
Thomas Jefferson University Thomas Jefferson University 

Jefferson Digital Commons Jefferson Digital Commons 

Department of Radiology Faculty Papers Department of Radiology 

10-23-2020 

Characterization of indeterminate breast lesions on B-mode Characterization of indeterminate breast lesions on B-mode 

ultrasound using automated machine learning models ultrasound using automated machine learning models 

Shuo Wang 

Sihua Niu 

Enze Qu 

Flemming Forsberg 

Annina Wilkes 

See next page for additional authors 

Follow this and additional works at: https://jdc.jefferson.edu/radiologyfp 

 Part of the Radiology Commons 

Let us know how access to this document benefits you 
This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital 
Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is 
a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections 
from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested 
readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been 
accepted for inclusion in Department of Radiology Faculty Papers by an authorized administrator of the Jefferson 
Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jefferson Digital Commons

https://core.ac.uk/display/363992745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://jdc.jefferson.edu/
https://jdc.jefferson.edu/radiologyfp
https://jdc.jefferson.edu/radiology
https://jdc.jefferson.edu/radiologyfp?utm_source=jdc.jefferson.edu%2Fradiologyfp%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/705?utm_source=jdc.jefferson.edu%2Fradiologyfp%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jeffline.jefferson.edu/Education/surveys/jdc.cfm
http://www.jefferson.edu/university/teaching-learning.html/


Authors Authors 
Shuo Wang, Sihua Niu, Enze Qu, Flemming Forsberg, Annina Wilkes, Alexander Sevrukov, Kibo Nam, 
Robert F. Mattrey, Haydee Ojeda-Fournier, and John R. Eisenbrey 



1 
 

Characterization of indeterminate breast lesions on B-mode ultrasound using 

automated machine learning models 

Shuo Wang, MS1,2, Sihua Niu, MD, PhD3, Enze Qu, MD4, Flemming Forsberg, PhD2, 

Annina Wilkes, MD2, Alexander Sevrukov, MD2, Kibo Nam, PhD2, Robert F. Mattrey 

MD5, Haydee Ojeda-Fournier, MD6, John R. Eisenbrey, PhD2 

1. Department of Biomedical Engineering, Drexel University, Philadelphia, PA 

2. Department of Radiology, Thomas Jefferson University, Philadelphia, PA 

3. Department of Ultrasound, Peking University People’s Hospital, Beijing, China 

4. Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, 

Guangzhou, China 

5. Department of Radiology, UT Southwestern, Dallas, TX 75390, USA 

6. Department of Radiology, University of California, San Diego, CA 92037, USA 

 

Corresponding author: 

John Eisenbrey, PhD 

Department of Radiology 

Thomas Jefferson University 

132 S. 10th Street 

Philadelphia, PA 19017, USA 

e-mail: John.Eisenbrey@jefferson.edu 

 

Funded in part by NIH R01 CA140338 and DoD W81XWH-11-1-0630 

For the original clinical trial that data was obtained from, the ultrasound contrast agent 

was provided by Lantheus Medical Imaging and the ultrasound scanner provided by GE 

Healthcare. 

Conflict of Interest: None 

 

mailto:John.Eisenbrey@jefferson.edu


2 
 

Key words: Artificial Intelligence; Machine learning; Deep learning; Ultrasound 

imaging; Breast lesions 

Abstract 1 

Purpose: While mammography has excellent sensitivity for the detection of breast lesions, 2 
its specificity is limited. Adjunct screening with ultrasound may partially alleviate this 3 
issue, but also increases false positives, resulting in unnecessary biopsies. This study 4 
investigated the use of Google AutoML Vision (Mountain View, CA), a commercially 5 

available machine learning service, to both identify and characterize indeterminate breast 6 
lesions on ultrasound. 7 

Methods: B-mode images from 253 independent cases of indeterminate breast lesions 8 

scheduled for core biopsy were used for model creation and validation. The performances 9 
of two sub-models from AutoML Vision, the image classification model and object 10 
detection model were evaluated, while also investigating training strategies to enhance 11 

model performances. Pathology from the patient’s biopsy were used as a reference standard. 12 

Results: The image classification models trained under different conditions demonstrated 13 

areas under the precision recall curve (AUC) ranging from 0.85 to 0.96 during internal 14 
validation. Once deployed, the model with highest internal performance demonstrated a 15 

sensitivity of 100% (95% confidence interval (CI) of 73.5-100%), specificity of 83.3% 16 
(CI=51.6-97.9%), positive predictive value (PPV) of 85.7% (CI=62.9-95.5%), and 17 
negative predictive value (NPV) of 100% (CI non-evaluable) in an independent dataset. 18 

The object detection model demonstrated lower performance internally during 19 
development (AUC=0.67) and during prediction in the independent dataset 20 

(sensitivity=75.0% (CI=42.8-94.5), specificity=80.0% (CI=51.9-95.7), PPV=75.0% 21 
(CI=50.8-90.0), NPV=80.0% (CI=59.3-91.7%)), but was able to demonstrate the location 22 

of the lesion within the image. 23 

Conclusions: Two models appear to be useful tools for identifying and classifying 24 
suspicious areas on B-mode images of indeterminate breast lesions. 25 

 26 

Keywords:  Artificial Intelligence; Machine learning; Deep learning; Ultrasound 27 

imaging; Breast lesions 28 

  29 
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Introduction 30 
Breast cancer remains a primary health concern with 271,270 new cases diagnosed 31 

and more than 42,260 deaths in 2019 in the United States alone.1 When the patient presents 32 
with metastases, the 5-year survival rate is only 26%.2 However, early detection along with 33 
appropriate therapy can reduce mortality significantly.3 Screening mammography remains 34 
the best modality for breast cancer detection with an overall sensitivity > 85%.  However, 35 
in women with dense breasts, which make up more than 40% of women in the United 36 

States, the sensitivity lowers to as low as 48 %.4 While adjunct screening with ultrasound 37 
imaging improves the sensitivity for cancer detection, the cost is reduced specificity: 38 
increased non-cancer recalls and more benign biopsies.5   39 

The Breast Imaging Reporting and Data System (BI-RADS®) is used by 40 
radiologists to classify breast lesions into several risk categories with different expected 41 

probabilities of malignancy. The course of clinical management is based on risk categories6, 42 
with malignancy confirmed by biopsy. Nonetheless, even with using the BI-RADS data, 43 
inter and intra observer variability exists in classifying lesions and over 70% of all breast 44 

biopsy results are benign.7  Thus, a better approach to differentiate between benign and 45 

malignant lesions from ultrasound images is needed.  46 
The use of artificial intelligence (AI) in radiology has the potential to reduce costs, 47 

save time, and improve diagnostic accuracy.8 Multiple studies have shown that deep 48 

learning algorithms (one type of AI) outperform experienced radiologists in the diagnosis 49 
of breast lesions with 5-13% larger area under the receiver operating characteristic (ROC) 50 

curves.9,10,11 However, using deep learning algorithms requires a large amount of data (e.g., 51 
5,000-10,000 training images) and training a new deep learning algorithm is both time-52 
consuming and expensive. Several commercially AI programs are available providing an 53 

opportunity to overcome these barriers. Google AutoML Vision (Google, Mountain View, 54 

CA) is a machine learning service from Google Cloud Platform that runs deep learning 55 
algorithms online and performs image-classification and image-recognition tasks on cloud 56 
services, reducing the need for expensive hardware. It enables a customized model to be 57 

created quickly by leveraging transfer learning and neural architecture search technologies, 58 
which can lead to more accurate results with less misclassifications than other generic 59 

machine learning services.12,13 In addition, due to the transfer learning component, which 60 
takes the advantages of lower-level features from pre-trained convolutional neural 61 
networks (CNN), significantly fewer images are required for algorithm training.11  62 

Several sub-models are currently available for beta testing including an image 63 
classification mode and an object detection model. These models may provide distinct but 64 
useful roles within the field of radiology. The image classification model can train models 65 

to classify images (in this example cancer vs. not cancer), while the object detection model 66 

can be used to detect objects within an image and then assign a confidence score for a 67 

specific classification (in this example the likelihood of lesion being cancerous). Each of 68 
these sub-models perform self-validation and self-testing during the training process and 69 
generate model performance reports based on the training data (Figure 1).  70 

While this technology has been used for a variety of product management 71 
applications, its use in radiological applications is relatively unexplored.12,13 Thus, the 72 

purpose of this study was to evaluate the performance of both AutoML Vision’s image 73 
classification and object detection models for the characterization of intermediate breast 74 
masses imaged with B-mode ultrasound. Specifically, we strove to identify the 75 
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performance of AutoML’s image classification and object detection mass for classifying 76 
breast masses as cancerous or non-cancerous in a population of suspicious masses 77 

scheduled for tissue biopsy. The influence of category balancing and image cropping on 78 
model performance was also investigated.  79 

 80 
 81 

 82 
Figure 1. (a) A model performance report is generated after each training process (b) 83 
Parameter descriptions and their equivalent ROC terminologies. 84 

 85 

Material and Methods 86 

Clinical studies 87 
To create training datasets for the AI image classification and object detection 88 

models, ultrasound images were extracted from two previous clinical studies. The first 89 

study was a multi-center clinical trial that was approved by the Institutional Review Boards 90 
of Thomas Jefferson University (TJU) and The University of California, San Diego (UCSD) 91 

and conducted between January 2011 and December 2015 in which contrast-enhanced 92 
ultrasound was used to characterize indeterminate breast masses scheduled for biopsy.14,15 93 

The second study was approved by the Institutional Review Boards of TJU and conducted 94 
between May 2014 and February 2016, in which a contrast-enhanced ultrasound technique 95 
was used to predict the response of breast cancer to neoadjuvant chemotherapy16. All 96 
patients from both studies provided written informed consent before participating. The 97 

imaging data for both studies were acquired using a commercially available Logiq 9 98 
scanner (GE Healthcare, Waukesha, WI) equipped with a 4D10L probe and imaging 99 
parameters were optimized on an individual basis according to good clinical practice. There 100 

were 236 women enrolled in the first clinical study with an average age of 52 ± 13 years. 101 
The average lesion cross-sectional areas for malignant and benign lesions were 190.1 ± 102 
35.7 mm2 and 124.1 ± 15.5 mm2, respectively. The second clinical study enrolled 17 103 
participants who had invasive ductal carcinomas with an average age of  52.9 ± 10.4 years 104 
and an average lesion cross-sectional area of 604.6 ± 460.7 mm2. In total, there were 253 105 

cases. For this AI processing study, 242 patient cases with available biopsy results 106 
(reference standard) were selected. Within these 242 cases, 21 cases were then excluded 107 
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by a blinded radiologist due to poor image quality resulting in 154 unique patients with 108 
benign breast lesions and 67 unique patients with malignant breast lesions (221 in total). 109 

 110 
Data preprocessing 111 

The B-mode ultrasound data were originally stored in DICOM format. A 112 
radiologist (S.N) with more than 10 years of experience in breast ultrasound who was 113 
blinded to pathology results selected representative views from each CINE loop for the 221 114 

cases. The DICOM data were viewed with RadiAnt DICOM Viewer (4.6.9, Medixant, 115 
Poznan, Poland) software and selected images were stored into JPG format in order to meet 116 
the input format requirements for Google AutoML Vision. Images were further cropped 117 
using Matlab (2016a, The Mathworks Inc., Natick, MA) to generate three different groups 118 
of training data: Annotated (A; with black and white scale, depth scale, GE label and 119 

ultrasound image), de-Annotated (deA; scales and GE label were removed, ultrasound 120 
images only), and Lesion Only (LO; lesions were extracted from the ultrasound images).  121 
Example images for each three training groups are shown in Figure 2.  122 

Based on model recommendations, 26 out of the 221 cases (19 malignant and 7 123 

benign cases corresponding to 11% of the patients) were reserved to form an independent 124 
prediction dataset to evaluate the models’ performance. In order to augment our prediction 125 
dataset, a second radiologist (E.Q) with over 10 years of experience in breast ultrasound 126 

selected 5-7 image from each of the 26 test cases. This resulted in a final prediction dataset 127 
of 154 images for prediction testing. The same prediction dataset was used to evaluate all 128 

models from both image classification and object detection. Additionally, findings were 129 
grouped on a lesion by lesion basis to evaluate model intra-reader agreement (i.e., the 130 
ability to predict malignancy in separate images from the same case). 131 

 132 

Image Classification Model Training 133 
The Google AutoML Vision Image Classification Model was first investigated for 134 

its ability to differentiate benign (non-cancerous) from malignant (cancerous) breast 135 

lesions within the population of suspicious masses referred for biopsy. This model requires 136 
input training data of at least 100 images from each outcome group for training. However, 137 

as there were only 48 unique patients with malignant lesions remaining in the overall 138 
dataset after excluding the 19 malignant cases that were used for independent testing, a 139 
radiologist (S.N) selected at least two images from the malignant lesion dataset. 140 

Consequently, the final training data for the image classification model consisted of 147 141 
images of benign breast lesions and 117 images of malignant lesions (264 images in total).  142 

The training data for the model was slightly unbalanced (with 147 in the benign 143 

group and 117 in the malignant group), which may impact the performance of the model.17 144 

Thus, 30 random benign images were removed from the data set in order to compare the 145 

impact of unbalanced training (147 benign lesion images vs. 117 images of malignant 146 
lesions) relative to balanced training (117 benign lesion images vs. 117 malignant lesion 147 
images) on the performance of the model. Therefore, in addition to three different training 148 
groups (Annotated, de-Annotated, and Lesion Only; Figure 2), 6 customized models were 149 
trained. These groups are summarized in Table 1.  150 
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 151 

Figure 2. Example of the varying degrees of image cropping showing (a) the annotated 152 

image (A) containing the black and white scale bar, depth scale, GE label and ultrasound 153 
image, (b) the deAnnotated image (deA), in which the scales and GE label were removed 154 
leaving only the full ultrasound image, and (c) the lesion only (LO) image consisting of 155 

only the cropped breast mass. 156 

Table 1. Summary of training data sets used for unbalanced (UB) and balanced (B) 157 

conditions. A stands for annotated images, deA stands for de-annotated images, and LO 158 
stands for lesion only images. 159 

Unbalanced training 
 

Customized model Training Data Information (Number of benign lesion 

images, number of malignant lesion images, image group) 

A_UB 147 Benign, 117 Malignant, Annotated 

deA_UB 147 Benign, 117 Malignant, deAnnotated 

LO_UB 147 Benign, 117 Malignant, Lesion Only 

Balanced training 
 

Customized model Training Data Information (Number of benign lesion 

images, number of malignant lesion images, image group) 

A_B 117 Benign, 117 Malignant, Annotated 

deA_B 117 Benign, 117 Malignant, deAnnotated 

LO_B 117 Benign, 117 Malignant, Lesion Only 

 160 
Object Detection Model Training 161 

The Google AutoML Vision Object Detection Model was investigated to determine 162 
the ability of this algorithm to first identify the suspicious breast mass, then subsequently 163 
assign a risk score on the likelihood of the image containing breast cancer. To train the 164 
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object detection model, the same training data (147 benign and 117 malignant breast lesion 165 
images) as well as the same prediction images (154 breast images) described above were 166 

utilized. Data was first uploaded into Google Cloud Storage and then an Excel file that 167 
contained pathways for importing each image was generated from Python. The object 168 
detection model processes training image data within the model by using bounding boxes 169 
and labels to select objects that were important and intended to be detected inside an image. 170 
Therefore, only the full annotated images were imported into the model. Following upload, 171 

the model was trained by a blinded radiologist to identify the scale bars and manufacturer 172 
labels (as an algorithm validation check) and either malignant or benign masses within the 173 
three cropping approaches described above. An example of this training is provided in 174 
Figure 3.  175 

 176 

 177 

Figure 3. Example figure showing image uploading and object identification training. 178 
Annotated images were imported into the object detection model during training and image 179 
labeling performed within the model. Labels were then manually added as shown on the 180 
left side by placing rectangle bounding boxes to on the desired objects as shown on the 181 

right side. 182 

Evaluation of Model Performance 183 
The performance of each model was evaluated using results from the participant’s 184 

tissue biopsy as a reference standard. Performance reporting was separated by internal 185 
performance (self-reported by the model during training) and external prediction within the 186 
dataset reserved for testing. For internal validation, the area under the precision recall curve, 187 
sensitivity, specificity, negative predictive value, and positive predictive value were all 188 
reported with 95% confidence intervals. Model agreement was calculated for each of the 189 
six image classification models and the object detection model by quantifying the rate of 190 
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agreement amongst images taken from the same lesion for each of the 26 external 191 
prediction cases. All statistical analysis was performed in GraphPad Prism Version 8.0 192 

(San Diego, CA) with comparisons across multiple groups performed using a one-way 193 
ANOVA and direct comparisons between individual groups determined using a Student’s 194 
t-test. Statistical significance was determined using p < 0.05. 195 
 196 
Results 197 

Image Classification Model Performance 198 
Following training of the image classification model, internal performance reports 199 

were generated for each of the training conditions summarized in Table 1. Model 200 
performance reports from these six conditions are shown in Table 2. For external validation 201 
the model was deployed, and the 154 independent images analyzed. Figure 4 shows one 202 

prediction example from a model providing confidence scores for different labels. In order 203 
to draw decisions from the prediction results, a confidence score of 0.72 was utilized. This 204 
cutoff criteria was initially optimized by the model software based on optimization of the 205 

ROC curve during training and adjusted to minimize the number of cases in which a 206 

decision could not be made, while also mimicking the prevalence of malignancy in the 207 
prediction dataset. The decision for the prediction (either malignant or benign) relied on 208 
the label that had a confidence score greater than 0.72. If a prediction generated a 209 

confidence scores lower than 0.72 or if it generated both malignant and benign labels higher 210 
than 0.72, the prediction was considered as a not-applicable (N/A) case. The sensitivity, 211 

specificity, positive predictive value, negative predictive value, 95% confidence interval 212 
values and number of N/A cases for the 154 prediction images at a confidence score 213 
threshold of 0.72 are shown in Table 3.  214 

 215 

Figure 4. Example result from the image classification model during the post-training 216 
prediction phase of a benign mass. From the model's perspective, it had 83.2% certainty 217 
that the lesion was benign and 16.8% certainty that the lesion was malignant.  218 

 219 
Table 2. Internal model performance reports obtained during model training from the 6 220 
customized image classification models. AUC: Area under the precision recall curve. PPV: 221 
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Positive predictive value. NPV: Negative predictive value. 95% CI: 95% Confidence 222 
Interval.  223 

Customized 

Models 

AUC  Sensitivity(%) 

95% CI 

Specificity(%) 

95% CI 

PPV (%) 

95% CI 

NPV(%) 

95% CI 

A_UB 0.871 63.6 

(30.8 - 89.1) 

83.3 

(51.6 - 97.9) 

77.8 

(47.8 – 93) 

71.5 

(52.4 - 85.1) 

A_B 0.882 72.7 

(39.0 – 94.0) 

80.0 

(51.9 - 95.7) 

72.7 

(47.6 - 88.7) 

80 

(59.6 - 91.6) 

deA_UB 0.955 100.0 

(73.5- 100.0) 

86.7 

(59.5 - 98.3) 

85.7 

(62.2 - 95.6) 

100.0 

non-evaluable* 

deA_B 0.966 100.0 

(73.5 – 100.0) 

83.3 

(51.6 - 97.9) 

85.7 

(62.9 - 95.5) 

100.0 

non-evaluable* 

LO_UB 0.911 80 

(44.4 - 97.5) 

76.5 

(50.1 - 93.2) 

66.6 

(44.5 - 83.2) 

86.7 

(64.7 - 98.9) 

LO_B 0.853 81.8 

(48.2 - 97.7) 

76.9 

(46.2 - 94.7) 

75.0 

(51.7 - 89.4) 

83.4 

(58.0 - 94.8) 

* NPV non-evaluable due to lack of false negative cases. 224 
 225 
Table 3. The calculated sensitivity, specificity, positive predictive value (PPV), and 226 

negative predictive value (NPV), for all customized image classification models as well 227 

as number of N/A cases in the prediction (post-training) dataset. 95% CI: 95% 228 
Confidence Interval. 229 

Models 
Sensitivity(%) 

95% CI 

Specificity(%) 

95% CI 

PPV(%) 

95% CI 

NPV(%) 

95% CI 

# of 

N/A 

A_UB 
75.2 

(66.4 - 82.7) 

51.5 

(33.5 - 69.2) 

80.8 

(74.4 - 85.8) 

43.6 

(32.7 - 54.8) 
4 

A_B 
70.4 

(61.2 - 78.6) 

63.9 

(46.2 - 79.2) 

84.1 

(77.1 - 89.2) 

44.2 

(35.5 - 53.7) 
3 

deA_UB 
83.1 

(75 - 89.3) 

36.1 

(20.8 - 53.8) 

77.9 

(73.1 –82.0) 

44.1 

(30.4 - 58.7) 
0 

deA_B 
81.9 

(73.7 - 88.4) 

36.1 

(20.8 - 53.8) 

77.6 

(72.8 - 81.8) 

42.5 

(29.2 - 56.9) 
2 

LO_UB 
78.9 

(70.3 – 86.0) 

76.5 

(58.8 - 89.3) 

90.1 

(83.1 - 94.4) 

57.3 

(47.4 - 66.7) 
6 

LO_B 
87.8 

(80.4 - 93.2) 

12.9 

(3.63 - 29.8) 

73.2 

(70.1 –76.0) 

28.2 

(12.2 - 52.5) 
8 

 230 
Object Detection Model Performance 231 
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 Annotated images from the training dataset were uploaded into the Google Cloud 232 
platform and the object detection model trained as described above. The internal 233 

performance report during training is provided in Table 4. 234 

Table 4. Internal performance report from the object detection model during training. 235 
AUC: Area under the precision recall curve. PPV: Positive predictive Value. NPV: 236 
Negative predictive value. 95% CI: 95% Confidence Interval. 237 

Score 

Threshold 

AUC Sensitivity(%) 

95% CI 

Specificity(%) 

95% CI 

PPV(%) 

95% CI 

NPV(%) 

95% CI 

0.47 0.667 75.0 

(42.8 - 94.5) 

80.0 

(51.9 - 95.7) 

75.0 

(50.8-90.0) 

80.0 

(59.3-91.7) 

 238 
Following training, the 154 prediction images were uploaded into the model and 239 

the predictions showed three distinct behaviors. In the first behavior, the model detected 240 
the lesions as well as the area where the lesion was located using the bounding boxes and 241 

provided confidence scores (Figure 5a, 5b). In the second behavior, the model detected no 242 
distinct lesion but predicted either benign or malignant areas within the image (Figure 5c). 243 

In the third behavior, the model detected lesions but assigned both malignant and benign 244 
labels to the lesions with different confidence scores (Figure 5d). The performance metrics 245 
of the object detection model within the independent prediction dataset is provided in Table 246 

5. 247 
 248 

 249 
Figure 5. (a) Example case where the model detected both lesion and suspicious areas in 250 
the image with confidence scores of 0.97, 0.98 and 0.9. The position of the malignant 251 

lesion was marked by the green color bounding box drawn by the model. (b) Example 252 
case where the model detected both lesion and suspicious areas in the image with 253 
confidence scores of 0.96, 0.98 and 0.8 for the lesion and areas to be benign. The position 254 
of the benign lesion was marked by the yellow bounding box drawn by the model. (c) 255 
Example case where the model detected no lesions but malignant areas with confidence 256 
scores of 0.98 and 0.87. (d) The model detected the lesion but assigned both malignant 257 
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and benign labels. The model provided a confidence score of 0.55 for the lesion to be 258 
benign and a confidence score of 0.53 for the lesion to be malignant. The model also 259 

indicated malignant areas with confidence score of 0.82 and 0.57. 260 
 261 
Table 5. The calculated sensitivity, specificity, positive predictive value (PPV), and 262 
negative predictive value (NPV) for the object detection model in the prediction (post-263 
training) dataset. 95% CI: 95% Confidence Interval. 264 

Score 

Threshold 

Sensitivity(%) 

95% CI 

Specificity(%) 

95% CI 

PPV(%) 

95% CI 

NPV(%) 

95% CI 

# of N/A 

0.72 
78.8 

(70.3 - 85.8) 

69.4 

(51.9 - 83.7) 

87.5 

(80.9-92.0) 

54.8 

(44.6 - 64.6) 
0 

 265 

Rate of Prediction Agreement 266 
 The presence of multiple images and predictions (5-7) from each independent case 267 
(n=26) allowed for quantification of intra-reader agreement of each model. This data is 268 

summarized in Table 6. All models demonstrated a reasonably high rate of agreement, with 269 

no statistical difference observed across models (p=0.8).  270 
  271 
Table 6. Average percentage of model prediction agreement with standard deviation across 272 

the 26 cases for all models.  273 

Models Prediction Agreement 

OBJ 88 ± 18.2% 

A_B 82 ± 18.1% 

A_UB 87 ± 16.7% 

deA_B 88 ± 13% 

deA_UB 90 ± 13% 

LO_B 86 ± 22% 

LO_UB 89 ± 16.5% 

 274 
Discussion 275 

Ultrasound is a nonionizing, readily available, low-cost, and real-time imaging 276 
modality that has shown good diagnostic performance in breast cancer detection and 277 

diagnosis. In recent years, radiologists have explored the potential of AI technology to 278 
improve clinical practice, including the accuracy of ultrasound for breast cancer 279 
diagnosis.9,10,11 Google AutoML Vision, released in 2018, may aid in the characterization 280 
of indeterminate breast masses by building of customized image-classification and image-281 
recognition models on cloud services. Thus, this study explored the potential of AutoML 282 

Vision to classify and evaluate breast ultrasound images, using its image classification and 283 
object detection model. 284 

Within the image classification model, 6 different training data setups were 285 
investigated. Performance during internal testing from these methods was similar with 286 
areas under the precision recall curve ranging from 0.85 to 0.96, indicating the influence 287 
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of label balancing and image cropping were negligible in this dataset. The object detection 288 
model had an area under the precision recall curve of 0.67 during internal validation. While 289 

this performance is less encouraging than the classification model, the object detection 290 
could locate the position of lesion in the image. It is anticipated that this will enable 291 
radiologist adoption by providing a clear rationale for diagnosis while also streamlining 292 
workflow. 293 

Comparing the performance of LO_UB with prior studies on classifying B-mode 294 

ultrasound breast mass using deep learning algorithms, the 91.1% AUC was similar to the 295 
89.6% AUC from Cheng et al.18 and 93.6% from Byra et al.10 but lower than the 96% from 296 
Han et al.18or the 99% reported by Yap et al.19 Importantly however, studies that have 297 
reported exceptional overall AUCs have employed datasets consisting of large numbers of 298 
lesions that were clearly benign (BI-RADS < 3) or highly likely to be malignant (BI-RADS 299 

5)19,20. Data from our study primarily consisted of indeterminate breast masses scheduled 300 
for biopsy in which lower performance is expected, but this scenario more closely 301 
resembles the clinical need for improved diagnosis. Therefore, we believe the image 302 

classification model provides acceptable diagnostic performance under the appropriate 303 

training setups. 304 
While encouraging, several limitations exist and should be addressed in the future. 305 

Within the object detection model, the input regions of interest are required to be in 306 

rectangular shape. The result of this is that all LO images will contain surrounding tissue. 307 
Based on the size and shape of the lesion, the amount of surrounding tissues could vary, 308 

which may introduce unwanted variability. Thus, potential improvement maybe achieved 309 
by allowing customize-shaped input images for the model or automatic segmentation prior 310 
to image upload. Meanwhile, more training images could be added to increase the model 311 

performance as only 264 training images were used in study. Finally, while the AutoML 312 

program stresses ease of use and off-the shelf capabilities, its limited flexibility also results 313 
in limitations compared to traditional AI platforms 21, 22.  For example, traditional methods 314 
of sample size augmentation and testing such as leave-one-out cross-validation methods 315 

cannot be used in applications where multiple images/lesion are generated without 316 
compromising independence. Additionally, once the model is deployed it provides a binary 317 

decision on images used for prediction, which prohibits traditional performance 318 
evaluations such as areas under the ROC and precision-recall curves. Despite these 319 
limitations, results to date are encouraging and the platform should be further explored 320 

moving forward. 321 
 322 

Conclusion 323 

The Google AutoML Vision platform showed an acceptable performance to 324 

classify breast ultrasound images under appropriate training setups and the use of both the 325 

Image Classification and Object Detection Models should be further explored. The 326 
platform also showed cost-effective advantage as all customized models were run on cloud 327 
services minimizing local hardware requirements. Our results indicated the platform could 328 
potentially be a useful tool in assisting radiologists in the characterization of indeterminate 329 
breast masses identified during screening. Ultimately, this approach could reduce the 330 

number of unnecessary biopsies. 331 
 332 
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