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Implicitly Learning to Reason in First-Order Logic:
Extended Abstract∗

Vaishak Belle1 , Brendan Juba2

1University of Edinburgh & Alan Turing Institute
2Washington University in St. Louis
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The tension between deduction and induction is perhaps
the most fundamental issue in areas such as philosophy, cog-
nition and artificial intelligence. The deduction camp con-
cerns itself with questions about the expressiveness of for-
mal languages for capturing knowledge about the world, to-
gether with proof systems for reasoning from such knowl-
edge bases. The learning camp attempts to generalize from
examples about partial descriptions about the world. In an
influential paper, Valiant (2000) recognized that the chal-
lenge of learning should be integrated with deduction. In
particular, he proposed a semantics to capture the quality
possessed by the output of (probably approximately correct)
PAC-learning algorithms when formulated in a logic. Al-
though weaker than classical entailment, it allows for a pow-
erful model theoretic framework for answering queries.

From the standpoint of learning an expressive logical
knowledge base and reasoning with it, most PAC results are
somewhat discouraging. For example, in agnostic learning,
where one does not require examples (drawn from an arbi-
trary distribution) to be fully consistent with learned sen-
tences, efficient algorithms for learning conjunctions would
yield an efficient algorithm for PAC-learning DNF (also over
arbitrary distributions), which current evidence suggests to
be intractable (Daniely and Shalev-Shwartz 2016). Thus,
it is not surprising that when it comes to first-order logic
(FOL), very little work tackles the problem in a general
manner. This is despite the fact that FOL is widely argued
to be most appropriate for representing human knowledge
(e.g., (McCarthy and Hayes 1969; Levesque and Lakemeyer
2001)).

In this work, we present new results on learning to rea-
son in FOL knowledge bases. In particular, we consider
the problem of answering queries about FOL formulas based
on background knowledge partially represented explicitly as
other formulas, and partially represented as examples inde-
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pendently drawn from a fixed probability distribution. Our
results are based on a surprising observation made by Juba
(2013) about the advantages of eschewing the explicit con-
struction of a hypothesis, leading to a paradigm of implicit
learnability. In the context of a reasoning task in which we
wish to check if a query formula is entailed by a knowl-
edge base, implicit learning means deciding whether or not
the query is entailed by the implicitly learned knowledge
base (possibly together with an additional, explicitly given
knowledge base). Not only does this approach enable a
form of agnostic learning while circumventing known bar-
riers, it also avoids the design of an often restrictive and
artificial choice for representing hypotheses. (A previous
result that was similar in spirit only permits constant-width
clauses (Khardon and Roth 1999).) In particular, implicit
learning allows such learning from partially observed exam-
ples, which is commonplace when knowledge bases and/or
queries address entities and relations not observed in the data
used for learning.

That work was limited to the propositional setting, how-
ever. Here, we develop a first-order logical generalization.
Since reasoning in full FOL is undecidable we need to con-
sider a fragment, but the fragment we identify and are able
to learn and reason with, known as proper+, is expressive
and powerful: we use clauses of the form ∀x, y, . . . [e ⊃ c]
where e is a DeMorgan formula over atoms of the form x = a
for a variable x and name a, and c is a disjunction of re-
lational literals—clauses in the usual sense. For example,
with the unary relation Mutant and the name logan, we can
write a clause ∀x[x , logan ⊃ Mutant(x)]; or with the addi-
tional binary relation Teammate(x, y), we can write a clause
∀x, y[¬Mutant(x) ∨ ¬Teammate(x, y) ∨ Mutant(y)] (with a
trivial e = >). Consider that standard databases correspond
to a maximally consistent and finite set of literals: every rel-
evant atom is known to be true and stored in the database,
or known to be false, inferred by (say) negation as failure.
Our fragment corresponds to a consistent but infinite set of
ground clauses, not necessarily maximal (Liu and Levesque
2005; Belle 2017). Moreover, the underlying language is
general in the sense that no restrictions are posed on clause
length, predicate arity, and other similar technical devices
seen in PAC results.

To achieve the generalization, we revisit the PAC seman-
tics and exploit symmetries exhibited by constants in the lan-
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guage. Specifically, the grounding trick (Belle 2017) shows
that to check whether a proper+ KB entails a ground for-
mula, it suffices to check if the formula can be proved using
the groundings of the KB for a set of names that includes
the names appearing in the ground formula and KB, together
with a set of arbitrary names of size at least the rank of the
KB—i.e., the maxium number of quantified variables in any
formula of the KB. The grounding trick thus gives a way to
check entailment while only referring to groundings using
some suitable set of names.

In particular, we are able to regard a proper+ KB as being
implicitly learned with respect to a given data set if for each
example (record) in the data set, some suitable grounding
of that KB is satisfied by the data: By the grounding trick,
checking entailment with respect to the implicit KB can be
accomplished by checking entailment using that grounding.
This works even if the examples in the data set only give val-
uations to a finite subset of an infinite universe of atoms, as
in the partial observation model standard in PAC semantics.
Note that if we are only given such a finite partial valuation,
clauses of a proper+ KB (if the equality formula e is satisfied
by an infinite number of names) cannot be verified to hold,
and thus such KBs cannot be learned in the usual sense—
learning in the usual, explicit sense would require the ability
to distinguish clauses that are true with high probability from
clauses that are false on the basis of the observed data. Thus,
an implicit approach is essential to learning such knowledge
bases.

For example, given Teammate(scott, logan) = > and
Teammate( jean, logan) = >, the clause ∀x[x , logan ⊃
(¬Mutant(x) ∨ Teammate(x, logan))] has groundings with
x = logan, x = scott, and x = jean that may be verified
to hold. Similarly, given Teammate(ororo, logan) = > and
Teammate(kurt, logan) = >, the groundings with x = ororo
and x = kurt (in addition to x = logan again) hold. So,
for this small data set with two examples, this clause will
be implicitly learned; if we additionally have an explicit KB
consisting of the clauses ∀x[x , logan ⊃ Mutant(x)] and
∀x, y[¬Mutant(x)∨¬Teammate(x, y))∨Mutant(y)], then to-
gether these allow us to infer Mutant(logan). Implicit learn-
ing enables us to answer that Mutant(logan) holds when
given this explicit KB together with the earlier data set. Ob-
serve that the data alone contains no values for the Mutant
relation, and that the explicit KB alone does not allow us to
infer Mutant(logan). Both pieces are necessary to draw this
inference.

More generally, implicit learning in this context means
that we possess an algorithm for the following task. Given
data consisting of partial valuations that are portions of com-
plete valuations, and given a background KB, we can distin-
guish ground clauses that are falsified on the complete valu-
ations from ground clauses that are entailed by the union of
the background KB and an implicitly learned KB. Actually,
more strongly, we obtain a lower bound on how often the
given ground clause is satisfied on the complete valuations,
assuming that the background KB is true on those valua-
tions. This enables us to tolerate a few counterexamples (or
corruptions) in the data set if we wish, achieving a kind of
agnostic learning of the implicit KB. We give a quantitative

bound on how much data suffices to achieve an estimate of
a given accuracy with a given confidence.

Our algorithm for reasoning with implicit learning is
based on a reduction to propositional entailment via the
grounding trick, as discussed above. We also consider a
tractable variant of the algorithm, using the approach of Liu,
Lakemeyer, and Levesque (2004). This variant, which now
runs in polynomial time, provides an analogous guarantee
except that it distinguishes false ground clauses from those
that are entailed by the union of the background KB and
an implicitly learned KB at the specified limited reasoning
level.

We hope our results will renew interest in learnability for
languages with quantificational power. A variety of ques-
tions are left open by our work. The most complelling may
be whether and how we can extend the approach to answer
queries with quantifiers. It would also be interesting to ex-
tend the approach to other languages that are richer in vari-
ous respects.
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