (Porada et al., 2013). The advantage of this is that more ions can be absorbed on to 

the electrode than using standard CDI, but during the purge step some of the ions are retained 

to the electrodes. Additionally, the use of IE membranes prevents the ions adsorbed during 

the purification cycle from adsorbing to the electrode of opposite charge during the reversal 

of charge which occurs during the purge step but the standard CDI allows the ions to be 

adsorbed and desorbed more easily.   

 

 

Figure 2: Schematic representation of basic principle of CDI purification  (a) Adsorption (b) 

Desorption 
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2.3 Electrode Materials for CDI 

Good electrode materials for CDI should have good electrical conductivity, high specific 

surface area with suitable pore sizes, excellent electrolyte wettability and also be chemically 

stable (El-Deen et al., 2014). Porous carbon materials are the most electrode materials used 

for CDI; these materials include activated carbon (AC), carbon aerogel, ordered mesoporous 

carbon, carbon nanotube (CNT) (Zhang et al., 2012), graphene, fullerene (Gaikwad et al., 

2016) and activated carbon fibre cloth (Alencherry et al., 2017). Activated Carbon is the most 

widely used carbon materials for CDI since 1970s due to its high surface area, electrical 

conductivity, very high adsorption capacity (Zou et al., 2008) and has the low cost. 

Also modified carbon porous electrodes prepared from nanoparticle oxide were used in CDI 

to improve the electrosorption capacity as well as salt removal efficiency (Alencherry et al., 

2017; Yasin et al., 2017). Some of these materials are bio-decontaminated and can kill 

microbes. Yasin et al. (2017) used nitrogen-doped tin oxide intercalated activated carbon 

nanocomposite (N-AC/SnO
2
) and composite nitrogen-TiO2/ZrO2 nanofibers incorporated 

activated carbon (NACTZ) electrode materials which shows good antimicrobial effects as 

well as desalination performance (Yasin et al., 2017; Yasin et al., 2018). Wang et al. (2015) 

also used CDI disinfection (CDID) electrode made by coating an activated carbon (AC) with 

cationic nanohybrids of graphene oxide-graft-quaternized chitosan (GO-QC), (GO-QC/AC 

CDID electrode) and achieves to kill 99.9999% of Escherichia coli in water (Wang et al., 

2015). 

2.4 Nanoparticles as Antimicrobial Agent 

Nanoparticles are of great scientific interest as they are effective bridge between bulk 

materials and atomic or molecular structures. These materials have constant physical 

properties without consideration of its size, but it was observed that, at the nanoscale, the size 

of the particles depends on their properties. Thus, the properties of the materials change as 

their size approaches the nanoscale and the percentage of atoms at the surface of a material 

becomes significant. For bulk materials larger than one micrometer the percentage of atoms 

at the surface is insignificant as compared to the number of atoms in the bulk of the material 

(Mavani & Shah, 2013). Various nanoparticles were being tested as bactericides including 

TiO2 (Kim et al., 2009 ), ZnO (Ghosh et al., 2012), CuO (Pandey et al., 2012) and carbon 

nanotubes (Yang et al., 2010). Though many of these materials work as good antimicrobial 
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agents, their activity is slow, taking a minimum of 4 h for the effective killing of bacteria 

(Kumar et al., 2013). Some of these nanoparticles with antimicrobial activity have been 

studied in CDI and shows the improvement of electrosorption and efficiency for salt removal 

(Sondi & Sondi, 2004).  

Silver (Ag) ions and silver-based compounds are highly toxic to microorganisms and are 

currently used to control bacterial growth in a variety of applications, including dental work, 

catheters, and burn wounds (Kim et al., 2007). Silver nanoparticles (Ag-n) are widely used as 

antimicrobial nanomaterials (Haibo et al., 2010) because they have strong antimicrobial 

activities, broad antimicrobial spectrum, low human toxicity and are easy to use. Various 

researchers have already tested Ag-n in various field of biological science, drug delivery, 

water treatment and an antibacterial compound against both Gram (+) and Gram (-) bacteria 

(Theivasanthi et al., 2011). So, the application of Ag-n for CDI electrodes can be used to 

reduce bacteria and biofilms in water and increase its performance in both salt and microbe's 

removal. Therefore, this study evaluated the performance of Ag-n in CDI as an antimicrobial 

agent. 

2.5 Current Applications 

Capacitive Deionization (CDI) has been increasingly tested as a competitor for current 

desalination technologies, such as Ion Exchange (IE), Electrodialysis (ED), thermal 

distillation (TD) and  Reverse Osmosis (RO) (Haibo et al., 2010). It is an attractive 

alternative because CDI does not require the use of membranes under high pressure, as RO 

does. As well, CDI has electrodes with a regenerative capacity, which lowers energy costs 

(Anderson et al., 2010). Additionally, RO and ED have issues with membrane fouling and 

maintenance, which the regenerative capacity of the electrodes reduces (Porada et al., 2013). 

The electrode regeneration is also able to recover the energy stored during the adsorption 

step, though the efficiency of recovery is variable and is in need of further optimization 

(Anderson et al., 1999). One model suggests that even with energy efficiency as low as 70%, 

Capacitive Deionization is more energy efficient than ED for brackish waters desalination - 

below 5000 mg/L of salt (Anderson et al., 2010).  

Currently, CDI is used for the removal of dissolved ions from different water sources.  The 

CDI cell was used to remove salt ions from contaminated groundwater and surface water 

system.  The contaminated water contained 137 mg/L of nitrate, which after undergoing CDI, 
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was reduced to 42.5 mg/L of nitrate. The Electrostatic discharge (ESD) was able to reduce the 

concentration of  Total Dissolved Solid (TDS) by 92% from a surface drinking water source 

in Sudbury, Ontario (Oren, 2008). A test of a bench top CDI unit was able to remove an 

average of 80.3% of ions (by weight) from greenhouse leach water, with 83.9% water 

recovery; the energy usage was 2.517 kWh/m
3
 of treated water for comparison, RO energy 

usage is 2.9– 3.7 kWh/m
3
 of water treated (Anderson et al., 2010). Capacitive deionization 

has also been used to recover water from RO brines produced during purification of 

wastewater through the NE Water initiative in Singapore. Capacitive deionization was able to 

reduce the RO brine from a conductivity of 2060 µS/cm to 277.4 µS/cm, and the amount of 

TDS from 1275 mg/L to 176.5 mg/L, while operating with 85% water recovery (Tao et al., 

2011). The potential for CDI to remove TDS from wastewater produced during natural gas 

extractions has also been identified, as these waters usually have ion concentrations of less 

than 6000 ppm. Bench-scale tests using these waters have shown TDS removals of 75-90% 

(Christen, 2006). 

2.6 Contaminants Removal Through CDI Process 

Currently, studies of CDI have focused primarily on the removal of simple ions from 

different types of solutions.  Kim et al. (2010) examined the effect of octanol on the removal 

of salt from brackish waters. They observed that the compound partly adsorbed and desorbed 

to the ion-exchange membrane overlaying the electrode (Kim et al., 2010). Zhou et al. (2015) 

examined the removal of salt from both simulated and real wastewaters, as well as the 

removal of organic compounds, by using electro adsorption by measuring the chemical 

oxygen demand. Under optimized conditions, 76% removal of organic compounds was 

observed from refined cotton wastewater (Zhou et al., 2015).  

Although CDI has been used primarily for the removal of small charged chemical compounds 

from different types of waters, it has not been extensively tested for the removal of biological 

substances. Microorganisms, such as bacteria and viruses, carry net negative charges in the 

water at neutral pH, imparted on them by nucleic acids and proteins present on the cell 

membrane. The ability to positively charged porous carbon electrodes to remove E. coli from 

liquid suspension has been known for many years (Oren et al., 1983). Some of the early tests 

using graphite mesh were able to remove 85-95% of bacteria, depending on the strain of E. 

coli used (Golub et al., 1987). Some of the researchers demonstrated that E. coli can be 

desorbed successfully from the electrodes by flushing during the CDI process (Gordon, 
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2016). This feature is particularly valuable for the application of a CDI system used for 

removal of salts and microorganisms from surface water. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Materials and Reagents 

Natural water was collected from Nganana stream located near the institution and the 

commercial AC powder was purchased from Finar Co.Ltd. Other materials used were small 

Erlenmeyer flask, beaker, test tube, large dish of ice, stirrer hotplate, 1" stir bar, droppers, 

filter paper, filter funnel, aluminium foil, and oven. The reagents used were silver nitrate 

(AgNO3), sodium borohydride (NaBH4), sodium chloride (NaCl) were of analytical reagent 

grade, polyvinyl pyrrolidine (PVP), polyvinyl alcohol (PVA) was purchased from Loba 

Chemie Pvt. Ltd, polytetrafluoroethylene (PTFE) and Carbon black, 99.9% ethanol were 

purchased from Sigma Aldrich, Hi Chrome Escherichia coli agar was purchased from Hi-

media Co. Ltd, cellulose nitrate filter with a pore size of 0.45µm purchased from Sartorius 

Stedim Biotech GmbH and deionized (DI) water produced within the institution.  

3.2 Synthesis of Silver Nanoparticles (Ag-n) using Reduction Method 

Figure 3 below shows the summary of the Procedures for the synthesis of Ag-n, the method 

was adopted from Mavani et al. (2013) with some modifications, in which 30 mL of 0.002 M 

NaBH4 were added into an Erlenmeyer flask. The solution was made fresh right before the 

experiment. Then a magnetic stir bar was added and the flask placed in an ice bath on a stir 

plate.  Keeping the NaBH4 on ice reduced the rate of decomposition during the experiment. 

Then 2 mL of 0.001 M AgNO3
 
added into the stirring NaBH4 solution at one dropwise. The 

stirring stopped as soon as all of the AgNO3 was added.  

A small portion of the solution transferred to a test tube followed by the addition of a few 

drops of 1.5 M NaCl solution causes the suspension to turn darker yellow, then grey as the 

nanoparticles aggregate. After that, the remaining portion of the solution transferred into 

beaker followed by the addition of a few drops of 0.3% PVP which prevents aggregation. 

Finally, enough solid PVA was added slowly into the stirred, hot colloidal solution until it 

reaches 4% in order to allow to dissolve completely, then mixture decanted into mold leaving 

air bubbles and undissolved PVA in the beaker and the silver nanoparticles (Ag-n) mixture 

evaporated in the oven for about 30 minutes to remove the unwanted impurities (Mavani et 

al., 2013). 
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The silver nitrate reduction reaction can be written as;  

AgNO3 + NaBH4 → Ag + ½ H2(g)+½ B2H6(g) +NaNO3 

 

 

Figure 3: Summary of the procedures for the synthesis of Ag-n 

3.3 Synthesis of AC/Ag-n 

The Commercial AC powder with BET Surface area of ~1300 m
2
/g was mixed with 

synthesized Ag-n then stirred for 2 h and dried into the oven overnight.  The dried mixture 

was then washed with DI water until the pH of 7 and the conductivity close to that of DI 

water was attained; then dried again at oven overnight. Then the mixture of AC/Ag-n, carbon 

black (CB) and PTFE in the ratio of 8:1:1 respectively mixed with 99.9% ethanol and stirred 

at 100
o
C until all ethanol evaporated and the uniform slurry was obtained. The produced 

slurry (dough like structure) was pressed using presser machine into a specific thickness of 

about 1 mm then cut into 4 × 4 cm
2
 and oven dried at 60

o
C overnight to remove the 

remaining organic solvent as shown in Fig. 4. After drying the actual weight of the electrodes 

were measured (1.02 g for AC and 0.988 g for AC/Ag-n). 

30 mL of 0.002M NaBH4 

added into flask and stirrer 

for 20 min  

2 mL of 0.001M AgNO3 

added drop wise Addition of 1.5 M NaCl solution 

the turn yellow to grey as Ag-n 

aggregate 

Few drops of 0.3% PVP added to 

prevent aggregation 

Ag-n after 

drying for 

30 min 
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Figure 4: Summary of the procedures for the fabrication of the electrodes 

3.4 Characterization of AC and Ag-n Electrodes Materials 

The surface morphology of the AC Ag-n and AC/Ag-n was examined using a field-emission 

scanning electron microscope (FESEM) (JSM-7600F Thermo NORAN System7) with energy 

dispersive X-ray (EDX) analysis. The specific surface area of the AC powder was measured 

based on N2 adsorption isotherms at 77 K using NOVA 4200e, Quanta chrome, UK 

porosimeter. Brunauer-Emmet-Teller (BET) was used to obtain surface area while the pore 

size distribution was obtained by the Barret-Joyner-Halender (BJH) method. The functional 

groups of AC and AC/Ag-n were investigated using Fourier-transform infrared spectroscopy 

(FTIR) using Tensor 27 spectrometer fitted with a high-throughput screening device (HTS-

XT). Tests were conducted in absorbance mode in a spectral range of 4000 - 500 cm
-1

 and 

cationic concentration of field water measured by using flame photometer (FP 6440). 

AC/Ag-n, CB, PTFE in the 

8:1:1 ratio mixed with 99% 

ethanol and stir at 100
0
C 

The slurry pressed into presser 

to 1 mm thickness 

Cut into 4 × 4 cm
2
 and 

dried into oven at 60
o
C 

overnight 



15 
 

3.5 Desalination and Disinfection Performance 

The desalination and disinfection performance of AC/Ag-n electrode was evaluated by batch 

mode experiment as shown in Fig. 5. Capacitive Deionization cell comprises of two AC/Ag-n 

electrodes placed parallel to each other and connected with IVIUM STAT together with a 

peristaltic pump. Then, 30 ml of field bio contaminated water collected from Nganana river 

with initial conductivity of 425 µS/cm was pumped between the two electrodes at a flow rate 

of 2.5 ml/min for 3 h while applying DC potential difference of 2 V to the cell, the 

conductivity meter was calibrated before starting each experiment.  

 

Figure 5: Schematic diagram of the capacitive deionization experiment setup 

The conductivity of the outlet was recorded every 10 min. Amount of salts present in the 

water samples were obtained and the selected ionic concentration present in the water were 

measured before and after the experiments. Flame photometer (FP 6440) was used to measure 

the concentration of cations (Na
+
, K

+
, Ca

2+
 and Mg

2+
) and titration methods were used to 

measure the concentration of anions (Ascorbic acid method for PO4
3-

, Cadmium reduction 

method for NO3
-
 and Silver nitrate method for Cl

-
). Removal efficiency (ɳ) in % and 

adsorption capacity (Sc) in mg/g were calculated using equation 1 and 2 below (Yasin et al., 

2017) 
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                                           (1) 

Where: 

C0 = Initial Concentration (at inlet) in mg/L 

C1 = Final Concentration (at outlet) in mg/ L 

 

 
m

VCCSc O 1                                (2) 

 

Where: C0 and C1 = the initial and final concentrations in mg/L, respectively.  

             V = the total volume of the aqueous salt solutions in L. 

              m = represents the mass of the active components in the working electrodes in g. 

 

Membrane filtration method (Fig. 6 (c)) was used to culture bacteria, in which 30 mL of field 

bio contaminated water was filtered using membrane filter (cellulose nitrate filter with 

diameter 0.45µm) (Fig. 6 (b)) before and after treatment and the filter placed onto the surface 

of Hi Chrome Escherichia coli agar plates (Fig. 6 (a)). The plates were incubated at 30°C for 

4 h and then at 44°C for 18 h. The colonies formed were counted and the percentage removal 

determined using the equation 3 below; 

 100
A B

Bacteria removal
A

 
  
 

                                (3) 

Where: A =Number of microbial viable cells before treatment 

            B = Number of microbial viable cells after 
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Figure 6: (a). Hi Chrome Escherichia coli agar plates, (b). Cellulose nitrate filter, (c) 

Membrane filtration technique 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter discusses the characterization of the prepared electrode materials, desalination 

and disinfection efficiency during CDI performance. The chapter describes the removal 

efficiency of different selected ions (cation and anions) and the bacteria (Escherichia coli and 

Salmonella enteritidis) removal efficiency. The prepared AC/Ag-n electrodes tested in the 

CDI cell unit to evaluate the salt and bacteria removal efficiency and their electrosorption 

capacity and adsorption rates. 

4.2 Characterization of Electrode Materials 

The BET surface area of AC and AC/Ag-n were 1037 and 786 m²/g respectively, with a pore 

volume of 0.65 and 0.35 cm
3
/g respectively as shown in Table 1. The pore diameter varied 

from 3 to 4.2 nm. According to the International Union of Pure and Applied Chemistry 

(IUPAC), pore sizes can be divided into three categories which are macropores, mesopores, 

and micropores. By definition, macropores are pores with diameters greater than 50 nm, 

mesopores are between 2 to 50 nm and micropores are less than 2 nm (Zdravkov et al., 2007). 

The results in Fig. 7 curves show that, AC and AC/Ag-n electrodes composed of mesopores 

which exhibit type IV isotherms. Figure 8 shows the pore size distribution calculated by 

using the BJH method. The graph show that many pores were distributed between 3 to 4.2 nm 

which agrees well with the isotherms that indeed the samples have many pores in the 

mesopores region. Hence the presence of mesopores leads to a highly active surface area 

available for ions absorption (Garcia-Quismondo et al., 2013; Huang et al., 2013).  

Pore size and structure are crucial to electrosorption because they affect ion transport and the 

formation of EDLs. On one hand, smaller pores produce a greater surface area because of the 

surface area to volume ratio. On the other hand, if the pore sizes begin to approach the size of 

the ion diameters in solution, there is the possibility for EDL to overlap and thus 

electrosorption efficiency reduced (Tsouris et al., 2011). It was found that mesopores had the 

greatest contribution to electrosorption efficiency because of the accessibility of ions to the 

surface adsorption sites (Wang et al., 2013). Some theoretical and experimental studies show 

that the correlation between micropores and electrosorption is greater than that of mesopores 

(Porada et al., 2013). 
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Also, it is observed that the presence of PTFE binder and Ag-n in AC tend to reduce the BET 

surface area and the pore volumes significantly. This is because the binder provides internal 

resistance which blocks some pores of electrodes. As a result, the capacitance decreases due 

to the decrease of its surface wettability (Byeong-Hee et al., 2010; Limin et al., 2012). Also, 

embedding Ag-n into the carbon materials might slightly affect electrosorption performance 

of AC/Ag-n electrodes. 

Table 1: BET surface area, pore volume, pore size and pore diameter of the materials 

Sample ID BET surface area Pore Volume (cm
3
/g) Pore Diameter (nm) 

Comm.AC powder 1300 0.78 3.0 

AC/Ag-n +PTFE 786 0.35 4.2 

AC /PTFE 1037 0.65 3.0 

 

 

Figure 7: Nitrogen adsorption-desorption isotherms of electrode materials 
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Figure 8: Pore size distribution calculated from N2 adsorption-desorption isotherms using  

BJH method for electrode materials 

The morphology of AC and AC/Ag-n was characterized by the SEM.  Figure 9 (A) shows the 

rock and rough like structure thus reveals irregular surface morphology of AC, hence AC 

powder plays an important role in the adsorption of ionic impurities during the deionization 

process. Figure 9 (B) displays the EDS results of the AC. It can be clearly observed that 

Oxygen (O), Silicon (Si), Sulphur (S), Chlorine (Cl) and Calcium (Ca) were existing in the 

AC alongside with Carbon (C) and Potassium (K) (Table 4 in Appendix) indicating the 

presence of impurities within AC powder. 

 

 

Figure 9: (A) FE SEM images of Activated Carbon powder structure, (B) SEM-EDS analysis 
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Figure 10 shows the FTIR spectra of AC and AC/Ag-n. AC revealed the strong characteristic 

wide peak of 3388 cm
-1

 which was attributed to the stretching vibration of O–H bond, peak at 

2915 cm
-1

 attributed to stretching vibration of C-H, a peek at 1041 cm
-1

 attributed to C-O and 

a small peak of 2350 cm
-1

 attributed to C=O. On the other hand, AC/Ag-n revealed the strong 

characteristic wide peak of 3388 cm
-1

 is attributed to stretching and bending vibration of O–H 

bond, peaks at 1550 and 2915 cm
-1

 attributed to stretching vibration of C=C and C-H 

respectively. The strong absorption peak at 1394 cm
-1

 is caused by the stretching vibration of 

C–O–C. These results show that the reaction of the surface Ag-n was hindered due to the 

reaction of the active groups, such as C–O–C (Zou et al., 2016) and the reductive group like 

C=C around the surface of Ag-n can react with oxidizing substance which protect the Ag-n 

from oxidation to the surrounding environment (Wang et al., 2014). Presence of these surface 

hydrophilic groups such as phenolic, carboxyl and hydroxyls will enhance wettability and 

electrosorption capacity of carbon materials (Limin et al., 2012).  

 

 

Figure 10: FTIR spectra of pristine AC and AC/Ag-n 

4.3 Salt Removal Efficiency 

Before studying salt removal efficiency, natural water was characterized. Table 5 in the 

Appendix summarizes the quality of water used in this study. 
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Figure 11 (a and b) show the conductivity change of water when pristine AC and AC/Ag-n 

electrodes were used at 2.0 V. Initially the conductivity dropped quickly, indicating that the 

ions are adsorbed on the oppositely charged electrodes under the applied voltage. After 150 

minutes the conductivity tends to be stable, indicating the electrodes are saturated. When the 

electrodes become saturated, the CDI system become short circuited (zero voltage is applied), 

the conductivity increases rapidly, in which the ions are desorbed from the electrodes and 

concentrated effluent stream is produced from the CDI cell. Noticeably, pristine AC electrode 

reveals the higher adsorption capacity compared to AC/Ag-n as they reduce the pore sizes 

and volumes when Ag-n embeds AC hence the electrosorption capacity decreases.  

 

Figure 11: CDI performance for the fabricated electrodes in the salt solution, Curve (a) and 

(b) Conductivity change. Histogram (c) salt removal efficiency and (d) 

Electrosorption capacity 
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Figure 11 (c) shows that the salt removal efficiency (ɳ) of the pristine AC electrode was 

higher reaching 61% compared to the AC/Ag-n which has desalination efficiency of 45%. 

The pristine AC electrode has a higher electrosorption capacity (4.34 mg/g) than AC/Ag-n 

(2.56 mg/g) Fig. 11 (d). This is due to the reduced surface area and pore size during 

embedded (mixing) process as revealed by BET and BJH method of pore size distribution 

shown in Table 1. 

The regeneration performance of both AC and AC/Ag-n electrodes was conducted by 

repeating the charge-discharge experiment for 6 h by applying a constant voltage of 2 V 

during charging and 0 V during discharge. Figure 12 shows the conductivity and time profile 

over 3 charge-discharge cycles. In the first cycle, conductivity dropped to 40 min for AC and 

30 min for AC/Ag- and dropped further to 180 min in the second cycle.  It was observed that 

the ions were released rapidly after discharged but the conductivity of the solution doesn't 

reach the initial value. These results show that upon the removal of the applied voltage, some 

of the ions were not released back to the solution, and there was no decline in desalination 

performance observed after the first and second cycle, thus indicating that the AC and 

AC/Ag-n electrodes can be re-used without affecting its capacity. 

 

Figure 12: Charge-discharge cycles in a CDI experiment at 2V 

The results of the ionic composition of bio-contaminated natural water before and after 

treating with CDI using AC and AC/Ag-n electrodes are presented in Table 2. Field water 

comprises of a mixture of selected cations (Na
+
, K

+
, Ca

2+
, Mg

2+
) and anions (PO4

3-
, NO3

- 
and 

Cl
-
) each having an adsorption rate corresponding to the valance of the ionic species.  
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Table 2: Ionic concentration for the feed field water before and after desalination (C0 and 

C1), Ions charge (Valence) (V), ionic radii (IR) and hydrated radii (HR), Removal 

efficiency (η) and electrosorption capacity (Sc) 

Ion type V IR (pm)
a,b

 HR (pm)
c
 C0 (mg/L) 

C1 (mg/L) RE (%) Sc (mg/g) 

AC AC/Ag-n AC AC/Ag-n AC AC/Ag-n 

Na
+
 +1 116 358 14 0 0.5 100 96 0.43 0.40 

K
+
 +1 133 331 40 6 24 85 40 0.99 0.47 

Ca
2+

 +2 65 428 31 25 31 19 0 0.18 0 

Mg
2+

 +2 86 412 44 16 18 63 59 0.83 0.79 

PO4
3-

 -3 * * 2.35 0.54 1.17 77 50 0.053 0.035 

NO3
-
 -1 264 335 22.4 9.8 20.6 56 8 0.37 0.054 

Cl
-
 -1 181 332 0.3 0.1 0.2 67 33 0.06 0.03 

C0= Initial concentration C1=Final concentration after treatment, RE =Removal Efficiency, 

Sc = Electrosorption capacity,
 a,b,c 

References (Gabelich et al., 2002; Nightinga, 1959; Yang et 

al., 2009),* Not found 

Figure 13 presents the ion removal efficiency. Generally, the ions adsorption rate were higher 

in AC than in AC/Ag-n electrodes, due to the fact that AC has larger BET surface area and 

pore volume compared to AC/Ag-n as shown in Table 1. Seo et al. (2010), Gabelich et al. 

(2002) and Xu et al. (2008) previously reported that, surface area, pore size and pore 

structure of the electrodes are important parameters to consider during ion 

adsorption/desorption process because they affect electrosorption capacity as well as removal 

efficiency of the ions during water purification (Gabelich et al., 2002; Seo et al., 2010; Xu et 

al., 2008). 

Field water comprises of a mixture of selected cations (Na+, K+, Ca
2+,

 and Mg
2+ 

)  and anions 

(PO4
3-

, NO3
- 
and Cl

-
) with different concentrations as presented in Table 2 whereby each ion 

was having an adsorption capacity corresponding to the valency of the ionic species. It can be 

observed that, using both CDI porous AC and AC/Ag-n electrodes, monovalent cations (Na
+ 

and K
+
) were removed to the large extent from the solution over divalent cation (Ca

2+ 
and 

Mg
2+

) because monovalent cations have  smaller hydrated  radii hence can penetrate through 

the pores and attached on the surface of electrode more easily while divalent cation have 
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larger hydrated radii, thus it was difficult to pass the ions through the pores of the electrode 

deeply  (Avraham et al., 2008; Yang et al., 2009). Conversely, monovalent anions (NO3
- 
and 

Cl
-
) were removed to a smaller extent compared to trivalent anions (PO4

3- 
), but those ions 

(Na
+
, K

+
, Ca

2+
, Mg

2+
) are thermodynamically favored for adsorption during the deionization 

process (Kim et al., 2016; Laxman et al., 2015). From Table and Fig. 13, the adsorption 

capacity of the various ions in natural water shows that the selectivity of the ions depends on 

the valency, concentration and the size of the ions present in water.  

 

Figure 13: Removal efficiency of ionic impurities in natural water 

4.4 Bacteria Removal Efficiency with CDI 

Natural water was characterized before treatment and found to have Escherichia coli and 

Salmonella enteritidis as indicated in Fig. 14 (a), which were detected as model pathogens in 

testing antimicrobial activities. After circulating the water in CDI cell with AC and AC/Ag-n 

electrodes the result indicates the reduction of those two-gram negative (Escherichia coli and 

Salmonella enteritidis) bacteria (Fig. 14 (b) and (c)) 
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Figure 14: Plates showing bacteria growth (a) before treatment and (b) treated with AC and 

(c) treated with AC/Ag-n electrodes, (Blue colonies indicate Escherichia coli and 

cream colonies indicates Salmonella enteritidis) 

Figure 15 (a) shows that, AC/Ag-n electrodes have excellent antimicrobial effect toward both 

bacteria Escherichia coli and Salmonella enteritidis and their removal efficiency is 100% and 

98% respectively after 3 h of charging without dilution. During CDI process the bacteria 

were electrically attracted toward the positive AC/Ag-n electrodes, this was due to the 

presence of negative charges on their cell envelope (Wang et al., 2015) and then killed by the 

embedded Ag-n when in physical contact. AC electrodes only remove bacteria by absorbing 

91%  and 87% for Escherichia coli and Salmonella enteritidis respectively. 

 

Figure 15: Bacteria removal efficiency (a) during the CDI process (b) by physical contact. 
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We further studied if Ag-n and AC/Ag-n can remove bacteria by physical contact [Fig. 15 

(b)] without CDI process (i.e without applying electric potential to the CDI cell). Effluent 

water was taken and filtered for microbiological analysis. After culturing there were no 

bacteria which grow in the agar plate which contain effluent from AC/Ag-n materials, but 

bacteria grew in plates with effluent from AC electrodes with 87 to 91% bacterial removal 

efficiency as shown in Fig. 15 (a). This implies that AC electrodes may result in a decrease in 

the CDI life span as the microorganisms do not die in the cell. 

Furthermore, it was noted that the concentration of salt ions in this study which was 250 

mg/L in the solution has no significant effect on the bacteria-killing because the salinity is the 

one among the factors which favor the bacteria growth. The optimum salt concentration for 

bacteria to survive is about 200 to 500 mg/L as previously reported by Chapman et al. (2009), 

hence the presence of Ag-n have critical effects for disinfection of saline water. Table 3 

presents different studies in which nanomaterials have been used as an antimicrobial agent in 

CDI-AC electrodes. 

From Table 3, it can be observed that Yasin et al. (2017) uses nitrogen-doped tin oxide 

intercalated activated carbon non composite (N-AC/SnO
2
) and composite nitrogen-

TiO2/ZrO2 nanofibers incorporated activated carbon (NACTZ) electrode materials which 

show good antimicrobial effects as well as desalination performance (Yasin et al., 2017; 

Yasin et al., 2018). Wang et al. (2015) also uses capacitive deionization disinfection (CDID) 

electrode made by coating an activated carbon (AC) with cationic non hybrids of graphene 

oxide-graft-quaternized chitosan (GO-QC), (GO-QC/AC CDID electrode) and achieve to kill 

99.9999% of Escherichia coli in water (Wang et al., 2015). This study achieved 100 % 

Escherichia coli and 98% Salmonella enteritidis removal using AC/Ag-n electrode after 3h 

without dilution of the original sample.  
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Table 3: Salt and bacterial removal efficiency and electrosorption capacity reported in the 

literature and the findings of this study. 

Electrode 

materials 

used 

Volt 

(V) 

Flowrate 

(ml 

/min) 

Initial 

concentration 

(mg/l) 

Salt 

removal 

efficiency 

(%) 

Electrosorption 

capacity (mg/g) 

Bacteria 

removal 

(%) 

Reference 

AC 2 2.5 250 61 4.34 91-E.coli  

 

 

This study 

87 S. 

Enteritidis 

AC /Ag-n 2 2.5 250 45 2.56 100 E.coli 

98 S. 

Enteritidis 

AC 2 1 100 66 - 82 (6 log 

reduction) 

Wang et 

al. (2015) 

200 63 - 

AC/GO-

QC 

2 1 100 73 - 99.9999 (6 

log 

reduction) 
200 69 - 

N-

AC/SnO
2
 

1.2 0.8 50 61.13 3.42 Good Yasin et 

al. (2017) 

NACTZ 1.2  50 71.19 3.98 Good Yasin et 

al. 2018) 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

To conclude, the main objectives of this study were achieved as mentioned in Chapter 1. This 

dissertation focused on the fabrication of AC/Ag-n electrodes for the CDI desalination and 

disinfection. 

Capacitive Deionization (CDI) is a potential technology which can be used to remove 

multiple classes of contaminants from different types of water. In this study, effect Ag-n on 

AC electrodes for salt ion and bacteria removal from surface water (river water) was 

investigated.  Ag-n have been embedded in AC and used as novel CDI electrode. The 

fabricated AC/Ag-n was tested for desalination and antimicrobial performance. The Ag-n are 

excellent disinfectant and can remove bacteria gram-negative species (Escherichia coli and 

Salmonella enteritidis) by physical contact as well as during CDI process against 

representative but AC alone cannot kill bacterial by physical adsorption. The salt and bacteria 

removal efficiency of 45% and 100% respectively were achieved. The electrosorption 

capacity of pristine AC was 4.43 mg g
-1

 and that of AC/Ag-n was 2.56 mg g
-1

 when 30 mg L
-

1 
of field bio contaminated water was used compared to the pristine AC, AC/Ag-n revealed 

high disinfection performance for gram-negative bacteria (Escherichia coli and Salmonella 

enteritidis). The AC/Ag-n electrode is considered the potential for disinfection as bacteria 

contact killing process was fast, continuous and do not require complicated infrastructure. 

Therefore, this study presents a novel AC/Ag-n composite electrode material which can be 

considered as an excellent antimicrobial agent for the CDI process. 

5.2 Recommendations 

Even though this technique performs better to remove bacteria after culturing into agar plate 

but further techniques (such as molecular technique) are needed to confirm the exact 

mechanisms of bacteria-killing during CDI process. Furthermore, the efficacy of removing 

diverse contaminants in isolation as well as simultaneously in different water types should be 

studied to better model CDI application in natural water treatment. 
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