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Abstract: Constant envelope with a fractional Fourier transform-
orthogonal frequency division multiplexing (CE-FrFT-OFDM) is a
special case of a constant envelope OFDM (CE-OFDM), both be-
ing energy efficient wireless communication techniques with a 0 dB
peak to average power ratio (PAPR). However, with the proper se-
lection of fractional order, the first technique has a high bit error
rate (BER) performance in the frequency-time selective channels.
This paper performs further analysis of CE-FrFT-OFDM by exam-
ining its spectral efficiency (SE) and energy efficiency (EE) and
compare to the famous OFDM and FrFT-OFDM techniques. An-
alytical and comprehensive simulations conducted show that, the
CE-FrFT-OFDM has five times the EE of OFDM and FrFT-OFDM
systems with a slightly less SE. Increasing CE-FrFT-OFDM’s trans-
mission power by increasing its amplitude to 1.7 increases its SE
to match that of the OFDM and FrFT-OFDM systems while slightly
reducing its EE by 20% to be four times that of OFDM and FrFT-
OFDM systems. OFDM and FrFT-OFDM’s amplitude fluctuations
cause rapid changing output back-off (OBO) power requirements
and further reduce power amplifier (PA) efficiency while CE-FrFT-
OFDM stable operational linear range makes it a better candidate
and outperforms the other techniques when their OBO exceeds
1.7. Higher EE and low BER in time-frequency selective channel
are attracting features for CE-FrFT-OFDM deployment in mobile
devices.

Keywords: fractional Fourier transform (FrFT), constant envelope,
spectral efficiency (SE), energy efficiency (EE), high power ampli-
fier.

DOI: 10.21629/JSEE.2019.03.04

1. Introduction

Orthogonal frequency division multiplexing (OFDM) is a
famous physical layer transmission technique with a high
data rate and ease of implementation using fast Fourier
transform (FFT). The main drawback of the OFDM
modulated waveform is high amplitude fluctuations that

Manuscript received January 17, 2017.
*Corresponding author.

produce large peak to average power ratio (PAPR). The
high PAPR makes the OFDM sensitive to nonlinear dis-
tortion and high energy requirement for wireless commu-
nicating handheld devices [1].

This and other drawbacks such as its sensitiveness to
carrier frequency offset make the OFDM unfit for the next
generation mobile device usage. Different techniques were
applied to reducing or eliminating OFDM PAPR draw-
backs as discussed in [2,3], which are mainly categorized
as signal scrambling techniques and signal distortion tech-
niques.

The 0 dB PAPR signal scrambling techniques include
a constant envelope OFDM (CE-OFDM) presented in [4]
and a CE fractional Fourier transform OFDM (CE-FrFT-
OFDM) or simply named CE chirped OFDM discussed in
our earlier research in [5]. The techniques attain the same
symbol error rate (SER) as the conventionalOFDM and the
FrFT-OFDM with ease of deployment and 100% amplifier
efficiency in its operation. The CE-FrFT-OFDM uses the
advantages of FrFT as discussed in [6] and [7] to imple-
ment CE-OFDM as developed by [4] and its symbol error
rate (SER) performance was analyzed in [8].

The advantages of the CE-FrFT-OFDM includes high
SER as conventional OFDM, high power amplifier (PA)
energy efficiency, additional system security due to the sig-
nal spreading which creates a noise-like waveform suitable
for secure and low probability of intercept (LPI) communi-
cations as in [9]. Unlike the CE-FrFT-OFDM proposed in
[10] and its performance analyzed in [11], which has limi-
ted range of applications as it only uses Barker codes,
the CE-FrFT-OFDM in [5,8] has a wide range of applica-
tions as it uses any modulated signal like M-ary quadrature
amplitude modulation (M-QAM), M-ary phase shift key-
ing (M-PSK), and offset quadrature amplitude modulation
(OQAM) with a M-PSK coverage in this paper.

However, 0 dB PAPR, 100% PA efficiency, and high
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SER are not the only performance conditions needed by a
next generation communication system. Other conditions
include system complexity for system feasibility, spectrum
efficiency (SE) and energy efficiency (EE) for efficient use
of available bandwidth and energy as discussed in [12].
Since the CE-FrFT-OFDM uses FrFT in its operation with
the same complexity and power consumption as FFT in a
traditional OFDM [13], then, the CE-FrFT-OFDM has the
same complexity and power consumption as the conven-
tional OFDM with the exception of signal extension and
its wrapping into CE. The fact that the additional opera-
tions in the CE-FrFT-OFDM are in the real-valued signal
reduces extra memory requirement and power consump-
tions [14]. It is an added advantage and the increasing need
of its further exploration.

The main objective of this paper is to further discuss
the CE-FrFT-OFDM by analytically finding its SE and EE,
compare the analytical results with simulations, the tradi-
tional OFDM and the FrFT-OFDM systems. The rest of
the paper is organized as follows. Section 2 gives the re-
view of the CE-FrFT-OFDM. Section 3 gives SE and EE
analytical calculations of the system. Section 4 gives the
detailed SE and EE system simulations and comparison to
the OFDM and the FrFT-OFDM. Lastly, Section 5 con-
cludes the paper and provides recommendations for future
work on CE-FrFT-OFDM systems.

2. System model

This section provides a review of a CE-FrFT-OFDM sig-
nal generation as depicted by a block diagram in Fig. 1.
The main stages of CE-FrFT-OFDM formation is obtain-
ing a time-domain signal by using an inverse FrFT (IFrFT)
as given by

si(m) =
N−1∑
k=0

Si(k)F−α(m, k), 0 � m < N − 1 (1)

where Si(k) is the modulated signal (PSK is used in this
paper), F−α(m, k) is the IFrFT transform as detailed ex-
plained in [15,16]. The FrFT is given by

Fα(m, n) =

√
sin α − j · cosα

N
exp

(
j
2
m2 cotα(u)2

)
×

exp
(

j
2
n2 cotα(T 2

s )
)

exp
(
−j

2πmn

N

)
(2)

where α = p · π
2

(0 < α < π), p is the fractional

factor of the transform, Δu is the sampling space in the

fractional Fourier domain, and ΔuTs =
2π| sinα|

N
. When

α =
π

2
, the system becomes a traditional OFDM system

(FFT-OFDM) and the obtained system will be CE-OFDM.

Fig. 1 CE-FrFT-OFDM block diagram

Then, to get a CE-FrFT-OFDM, the obtained time-
domain signal si(m) is extended to obtain a real-valued
time signal as shown by (3) and wrapped by a CE wave-
form as given by (4).

mi =
[

IN×N

0N×N

]
�(si)H +

[
0N×N

IN×N

]
�(si)H (3)

where (·)H represents the transpose operation, IN×N is an
N × N identity matrix, 0N×N is an N × N zero matrix
and �(·) and �(·) stand for real and imaginary operations.

Signal extension operation creates a noise-like wave-

form which is suitable for increasing security of the com-
municating devices as discussed in [9]. Cyclic prefix (CP)
can be added as a guide band to eliminate inter-symbol in-
terference (ISI) of the transmitted information but for sim-
plicity CP overhead is not covered in this paper. Then, the
CE of the real-valued signal generated is obtained by phase
modulating the signal mi as given by

xi = A exp(j(2πh mod · mi + θi)) (4)

where h mod is a constant modulation index (MI), j =√−1, and θi is the ith subcarrier angle for increasing chan-
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nel estimation efficiency given by θi = θi−1 + 2π
i

N
with

θ0 = 0.
The signal is then amplified and transmitted through a

wireless channel. The received signal is the results of wire-
less channel impulse response (CIR) and additive white
Gaussian noise (AWGN) as given by (5). The receiver ex-
ecutes inverse operations in reverse order to estimate the
transmitted signal.

yi = hi ⊗ xi + wi (5)

where h is CIR, ⊗ is convolution operation, x is the trans-
mitted signal and w is the noise between the transmitter
and receiver. In the frequency domain, it can be easily rep-
resented by Y = HX + W .

In implementations, N = 64 FrFT size is used followed
by signal extension to obtain 2N phased modulated sub-
carriers. The implementations need additional computa-
tion/circuit for signal extension and wrapping with addi-
tional 10% to 15% circuit power consumption requirement
as stated in [17,18]. However, PAPR elimination will fur-
ther reduce 40% of the amplification power [19] and there-
fore gives the overall best system power consumption than
OFDM and FrFT-OFDM systems.

3. SE and EE analysis

3.1 SE

SE is a widely accepted criterion for wireless network op-
timization. It measures the system throughput per given
bandwidth. According to Shannon’s formula [20], the
achievable data rate over an AWGN channel could be ex-
pressed by

C = B log2(1 + SNR) = B log2

(
1 +

Py

Pw

)
(6)

where B is the bandwidth, SNR is the signal to noise ratio,
Py is the average received power, and Pw is the AWGN
average power.

Due to receivers estimation errors, the signal to noise
ratio is further decreased by incresed signal distortions
caused by estimation errors and the overall channel
throughput is given by

C = B log2(1+SNDR) = B log2

(
1 +

Py

Pd + Pw

)
(7)

where SNDR is the signal to noise distortion ratio, and Pd

is the power of the nonlinear distortion noise.
For a multicarrier systems in a multipath wireless com-

munication channel, its capacity is given by (7) as detailed

explained in [21 – 23]. By using (7) we obtain the CE-
FrFT-OFDM system capacity given by

C = B
N∑

i=1

log2

⎛
⎜⎜⎜⎜⎜⎝

1 +

1
L

L−1∑
l=0

|H(W l)|2Pi

σ2
ΔPi + σ2

w

⎞
⎟⎟⎟⎟⎟⎠

(8)

where N is the number of subcarriers, L is the multipath
taps, H(W l) is the channel impulse response in the fre-
quency domain for the first path, and Pi is power for the

ith subcarrier given by Pi =
∫ T

2

−T
2

xi(t) · xi(t)∗dt with

(·)∗ being the complex conjugate, and σ2
Δ is the minimum

mean square error (MMSE) variance due to equalization
and σ2

w is the AWGN variance.

CCE-FrFT-OFDM =
1
2
B log2

(
1 +

E[|H(W l)|2]Px

σ2
ΔPx + σ2

w

)

(9)
where E[·] is the expectation operation, and Px is the aver-
age transmit power of the CE-FrFT-OFDM subcarrier.

By using block type pilot symbols, the receiver is as-
sumed to have partial channel state information (CSI) and
can be used to determine the CIR of the Rayleigh fading
channel which is a good model for analyzing performance
of the CE-FrFT-OFDM in indoor environments.

A least square (LS) estimator or MMSE estimator can
be used to approximate and equalize the transmitted sig-
nal with an alternative of the training sequence. The CIR
obtained by LS and MMSE estimators is given by

HLS = X−1
P YP (10)

HMMSE = RHH(RHH + σ2
n(XP XH

P )−1)−1HLS (11)

where H is the estimated complex-value Rayleigh fad-
ing random variable (CIR) in the frequency domain H =
[H0, H1, . . . , HL−1], XP and YP are transmitted and re-
ceived pilot symbols respectively and RHH is channel au-
tocorrelation.

Although the OFDM, the FrFT-OFDM, and the CE-
FrFT-OFDM pass through the same wireless channel, each
one will be affected differently as each has different peak
values and fluctuations. The CE-FrFT-OFDM, the FrFT-
OFDM, and the OFDM channel responses are shown in
Fig. 2. The CIRs are of equal nature and determined by
the type of channel intead of the waveform type but the SE
and EE will vary depending on the signal strength of each
waveform as shown in Fig. 3 and Fig. 4.
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Fig. 2 OFDM, FrFT-OFDM, and CE-FrFT-OFDM channel impulse responses

Fig. 3 SE of CE-FrFT-OFDM against MI and amplitude when
SNR=15 dB

Fig. 4 EE of CE-FrFT-OFDM against MI and amplitude when
SNR=15 dB

The overall CE-FrFT-OFDM SE is given by

ηSE =
1
2

log2

(
1 +

E[|H(W )|2]Px

σ2
ΔPx + σ2

w

)
. (12)

Compared with OFDM, the ratio between the CE-FrFT-

OFDM and OFDM SE is given by

ηSE1

ηSE2

=

1
2

log2

(
1 +

E[H1]2P1

σ2
ΔP1 + σ2

w

)

log2

(
1 +

E[H2]2P2

σ2
ΔP2 + σ2

w

) . (13)

Simplify (13) and we obtain

ηSE1

ηSE2

=

1
2

log2

⎛
⎜⎜⎝

σ2
Δ +

σ2
w

P1
+ E[H1]2

σ2
Δ +

σ2
w

P1

⎞
⎟⎟⎠

log2

⎛
⎜⎜⎝

σ2
Δ +

σ2
w

P2
+ E[H2]2

σ2
Δ +

σ2
w

P2

⎞
⎟⎟⎠

. (14)

Thus, under the same transmit power, i.e., when P1 =
P2, and the same noise energy, i.e., E[H1]2 = E[H2]2,
ηSE1 =

ηSE2

2
, but increasing P1 also increases ηSE1 to

match ηSE2 as shown in Fig. 3.

3.2 EE

In addition to throughput improvement, EE is becoming
an increasingly important factor for mobile communica-
tions because of the slow progress of battery technology.
EE defines the amount of energy used by a communica-
tion system to transmit the given information [24,25]. EE
is simply defined as the system throughput divided by the
total system power consumption.

Moreover, the mobile devices also incur additional cir-
cuit power during transmissions. The circuit power repre-
sents the average energy consumption of device electro-
nics, such as mixers, filters, and digital-to-analogy convert-
ers. In a transmit mode, the EE of the CE-FrFT-OFDM is
given by

ηEE =
CCE-FrFT-OFDM

PT
=

CCE-FrFT-OFDM

κPx + PC
=
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B

2(κPx + PC)
log2

(
1 +

E[|H(W )|2]Px

σ2
ΔPx + σ2

w

)
(15)

where κ is a constant depending on the amplifier opera-
tional efficiency, Px is the transmit signal power and PC is
the circuitry power consumptions.

For the CE-FrFT-OFDM, κ = 1. Since it has 100%
power amplification efficiency but κ � 3 for OFDM and
FrFT-OFDM as they attain maximum amplifier efficiency
of 30%.

Take EE of the CE-FrFT-OFDM as ηEE1 =
C1

κ1P1 + Pc
,

and EE of OFDM as ηEE2 =
C2

κ2P2 + Pc
.

Compare the two EEs:

ηEE1

ηEE2

=
C1

κ1P1 + Pc
· κ2P2 + Pc

C2
. (16)

For the same channel capacity, i.e., C1 = C2, and from
κ1 = 1 and κ2 � 3, we get

ηEE1

ηEE2

=
κ2P2 + Pc

P1 + Pc
. (17)

So for the same transmission power, i.e., P1 = P2,
the CE-FrFT-OFDM will have better EE than OFDM, i.e.,
ηEE1 > ηEE2 , as it is proved in Fig. 4.

3.3 Transmission under power amplifier

Under PA, the signal power Px is amplified with the gain
g, and to reduce energy consumption signal clipping is em-
ployed when Pin � Pmax

in as given by

Pout =
{

gPin, Pin < Pmax
in

gPmax
in , Pin � Pmax

in
(18)

where Pout is the amplifier output signal power, Pin = Px

is the signal power, g � 1 is the amplifier gain and Pmax
in

is a maximum signal power which causes amplifier satura-
tion.

Unlike multicarrier systems, the CE-FrFT-OFDM has a
high linear range of operation and has a 0 dB PAPR. In
multicarrier systems power back-off factor is used to in-
crease the operational linear range of an amplifier. The in-
put back-off (IBO) and output back-off (OBO) further in-
creases SNDR hence reducing system capacity as given
in [19]. The SNDR in a multicarrier system is given by

SNDR =
1

OBO

(
Py

Pd + Pw

)
(19)

where OBO =
Pmax

out

P avg
in

.

In multicarrier systems, OBO > 1, which in-
creases signal distortion and makes SNDRMC <

SNDRCE-FrFT-OFDM, and hence SE and EE of the CE-
FRFT-OFDM are always greater than those of the OFDM
and the FrFT-OFDM systems as shown in Fig. 5.

Fig. 5 SE comparisons for CE-FrFT-OFDM, OFDM and FrFT-
OFDM under HPA when SNR = 15

4. Simulation results

The parameters used in the simulation are tabulated in Ta-
ble 1.

Table 1 System parameters

SN Information Value

1 Subcarrier size 64
2 Guard band 8
3 Modulation type 8-PSK
4 Fractional order 0.1
5 Number of symbols 10 000
6 MI h mod 1
7 Envelope amplitude (EA) 1.5
8 Doppler frequency/Hz 100
9 Signal delay/μs 1,10
10 Delayed signal power/dB – 4, – 2
11 Subcarrier bandwidth/MHz 2
12 Maximum transmit power/W 3
13 Circuit power/W 0.2
14 Amplifier gain/g 1

In analyzing the SE and EE of the CE-FrFT-OFDM, we
compute their values under different MI and EA as shown
in Fig. 3 and Fig. 4. The first shows that an increase of
MI reduces SE but the increase of EA increases SE of the
system. The latter shows an increase of MI leads to the in-
crease of EE while increasing EA reduces EE. Bases on
this, the trade-off between EE and SE has to be made for
the best system operation condition. Since the CE-FrFT-
OFDM is an energy efficient system, we compromise EE
for better SE and the preferred choice for EA and MI is 1.5
and 1 respectively as tabulated in Table 1.

The selected MI and EA are used to find SE and EE of
the system and compare to OFDM and FrFT-OFDM sys-
tems as shown in Fig. 6 and Fig. 7. The first shows that,
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the SE of the CE-FrFT-OFDM is slightly less than that of
the OFDM and the FrFT-OFDM but it can be increased to
match other systems by increasing its EA from 1.5 to 1.7
as shown by Fig. 3 and Fig. 4.

Fig. 6 SE for CE-FrFT-OFDM and its comparison to OFDM and
FrFT OFDM

Fig. 7 SE of CE-FrFT-OFDM under different EA

Fig. 7 shows the EE of the system is five times that
of OFDM and FrFT-OFDM. In increasing EA of the CE-
FrFT-OFDM system we increase SE to match shows that
the SE of CE-FrFT-OFDM is constant while the SEs of
OFDM and FrFT-OFDM decrease or exceed that of OFDM
and FrFT-OFDM systems. Fig. 6 further compares SE
of the systems under high PA with different OBO. It is
abruptly when increasing OBO and it is outperformed by
CE-FrFT-OFDM when OBO is greater than 1.7.

5. Conclusions

In this paper, we discuss the implementation of the CE-
FrFT-OFDM. The SE and EE of the CE-FrFT-OFDM are

analyzed to show the effectiveness of the system. Fig. 3
and Fig. 4 show how the optimized waveform amplitude
and MI are obtained in our system. Using the optimized
value, the SE and EE of the system are found and analyzed
under different SNR, and compared to OFDM and FrFT-
OFDM systems as shown in Fig. 6 and Fig. 7.

The simulation proves the CE-FRFT-OFDM is a energy
efficient system with slightly less SE. Fig. 6 shows the
SE of the system can easily match that of the OFDM and
the FrFT-OFDM when amplitude of the waveform is in-
creased. Fig. 5 shows the system has better performance
than the OFDM and the FrFT-OFDM when operated under
amplifier with an OBO of at least 1.7.

The high SE and EE proved here plus the same SER
performance as the OFDM and the FrFT-OFDM show in
our previous research proves that the CE-FrFT-OFDM is a
good waveform of choice for use in wireless communica-
tion devices.

Acknowledgment

The support received from staff members of Beijing Key
Laboratory of Fractional Signals and Systems of Bei-
jing Institute of Technology and that of Nelson Mandela
African Institute of Science and Technology (NM-AIST)
in Arusha, Tanzania toward this publication is highly ap-
preciated.

References
[1] CHIUEH T D, TSAI P Y. OFDM baseband receiver design

for wireless communications. Singapore: John Wiley and Sons
(Asia).

[2] JIANG T, WU Y. An overview: peak-to-average power ra-
tio reduction techniques for OFDM signals. IEEE Trans. on
Broadcasting, 2008, 54(2): 257 – 268.

[3] HAN S H. An overview of peak-to-average power ratio reduc-
tion techniques for multicarrier transmission. IEEE Wireless
Communication, 2005, 12(2): 56 – 65.

[4] THOMPSON S C, AHMED A U, PROAKIS J G, et al.
Constant envelope OFDM. IEEE Trans. on Communications,
2008, 56(8): 1300 – 1312.

[5] DIDA M A, HAO H, WANG X, et al. Constant envelope
chirped OFDM for power-efficient radar communication. Proc.
of the Information Technology, Networking, Electronic & Au-
tomation Control Conference, 2016: 298 – 301.

[6] MARTONE M. A multicarrier system based on the fractional
Fourier transform for time-frequency-selective channels. IEEE
Trans. on Communications, 2001, 49(6): 1011 – 1020.

[7] TAO R, DENG B, WANG Y. Research progress of the frac-
tional Fourier transform in signal processing. Science in China
Series F Information Sciences, 2006, 49(1): 1 – 25.

[8] DIDA M A, HAO H, ANJUM M R, et al. Constant envelope
chirped OFDM power efficiency. Proc. of the 4th International
Conference on Wireless and Optical Communications, 2016:
99020N.

[9] DIDA M A, HAO H, WANG T, et al. Constant envelope FrFT-
OFDM with physical layer security. Proc. of the 7th Interna-
tional Workshop on Computer Science and Engineering, 2017:
794 – 799.



DIDA Mussa Ally et al.: Constant envelope FrFT OFDM: spectral and energy efficiency analysis 473

[10] ILIOUDIS C V, CLEMENTE C, PROUDLER I, et al. Con-
stant envelope fractional fourier transform based waveform li-
braries for MIMO radar. Proc. of the Sensor Signal Processing
for Defence, 2014: 1 – 5.

[11] ILIOUDIS C V, CLEMENTE C, PROUDLER I, et al. Per-
formance analysis of fractional waveform libraries in MIMO
radar scenario. Proc. of the Radar Conference, 2015: 1119 –
1124.

[12] SAXENA R, SINGH A K, JOSHI H D, et al. Exact BER analy-
sis of FRFT-OFDM system over frequency selective Rayleigh
fading channel with CFO. Electronics Letters, 2013, 49(20):
1299 – 1301.

[13] BENALI W, BOT M L, LANGLAIS C, et al. Power consump-
tion of Wi-Fi transceivers. Proc. of the International Sympo-
sium on Wireless Communication Systems, 2016: 213 – 217.

[14] HSUE W L, CHANG W C. Real discrete fractional fourier,
hartley, generalized fourier and generalized hartley transforms
with many parameters. IEEE Trans. on Circuits and Systems I:
Regular Papers, 2015, 62(10): 2594 – 2605.

[15] OZAKTAS H M, ARIKAN O, KUTAY M A, et al. Digital
computation of the fractional Fourier transform. IEEE Trans.
on Signal Processing, 1996, 44(9): 2141 – 2150.

[16] PEI S C, YEH M H. The discrete fractional cosine and sine
transforms. IEEE Trans. on Signal Processing, 2001, 49(6):
1198 – 1207.

[17] QIAN Z, MARGALA M. Low-power split-radix FFT proces-
sors using Radix-2 butterfly units. IEEE Trans. on Very Large
Scale Integration Systems, 2016, 24(9): 1 – 5.

[18] BROKALAKIS A, PALIOURAS V. Using the arithmetic rep-
resentation properties of data to reduce the area and power con-
sumption of FFT circuits for wireless OFDM systems. Proc. of
the Signal Processing Systems, 2011: 7 – 12.

[19] JIANG T, LI C, NI C. Effect of PAPR reduction on spec-
trum and energy efficiencies in OFDM systems with Class-
A HPA over AWGN channel. IEEE Trans. on Broadcasting,
2013, 59(3): 513 – 519.

[20] SHANNON C E. Communication in the presence of noise.
Proceedings of the IRE, 2006, 37(1): 10 – 21.

[21] GOLDSMITH A. Wireless communications. New York, USA:
Cambridge University Press, 2005.

[22] THOMAS M C, JOY A T. Elements of information theory. 2nd
ed. New York, USA: Wiley, 2006.

[23] AMIN O, BEDEER E, AHMED M H, et al. Energy efficiency
and spectral efficiency trade-off for OFDM systems with im-
perfect channel estimation. Proc. of the IEEE International
Conference on Communications, 2014: 3559 – 3564.

[24] JOUNG J, HO C K, SUN S. Spectral efficiency and energy
efficiency of OFDM systems: impact of power amplifiers and
countermeasures. IEEE Journal on Selected Areas in Commu-
nications, 2014, 32(2): 208 – 220.
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