

Thomas Jefferson University Jefferson Digital Commons

Department of Radiology Faculty Papers

Department of Radiology

10-23-2020

Characterization of indeterminate breast lesions on B-mode ultrasound using automated machine learning models

Shuo Wang

Sihua Niu

Enze Qu

Flemming Forsberg

Annina Wilkes

See next page for additional authors

Follow this and additional works at: https://jdc.jefferson.edu/radiologyfp

Part of the Radiology Commons <u>Let us know how access to this document benefits you</u>

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Radiology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.

Authors

Shuo Wang, Sihua Niu, Enze Qu, Flemming Forsberg, Annina Wilkes, Alexander Sevrukov, Kibo Nam, Robert F. Mattrey, Haydee Ojeda-Fournier, and John R. Eisenbrey

Characterization of indeterminate breast lesions on B-mode ultrasound using automated machine learning models

Shuo Wang, MS^{1,2}, Sihua Niu, MD, PhD³, Enze Qu, MD⁴, Flemming Forsberg, PhD²,

Annina Wilkes, MD², Alexander Sevrukov, MD², Kibo Nam, PhD², Robert F. Mattrey

MD⁵, Haydee Ojeda-Fournier, MD⁶, John R. Eisenbrey, PhD²

1. Department of Biomedical Engineering, Drexel University, Philadelphia, PA

2. Department of Radiology, Thomas Jefferson University, Philadelphia, PA

3. Department of Ultrasound, Peking University People's Hospital, Beijing, China

4. Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China

5. Department of Radiology, UT Southwestern, Dallas, TX 75390, USA

6. Department of Radiology, University of California, San Diego, CA 92037, USA

Corresponding author: John Eisenbrey, PhD Department of Radiology Thomas Jefferson University 132 S. 10th Street Philadelphia, PA 19017, USA e-mail: John.Eisenbrey@jefferson.edu

Funded in part by NIH R01 CA140338 and DoD W81XWH-11-1-0630

For the original clinical trial that data was obtained from, the ultrasound contrast agent was provided by Lantheus Medical Imaging and the ultrasound scanner provided by GE Healthcare.

Conflict of Interest: None

Key words: Artificial Intelligence; Machine learning; Deep learning; Ultrasound imaging; Breast lesions

1 Abstract

2 Purpose: While mammography has excellent sensitivity for the detection of breast lesions,

3 its specificity is limited. Adjunct screening with ultrasound may partially alleviate this

4 issue, but also increases false positives, resulting in unnecessary biopsies. This study

investigated the use of Google AutoML Vision (Mountain View, CA), a commercially
available machine learning service, to both identify and characterize indeterminate breast

available inactifie leaflesions on ultrasound.

8 Methods: B-mode images from 253 independent cases of indeterminate breast lesions
9 scheduled for core biopsy were used for model creation and validation. The performances
10 of two sub-models from AutoML Vision, the image classification model and object

11 detection model were evaluated, while also investigating training strategies to enhance

12 model performances. Pathology from the patient's biopsy were used as a reference standard.

13 Results: The image classification models trained under different conditions demonstrated areas under the precision recall curve (AUC) ranging from 0.85 to 0.96 during internal 14 validation. Once deployed, the model with highest internal performance demonstrated a 15 sensitivity of 100% (95% confidence interval (CI) of 73.5-100%), specificity of 83.3% 16 (CI=51.6-97.9%), positive predictive value (PPV) of 85.7% (CI=62.9-95.5%), and 17 negative predictive value (NPV) of 100% (CI non-evaluable) in an independent dataset. 18 The object detection model demonstrated lower performance internally during 19 development (AUC=0.67) and during prediction in the independent dataset 20 (sensitivity=75.0% (CI=42.8-94.5), specificity=80.0% (CI=51.9-95.7), PPV=75.0% 21 (CI=50.8-90.0), NPV=80.0% (CI=59.3-91.7%)), but was able to demonstrate the location 22 23 of the lesion within the image.

Conclusions: Two models appear to be useful tools for identifying and classifying suspicious areas on B-mode images of indeterminate breast lesions.

26

27 Keywords: Artificial Intelligence; Machine learning; Deep learning; Ultrasound

28 imaging; Breast lesions

29

30 Introduction

Breast cancer remains a primary health concern with 271,270 new cases diagnosed 31 and more than 42,260 deaths in 2019 in the United States alone.¹ When the patient presents 32 33 with metastases, the 5-year survival rate is only 26%.² However, early detection along with appropriate therapy can reduce mortality significantly.³ Screening mammography remains 34 the best modality for breast cancer detection with an overall sensitivity > 85%. However, 35 in women with dense breasts, which make up more than 40% of women in the United 36 States, the sensitivity lowers to as low as 48 %.⁴ While adjunct screening with ultrasound 37 imaging improves the sensitivity for cancer detection, the cost is reduced specificity: 38 increased non-cancer recalls and more benign biopsies.⁵ 39

The Breast Imaging Reporting and Data System (BI-RADS®) is used by radiologists to classify breast lesions into several risk categories with different expected probabilities of malignancy. The course of clinical management is based on risk categories⁶, with malignancy confirmed by biopsy. Nonetheless, even with using the BI-RADS data, inter and intra observer variability exists in classifying lesions and over 70% of all breast biopsy results are benign.⁷ Thus, a better approach to differentiate between benign and malignant lesions from ultrasound images is needed.

The use of artificial intelligence (AI) in radiology has the potential to reduce costs, 47 save time, and improve diagnostic accuracy.⁸ Multiple studies have shown that deep 48 49 learning algorithms (one type of AI) outperform experienced radiologists in the diagnosis of breast lesions with 5-13% larger area under the receiver operating characteristic (ROC) 50 curves.^{9,10,11} However, using deep learning algorithms requires a large amount of data (e.g., 51 52 5,000-10,000 training images) and training a new deep learning algorithm is both time-53 consuming and expensive. Several commercially AI programs are available providing an 54 opportunity to overcome these barriers. Google AutoML Vision (Google, Mountain View, 55 CA) is a machine learning service from Google Cloud Platform that runs deep learning algorithms online and performs image-classification and image-recognition tasks on cloud 56 services, reducing the need for expensive hardware. It enables a customized model to be 57 created quickly by leveraging transfer learning and neural architecture search technologies, 58 59 which can lead to more accurate results with less misclassifications than other generic machine learning services.^{12,13} In addition, due to the transfer learning component, which 60 takes the advantages of lower-level features from pre-trained convolutional neural 61 62 networks (CNN), significantly fewer images are required for algorithm training.¹¹

Several sub-models are currently available for beta testing including an image 63 classification mode and an object detection model. These models may provide distinct but 64 65 useful roles within the field of radiology. The image classification model can train models 66 to classify images (in this example cancer vs. not cancer), while the object detection model can be used to detect objects within an image and then assign a confidence score for a 67 68 specific classification (in this example the likelihood of lesion being cancerous). Each of these sub-models perform self-validation and self-testing during the training process and 69 70 generate model performance reports based on the training data (Figure 1).

While this technology has been used for a variety of product management applications, its use in radiological applications is relatively unexplored.^{12,13} Thus, the purpose of this study was to evaluate the performance of both AutoML Vision's image classification and object detection models for the characterization of intermediate breast masses imaged with B-mode ultrasound. Specifically, we strove to identify the performance of AutoML's image classification and object detection mass for classifying
breast masses as cancerous or non-cancerous in a population of suspicious masses
scheduled for tissue biopsy. The influence of category balancing and image cropping on
model performance was also investigated.

- 80
- 81

(a)

US

Analyzed	Avg precision ⑦	Precision ②	Recall 🕐
200 images	ecall 0.931	85.185%	85.185%
2 labels, 27 test images			

Precision and recall are based on a score threshold of 0.5

(b)

Important parameters	Description
Score thresholds	A minimal score for model to classify images to its correct labels. Score range: 0 to 1
Average Precision (AUC)	How well model performs across all score thresholds, area under precision-recall tradeoff curve. Range: 0 to 1
Precision (Positive Predict Value)	Higher precision, fewer false positives. Increase score threshold increase precision but lower recall. Range: 0 to 1
Recall (Sensitivity)	Higher recall, fewer false negatives. Lower score threshold increase recall but lower precision. Range: 0 to 1

82

Figure 1. (a) A model performance report is generated after each training process (b)
Parameter descriptions and their equivalent ROC terminologies.

85

86 Material and Methods

87 *Clinical studies*

To create training datasets for the AI image classification and object detection 88 models, ultrasound images were extracted from two previous clinical studies. The first 89 90 study was a multi-center clinical trial that was approved by the Institutional Review Boards of Thomas Jefferson University (TJU) and The University of California, San Diego (UCSD) 91 and conducted between January 2011 and December 2015 in which contrast-enhanced 92 ultrasound was used to characterize indeterminate breast masses scheduled for biopsy.^{14,15} 93 94 The second study was approved by the Institutional Review Boards of TJU and conducted 95 between May 2014 and February 2016, in which a contrast-enhanced ultrasound technique 96 was used to predict the response of breast cancer to neoadjuvant chemotherapy 16 . All patients from both studies provided written informed consent before participating. The 97 imaging data for both studies were acquired using a commercially available Logiq 9 98 scanner (GE Healthcare, Waukesha, WI) equipped with a 4D10L probe and imaging 99 parameters were optimized on an individual basis according to good clinical practice. There 100 101 were 236 women enrolled in the first clinical study with an average age of 52 ± 13 years. The average lesion cross-sectional areas for malignant and benign lesions were 190.1 \pm 102 35.7 mm² and 124.1 \pm 15.5 mm², respectively. The second clinical study enrolled 17 103 participants who had invasive ductal carcinomas with an average age of 52.9 ± 10.4 years 104 and an average lesion cross-sectional area of $604.6 \pm 460.7 \text{ mm}^2$. In total, there were 253 105 cases. For this AI processing study, 242 patient cases with available biopsy results 106 (reference standard) were selected. Within these 242 cases, 21 cases were then excluded 107

by a blinded radiologist due to poor image quality resulting in 154 unique patients withbenign breast lesions and 67 unique patients with malignant breast lesions (221 in total).

110

111 *Data preprocessing*

The B-mode ultrasound data were originally stored in DICOM format. A 112 radiologist (S.N) with more than 10 years of experience in breast ultrasound who was 113 blinded to pathology results selected representative views from each CINE loop for the 221 114 cases. The DICOM data were viewed with RadiAnt DICOM Viewer (4.6.9, Medixant, 115 Poznan, Poland) software and selected images were stored into JPG format in order to meet 116 the input format requirements for Google AutoML Vision. Images were further cropped 117 using Matlab (2016a, The Mathworks Inc., Natick, MA) to generate three different groups 118 of training data: Annotated (A; with black and white scale, depth scale, GE label and 119 ultrasound image), de-Annotated (deA; scales and GE label were removed, ultrasound 120 images only), and Lesion Only (LO; lesions were extracted from the ultrasound images). 121 Example images for each three training groups are shown in Figure 2. 122

Based on model recommendations, 26 out of the 221 cases (19 malignant and 7 123 124 benign cases corresponding to 11% of the patients) were reserved to form an independent prediction dataset to evaluate the models' performance. In order to augment our prediction 125 dataset, a second radiologist (E.Q) with over 10 years of experience in breast ultrasound 126 127 selected 5-7 image from each of the 26 test cases. This resulted in a final prediction dataset of 154 images for prediction testing. The same prediction dataset was used to evaluate all 128 models from both image classification and object detection. Additionally, findings were 129 grouped on a lesion by lesion basis to evaluate model intra-reader agreement (i.e., the 130 ability to predict malignancy in separate images from the same case). 131

132

133 Image Classification Model Training

The Google AutoML Vision Image Classification Model was first investigated for 134 its ability to differentiate benign (non-cancerous) from malignant (cancerous) breast 135 lesions within the population of suspicious masses referred for biopsy. This model requires 136 input training data of at least 100 images from each outcome group for training. However, 137 as there were only 48 unique patients with malignant lesions remaining in the overall 138 dataset after excluding the 19 malignant cases that were used for independent testing, a 139 140 radiologist (S.N) selected at least two images from the malignant lesion dataset. Consequently, the final training data for the image classification model consisted of 147 141 images of benign breast lesions and 117 images of malignant lesions (264 images in total). 142

The training data for the model was slightly unbalanced (with 147 in the benign 143 group and 117 in the malignant group), which may impact the performance of the model.¹⁷ 144 Thus, 30 random benign images were removed from the data set in order to compare the 145 146 impact of unbalanced training (147 benign lesion images vs. 117 images of malignant lesions) relative to balanced training (117 benign lesion images vs. 117 malignant lesion 147 images) on the performance of the model. Therefore, in addition to three different training 148 149 groups (Annotated, de-Annotated, and Lesion Only; Figure 2), 6 customized models were 150 trained. These groups are summarized in Table 1.



151

152 Figure 2. Example of the varying degrees of image cropping showing (a) the annotated image (A) containing the black and white scale bar, depth scale, GE label and ultrasound 153 image, (b) the deAnnotated image (deA), in which the scales and GE label were removed 154 leaving only the full ultrasound image, and (c) the lesion only (LO) image consisting of 155 156 only the cropped breast mass.

157 Table 1. Summary of training data sets used for unbalanced (UB) and balanced (B)

158 conditions. A stands for annotated images, deA stands for de-annotated images, and LO

Unbalanced training	
Customized model	Training Data Information (Number of benign lesion images, number of malignant lesion images, image group)
A_UB	147 Benign, 117 Malignant, Annotated
deA_UB	147 Benign, 117 Malignant, deAnnotated
LO_UB	147 Benign, 117 Malignant, Lesion Only
Balanced training	
Customized model	Training Data Information (Number of benign lesion images, number of malignant lesion images, image group)
A_B	117 Benign, 117 Malignant, Annotated
deA_B	117 Benign, 117 Malignant, deAnnotated
LO_B	117 Benign, 117 Malignant, Lesion Only

stands for lesion only images. 159

160

Object Detection Model Training 161

The Google AutoML Vision Object Detection Model was investigated to determine 162 the ability of this algorithm to first identify the suspicious breast mass, then subsequently 163 assign a risk score on the likelihood of the image containing breast cancer. To train the 164

object detection model, the same training data (147 benign and 117 malignant breast lesion 165 images) as well as the same prediction images (154 breast images) described above were 166 utilized. Data was first uploaded into Google Cloud Storage and then an Excel file that 167 contained pathways for importing each image was generated from Python. The object 168 detection model processes training image data within the model by using bounding boxes 169 and labels to select objects that were important and intended to be detected inside an image. 170 Therefore, only the full annotated images were imported into the model. Following upload, 171 the model was trained by a blinded radiologist to identify the scale bars and manufacturer 172 labels (as an algorithm validation check) and either malignant or benign masses within the 173 174 three cropping approaches described above. An example of this training is provided in 175 Figure 3.

Figure 3. Example figure showing image uploading and object identification training. Annotated images were imported into the object detection model during training and image labeling performed within the model. Labels were then manually added as shown on the left side by placing rectangle bounding boxes to on the desired objects as shown on the right side.

183 *Evaluation of Model Performance*

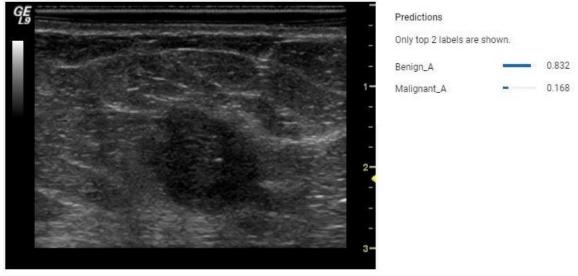
The performance of each model was evaluated using results from the participant's tissue biopsy as a reference standard. Performance reporting was separated by internal performance (self-reported by the model during training) and external prediction within the dataset reserved for testing. For internal validation, the area under the precision recall curve, sensitivity, specificity, negative predictive value, and positive predictive value were all reported with 95% confidence intervals. Model agreement was calculated for each of the six image classification models and the object detection model by quantifying the rate of agreement amongst images taken from the same lesion for each of the 26 external prediction cases. All statistical analysis was performed in GraphPad Prism Version 8.0 (San Diego, CA) with comparisons across multiple groups performed using a one-way ANOVA and direct comparisons between individual groups determined using a Student's t-test. Statistical significance was determined using p < 0.05.

196

197 **Results**

198 Image Classification Model Performance

Following training of the image classification model, internal performance reports 199 were generated for each of the training conditions summarized in Table 1. Model 200 201 performance reports from these six conditions are shown in Table 2. For external validation the model was deployed, and the 154 independent images analyzed. Figure 4 shows one 202 prediction example from a model providing confidence scores for different labels. In order 203 to draw decisions from the prediction results, a confidence score of 0.72 was utilized. This 204 cutoff criteria was initially optimized by the model software based on optimization of the 205 ROC curve during training and adjusted to minimize the number of cases in which a 206 207 decision could not be made, while also mimicking the prevalence of malignancy in the prediction dataset. The decision for the prediction (either malignant or benign) relied on 208 the label that had a confidence score greater than 0.72. If a prediction generated a 209 210 confidence scores lower than 0.72 or if it generated both malignant and benign labels higher than 0.72, the prediction was considered as a not-applicable (N/A) case. The sensitivity, 211 specificity, positive predictive value, negative predictive value, 95% confidence interval 212 values and number of N/A cases for the 154 prediction images at a confidence score 213 threshold of 0.72 are shown in Table 3. 214



215

- **Figure 4.** Example result from the image classification model during the post-training
- 217 prediction phase of a benign mass. From the model's perspective, it had 83.2% certainty
- that the lesion was benign and 16.8% certainty that the lesion was malignant.

219

Table 2. Internal model performance reports obtained during model training from the 6 customized image classification models. AUC: Area under the precision recall curve. PPV:

Intervar.	-				
Customized Models	AUC	Sensitivity(%) 95% CI	Specificity(%) 95% CI	PPV (%) 95% CI	NPV(%) 95% CI
A_UB	0.871	63.6 (30.8 - 89.1)	83.3 (51.6 - 97.9)	77.8 (47.8 – 93)	71.5 (52.4 - 85.1)
A_B	0.882	72.7 (39.0 – 94.0)	80.0 (51.9 - 95.7)	72.7 (47.6 - 88.7)	80 (59.6 - 91.6)
deA_UB	0.955	100.0 (73.5- 100.0)	86.7 (59.5 - 98.3)	85.7 (62.2 - 95.6)	100.0 non-evaluable*
deA_B	0.966	100.0 (73.5 – 100.0)	83.3 (51.6 - 97.9)	85.7 (62.9 - 95.5)	100.0 non-evaluable*
LO_UB	0.911	80 (44.4 - 97.5)	76.5 (50.1 - 93.2)	66.6 (44.5 - 83.2)	86.7 (64.7 - 98.9)
LO_B	0.853	81.8 (48.2 - 97.7)	76.9 (46.2 - 94.7)	75.0 (51.7 - 89.4)	83.4 (58.0 - 94.8)

Positive predictive value. NPV: Negative predictive value. 95% CI: 95% ConfidenceInterval.

* NPV non-evaluable due to lack of false negative cases.

225

Table 3. The calculated sensitivity, specificity, positive predictive value (PPV), and

227 negative predictive value (NPV), for all customized image classification models as well

as number of N/A cases in the prediction (post-training) dataset. 95% CI: 95%

229 Confidence Interval.

Models	Sensitivity(%)	Specificity(%)	PPV(%)	NPV(%)	# of	
widdels	95% CI	95% CI	95% CI	95% CI	N/A	
A UB	75.2	51.5	80.8	43.6	4	
A_UD	(66.4 - 82.7)	(33.5 - 69.2)	(74.4 - 85.8)	(32.7 - 54.8)	4	
A_B	70.4	63.9	84.1	44.2	3	
A_D	(61.2 - 78.6)	(46.2 - 79.2)	(77.1 - 89.2)	(35.5 - 53.7)	3	
deA UB	83.1	36.1	77.9	44.1	0	
ueA_UB	(75 - 89.3)	(20.8 - 53.8)	(73.1 - 82.0)	(30.4 - 58.7)	0	
do A D	81.9	36.1	77.6	42.5	2	
deA_B	(73.7 - 88.4)	(20.8 - 53.8)	(72.8 - 81.8)	(29.2 - 56.9)	Z	
	78.9	76.5	90.1	57.3	6	
LO_UB	(70.3 - 86.0)	(58.8 - 89.3)	(83.1 - 94.4)	(47.4 - 66.7)	U	
IOP	87.8	12.9	73.2	28.2	8	
LO_B	(80.4 - 93.2)	(3.63 - 29.8)	(70.1 – 76.0)	(12.2 - 52.5)	0	

230

231 *Object Detection Model Performance*

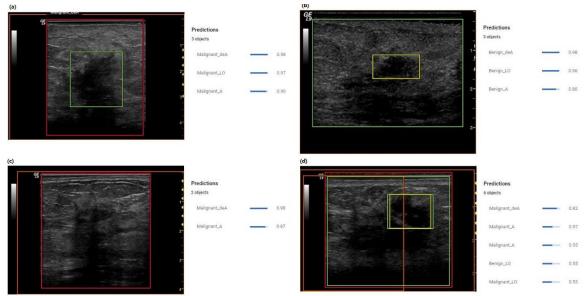
Annotated images from the training dataset were uploaded into the Google Cloud platform and the object detection model trained as described above. The internal performance report during training is provided in Table 4.

- **Table 4**. Internal performance report from the object detection model during training.
- AUC: Area under the precision recall curve. PPV: Positive predictive Value. NPV:
- 237 Negative predictive value. 95% CI: 95% Confidence Interval.

Score	AUC	Sensitivity(%)	Specificity(%)	PPV(%)	NPV(%)
Threshold		95% CI	95% CI	95% CI	95% CI
0.47	0.667	75.0	80.0	75.0	80.0
		(42.8 - 94.5)	(51.9 - 95.7)	(50.8-90.0)	(59.3-91.7)

238

Following training, the 154 prediction images were uploaded into the model and 239 240 the predictions showed three distinct behaviors. In the first behavior, the model detected the lesions as well as the area where the lesion was located using the bounding boxes and 241 provided confidence scores (Figure 5a, 5b). In the second behavior, the model detected no 242 distinct lesion but predicted either benign or malignant areas within the image (Figure 5c). 243 In the third behavior, the model detected lesions but assigned both malignant and benign 244 labels to the lesions with different confidence scores (Figure 5d). The performance metrics 245 246 of the object detection model within the independent prediction dataset is provided in Table 247 5.



250 Figure 5. (a) Example case where the model detected both lesion and suspicious areas in the image with confidence scores of 0.97, 0.98 and 0.9. The position of the malignant 251 252 lesion was marked by the green color bounding box drawn by the model. (b) Example 253 case where the model detected both lesion and suspicious areas in the image with 254 confidence scores of 0.96, 0.98 and 0.8 for the lesion and areas to be benign. The position of the benign lesion was marked by the yellow bounding box drawn by the model. (c) 255 256 Example case where the model detected no lesions but malignant areas with confidence 257 scores of 0.98 and 0.87. (d) The model detected the lesion but assigned both malignant

and benign labels. The model provided a confidence score of 0.55 for the lesion to be 258 259 benign and a confidence score of 0.53 for the lesion to be malignant. The model also

- indicated malignant areas with confidence score of 0.82 and 0.57.
- 260
- 261

Table 5. The calculated sensitivity, specificity, positive predictive value (PPV), and 262

negative predictive value (NPV) for the object detection model in the prediction (post-263

training) dataset. 95% CI: 95% Confidence Interval. 264

Score	Sensitivity(%)	Specificity(%)	PPV(%)	NPV(%)	# of N/A
Threshold	95% CI	95% CI	95% CI	95% CI	
0.72	78.8	69.4	87.5	54.8	0
0.72	(70.3 - 85.8)	(51.9 - 83.7)	(80.9-92.0)	(44.6 - 64.6)	0

265

266 Rate of Prediction Agreement

The presence of multiple images and predictions (5-7) from each independent case 267 268 (n=26) allowed for quantification of intra-reader agreement of each model. This data is summarized in Table 6. All models demonstrated a reasonably high rate of agreement, with 269 no statistical difference observed across models (p=0.8). 270

271

272
Table 6. Average percentage of model prediction agreement with standard deviation across

the 26 cases for all models. 273

tion Agreement
$8 \pm 18.2\%$
$2 \pm 18.1\%$
$7 \pm 16.7\%$
88 ± 13%
90 ± 13%
86 ± 22%
9 ± 16.5%

274

Discussion 275

276 Ultrasound is a nonionizing, readily available, low-cost, and real-time imaging modality that has shown good diagnostic performance in breast cancer detection and 277 diagnosis. In recent years, radiologists have explored the potential of AI technology to 278 improve clinical practice, including the accuracy of ultrasound for breast cancer 279 diagnosis.^{9,10,11} Google AutoML Vision, released in 2018, may aid in the characterization 280 of indeterminate breast masses by building of customized image-classification and image-281 recognition models on cloud services. Thus, this study explored the potential of AutoML 282 Vision to classify and evaluate breast ultrasound images, using its image classification and 283 object detection model. 284

285 Within the image classification model, 6 different training data setups were investigated. Performance during internal testing from these methods was similar with 286 areas under the precision recall curve ranging from 0.85 to 0.96, indicating the influence 287

of label balancing and image cropping were negligible in this dataset. The object detection model had an area under the precision recall curve of 0.67 during internal validation. While this performance is less encouraging than the classification model, the object detection could locate the position of lesion in the image. It is anticipated that this will enable radiologist adoption by providing a clear rationale for diagnosis while also streamlining workflow.

Comparing the performance of LO_UB with prior studies on classifying B-mode 294 295 ultrasound breast mass using deep learning algorithms, the 91.1% AUC was similar to the 89.6% AUC from Cheng et al.¹⁸ and 93.6% from Byra et al.¹⁰ but lower than the 96% from 296 Han et al.¹⁸ or the 99% reported by Yap et al.¹⁹ Importantly however, studies that have 297 reported exceptional overall AUCs have employed datasets consisting of large numbers of 298 lesions that were clearly benign (BI-RADS < 3) or highly likely to be malignant (BI-RADS 299 5)^{19,20}. Data from our study primarily consisted of indeterminate breast masses scheduled 300 for biopsy in which lower performance is expected, but this scenario more closely 301 302 resembles the clinical need for improved diagnosis. Therefore, we believe the image classification model provides acceptable diagnostic performance under the appropriate 303 304 training setups.

While encouraging, several limitations exist and should be addressed in the future. 305 Within the object detection model, the input regions of interest are required to be in 306 307 rectangular shape. The result of this is that all LO images will contain surrounding tissue. Based on the size and shape of the lesion, the amount of surrounding tissues could vary, 308 which may introduce unwanted variability. Thus, potential improvement maybe achieved 309 by allowing customize-shaped input images for the model or automatic segmentation prior 310 to image upload. Meanwhile, more training images could be added to increase the model 311 performance as only 264 training images were used in study. Finally, while the AutoML 312 313 program stresses ease of use and off-the shelf capabilities, its limited flexibility also results in limitations compared to traditional AI platforms ^{21, 22}. For example, traditional methods 314 of sample size augmentation and testing such as leave-one-out cross-validation methods 315 cannot be used in applications where multiple images/lesion are generated without 316 compromising independence. Additionally, once the model is deployed it provides a binary 317 decision on images used for prediction, which prohibits traditional performance 318 evaluations such as areas under the ROC and precision-recall curves. Despite these 319 320 limitations, results to date are encouraging and the platform should be further explored 321 moving forward.

322

323 Conclusion

324 The Google AutoML Vision platform showed an acceptable performance to 325 classify breast ultrasound images under appropriate training setups and the use of both the 326 Image Classification and Object Detection Models should be further explored. The platform also showed cost-effective advantage as all customized models were run on cloud 327 services minimizing local hardware requirements. Our results indicated the platform could 328 329 potentially be a useful tool in assisting radiologists in the characterization of indeterminate 330 breast masses identified during screening. Ultimately, this approach could reduce the number of unnecessary biopsies. 331

- 332
- 333 Conflicts of Interest

- For the original clinical trial that data was obtained from, the ultrasound contrast
 agent was provided by Lantheus Medical Imaging and the ultrasound scanner provided
- by GE Healthcare. No other conflicts of interest are declared.
- 337

338 **References**

- 339 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin.
 340 2019;69(1):7-34.
- 2. Koual M, Cano-Sancho G, Bats AS, Tomkiewicz C, Kaddouch-Amar Y, Douay-
- Hauser N, et al. Associations between persistent organic pollutants and risk of breast
 cancer metastasis. Environ Int. 2019; 132:105028
- 3. Etzioni R, Urban N, Ramsey S, et al. The case for early detection. Nat Rev Cancer
 2003; 3:243–252
- 4. Brem RF, Lenihan MJ, Lieberman J, Torrente J. Screening breast ultrasound: past,
 present, and future. AJR Am J Roentgenol. 2015;204(2):234-40.
- 5. Guo R, Lu G, Qin B, Fei B. Ultrasound Imaging Technologies for Breast Cancer
 Detection and Management: A Review. Ultrasound Med Biol. 2018;44(1):37-70.
- 6. Stavros T. Breast Ultrasound. Philadelphia, USA: LIPPINCOTT WILLIAMS &
 WILKINS; 2004.
- 352 7. Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening
- 353 mammography, physical examination, and breast US and evaluation of factors that
- influence them: an analysis of 27,825 patient evaluations. Radiology 2002;225(1):165–
 175
- 8. O'Connor M. Radiology spending on AI expected to surpass \$2B by 2023. HealthImaging. 2018.
- 9. Chang RF, Kuo WJ, Chen DR, Huang YL, Lee JH, Chou YH. Computer-Aided
 Diagnosis for Surgical Office-Based Breast Ultrasound. Arch Surg. 2000; 135:696-699
- 10. Byra M, Galperin M, Ojeda-Fournier H, Olson L, O'Boyle M, Comstock C, et al.
- 361 Breast mass classification in sonography with transfer learning using a deep
- 362 convolutional neural network and color conversion. Med Phys. 2019;46(2):746-55.
- 11. Wu GG, Zhou LQ, Xu JW, Wang JY, Wei Q, Deng YB, et al. Artificial intelligence
 in breast ultrasound. World J Radiol. 2019;11(2):19-26.
- 12. Li FF, Li J. Cloud AutoML: Making AI accessible to every business. Google Cloud.2018
- 367 13. Metz CE. ROC methodology in radiologic imaging. Invest Radiol 1986; 21(9):720–
 368 733
- 14. A. Sridharan, J. R. Eisenbrey, P. Machado, H. Ojeda-Fournier, A. Wilkes, A.
- 370 Sevrukov, R. F. Mattrey, K. Wallace, C. L. Chalek, K. E. Thomenius, F. Forsberg.

- 371 Quantitative analysis of vascular heterogeneity in breast lesions using contrast-enhanced
- three-dimensional harmonic and subharmonic ultrasound imaging. IEEE Trans Ultrason
- 373Ferroelectr Freq Control, vol. 62, no. 3, pp. 502 510, 2015.

15. A. Sridharan, J. R. Eisenbrey, M. Stanczak, P. Machado, D. A. Merton, A. Wilkes, A.
Sevrukov, H. Ojeda-Fournier, R. F. Mattrey, K. Wallace, F. Forsberg. Characterizing
breast lesions using quantitative parametric 3D subharmonic imaging: A multi-center
study. Academic Radiology, In Press.

- 16. Nam K, Eisenbrey JR, Stanczak M, et al. Monitoring neoadjuvant chemotherapy for
- breast cancer by using three-dimensional subharmonic aided pressure estimation and
- imaging with US contrast agents: preliminary experience. Radiology 2017; 285: 53–62.
- 17. Seif G. Handling Imbalanced Datasets in Deep Learning. Medium. 2018
- 18. Cheng J-Z, Ni D, Chou Y-H, et al. Computer-aided diagnosis with deep learning
- architecture: applications to breast lesions in US images and pulmonary nodules in CT
 scans. Sci Rep 2016;6:24454.
- 19. Han S, Kang H-K, Jeong J-Y, et al. A deep learning framework for supporting the
 classification of breast lesions in ultrasound images. Phys Med Biol 2017;62:7714-28.
- 20. Yap M.H., Pons G., Marti J., et al: Automated breast ultrasound lesions detection
 using convolutional neural networks. IEEE J Biomed Health Inform 2018; 22: pp. 12181226.
- 21. Shuo W, Liu JB, Zhu Z, Eisenbrey J. Artificial Intelligence in Ultrasound Imaging:
- Current Research and Applications. Advanced Ultrasound in Diagnosis and Therapy2019;03:053–061.
- 22. Handelman GS, Kok HK, Chandra RV, et al. Peering into the black box of artificial
 intelligence: evaluation metrics of machine learning methods. AJR Am J Roentgenol.
 2019; 212(1):38-43.
- 396

397

398