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Abstract

Recent work has shown that deeper character-based neural machine translation (NMT) models can
outperform subword-based models. However, it is still unclear what makes deeper character-based
models successful. In this paper, we conduct an investigation into pure character-based models in
the case of translating Finnish into English, including exploring the ability to learn word senses
and morphological inflections and the attention mechanism. We demonstrate that word-level
information is distributed over the entire character sequence rather than over a single character,
and characters at different positions play different roles in learning linguistic knowledge. In
addition, character-based models need more layers to encode word senses which explains why
only deeper models outperform subword-based models. The attention distribution pattern shows
that separators attract a lot of attention and we explore a sparse word-level attention to enforce
character hidden states to capture the full word-level information. Experimental results show that
the word-level attention with a single head results in 1.2 BLEU points drop.

1 Introduction

Neural machine translation (NMT) has boosted machine translation significantly in recent years (Kalch-
brenner and Blunsom, 2013; Cho et al., 2014; Sutskever et al., 2014; Bahdanau et al., 2015; Luong et
al., 2015; Gehring et al., 2017; Vaswani et al., 2017). However, it is still unclear how NMT models work
due to the black-box nature of neural networks. Better understandings of NMT models could guide us in
improving NMT systems. Currently most of the studies towards understanding NMT models only take
into account subword-based (e.g. BPE-based) models. Deeper character-based (CHAR) models have been
shown to perform better than BPE-based models (Cherry et al., 2018). In this paper, we try to investigate
the working mechanism of CHAR models. We explore the ability of CHAR models to learn word senses
and morphological inflections and the attention mechanism.

Previous studies have tried to interpret and understand NMT models by interpreting attention weights
(Ghader and Monz, 2017; Raganato and Tiedemann, 2018; Tang et al., 2018; Tang et al., 2019), using
gradients (He et al., 2019), applying layer-wise relevance propagation (Ding et al., 2017), probing
classification tasks (Belinkov et al., 2017b; Belinkov et al., 2017a; Belinkov et al., 2020; Poliak et al.,
2018; Tang et al., 2019), and more intrinsic analysis (Ghader and Monz, 2019; Voita et al., 2019). However,
only Belinkov et al. (2017a; Belinkov et al. (2020) have probed character-based representations. Belinkov
et al. (2017a) have only explored character-aware word-level representations, while we investigate
fully character-level representations, which are also studied in Belinkov et al. (2020). We apply more
composition methods to explore how CHAR models learn linguistic knowledge and how attention extracts
features directly from characters.

Probing classification tasks (Belinkov et al., 2017a) have emerged as a popular method to interpret
the internal representations from neural networks. Given a probing classifier, the input is usually the
representation of a word and the output is the corresponding linguistic tag. CHAR models pose new
challenges for interpretability, and we investigate whether we can probe CHAR models in a way similar

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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to (sub)word-based models. In addition, can we extract word sense and morphological information about
the full word from individual hidden states, or is this information distributed across multiple states? This
has implications for interpreting neural CHAR models, but can also inform novel architectures, such as
sparse attention mechanisms. Thus we first investigate the ability of CHAR models to learn word senses
and morphology in Section 3. We apply different methods to compose information from characters and
demonstrate that the word-level information is distributed over all the characters but characters at different
positions play different roles in learning linguistic knowledge. We also explore the effect of encoder depth
to answer why CHAR models outperform BPE-based models only when they have the settings with deeper
encoder. The probing results show that CHAR models need more layers to learn word senses. Then in
Section 4, we move on to explore the attention mechanism. The distribution pattern shows that separators
attract much more attention compared to other characters. To study the effect of enforcing characters to
capture the full word-level information, we investigate a sparse attention mechanism, i.e. a model that
only attends to separators, which can be viewed as a word-level attention. The BLEU score drops 1.2
points when we apply the word-level sparse attention. This implies that only attending to separators by a
single attention head is workable but not enough to extract all the necessary information.

The main findings are summarized as follows:
• Word sense and morphological information is distributed over all the characters, but characters at

different positions play different roles in learning linguistic knowledge.
• CHAR models need more layers to encode word senses, which explains why only deeper models

outperform BPE-based models.
• Separators attract much more attention compared to other characters; we find that only attending to

separators with a single head attention is workable but not sufficient for translation.

2 Experiments

As RNN-based/CHAR models can in principle achieve state-of-the-art performance in NMT (Chen et al.,
2018; Cherry et al., 2018) and most of analysis of NMT models are based on BPE-based models, we are
interested in analyzing the working mechanisms of pure RNN-based CHAR models.1 We follow Cherry
et al. (2018) in using RNN-based models, and we focus on Finnish→English (FI→EN), because training
CHAR models requires huge computational resources.

We first train CHAR models with different encoder depths and a BPE-based model for comparison.
Then we explore how CHAR models learn word senses and morphological inflections via probing
classification tasks, using representations generated by the trained models. For the morphological probing
tasks, the classifiers predict the morphological tag given the representation of a token. For the word sense
disambiguation (WSD) probing task where learning word senses is needed, the input to the classifier and
the output are different from the classifiers in the morphological probing tasks. Instead, the representations
of an ambiguous word and its candidate translation are both fed into the classifier and then the classifier
predicts whether the candidate translation is correct or not.

2.1 Data

We train NMT models on the WMT15 shared task data (Bojar et al., 2015) for FI→EN to be able
to compare with Cherry et al. (2018). There are about 2.1M sentence pairs in the training set after
preprocessing with Moses scripts.

For the WSD probing task, we use the FI–EN part of the MuCoW (Raganato et al., 2019) test set, which
is a multilingual test suite for WSD in the WMT19 shared task. It has 2,117 annotated sentences. Each
annotation provides the ambiguous Finnish word, the domain of the sentence, and a set of translation
candidates of the ambiguous word including both correct and incorrect translations. For each ambiguous
word from an annotation, we generate multiple instances that are labeled with one translation candidate
and a binary value indicating whether it corresponds to the correct sense. 1,000/1,000 instances are
randomly selected as the development/test sets, and the remaining 6,325 instances are used for training

1Also, training Transformer models at the character level with a large batch size requires enormous amounts of memory.
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Feature POS Grammatical case Locative case Number Infinitive Voice

# Tag 16 4 8 8 3 2
Training 11,678 5,147 1,495 7,603 301 1,723
Dev/Test 1,500 650 200 1,000 40 200

Table 1: Statistics of in-domain data from MuCoW for morphological probings.

the probing classifiers.2

To extend MuCoW for the morphological probing tasks, we use the RNNTagger,3 which is trained
on FinnTreebank24 to generate the morphological tags. Finnish is a morphologically rich language, and
in addition to POS, we generate data for 5 other morphological features: grammatical case, locative
case, number, infinitive, and voice. These features vary in the types of tag. The data is roughly split into
training/development/test sets at the ratio of 8:1:1. Each data entry for the probing tasks contains the
representation of a token and the morphological tag. The detailed statistics are provided in Table 1.

2.2 Experimental Settings
NMT models We use the Sockeye (Hieber et al., 2017) toolkit to train NMT models. The encoder is a
stack of 1 bidirectional RNN and 6 unidirectional RNNs, and the decoder has 8 unidirectional RNNs. We
choose long short-term memory (LSTM) RNN unit (Hochreiter and Schmidhuber, 1997). The size of
embeddings and hidden units is 512. We tie the source, target, and output embeddings. The beam size is 8
during inference. We employ the models that have the best perplexity on the validation set for evaluation.
BLEU scores (Papineni et al., 2002) are computed by sacrebleu (Post, 2018). For CHAR models, we add
separators between any two tokens including punctuation marks, and input character sequences to the
model directly. The character vocabulary size is 379. For the BPE-based model, we learn a joint BPE
model with 32K subwords (Sennrich et al., 2016). As Cherry et al. (2018) have shown that the depth is
crucial to the success of CHAR models, we train a 4-layer CHAR model to study the effect of depth.

Probing classifiers These probing classifiers are feed-forward neural networks with only one hidden
layer, using ReLU non-linear activation. The size of the hidden layer is set to 512. We use the Adam
learning algorithm (Kingma and Ba, 2015). The classifiers are trained using a cross-entropy loss. Each
classifier is trained for 180/100 epochs in the WSD/morphological probing tasks and the one that performs
best on the development set is selected for evaluation. We train 5 times with different seeds for each
classifier and report average accuracy.

In contrast to word-level hidden states, a word consists of multiple character-level hidden states
in CHAR models. We are interested in how the word-level information, including word senses and
morphological inflections, is distributed over the character hidden states, in a single state or spread over
all hidden states. Thus we explore the following methods for composition:
• mean pooling: mean of hidden states
• max pooling: max of hidden states in each dimension
• last pooling: last hidden state
• first pooling: first hidden state
• randLSTM: output of a randomly initialized LSTM, whose input are the hidden states of charac-

ters; we use a 1-layer bidirectional LSTM with parameters initialized uniformly at random from
[− 1√

d
, 1√

d
], where d is the hidden size of the LSTM (Wieting and Kiela, 2019).5

The mean pooling method, which simply averages all the hidden states of a word, can tell us how much
word sense or morphological information has been encoded into the word and serves as the baseline. The

2Note that MuCoW has both in-domain (news and books) and out-of-domain data (subtitles), and the results are only based
on the in-domain data unless otherwise specified. The ratio of in-domain data and out-of-domain data is around 1:2.

3https://www.cis.uni-muenchen.de/˜schmid/tools/RNNTagger/
4http://www.ling.helsinki.fi/kieliteknologia/tutkimus/treebank/index.shtml
5Note that we first use randLSTM to generate the composition, then we feed the output into the following classifiers. That is

to say, the parameters of the randLSTM are fixed during the training of the following probing classifiers. This can reduce the
effect of LSTMs on the probing classifiers.

https://www.cis.uni-muenchen.de/~schmid/tools/RNNTagger/
http://www.ling.helsinki.fi/kieliteknologia/tutkimus/treebank/index.shtml
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System Cherry et al. (2018) bpe-d7 char-d4 char-d7

Encoder Depth 6 7 4 7
BLEU 19.5 16.9 16.3 17.2

Table 2: BLEU scores of the NMT models on FI→EN.

Feature
model char-d7 bpe-d7

Feature
model char-d7 bpe-d7

layer 1 3 5 1 3 5 layer 1 3 5 1 3 5

WSD

mean 71.95 79.94 81.57 83.02 84.53 83.77

POS

mean 93.29 93.91 94.80 41.29 42.07 40.79
max 71.76 74.91 75.60 84.65 85.28 83.52 max 92.23 93.56 94.20 43.35 44.35 42.31
last 74.78 80.25 80.88 82.58 84.59 84.40 last 73.81 81.37 87.43 40.08 39.83 39.43
first 74.28 81.89 82.96 84.40 85.66 83.65 first 92.08 91.92 91.43 39.28 40.91 39.19
randLSTM 74.65 83.90 82.89 82.26 80.44 81.07 randLSTM 92.57 92.83 92.56 35.91 35.52 35.92

Grammatical

mean 60.40 58.37 58.15 66.03 64.12 61.75

Locative

mean 26.00 25.60 27.30 47.90 45.40 40.30
max 59.97 57.94 58.28 67.14 63.23 60.03 max 26.20 26.80 24.60 49.30 46.60 41.20
last 57.94 54.68 56.55 66.62 64.09 61.35 last 24.40 21.30 24.50 50.70 47.10 40.10
first 55.78 54.06 55.54 65.66 63.63 59.29 first 24.00 23.40 20.80 48.40 42.00 34.40
randLSTM 92.25 90.62 87.51 55.88 56.34 53.66 randLSTM 81.60 75.10 78.30 30.70 32.00 27.80

Number

mean 75.10 75.26 75.34 72.38 73.54 70.98

Infinitive

mean 53.50 57.00 58.50 55.50 53.50 51.50
max 73.92 73.90 73.50 72.82 73.02 71.10 max 58.50 52.50 54.00 59.00 57.50 61.50
last 71.90 72.04 72.10 72.54 72.40 70.56 last 56.50 57.00 53.00 58.00 55.50 51.50
first 72.94 73.06 72.90 72.60 72.38 69.88 first 50.00 47.50 49.00 57.50 52.50 54.00
randLSTM 95.32 95.52 94.12 70.10 69.68 70.00 randLSTM 80.00 75.00 75.00 55.00 55.00 55.00

Voice

mean 84.00 83.70 84.30 85.60 85.70 84.20
max 84.00 84.00 84.00 85.80 86.00 85.20
last 82.40 84.10 83.10 83.80 83.60 83.00
first 81.10 83.60 83.10 84.60 84.80 83.40
randLSTM 94.50 95.00 95.20 84.00 82.90 83.00

Table 3: Accuracy (%) on WSD and morphological probing tasks using hidden states from char-d7 and
bpe-d7, with different composition methods. The numbers in bold are the best accuracy of each model in
each probing task. The results of char-d7 on morphological probing tasks consider separators as the last
character of a word while those on the WSD probing tasks do not take separators into account.

first/last pooling method detects how much word sense or morphological information can be captured
by a single character. randLSTM can test whether word sense or morphological information need to be
modeled by a more complicated composition method or has been encoded into each hidden state and only
need a simple mean pooling composition. Note that we are not pursuing better composition methods for
probing tasks but investigating how CHAR models encode the word sense and morphological information
into hidden states of characters. We also apply these composition methods to subwords.

2.3 Results
2.3.1 BLEU Scores of NMT Models
Table 2 gives the BLEU scores of the three NMT models, which are used for the following investigation.
In accordance with Cherry et al. (2018), our deeper CHAR model (char-d7) indeed outperforms the
BPE-based model with the same number of layers (bpe-d7). The CHAR model with 4 layers (char-d4) is
inferior to the other two models as expected. The result of Cherry et al. (2018) in Table 2 is obtained using
6 bidirectional gated recurrent units (GRUs) (Cho et al., 2014) in the encoder, which are 12 unidirectional
LSTMs. Our encoder only has 1 bidirectional LSTM and 6 unidirectional LSTMs. In addition, we do not
apply label smoothing technique in our models. We assume that these differences in settings cause the
performance gap. Nevertheless, we focus on exploring how CHAR models work rather than pursuing
better performance.

2.3.2 Accuracy in Probing Tasks
Table 3 gives the accuracy in the WSD probing task and different morphological probing tasks, using
hidden states from char-d7 and bpe-d7 with different composition methods. Results of bpe-d7 are given
for comparison. The bold numbers are the best accuracy of each model in each probing task.
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Figure 1: Accuracy of each layer from char-d7 on
the WSD probing task, considering separators or
not, using randLSTM for composition.
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Figure 2: Accuracy evolution over layers on the
WSD probing task, using first pooling for compo-
sition.

For the WSD probing task, we can see that using the first hidden state of the ambiguous words from the
3rd layer of bpe-d7 achieves the highest accuracy (85.66%). In char-d7, hidden states from higher layers
tends to perform better than those from lower layers when using pooling methods for composition but not
when using randLSTM for composition.

We can tell that char-d7 achieves significantly better performance than bpe-d7 on all the morphological
probing tasks, which is consistent with previous finding that character-level hidden states are better for
learning morphology (Lee et al., 2017; Belinkov et al., 2017a; Durrani et al., 2019; Belinkov et al., 2020).
In the POS probing task, the hidden states of characters are much superior to those of subwords.6 This
indicates that the POS information is better encoded into hidden states than the other morphological
features. In the locative probing task, although char-d7 using randLSTM performs much better than
bpe-d7, the performance of pooling methods is far behind that of bpe-d7. We interpret this as showing
that locative case information is not simply distributed over character hidden states and we need a more
complicated composition method to extract the information. Both char-d7 and bpe-d7 perform well on
the voice probing task which is a relatively easy binary classification task.

3 Learning Linguistics

In this section, we interpret the ability of CHAR models to encode word senses and morphological
inflections, by exploring the effect of separators, composition methods, the evolution over layers, and the
robustness to domain-mismatch. We only analyze the encoder hidden states in the context of probing tasks.
As the attention extracts features from encoder hidden states in a different way from our composition
methods – pooling and randLSTM, the findings may not apply to the entire CHAR model.

3.1 Learning Word Senses

3.1.1 The Effect of Separators

Separators indicate word boundaries in the input sequences, which potentially are viewed as the end
of a word by the CHAR model. We test the role of separators in learning word senses by testing the
effect on the WSD probing task. Figure 1 displays the WSD accuracy of representations from different
encoder layers with and without considering separators as the last character of a word, using randLSTM
for composition. We can see that considering separators results in a lower accuracy which means that
separators have a negative effect on learning word senses when we compose all the characters. However,
the information of characters from a word passes to separators in the encoder. Separators do carry some
of the word sense information and they can achieve up to 79.8% in accuracy. We speculate that separators

6We have noted the exceptionally low accuracy of bpe-d7, but we have not found any errors from the perspective of
experimental settings.
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Model char-d7 bpe-d7

in-domain 83.9% 85.7%
out-of-domain 45.7% 49.1%

Table 4: Best accuracy of char-d7 and bpe-d7 on the WSD probing task, on in-domain and out-of-domain
test sets.

also capture some morphological information which confuses the classifier in identifying word senses, and
we will explore it in Section 3.2. Note that the following results in this section do not consider separators.

3.1.2 Composition Methods
Even though first pooling only utilizes the first hidden state of a word, it performs better than mean and
max which use all the hidden states. We can infer that this CHAR model encodes more word sense
information into the first characters of words. However, randLSTM can achieve higher accuracy than first.
We conclude that this CHAR model also distributes the word sense information to other characters but we
need a more complicated composition method to extract more word sense information.

For bpe-d7, first achieves the best accuracy among all the composition methods. We can tell that both
the CHAR and BPE-based models encode much sense information into the first character/subword but
the first subword is enough to represent the word sense. Moreover, randLSTM performs worse than the
simple pooling methods in bpe-d7, which indicates that the information about word senses has been well
represented by hidden states and we do not need a more complicated method to further extract it.

3.1.3 Evolution over Layers
Figure 2 shows the accuracy evolution over layers of both CHAR and BPE-based models, using first for
composition. In the first layer, char-d4/7 performs much worse than bpe-d7. However, the learning curve
of CHAR models is much steeper than bpe-d7, especially in the first three layers. In the 7th layer, char-d7
performs almost as well as bpe-d7. We speculate that it takes several layers for the first character to learn
the basic sense of a word and it need more layers to learn the contextualized/disambiguated word sense.
This can explain why previous shallow CHAR models do not perform well, as word senses are learned
layer by layer.

3.1.4 Robustness to Domain-Mismatch
CHAR models have been shown robust to spelling mistakes, rare words, morphology, and compounds
(Lee et al., 2017; Cherry et al., 2018). The meaning of an ambiguous word is likely to vary with domains.
Thus, here we investigate the robustness to domain-mismatch of CHAR models when learning word
senses. We directly test the models trained on in-domain data using the out-of-domain test set.

Table 4 gives the best accuracy on in-domain and out-of-domain test sets. The accuracy of both models
has a substantial drop on the out-of-domain test set which is consistent with the finding from Raganato et
al. (2019). The drop of char-d7 is even bigger than that of bpe-d7 which indicates that CHAR models are
not more robust to domain-mismatch when learning word senses compared to BPE-based models.

3.2 Learning Morphology

3.2.1 The Effect of Separators
We have demonstrated that separators have a negative effect on the WSD probing task in Section 3.1.
As separators indicate the word boundary information and morphological features are reflected over the
middle parts or the last parts of a word in Finnish, here we hypothesize that these separators are important
to the morphological probing tasks. We measure the effect of separators by comparing the performance
on the morphological probing tasks whether considering separators as the last character of a word.

We find that the representations considering the separators are evidently superior. Figure 3 displays
the comparison on the grammatical and number probing tasks and we get the same pattern in the other
morphological probing tasks. These results indicate that separators capture much of the word-level
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Figure 3: Accuracy on grammatical and
number probing tasks, considering the sep-
arators or not, using randLSTM for com-
position.

2 4 6
40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

grammatical

2 4 6

locative

2 4 6

infinitive

char-d7
bpe-d7

Figure 4: Accuracy evolution over layers on grammatical,
locative, and infinitive probing tasks, in char-d7 and bpe-d7,
using randLSTM and max for composition, respectively.

morphological information which is not encoded into other characters. The following results in this
section take separators into account.

3.2.2 Composition Methods
In Table 3, max also considers all the hidden states but has different performance compared to mean,
especially on infinitive and number. first and last are inferior to mean and max which implies that the
first and the last character of the word do not capture all the word-level morphological information, even
though we have shown that the last character (separator) has some crucial information. In particular, last
only achieves 88.16% on the POS probing task while mean achieves 94.80%. Thus, we conclude that the
model has not learned to build a full morphological representation of words at the first or last position, but
that the information remains distributed across positions. In bpe-d7, max pooling achieves the best results
in 4 out of 6 probing tasks. first and last are usually inferior to mean/max.

randLSTM performs significantly better than mean/max except on the POS probing task, even though
the LSTM is randomly initialized without any training. The gaps vary from 10.9% to 54.1%, especially in
the probing task on locative. We can infer that the information of word structure is not well encoded into
hidden states, thus we need a more complicated composition method to abstract the information.

For POS, randLSTM performs worse than mean/max. We attribute this to the fact that POS is a global
feature compared to other morphological features and has been well encoded into hidden states. Thus,
it does not need further extraction. In contrast to the results for char-d7, randLSTM for bpe-d7 is not
as good as the simple pooling methods in any of the probing tasks. We infer that the morphological
information has been well encoded into subword hidden states and does not need further composition.

3.2.3 Evolution over Layers
Figure 4 exhibits the evolution of learning grammatical, locative, and infinitive features over layers. We
can see that the overall accuracy of char-d7 and bpe-d7 tends to go down over layers (also in other
morphological probing tasks). The results are consistent with the previous findings in Belinkov et al.
(2017a; Belinkov et al. (2017b; Belinkov et al. (2020) that hidden states from the lower layers are better at
learning morphology.

3.2.4 Effect of Encoder Depth
char-d7 is superior to char-d4 in the translation task but it is still not clear how hidden states from NMT
models with different encoder depths perform on the morphological probing tasks. As the hidden states in
the last layer are fed to the decoder in the character-level NMT models, we first compare the hidden states
from the last layer of both models, i.e. the 7th layer of char-d7 and the 4th layer of char-d4. Figure 5
displays the performance in all the morphological probing tasks. Generally, char-d7 outperforms char-d4
on the probing task, with the exception of the infinitive probing task. However, note that a comparison of
the last encoder layer does not tell the full story. Looking at the evolution of probing performance over
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char-d7 trained on FI→EN, summing up all the atten-
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Figure 8: Attention weight over the 20 most
frequent characters in char-d7 trained on
FI→EN, averaging all the attention weights
over each character. “ˆ” denotes the separator.

layers (Figure 6), we can see that char-d7 typically achieves the highest probing accuracy at the first layer,
outperforming char-d4.

4 Attention Mechanisms

In the encoder-decoder attention (Bahdanau et al., 2015; Luong et al., 2015), a higher attention weight
means that the source token contributes more to the prediction at current step. Thus, we could utilize
the attention distributions to explore how CHAR models pay attention to the source characters during
translation.

CHAR models encode information into a longer sequence which essentially increases the representa-
tional capacity of the encoder. We are interested in exploring the effect of restricting the capacity of the
encoder states that are passed to the decoder. Thus, we apply the word-level attention which attends to a
character of each word and potentially enforces the character captures the full word information.

4.1 Attention Distributions over Characters

We explore the attention distributions that are generated when translating newstest2015. In addition
to all the characters, we also consider the separator character. We calculate the attention weights over
each source character. It is interesting that the sum of attracted attention is basically consistent with
the frequency of characters in the source language (Finnish) which is shown in Figure 7. This pattern
indicates that most of the characters are treated equally during the overall decoding. However, when we
average all the attention weights over each character and compare the separator with other characters, the
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Model BLEU Drop

char-d7 16.0 1.2
bpe-d7 14.3 2.6

Table 5: Results of applying word-level attention to both CHAR and BPE-based models.

separator apparently attracts much more attention as shown in Figure 8, which illustrates the attention
weights over the 20 most frequent characters.

We also count the the frequency of attracting the most attention at each decoding step for all the source
characters. We find that the separator accounts for 31.4% of all the characters that have the highest
weights. In addition, there are 29.6% of normal characters and 39.6% of separators in the target-side that
distribute the highest attention weight to a source separator, which indicates that a large portion of normal
characters also extract most of features from separators.

The separators attract a lot of attention which is similar to the attention patterns of BERT (Devlin et
al., 2019) found by Clark et al. (2019). However, they find that the attention to the separators is used
as a “no-op” for attention heads. In our settings, there is only one layer attention with one attention
head, and we cannot regard the attention to separators as a “no-op”. Since the separators make the
word representations better in morphology, we argue that the separators between words in the character
sequences are encoded with rich linguistic features and contribute to the translation, which is different
from the separators between sentences in BERT.

4.2 Word-Level Attention

As we have shown that separators have captured some linguistic knowledge, we enforce the word-level
attention only attends to separators. We retrain the models with word-level attention from scratch. We
also apply the word-level attention to BPE-based models as comparison. In that case, the attention attends
to the last subword of a word.

The BLEU scores of the models with word-level attention are given in Table 5. The BLEU scores drop
in both char-d7 and bpe-d7. It indicates that restricting the capacity of encoder states that are passed
to the decoder has a negative effect on the BLEU scores. The smaller drop on char-d7 means that the
word-level information can be better extracted from the character-level hidden states compared to the
subword-level hidden states. char-d7 does not perform too badly despite only attending to the separators.
This indicates that the attention mechanism is very flexible and could force the model to encode more
information into separators. However, since there is only one attention head, some information from the
source is inevitably lost. It would be interesting to explore a multi-layer attention with multiple heads,
such as Transformer (Vaswani et al., 2017) attention, where the information could be extracted from the
other attention heads as well. We leave this as future work.

5 Conclusion

CHAR models have been shown to perform better than BPE-based models in NMT yet they pose
new challenges for interpretability. In this paper, we investigate CHAR models via the WSD and six
morphological probing tasks to learn how CHAR models learn word senses and morphology, in the case of
translating Finnish into English. We also explore the attention distribution pattern and a sparse word-level
attention to learn the working mechanism of attention.

In the probing tasks, we find that separators also have captured some linguistic knowledge. We apply
different composition methods to the characters of a word, and we demonstrate that the word sense and
morphological information is distributed over all the characters rather than some specific characters.
Moreover, characters at different positions play different roles in learning linguistic knowledge. CHAR
models are better at learning morphology but we need a more complicated composition method, such as a
randomly initialized LSTM, to extract all the encoded information. These results on probing tasks show
that we can extract word sense information and morphological features from character-level hidden states
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and that these features are encoded in different ways. In addition, we explore the effect of encoder depth
and show that CHAR models require more layers to encode word senses, which explains why only deeper
CHAR models outperform BPE-based models. The attention distribution shows that separators attract a
lot of attention, and we show that the sparse word-level attention only attending to separators is workable
but not enough for translation.

As we have shown that characters at different positions specialize in learning word senses and morphol-
ogy, it will be interesting to explore sparse attention with multiple heads in the future which could learn to
extract features from different aspects.
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