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A B S T R A C T

Subtle changes in white matter (WM) microstructure have been associated with normal aging and neuro-
degeneration. To study these associations in more detail, it is highly important that the WM tracts can be
accurately and reproducibly characterized from brain diffusion MRI. In addition, to enable analysis of WM tracts
in large datasets and in clinical practice it is essential to have methodology that is fast and easy to apply. This
work therefore presents a new approach for WM tract segmentation: Neuro4Neuro, that is capable of direct
extraction of WM tracts from diffusion tensor images using convolutional neural network (CNN). This 3D end-to-
end method is trained to segment 25 WM tracts in aging individuals from a large population-based study (N ¼
9752, 1.5T MRI). The proposed method showed good segmentation performance and high reproducibility, i.e., a
high spatial agreement (Cohen’s kappa, κ ¼ 0:72� 0:83) and a low scan-rescan error in tract-specific diffusion
measures (e.g., fractional anisotropy: ε ¼ 1%� 5%). The reproducibility of the proposed method was higher than
that of a tractography-based segmentation algorithm, while being orders of magnitude faster (0.5s to segment one
tract). In addition, we showed that the method successfully generalizes to diffusion scans from an external de-
mentia dataset (N ¼ 58, 3T MRI). In two proof-of-principle experiments, we associated WM microstructure ob-
tained using the proposed method with age in a normal elderly population, and with disease subtypes in a
dementia cohort. In concordance with the literature, results showed a widespread reduction of microstructural
organization with aging and substantial group-wise microstructure differences between dementia subtypes. In
conclusion, we presented a highly reproducible and fast method for WM tract segmentation that has the potential
of being used in large-scale studies and clinical practice.
1. Introduction

Changes in the micro- and macrostructure of brain white matter
(WM) are known to be related to cognitive impairment and neuro-
degeneration (Fellgiebel et al., 2005; Abe et al., 2002; Vernooij et al.,
2008). The WM consists of axonal fibers that enable communication
between brain regions and can be functionally grouped into WM tracts.
To improve the understanding of WM tracts and their involvement in the
processes of neurodegeneration in aging and disease, it is essential to
; DTI, Diffusion Tensor Imaging;
ho Time; TR, Repetition Time.
nd Information Engineering Scho
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segment them and quantify their microstructure with high accuracy and
reproducibility. This is however non-trivial because WM tracts cannot be
identified directly from diffusion magnetic resonance imaging (dMRI)
and because their anatomy can be complex.

Most WM tract segmentation methods are based on reconstruction of
potential WM fibers by tractography on dMRI. Those tractography-based
segmentation methods can be grouped into three categories: semi-
automatic, atlas-based and clustering methods (Sydnor et al., 2018).
Semi-automatic methods use automated tractography assisted by manual
FA, Fractional Anisotropy; ICV, Intracranial Volume; MD, Mean Diffusivity; ROIs,
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delineations of regions-of-interest (ROIs) (Mori et al., 2005). This how-
ever requires substantial neuroanatomical knowledge, is time consuming
and is highly operator-dependent. Especially in tracts with complex ge-
ometry, brain regions with crossing fibers and data with low quality,
semi-automatic methods have shown limited reproducibility (Wakana
et al., 2007). As the name implies, atlas-based segmentation methods use
anatomical priors propagated from single or multiple atlases for trac-
tography initialization and/or pruning (Wakana et al., 2004; Lawes et al.,
2008; Hua et al., 2008; Suarez et al., 2012; de Groot et al., 2015; Was-
sermann et al., 2016; Yendiki et al., 2016, 2011; Z€ollei et al., 2019).
Clustering methods are fully automatic as well, in which tractography
streamlines are grouped into tracts based on combined metrics of geo-
metric trajectories, distance similarity, homology across hemispheres,
consistency across subjects, or additional anatomical constraints like
shape priors and spatial priors (O’Donnell and Westin, 2007; Prasad
et al., 2014; Jin et al., 2014; Garyfallidis et al., 2017).

Another class of WM tract segmentation methods are of machine
learning strategies using fiber-based classification (Poulin et al., 2017;
Lam et al., 2018; Gupta et al., 2018; Jha et al., 2019; Zhang et al., 2019;
Liu et al., 2019) or voxel-wise classification (Bazin et al., 2011; Ratnar-
ajah and Qiu, 2014; Wasserthal et al., 2018; Li et al., 2018, 2019). Unlike
the previously described approaches, voxel-wise classification methods
do not rely on tractography, but directly label voxels as specific tracts
based on their diffusion information. Recently, deep-learning techniques,
in particular convolutional neural networks (CNN), have emerged as a
powerful tool and shown to be very successful. CNN-based methods
tackle segmentation tasks as the estimation of a parametric map-function
between inputs and outputs, where the map function is modeled by a
series of convolution and non-linearity operations. To estimate parame-
ters - the weights of convolution kernels, CNN models are globally
optimized over training datasets aiming at minimizing a loss function
that measures difference from objectives. Given the advantage of seg-
mentation accuracy and efficiency, CNN-based methods have been
widely favored in image analysis field. For WM tract analysis, the effect
of approach configurations, temporal consistency, and pre-clinical
applicability have however barely been explored on large-scale imag-
ing datasets.

In this paper, we developed and evaluated a 3D CNN method for WM
tract segmentation: Neuro4Neuro. This method advances the state-of-
the-art by being the first tract segmentation method that uses a 3D
CNN. Furthermore, we utilize a large-scale dataset for optimizing the
method and evaluating its potential of deep learning for WM tract seg-
mentation. We quantitatively evaluated the method’s accuracy and
reproducibility, demonstrated its applicability for addressing clinical
research questions, and assessed its generalizability to an external patient
dataset. This work is an extension of a previous conference article (Li
et al., 2018). In this extension, we improved preprocessing and the
optimization experiments, extended validation from two to 25 tracts, and
added a substantial number of evaluation experiments. The remainder of
the paper is organized as follows: section 2 presents the method including
optimization experiments, section 3 presents evaluation experiments and
results, and section 4 discusses the results and their implications.

2. Neuro4Neuro

2.1. Materials and methods

2.1.1. Study population
The Rotterdam Study is a prospective population-based study tar-

geting causes and consequences of age-related diseases among 14,926
participants (Hofman et al., 2015). Since 2005, brain MRI has been
incorporated in the core protocol. The Rotterdam study has been
approved by the local medical ethics committee according to the Popu-
lation Study Act Rotterdam Study, executed by the Ministry of Health,
Welfare and Sports of the Netherlands. Written informed consent was
obtained from all participants. In this work, we included 9752 dMRI
2

scans from 5286 participants (age: 64:7� 9:9 years). For the optimiza-
tion experiments (Section 2.2), a subset of 1082 scans (D1) was used, of
which 864 scans were used for training (D1train) and 218 scans for testing
(D1test).

2.1.2. MRI acquisition
Scanswere acquired on a 1.5TMRI scanner (GE Signa Excite). Diffusion

weighted imaging (DWI) was acquired with following parameters: TR=
TE ¼ 8575ms=82:6ms; imaging matrix of 64� 96 (zero-padded in k-space
to 256� 256) in a field of view (FOV) of 210� 210mm2; 25 diffusion
weighted volumes along non-collinear directions using a b-value of 1000s=
mm2 and three non-weighted volumes (b ¼ 0s=mm2). The voxel size was
resampled from 3:3� 2:2� 3:5mm3 to 1mm3 during pre-processing. For
T1-weighted images, the parameters were: TR=TE ¼ 13:8ms=2:8ms; im-
agingmatrix of 416� 256 in an FOV of 250� 250mm2; The voxel sizewas
0:5� 0:5� 0:8mm3.

2.1.3. Image preprocessing
DWI data were preprocessed using a previously described pipeline

(Koppelmans et al., 2014). In short, motion and eddy currents were
corrected by co-registering all diffusion weighted volumes to the aver-
aged b ¼ 0 volumes with Elastix (Klein et al., 2010). Diffusion tensors
were estimated with a Levenberg-Marquard non-linear least-squares
optimization algorithm, as available in ExploreDTI (Leemans et al.,
2009). We subsequently computed diffusion tensor imaging (DTI) mea-
sures: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity
(L1), radial diffusivity (RD) and mode of anisotropy (MO). Due to noise,
tensor estimation failed in a small proportion of voxels, resulting in sig-
nificant outliers. Outlier voxels with a tensor norm (Frobenius norm)
larger than 0:1mm2=s (Zhang et al., 2007) were set to zero. The tensor
images used as the input for proposedmethodwere estimated and used in
subject native diffusion space. The native diffusion space had a similar
brain orientation for all subjects. No co-alignment with a standard
orientation was performed. For each tract, an ROI was defined by taking
the maximum bounding box based on the reference segmentation (Sec-
tion 2.1.4). The magnitude of the tensors was scan-wise normalized to
zero mean and a unit standard deviation. A brain tissue mask was ob-
tained by combiningWM and gray matter segmentations (Vrooman et al.,
2007).

2.1.4. Reference method
For model training and evaluation, we generated the reference WM

tract segmentation using a tractography-based atlas method (de Groot
et al., 2015). The method defined standard space atlases that were
non-linearly transformed to subject native space. These atlases guided
probabilistic tractography, which was performed with its default settings
in FSL (PROBTRACKX; diffusion model was estimated using BEDPOSTX)
(Jenkinson et al., 2012). Tractography protocols are available as the FSL
AutoPTX1 plugin (de Groot et al., 2013). The resulting tract-specific
density images were normalized by division with the total number of
tracts in the tractography run. Finally, tract-specific thresholds were
established by maximizing the FA reproducibility on a training set of 30
subjects with 2 scans. Volume-based tract outliers were visually inspec-
ted. We excluded all scans for which one or more tracts did not pass
quality control (de Groot et al., 2015).

2.1.5. White matter tract segmentation model
We propose a direct WM tract segmentation model that takes a 4D

diffusion tensor image as input. Let Idti 2 Ri�j�k�6 denote a tensor image
in native diffusion space, and Iseg 2 Ri�j�k denote the reference segmen-
tation of a WM tract. The segmentation process finds a relation

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/AutoPtx
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Iseg ¼F ΘðIdtiÞ; (1)
which is parameterized byΘ. ThenΘ can be optimized by minimizing
the loss function L :

argmin
Θ

L
�
F ΘðIdtiÞ; Iseg

�
: (2)

The relation F Θ is modeled by a 3D CNN, which consists of a series of
convolutions and non-linearity operations. An encoder-decoder network
(Fig. 1) is used according to the U-Net architecture (Ronneberger et al.,
2015) with additional skip connections. The encoder path is a gradual
compression process of extracting abstract features from the diffusion
tensor images, in which all but the maximum values within a kernel were
discarded after each max-pooling layer. Then the decoder path restores
the details and combines them with the shallow information of the same
scales. The convolution layers produce a set of k feature maps by indi-
vidually convolving the input with k kernels. The size of the convolution
kernels in the last layer were 1� 1� 1, those in the other layers were 3�
3� 3. For parameter regularization and accelerating model training,
convolution layers were followed by batch normalization (Ioffe and
Szegedy, 2015). Non-linearities were defined using parametric rectified
linear units (PReLU) (He et al., 2015). The last layer of the network was a
voxelwise softmax function that outputs a probability map PðIseg

��Θ; IdtiÞ.
For performance evaluation, probabilistic segmentations were binarized
(P > 0:5).

A separate model was trained for each tract. In each training epoch,
input volumes were fed in random batches (size ¼ 2) for robustness. To
improve efficiency, batches were generated ‘‘on-the-fly’’. We used the
Adam optimizer (Kingma and Ba, 2014) with an initial learning rate of
0.1, which was adaptively reduced by 50% once the validation loss
stopped improving for 15 epochs. For tracts that are left/right homolo-
gous, the combined dataset was used for pre-training.

2.1.6. Evaluation metric
Segmentation accuracy was quantified by the Dice coefficient be-

tween the segmentation result ðF ΘðIdtiÞÞ and the reference segmentation
(Iseg). The dice coefficient (DC) was computed within the bounding box
ROI and followed its definition:

DC
�
F ΘðIdtiÞ; Iseg

�¼ 2� ��F ΘðIdtiÞ \ Iseg
��

jF ΘðIdtiÞj þ
��Iseg

�� ; (3)

where j:j is the cardinality.
Fig. 1. The proposed 3D-CNN encoder-decoder architecture for WM tract segmentati
network architecture, where ½k1; k2� are the number of convolution kernels in those
units. The circles in the decoder path indicate concatenation operations.

3

2.2. Optimization experiments

We optimized the method on three key elements: 1) input, 2) network
architecture, and 3) the loss function and tract weight. The following
sections describe the optimization experiments, for which the forceps
minor (FMI) tract was used. This tract was chosen since it has previously
shown importance in neurodegeneration and aging (Rascovsky et al.,
2011) and is relatively complex to segment due to thin structure. Paired
sample t-tests (α ¼ 0:05) and Bonferroni correction for controlling the
family-wise error of multiple testing were used to test the statistical
significance of comparisons. Experiments were performed on one node of
the Dutch national supercomputer Cartesius which consists of Intel
E5-2450 v2 CPUs and NVidia Tesla K40m GPUs.

2.2.1. Experiment 1: input
As method inputs, we evaluated the T1-weighted image (T1w) as well

as several dMRI-based images, i.e., the diffusion tensor image (tensor), and
the FA and MD image (FA þ MD). Because of prior knowledge, tensor was
always included as input: tensor implicitly contains information on
crossing fibers and can be decomposed into other diffusion measure im-
ages. To assess the added value of spatial information, we additionally
evaluated an input image encoding location. The location data includes
voxel-wise coordinates that map each diffusion volume to the T1 MNI152
image (Evans et al., 1993). These coordinates were obtained by non-linear
transformation of the coordinates of the MNI152 image to the subject
native T1w space, concatenated with a linear transformation to the subject
native diffusion space using FNIRT and FLIRT (Jenkinson et al., 2002).
Using the proposed network architecture and weighted inner product loss
function (W ¼ 3), we trained models on eight different combinations of
inputs: 1. tensor, 2. tensorþ T1w, 3. tensorþ FAþMD, 4. tensorþ FAþMD
þ T1w, 5. tensorþ location, 6. tensorþ locationþ T1w, 7. tensorþ FAþMD
þ location, and 8. tensorþ FAþMDþ locationþ T1w. Correcting for 7 tests
resulted in an adjusted P-value threshold of 7:1� 10�3.

Results are presented in Fig. 2 (a). All combinations showed a similar
accuracy with a mean DC of 0.68. The additional features (FA þ MD,
location, T1w) did not improve significantly the model based on tensor
only (p > 0:007). Hence, the model based on tensor was optimal in this
setting.

Additionally, we evaluated the method using the first three peaks of
the fiber orientation distribution function (fODF) as input. The fODF
peaks were estimated with the single-shell single-tissue setting of the
Constrained Spherical Deconvolution function, available in MRtrix
(Tournier et al., 2007). The test DC of the model trained on fODF peaks
on. The colored boxes in the lower right corner detail corresponding units in the
layers. Abbreviations: Conv ¼ convolution, PRelu ¼ parametric rectified linear



Fig. 2. FMI segmentation accuracy (DC) on D1test using different (a) model inputs (Exp. 1), and (b) architectures and optimizers (Exp. 2). Location: input image
describing spatial information, P: proposed architecture, E: Ext-architecture. In the violin plots, horizontal lines refer to the mean, and vertical lines refer to the range of
the first quartile and the third quartile.

Fig. 3. FMI segmentation accuracy (DC) on D1test using L wip and L wce loss
functions. W indicates the tract weight. In the violin plots, horizontal lines refer
to the mean, and vertical lines refer to the range of the first quartile and the
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using the proposed network architecture and weighted inner product loss
function (W ¼ 3) is 0:41� 0:17. This fODF-based performance was
significantly lower than the tensor-based performance (p ¼ 5:8�
10�41).

2.2.2. Experiment 2: network architecture
We compared the proposed architecture (Section 2.1.5, Fig. 1) with

an extended architecture, Ext-architecture (Supplementary Figure S1).
The Ext-architecture is an extension of the proposed architecture with the
addition of novel convolutional re-samplings and a residual function. In
short, the max-pooling operation was replaced by strided convolution,
and the up-sampling was replaced by convolution transpose. This in-
troduces trainable parameters which allow the network to explore the
way of re-sampling itself. Also, the residual function used in Ext-archi-
tecture adds the input to the output of each convolution layer, which is
processed through the convolution and non-linearities, to reformulate
feature representation between a finer and a coarser scale. This was ex-
pected to improve segmentation accuracy (Milletari et al., 2016).

In addition, we compared two gradient descent algorithms (with
default parameters) for our setting: Adam and Nadam (Dozat, 2016). The
models were trained on the tensor input using weighted inner product
loss function (W ¼ 3). Correcting for 3 tests resulted in an adjusted
P-value threshold of 1:7� 10�2.

Fig. 2 (b) shows the test DC of the two architectures in combination
with the different optimizers. For both optimizers, the proposed network
architecture yielded statistically significantly (p < 0:01) a higher seg-
mentation accuracy than the Ext-architecture (PAdam ¼ 0:68, EAdam ¼
0:67) and a lower standard deviation (PAdam ¼ 0:054, EAdam ¼ 0:065).
The Adam optimizer (p < 0:01).

2.2.3. Experiment 3: loss function and tract weight
We propose to use the weighted inner product (L wip) (Choi et al.,

2010) as a loss function:

L wip ¼ �W � Iseg � F ΘðIdtiÞ �
�
1� Iseg

�� ð1�F ΘðIdtiÞÞ; (4)

where W is the weight of the tract class.
We compared its performance to that of the widely used weighted

cross entropy (L wce) loss function in our setting (i.e., tensor input, pro-
posed network architecture and the Adam optimizer), which is defined
as:

L wce ¼ �W � Iseg � logðF ΘðIdtiÞÞ �
�
1� Iseg

�� logð1�F ΘðIdtiÞÞ: (5)

The tract weight trades off between recall and precision of the seg-
mentation. To tune the tract weight and balance classes, we evaluated
4

differentW ranging from 0.5 to the mean frequency ratio of non-tract and
the tract voxels (W ¼ 100). Correcting for 11 tests resulted in an adjusted
P-value threshold of 4:5� 10�3.

The results obtained using L wip and L wce loss functions and 6 tract
weights are provided in Fig. 3. For both loss functions, a weight between
1 and 10 gave relatively optimal performance. The highest DC was
achieved using L wip atW ¼ 3, although the differences in DC withW ¼
1 and W ¼ 5 were not statistically significant (p > 0:005). Overall, the
L wip performed better than the L wce in this setting. Comparing with
using default cross-entropy loss function (L wce;W ¼ 1), the use of pro-
posed loss function in combination with optimal tract weight (L wip;W ¼
3) significantly improved the accuracy (DC) from 0:65� 0:06 to 0:68�
0:05 (p < 0:001). This is also significantly better than performance ob-
tained with the optimal weight (W ¼ 5) for the L wce loss (p < 0:001).

2.2.4. Optimization results
Neuro4Neuro adopted the best settings of the three optimization

experiments: the diffusion tensor elements as input, the proposed
network architecture (Fig. 1), and the weighted inner product loss
function (Lwip;W ¼ 3) with the Adam optimizer.

We compared the performance of our method to a basic atlas-based
segmentation pipeline. Specifically, a probabilistic tract heatmap was
established by non-linearly co-registering the reference segmentations of
all training data to the FMRIB58_FA_1 mm template using FLIRT, FNIRT,
and the FA_2_FMRIB58_1 mm protocol (Jenkinson et al., 2002). The
normalized probabilistic atlas was then registered to each test image
using the same protocol and binarized with a threshold of 0.5. The
averaged DC over test dataset is 0:44� 0:08, significantly lower than that
third quartile.



Table 1
Demographic characteristics of D4, adapted fromMeijboom et al. (2019). N is the
sample size. SD: standard deviation, bvFTD: behavioural variant frontotemporal
dementia, AD: Alzheimer’s disease, T0: baseline, T1: one-year follow-up, MMSE:
mini-mental state examination score.

Group N (male) Mean age (SD) Mean MMSE

BvFTD, T0 12 (6) 60.3 (7.7) 26.6 (2.8)
BvFTD, T1 6 (3) 64.0 (3.6) –

AD, T0 11 (8) 62.8 (5.0) 25.3 (2.0)
AD, T1 11 (8) 63.3 (5.0) –

Controls, T0 18 (8) 59.8 (6.7) 29.1 (1.0)
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of the optimized setting for Neuro4Neuro (p < 0:01).

3. Validation on a normal and a dementia population

3.1. Materials

3.1.1. Study population
The normal population consisted of community-dwelling elderly from

the Rotterdam Study (Section 2.1.1). Their imaging data were split into
several subsets: a training set (D2train) consisting of 7079 scans from 3858
participants (including the optimization set D1), a test set (D2test) con-
sisting of 1104 scans from 1104 participants, and an additional set for
testing reproducibility (D3) consisting of 194 scans from 97 participants.
The participants in D3 had been scanned twice with a mean interval of
20.2 days. We ensured that the testing sets, i.e., D2test and D3, did not
contain any scans of participants in the training set.

The dementia population (D4) consisted of behavioural variant
frontotemporal dementia (bvFTD) patients, Alzheimer’s disease (AD)
patients, and cognitively healthy participants from the Iris study (Ste-
ketee et al., 2016). The Iris study was approved by the local medical
ethics committee. All participants gave written informed consent. MRI
Fig. 4. Test results of 25 tracts on D2test . (a) Dice coefficients between Neuro4Neuro p
Limbic tracts. (b) Individual tracts of a participant (75 years old, female) analyzed by
row), and sensorimotor (bottom row) tract groups. In each row, superior, posterior a
part of cingulum, CGH: parahippocampal part of cingulum, CST: corticospinal tract,
medial lemniscus, IFO: inferior fronto-occipital fasciculus, ILF: inferior longitudinal fa
STR: superior thalamic radiation, UNC: uncinate fasciculus.

5

scans of the patients were obtained at baseline and at one year
(383:9� 9:9 days) follow-up; controls were scanned at baseline only.
After quality control, twelve bvFTD patients, eleven AD patients and
eighteen controls were included in our analysis (Table 1) (Meijboom
et al., 2019).

3.1.2. MRI acquisition
For the Rotterdam Study, the MRI protocol is described in Section

2.1.2. For the Iris study, scans were acquired on a 3T MRI scanner (GE
Discovery MR750). The acquisition parameters of the diffusion images
were: TR=TE ¼ 7930ms=84:5ms; imaging matrix of 128� 128 in an FOV
of 240� 240mm2; 25 diffusion weighted volumes (b ¼ 1000s=mm2) and
three non-weighted volumes (b ¼ 0s=mm2). The voxel size was 1:8�
1:8� 2:5mm3.

3.1.3. Image preprocessing
DWI data were corrected for motion and eddy currents using the

pipeline described in Section 2.1.3. For the Iris study, scans were sub-
sequently resized to match the same image size with the Rotterdam Study
data, diffusion tensors and measures were estimated using DTIFIT
(Behrens et al., 2003). Tract-specific measures were computed as the
mean value of non-zero diffusion measures within each segmented tract.
3.2. Experiments

Experiments were performed to assess general performance in terms
of accuracy, reproducibility and generalizability. In addition, we per-
formed proof-of-concept clinical application experiments: 1) the associ-
ation between age and diffusion measures in normal aging and 2)
differential diagnosis of bvFTD and AD. For these experiments, we
trained the optimized model from Section 2.1 on D2train for 25 tracts of
four categories: 1) the Association tracts: anterior thalamic radiation
(ATR), inferior fronto-occipital fasciculus (IFO), inferior longitudinal
fasciculus (ILF), posterior thalamic radiation (PTR), superior longitudinal
redictions and the reference segmentation. ‘‘Comm&Lim’’: the Commissural and
Neuro4Neuro, showed in association (top row), commissural and limbic (middle
nd left views are shown. ATR: anterior thalamic radiation, CGC: cingulate gyrus
FMA: forceps major, FMI: forceps minor, MCP: middle cerebellar peduncle, ML:
sciculus, PTR: posterior thalamic radiation, SLF: superior longitudinal fasciculus,
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fasciculus (SLF) and uncinate fasciculus (UNC); 2) the Commmissural
tracts: forceps major (FMA) and forcepsminor (FMI); 3) the Limbic tracts:
cingulate gyrus part of cingulum (CGC) and parahippocampal part of
cingulum (CGH); and 4) the Sensorimotor tracts: corticospinal tract
(CST), middle cerebellar peduncle (MCP), medial lemniscus (ML) and
superior thalamic radiation (STR). Analyses were performed using Py-
thon 3.6.3 (SciPy and Sklearn package) and SPSS (version 24).

3.2.1. Accuracy
Segmentation accuracy was measured in D2test using the tract-specific

DC between the model’s binary segmentation and the reference
segmentation.

3.2.2. Reproducibility
The reproducibility of the proposed method was evaluated statisti-

cally both based on diffusion measures and tract volume, and based on
voxel-wise agreement of the segmentations. For these experiments, each
scan in D3 was segmented separately. Because of the short time interval
between the two scans of each participant, the tract segmentations,
volumes, and diffusion metrics are expected to be identical.

For the reproducibility of tract-specific diffusion measures and vol-
umes, we quantified these values in their native space and computed the
relative difference in paired scan-rescan measures (m1;m2) as an indi-
cator of error (ε), which was defined as

ε¼ jm2 � m1j
1
2 ðm2 þ m1Þ � 100%: (6)

A lower ε indicates a better reproducibility. The R2 values of ordinary
least squares regression for tract-specific FA, MD and volume were also
computed. A higher R2 value indicates a better reproducibility.

For quantifying reproducibility in terms of voxel-wise agreement
between the segmentations, we used the Cohen’s kappa (κ) coefficient.
Typically, a κ > 0:60 indicates ‘‘substantial’’ agreement, and a κ > 0:80
indicates ‘‘almost perfect’’ agreement (Landis and Koch, 1977). The
segmentations (s1; s2) of two scans were obtained independently and
subsequently aligned based on rigid registration of the corresponding FA
images using Elastix (Klein et al., 2010). κ is defined as

κ¼ po � pe
1� pe

; (7)

In which po is the observed agreement between s1 and s2, and pe is the
hypothetical probability of the agreement. Given N is the total number of
voxels in the scan, nt;s is the number of voxels in a segmentation that is
predicted as a specific tract, and nn;s is the number of background voxels
(non-tract), the hypothetical probability of the agreement can be esti-
mated by

pe ¼ 1
N2

ðnt;s1 � nt;s2 þ nn;s1 � nn;s2 Þ: (8)

Paired sample t-tests (α ¼ 0:05) were used to test the statistical sig-
nificance of above metrics in comparison with those of the reference
method.

3.2.3. Application in normal aging
We evaluated the applicability of our method to study tract-specific

measures by replicating a population-based analysis of neuro-
degeneration in aging. This statistical analysis was performed in the D2test
sample according to a approach adapted from de Groot et al. (2015).

In short, we associated microstructural diffusion measures with aging
using multi-variable linear regressions. For left/right homologous tracts,
we computed the volume-wise average of the tract-specific measures, i.e.,
FA, MD, L1, RD and MO. Two regression models with different con-
founding regressors were fitted for each tract. Analyses were adjusted for
sex and intracranial volume (ICV) (Model 1). Supratentorial ICV was
estimated by summing total WM, gray matter and cerebrospinal fluid
6

volumes. Additionally, we adjusted for tract-specific volume in the Model
2. An α ¼ 0:05 and Bonferroni correction for controlling the family-wise
error of multiple testings were used. Taking into account the three ei-
genvalues tested in five compositions (FA, MD, and three additional
diffusion measures), correcting for 84 tests (28 models, 3 eigenvalues)
resulted in an adjusted P-value threshold of 6:0� 10�4. Analyses were
performed using both the proposed method and the reference method.

3.2.4. Generalizability and application in dementia
The proposed method was assessed for generalizability to an external

dataset and for its value in groupwise differentiation of dementia at
multiple time-points. For this experiment, the method was trained on the
data of normal population D2train and tested on the dementia data D4.
Generalizability was assessed qualitatively by comparing the segmenta-
tion with those obtained by the reference method (Section 2.1.4).
Because of resolution differences, we adjusted the tract-specific threshold
of the reference method (Meijboom et al., 2019).

In addition, we evaluated the applicability of Neuro4Neuro for
studying neurodegenerative diseases by replicating an analysis of
differentiating early-stage dementia based on tract-specific measures.
This statistical analysis was performed in the D4 sample using an
approach adopted from Meijboom et al. (2019), in which the reference
segmentation method was utilized for tracts segmentation. Sixteen tracts
were included in the analysis, excluding the left and right PTR, CST, ML
and STR, and MCP tracts. Tract-specific diffusion measures (i.e., FA, MD,
L1 and RD) at baseline were group-wise compared among bvFTD, AD and
controls using ANOVA and post-hoc Bonferroni t-test. In case of unequal
variances across groups, a Welch-ANOVA and post-hoc Games-Howell
t-tests were used. Also, the same approach was used to analyze diffusion
measures at follow-up between the bvFTD and AD groups.
3.3. Results

3.3.1. Accuracy
Fig. 4 shows the segmentation accuracy on D2test and an example

visualization of the tract segmentations. For visualization, we selected a
participant whose DC was equal to the mean value on D2test . The mean
accuracy over 25 WM tracts was DC ¼ 0:74 (range: 0:64� 0:84).

3.3.2. Reproducibility
The reproducibility of tract-specific FA, MD, volume, and segmenta-

tion is shown in Fig. 5. The proposed method overall led to higher
reproducibility than the reference method, i.e., lower errors in scan-
rescan measures (ε), higher R2 values, and higher spatial correspon-
dence (κ). The difference in the average ε between the two methods was
statistically significant (p < 0:05) in 6 tracts for MD, in 8 tracts for FA,
and in 20 tracts for volume. Among 25 tracts, the ε of our method was
lowest for the MD measures (mean ¼ 1%, range: 1%� 3%), followed by
FA measures (mean¼ 3%, range: 1%� 5%) and volume measures (mean
¼ 7%, range: 4%� 11%). Those for the reference method were: MD
(mean ¼ 2%, range: 1%� 6%), FA (mean ¼ 3%, range: 2%� 7%), and
volume (mean ¼ 10%, range: 6%� 17%).

The R2 values of tract-specific measures were generally higher for our
method, especially for the volume metric when comparing with those of
the reference method. For the proposed method, the R2 value over 25
tracts was highest for the MD measures (mean ¼ 0.84, range: 0:47�
0:96), followed by FA (mean ¼ 0.80, range: 0:54� 0:92) and volume
(mean¼ 0.59, range: 0:27� 0:79). Those for the reference method were:
MD (mean ¼ 0.78, range: 0:28� 0:96), FA (mean ¼ 0.75, range: 0:46�
0:94), and volume (mean ¼ 0.44, range: 0:05� 0:70).

In addition, the segmentations of scan-rescan data analyzed by our
method showed a ‘‘substantial’’ to ‘‘almost perfect’’ spatial correspondence
(κ, mean¼ 0.78, range: 0:72� 0:83) as seen in Fig. 5(d). The difference in
Cohen’s kappa (κ) between two methods was significant for all 25 tracts. κ
for the reference method was: (mean ¼ 0.68, range: 0:57� 0:76).



Fig. 5. Reproducibility of tract-specific measures over D3. FA: fractional anisotropy, MD: mean diffusivity (10�3mm2=s), Volume: tract volume (ml). ε indicates
relative scan-rescan difference in measures (Eq. (6)). A lower ε indicates a better reproducibility. Error bars indicate standard deviations. R2 value was obtained by OLS
regression for scan-rescan measures. A higher R2 value indicates a better reproducibility. κ, the Cohen’s kappa coefficient, indicates spatial correspondence of the
segmentation (Eq. (7)). A higher κ indicates a better reproducibility. The bold bracket indicates that the ε was significantly lower or the κ was significantly higher for
Neuro4Neuro than for the reference method (t-test, p < 0:05).
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3.3.3. Tract-specific neurodegeneration in aging
The mean age of the D2test participants was 71:8� 5:4 years (range:

51:7� 97:0 years). The number of female participants was 586 (53.1%).
Tract-specific average volumes and diffusion measures are provided in
Supplementary Table S1.

The associations between age and tract-specific diffusion metrics
obtained with the proposed method corresponded to those obtained with
the reference method (FA, MD: Table 2 and Fig. 6; L1, RD and MO:
Supplementary Table S2). In all models, significant degradation of the
microstructural organization with aging (i.e., a decrease in FA and an
increase of MD) was observed in the association tracts, commissural
tracts and limbic tracts. For the sensorimotor tracts, which are known to
be relatively spared from age-related deterioration (de Groot et al.,
2015), we found only weak correlations between age and FA or MD and
relatively high associations between age and the mode of anisotropy
(MO). Although in the STR tract both methods found a similar regression
coefficient for the association between age and FA, this association was
the only one that was significant for the reference method but not for the
proposed method. Adjusting for tract volume in model 2 resulted in a
slight attenuation in the associations of most tracts (except for the limbic
tracts), which indicates that the loss of microstructure could be partially
explained by tract atrophy. This effect was relatively larger for the pro-
posed method than for the reference method, i.e., larger absolute changes
in regression coefficient (β).

3.3.4. Generalization to a dementia dataset
The proposed method yielded visually good tract segmentations for

controls and patients with bvFTD or AD; Fig. 7 shows examples of 3D
7

tract-volume renderings overlaid on the corresponding FA images. We
selected the FMI and IFO tracts for visualization as they are known to be
involved in dementia (Rascovsky et al., 2011), belong in distinct tract
categories and had different segmentation complexity, i.e., the thin and
arch-shaped FMI tract is more difficult to segment than the long and
straight IFO tract. We observed that the proposed method generally
segmented the entire tracts accurately. The tracts were of consistent
shape and size across participant groups and across time-points. The
tracts shapes of the proposed method were generally similar to those of
the reference method, although those of the latter tended to have a larger
structure at follow-up and more often included parts of other tracts.

3.3.5. Groupwise differentiation of bvFTD and AD
At baseline, microstructural differences between patient (bvFTD, AD)

and control groups were observed in several tracts (FA, MD: Fig. 8; L1,
RD: Figure S2). Tract-specific measurements were more abnormal in
bvFTD than in AD in all tract categories, consistent with the results by
Meijboom et al. (2019). For bvFTD, most pronounced abnormalities were
seen in the FMI, CGH, IFO and UNC tracts, while the FMA tract was the
only tract in which WMmicrostructure was preserved. For AD, only CGH
microstructure was found to be significantly different from controls.
These findings are consistent with literature (Meijboom et al., 2019;
Rascovsky et al., 2011; Laforce Jr, 2013; McKhann et al., 2011).

At follow-up, microstructural differences between bvFTD and AD
groups were observed in fewer tracts than at baseline (FA, MD: Fig. 8; L1,
RD: Figure S2). Tract-specific measurements were more abnormal in
bvFTD than in AD, which was significant for one or more metrics in the
ATR, UNC, FMI, right IFO, and right CGC tracts. Tract abnormalities at



Table 2
Associations between age and tract-specific diffusion measures. Values (� 10�3) represent regression coefficients (β) and their standard error (std:error) for change in
fractional anisotropy (FA) or mean diffusivity (MD) per year increase in age, adjusted for sex and ICV (and additionally for tract-specific WM volume in Model 2).
Significant associations at Bonferroni corrected threshold P� value ¼ 6:0� 10�4 are shown in bold.

Model 1 Model 2
Model 1 þ tract-specific WM volume

Tract FA β FA std:error MD β MD std:error FA β FA std:error MD β MD std:error

Association
ATR

Neuro4Neuro ¡1.05 0.10 4.90 0.25 ¡0.71 0.10 3.83 0.25
Reference ¡1.09 0.10 4.88 0.24 ¡0.85 0.10 4.17 0.24

IFO
Neuro4Neuro ¡1.75 0.12 4.38 0.22 ¡1.31 0.13 3.71 0.23
Reference ¡1.81 0.13 4.10 0.22 ¡1.65 0.12 3.99 0.22

ILF
Neuro4Neuro ¡0.93 0.12 3.09 0.20 ¡0.82 0.12 3.02 0.20
Reference ¡1.01 0.12 3.18 0.21 ¡1.00 0.12 3.17 0.21

PTR
Neuro4Neuro ¡1.48 0.11 5.34 0.29 ¡1.46 0.12 5.39 0.29
Reference ¡1.41 0.13 5.02 0.32 ¡1.36 0.12 5.09 0.32

SLF
Neuro4Neuro ¡0.74 0.12 2.15 0.19 ¡0.70 0.12 2.11 0.19
Reference ¡0.89 0.12 2.13 0.19 ¡0.94 0.11 2.17 0.19

UNC
Neuro4Neuro ¡1.40 0.11 2.83 0.16 ¡1.15 0.11 2.70 0.16
Reference ¡1.43 0.12 2.85 0.16 ¡1.22 0.10 2.78 0.16
Commissural

FMA
Neuro4Neuro ¡2.01 0.17 3.27 0.27 ¡1.01 0.15 2.34 0.27
Reference ¡2.36 0.18 3.36 0.29 ¡1.67 0.17 2.84 0.29

FMI
Neuro4Neuro ¡2.64 0.17 2.93 0.19 ¡1.28 0.16 2.14 0.20
Reference ¡2.69 0.18 2.83 0.20 ¡1.91 0.16 2.54 0.20
Limbic
CGC

Neuro4Neuro ¡1.48 0.19 1.09 0.13 ¡1.34 0.17 1.06 0.13
Reference ¡1.51 0.19 1.08 0.13 ¡1.59 0.19 1.09 0.13

CGH
Neuro4Neuro ¡1.18 0.13 1.86 0.18 ¡1.10 0.13 1.82 0.18
Reference ¡1.32 0.14 1.95 0.22 ¡1.31 0.14 1.94 0.22

Sensorimotor
CST

Neuro4Neuro �0.07 0.13 1.59 0.14 �0.03 0.13 1.39 0.15
Reference �0.29 0.13 1.77 0.14 �0.12 0.13 1.51 0.14

MCP
Neuro4Neuro �0.27 0.20 0.63 0.40 �0.35 0.20 0.04 0.35
Reference �0.49 0.22 0.51 0.48 �0.62 0.22 �0.15 0.42

ML
Neuro4Neuro 0.22 0.11 0.17 0.11 0.30 0.11 0.17 0.11
Reference 0.05 0.11 0.26 0.13 0.11 0.11 0.27 0.13

STR
Neuro4Neuro �0.44 0.13 2.46 0.17 �0.19 0.13 2.40 0.18
Reference ¡0.64 0.13 2.50 0.18 �0.43 0.13 2.39 0.18
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follow-up were consistent with those at baseline and also those of the
study we replicated (Meijboom et al., 2019).

4. Discussion

We present a 3D-CNN-based method for direct WM tract segmenta-
tion: Neuro4Neuro. Themethod was developed and applied on a large set
of dMRI images, yielding a high reproducibility and a good accuracy. We
demonstrate that it was generalizable to a patient dataset acquired with
different scanner hard- and software and a different MR imaging proto-
col. We assessed the applicability of the proposedWM tract segmentation
method in preclinical and clinical research, by performing proof-of-
principle experiments of WM microstructure degeneration in aging and
WMmicrostructural differences between bvFTD and AD. Results of those
analyses were found to be in line with those reported in literature.

The main strengths of our approach for WM tract segmentation are its
performance and its applicability. First, measurements obtained with our
method showed high accuracy, reproducibility and correlation with age
and disease, as shown by extensive validation experiments using large
8

and independent evaluation cohorts. Second, regarding applicability, our
method both accelerates and simplifies WM tract segmentation. A
tremendous acceleration is achieved as our method reduces the time
required for tract segmentation from roughly 35 h using tractography-
based methods to only 0.5 s per tract per scan. A part of this speed-up
could also be achieved by a GPU implementation of tractography-based
methods (Hernandez-Fernandez et al., 2019). In addition, our method
simplifies tract segmentation by using an end-to-end learning approach,
which avoids many separate steps such as parcellation, atlas registration
and fiber tracking. Also, the application of the method does not require
any special hardware, but can be used on a normal workstation with a
CPU or a GPU. The runtime of input preparation, i.e., diffusion tensor
estimation, is 31 s per scan on a CPU node. The subsequent segmentation
took 0.49 s from loading diffusion tensor images to save the segmented
results. Since WM tract microstructure has shown to be valuable in
several studies (L€ovd�en et al., 2013; White et al., 2009; Jones et al., 2005;
Smith et al., 2006), it is essential to have a method for tract segmentation
that can reliably characterize WM microstructure and is easy to apply.
Therefore, as the proposed method meets both these criteria, we believe



Fig. 6. Regression coefficients (β) for the associations of age with tract-specific fractional anisotropy (FA) and mean diffusivity (MD) determined by the proposed
method (Neuro4Neuro) and the reference method. The showed tract segmentation was generated by Neuro4Neuro for a female participant (age ¼ 79 years). Models
were adjusted for sex, intracranial volume, and tract-specific volume (Model 2). Non-significant (ns) associations are shown in white.
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that it can be beneficial for both clinical practice (e.g., monitoring neu-
rodegeneration in individuals for diagnosis or for a clinical trial) and
large-scale population studies (e.g., studying neurodegeneration in
aging).

Based on optimization experiments (Section 2.2), we propose an
encoder-decoder CNN with skip connections that is optimized with the
Adam algorithm based on a weighted inner product loss function. Seg-
mentation accuracy was not improved by adding novel elements to the
network architecture, i.e., convolutional re-samplings and residual
functions. It should be noted that we did not control for the total number
of parameters in these experiments as our purpose was to optimize ac-
curacy. We adopted a 3D network architecture since compared to 2D
CNN methods, 3D methods are expected to reduce the number of
required training samples (Milletari et al., 2017), to increase segmenta-
tion accuracy (Isensee et al., 2018), and to better exploit 3D spatial in-
formation in each estimation step which would not be achieved when 2D
slices are processed independently. Regarding input, we found that using
just the diffusion tensor image yielded optimal performance. Spatial in-
formation generally slightly increased segmentation accuracy, but its
added value was only marginal. Model optimization was performed on
data of one tract. Potentially the results would improve when optimizing
on each tract specifically or all tracts combined. An alternating-update
strategy was adopted for the optimization on all components rather
than a full gradient descent, with the aim of exploring possible combi-
nations to further improve from the current best configuration based on
prior knowledge.

The proposed method yielded good segmentation performance in
terms of accuracy, reproducibility and generalizability. The average
segmentation accuracy was DC ¼ 0:74 over 25 tracts, with the best
performance in the medial lemniscus tract (DC ¼ 0:84) (Fig. 4). Relative
accuracy between individual tracts followed a similar trend as reported
in the literature (Oishi et al., 2009; Jin et al., 2014; Wasserthal et al.,
2018). Segmentation of the ILF for example yielded lower accuracy than
other tracts, which may due to the fact that up to five tracts pass through
the temporal lobe ‘‘bottleneck’’ resulting in ambiguities in crossing-fiber
analysis (Maier-Hein et al., 2017). Also, since the DC is very sensitive to
the size of the object, a small and thin object will always have a lower DC
value such as the FMI tract.

In addition, Neuro4Neuro achieved a high reproducibility both in
terms of voxel-wise agreement of segmentations (κ) and correspondence
between tract-specific measures (ε; R2) (Fig. 5). There are two main
reasons that the proposed approach significantly improves reproduc-
ibility. First, shape and spatial priors, and ‘‘free-form’’ parameters for
feature extraction and classification are globally optimized in an
objective-driven manner on a large-scale dataset, which has been widely
demonstrated to outperform manual-crafted features and predefined
9

models. Second, the reference method outputs less consistent spatial
segmentations, whereas it provides reproducible diffusion measures.
This is the main reason that the improved reproducibility is more
remarkable for tract volume and spatial correspondence (κ) while smaller
for diffusion measures. Apparently, diffusion measures are more robust
to variations in the segmentation. In addition, the reproducibility of
Neuro4Neuro is also similar to those reported for a longitudinal method
by Yendiki et al. (2016) and higher than those reported for manual
segmentations by Kaur et al. (2014); Wakana et al. (2007). High repro-
ducibility is especially important for analysis of longitudinal data and for
studies across different groups or datasets. In general, a methodwith high
reproducibility requires a smaller sample size or less time-points to
achieve the same statistical power (Yendiki et al., 2016). Hence, we
argue that the proposed method is a reliable tool for analysis of WM
microstructure.

The generalizability of the proposed method was demonstrated by an
evaluation on an external patient dataset (Iris dataset; Figs. 7 and 8).
Overall, our method generalized very well to this dataset, showing good
segmentations for most tracts, as well as consistent tract architectures
across participant groups and time-points. Although this test dataset was
completely different from the optimizing data regarding patient pop-
ulations, MRI scanners, scanning protocols and tensor estimation algo-
rithms, only a subtle deterioration of segmentation performance was
noticed. First, we saw a slight increase in the number of false positive
points mainly at skull-voxels of the FMI segmentation. Second, we
noticed that only for the IFO tract, the structure was occasionally
disconnected at the thin and ‘‘twisted’’ middle section. We suspect that
this was mainly due to the brain tissue mask that was applied to the
training data as a preprocessing step but not to the Iris data. This tissue
mask was obtained with a segmentation method that was specially
optimized for the Rotterdam Study data (Vrooman et al., 2007) and
therefore could not be obtained for the Iris data. Also, given the obser-
vation that our learning-based method showed better generalization than
the non-learning based reference method, it can be considered unnec-
essary to retrain the model for this different data distribution, which is
another advantage for future applications.

In two proof-of-principle experiments, we demonstrated the appli-
cability of our method inWMmicrostructure analysis for epidemiological
and clinical studies. The first experiment showed a widespread reduction
of microstructural organization with aging (Table 2), which was consis-
tent with previously published results (de Groot et al., 2015). Adjusting
for tract volume resulted in attenuated associations for the proposed
method to a larger extent than those for the reference method. This
means that for the proposed method tract volume has an increased
confounding in the associations between age and tract-specific diffusion
measures, which is probably due to the more robust volume



Fig. 7. Tract segmentations by the proposed method on a dementia study dataset (D4) for the forceps minor (FMI, pink) and the inferior fronto-occipital fasciculus
(IFO, blue). Reference method results are shown in yellow. Three participants with representative performance were selected: a patient with behavioral-variant
frontotemporal dementia (bvFTD), a patient with Alzheimer’s disease (AD) and a healthy control (HC). Scans were obtained at study baseline (T0) and one-year
follow-up (T1).
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measurements that have a higher correlation with age and diffusion
measures and also allows the investigation of WM macrostructure. The
second experiment showed the method’s performance in differentiation
of different diseases underlying dementia (i.e., AD and bvFTD) based on
tract-specific WM microstructure measurements (Fig. 8, Figure S2). We
found that diffusion measurements in all tract categories were more
abnormal in bvFTD than in AD. Since for both the normal and the de-
mentia population, the found associations were in line with those re-
ported in the literature (de Groot et al., 2015; Meijboom et al., 2019;
Rascovsky et al., 2011; Laforce Jr, 2013; McKhann et al., 2011), we
believe that the proposed method can be applied to such epidemiological
and clinical studies as well. The method is designed for analysis of
diffusion measures over entire tracts and uses a voxel-wise classification
strategy. Therefore, it does not lend itself for along-the-tract analyses,
which would allow for detecting local effects that may be lost during
averaging.
10
A challenge in WM tract segmentation is that there is no ‘‘gold stan-
dard’’ for tract in vivo (Crick and Jones, 1993). Therefore, we quantified
segmentation accuracy with respect to a reference standard (de Groot
et al., 2015). It is non-trivial to obtain a reliable reference standard
because of high inter-subject variability in tract anatomy and a lack of
consensus in tract definitions (Sydnor et al., 2018). Also, because
methods are often optimized for a specific use-case, it is challenging to
compare performances.

The reference standard in this work was based on probabilistic trac-
tography and thresholding using a reproducibility-based metric (de
Groot et al., 2015). As training labels, this approach is limited by some
incomplete and disconnected segmentations. In addition, we observed a
relatively high intra-subject agreement for the reference segmentation in
the central brain regions but this tended to diverge more towards cortical
regions for some tracts (Fig. 7). We suspect this is inherent to a method
that does not enforce shape consistency. Deterministic tractography



Fig. 8. WM microstructural abnormalities in behavioral variant frontotemporal dementia (bvFTD) and Alzheimer’s disease (AD) at baseline and follow-up. FA:
fractional anisotropy, MD: mean diffusivity (10�3mm2=s). Error bars show standard deviations; bold brackets show significant difference between groups (p < 0:05).
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based segmentation approaches might have served as an alternative
reference standard. Deterministic tractography methods generally have a
higher fiber validity, while their lower scores on volume-orientated
metrics could introduce other kind of variations during training for
instance in some offshoots of tracts (Maier-Hein et al., 2017; Poulin et al.,
2019). Despite these limitations in the reference segmentations, we
expect that they did not have much effect on the performance of our
method. Although segmentation accuracy (DC) with this reference
standard could be slightly lower than values reported in other articles
computed with a more smooth reference standard, we demonstrated that
our method can segment complete tracts and has high intra- and
inter-subject consistency.

Despite recent advances in higher-order diffusion models (Hyde et al.,
2019), we use the relatively simple DTI model. The major advantage of
using the DTI model is that it enables our method to be applicable to
clinical data, which like the datasets in this article usually do not support
more than two fiber populations (Behrens et al., 2007). Using peaks of
the fiber orientation distribution function (fODF) as input gave signifi-
cantly inferior results on our dataset. We preferred using the diffusion
tensor image over using the raw diffusion-weighted MRI data, as this is
more efficient in memory and computation time. In addition, this enables
combination of different datasets since the dimensionality of the diffu-
sion tensor does not depend on the number of slices or diffusion weighted
gradients.

We performed a pilot experiment on our optimization dataset to
compare Neuro4Neuro with an existing CNN-based WM tract segmen-
tation method (Wasserthal et al., 2018). Results are however not
included in this manuscript, since we failed to replicate the performance
reported by the literature on our dataset and since optimizing the
11
approach beyond trying the default implementation exceeded the scope
of the current work. For this, a common evaluation framework as for
instance provided by challenges would be beneficial.

We demonstrated the generalizability of our method on a dementia
dataset, but it would also be interesting to evaluate the performance on
other diseases. We expect that our method has good generalizability to
data of patients with neurodegenerative diseases, e.g., Parkinson’s dis-
ease and Huntington’s disease. However, for disease with large and
abrupt changes in brain diffusion such as brain tumors, further refine-
ment of the method is probably required, which would be an interesting
future research area. In the experiments we found that Neuro4Neuro had
good generalizability to different preprocessing pipelines and MRI
acquisition protocols, e.g., when training on 1.5T MRI and testing on 3T
MRI. Generalizability to other datasets with other b-values and number
of directions has yet to be performed.

We conclude that the proposed WM tract segmentation method,
Neuro4Neuro, improves reproducibility compared to the reference
method, and provides a reliable generalizable method for analyzing WM
microstructure. In addition, the proposed method is orders of magnitude
faster. To our best knowledge this is the first deep learning based method
for WM tract segmentation that is developed and evaluated on such a
large-scale dataset. Our method can lead toward a faster, more light-
weight way of WM tract segmentation and WM microstructure analysis.

CRediT authorship contribution statement

Bo Li: Conceptualization, Methodology, Software, Formal analysis,
Validation, Writing - original draft, Writing - review & editing, Visuali-
zation.Marius de Groot: Software, Formal analysis, Validation,Writing -



B. Li et al. NeuroImage 218 (2020) 116993
review& editing, Visualization.RebeccaM.E. Steketee: Resources, Data
curation, Validation, Writing - review & editing. Rozanna Meijboom:
Software, Formal analysis, Validation, Writing - review & editing, Visu-
alization.Marion Smits:Resources, Investigation, Data curation,Writing
- review & editing. Meike W. Vernooij: Resources, Investigation, Data
curation, Writing - review & editing. M. Arfan Ikram: Resources, Inves-
tigation, Data curation, Writing - review & editing. Jiren Liu: Writing -
review & editing, Supervision, Funding acquisition. Wiro J. Niessen:
Conceptualization, Validation,Resources, Supervision,Writing - review&
editing, Project administration, Funding acquisition. Esther E. Bron:
Conceptualization, Validation, Writing - review & editing, Supervision,
Project administration, Funding acquisition.

Acknowledgements

The authors are grateful to SURFsara for the processing time on the
Dutch national supercomputer (www.surfsara.nl/systems/cartesius).

B. Li and W.J. Niessen acknowledge funding from Medical Delta Di-
agnostics 3.0: Dementia and Stroke. M. de Groot acknowledges funding
from the EU Horizon 2020 project EuroPOND (666992). E.E. Bron ac-
knowledges support from the Netherlands CardioVascular Research
Initiative (Heart-Brain Connection: CVON2012-06, CVON2018-28) and
the Dutch Heart Foundation (PPP Allowance, 2018B011). In addition, M.
de Groot has a financial interest in the GSK company. The GSK had no
role in this study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2020.116993.

References

Abe, O., Aoki, S., Hayashi, N., Yamada, H., Kunimatsu, A., Mori, H., Yoshikawa, T.,
Okubo, T., Ohtomo, K., 2002. Normal aging in the central nervous system:
quantitative MR diffusion-tensor analysis. Neurobiol. Aging 23 (3), 433–441.

Bazin, P.-L., Ye, C., Bogovic, J.A., Shiee, N., Reich, D.S., Prince, J.L., Pham, D.L., 2011.
Direct segmentation of the major white matter tracts in diffusion tensor images.
Neuroimage 58 (2), 458–468.

Behrens, T.E., Berg, H.J., Jbabdi, S., Rushworth, M.F., Woolrich, M.W., 2007.
Probabilistic diffusion tractography with multiple fibre orientations: what can we
gain? Neuroimage 34 (1), 144–155.

Behrens, T.E., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S.,
Matthews, P.M., Brady, J.M., Smith, S.M., 2003. Characterization and propagation of
uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med.: An Off. J. Int.
Soc. Magn. Reson. Med. 50 (5), 1077–1088.

Choi, S.-S., Cha, S.-H., Tappert, C.C., 2010. A survey of binary similarity and distance
measures. J. Syst., Cybern. Info. 8 (1), 43–48.

Crick, F., Jones, E., 1993. Backwardness of human neuroanatomy. Nature 361 (6408),
109–110.

Dozat, T., 2016. Incorporating nesterov momentum into adam. In: International
Conference on Learning Representations.

Evans, A.C., Collins, D.L., Mills, S., Brown, E., Kelly, R., Peters, T.M., 1993. 3D statistical
neuroanatomical models from 305 MRI volumes. In: Nuclear Science Symposium and
Medical Imaging Conference, 1993., 1993 IEEE Conference Record. IEEE,
pp. 1813–1817.

Fellgiebel, A., Müller, M.J., Wille, P., Dellani, P.R., Scheurich, A., Schmidt, L.G.,
Stoeter, P., 2005. Color-coded diffusion-tensor-imaging of posterior cingulate fiber
tracts in mild cognitive impairment. Neurobiol. Aging 26 (8), 1193–1198.

Garyfallidis, E., Côt�e, M.-A., Rheault, F., Sidhu, J., Hau, J., Petit, L., Fortin, D.,
Cunanne, S., Descoteaux, M., 2017. Recognition of white matter bundles using local
and global streamline-based registration and clustering. Neuroimage 170, 283–295.

de Groot, M., Ikram, M.A., Akoudad, S., Krestin, G.P., Hofman, A., van der Lugt, A.,
Niessen, W.J., Vernooij, M.W., 2015. Tract-specific white matter degeneration in
aging: the Rotterdam Study. Alzheimer’s Dementia 11 (3), 321–330.

de Groot, M., Vernooij, M.W., Klein, S., Ikram, M.A., Vos, F.M., Smith, S.M., Niessen, W.J.,
Andersson, J.L., 2013. Improving alignment in tract-based spatial statistics:
evaluation and optimization of image registration. Neuroimage 76, 400–411.

Gupta, V., Thomopoulos, S.I., Corbin, C.K., Rashid, F., Thompson, P.M., 2018. Fibernet
2.0: an automatic neural network based tool for clustering white matter fibers in the
brain. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI
2018). IEEE, pp. 708–711.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Delving deep into rectifiers: surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 1026–1034.
12
Hernandez-Fernandez, M., Reguly, I., Jbabdi, S., Giles, M., Smith, S., Sotiropoulos, S.N.,
2019. Using GPUs to accelerate computational diffusion MRI: from microstructure
estimation to tractography and connectomes. Neuroimage 188, 598–615.

Hofman, A., Brusselle, G.G., Murad, S.D., van Duijn, C.M., Franco, O.H., Goedegebure, A.,
Ikram, M.A., Klaver, C.C., Nijsten, T.E., Peeters, R.P., et al., 2015. The Rotterdam
Study: 2016 objectives and design update. Eur. J. Epidemiol. 30 (8), 661–708.

Hua, K., Zhang, J., Wakana, S., Jiang, H., Li, X., Reich, D.S., Calabresi, P.A., Pekar, J.J.,
van Zijl, P.C., Mori, S., 2008. Tract probability maps in stereotaxic spaces: analyses of
white matter anatomy and tract-specific quantification. Neuroimage 39 (1), 336–347.

Hyde, C., Fuelscher, I., Enticott, P.G., Jones, D.K., Farquharson, S., Silk, T.J., Williams, J.,
Caeyenberghs, K., 2019. White matter organization in developmental coordination
disorder: a pilot study exploring the added value of constrained spherical
deconvolution. Neuroimage: Clin. 21, 101625.

Ioffe, S., Szegedy, C., 2015. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift arXiv preprint arXiv:1502.03167.

Isensee, F., Petersen, J., Klein, A., Zimmerer, D., Jaeger, P.F., Kohl, S., Wasserthal, J.,
Koehler, G., Norajitra, T., Wirkert, S., et al., 2018. Nnu-Net: Self-Adapting Framework
for U-Net-Based Medical Image Segmentation arXiv preprint arXiv:1809.10486.

Jenkinson, M., Bannister, P., Brady, M., Smith, S., 2002. Improved optimization for the
robust and accurate linear registration and motion correction of brain images.
Neuroimage 17 (2), 825–841.

Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M., 2012. Fsl.
Neuroimage 62 (2), 782–790.

Jha, R.R., Patil, S., Nigam, A., Bhavsar, A., 2019. Fs2net: fiber structural similarity
network (fs2net) for rotation invariant brain tractography segmentation using
stacked lstm based siamese network. In: International Conference on Computer
Analysis of Images and Patterns. Springer, pp. 459–469.

Jin, Y., Shi, Y., Zhan, L., Gutman, B.A., de Zubicaray, G.I., McMahon, K.L., Wright, M.J.,
Toga, A.W., Thompson, P.M., 2014. Automatic clustering of white matter fibers in
brain diffusion MRI with an application to genetics. Neuroimage 100, 75–90.

Jones, D.K., Symms, M.R., Cercignani, M., Howard, R.J., 2005. The effect of filter size on
VBM analyses of DT-MRI data. Neuroimage 26 (2), 546–554.

Kaur, S., Powell, S., He, L., Pierson, C.R., Parikh, N.A., 2014. Reliability and repeatability
of quantitative tractography methods for mapping structural white matter
connectivity in preterm and term infants at term-equivalent age. PloS One 9 (1),
e85807.

Kingma, D.P., Ba, J., 2014. Adam: A Method for Stochastic Optimization arXiv preprint
arXiv:1412.6980.

Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P., 2010. Elastix: a toolbox for
intensity-based medical image registration. IEEE Trans. Med. Imag. 29 (1), 196–205.

Koppelmans, V., de Groot, M., de Ruiter, M.B., Boogerd, W., Seynaeve, C., Vernooij, M.W.,
Niessen, W.J., Schagen, S.B., Breteler, M.M., 2014. Global and focal white matter
integrity in breast cancer survivors 20 years after adjuvant chemotherapy. Hum.
Brain Mapp. 35 (3), 889–899.

Laforce Jr., R., 2013. Behavioral and language variants of frontotemporal dementia: a
review of key symptoms. Clin. Neurol. Neurosurg. 115 (12), 2405–2410.

Lam, P.D.N., Belhomme, G., Ferrall, J., Patterson, B., Styner, M., Prieto, J.C., 2018. Trafic:
fiber tract classification using deep learning. In: Medical Imaging 2018: Image
Processing, vol. 10574. International Society for Optics and Photonics, p. 1057412.

Landis, J.R., Koch, G.G., 1977. The Measurement of Observer Agreement for Categorical
Data. biometrics, pp. 159–174.

Lawes, I.N.C., Barrick, T.R., Murugam, V., Spierings, N., Evans, D.R., Song, M., Clark, C.A.,
2008. Atlas-based segmentation of white matter tracts of the human brain using
diffusion tensor tractography and comparison with classical dissection. Neuroimage
39 (1), 62–79.

Leemans, A., Jeurissen, B., Sijbers, J., Jones, D., 2009. ExploreDTI: a graphical toolbox for
processing, analyzing, and visualizing diffusion MR data. In: 17th Annual Meeting of
Intl Soc Mag Reson Med, vol. 209. International Society for Magnetic Resonance in
Medicine, Berkeley, CA, USA, p. 3537.

Li, B., de Groot, M., Vernooij, M.W., Ikram, M.A., Niessen, W.J., Bron, E.E., 2018.
Reproducible white matter tract segmentation using 3D U-Net on a large-scale DTI
dataset. In: International Workshop on Machine Learning in Medical Imaging.
Springer, pp. 205–213.

Li, B., Niessen, W.J., Klein, S., de Groot, M., Ikram, M.A., Vernooij, M.W., Bron, E.E.,
2019. A hybrid deep learning framework for integrated segmentation and
registration: evaluation on longitudinal white matter tract changes. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention.
Springer, pp. 645–653.

Liu, F., Feng, J., Chen, G., Wu, Y., Hong, Y., Yap, P.-T., Shen, D., 2019. Deepbundle: Fiber
Bundle Parcellation with Graph Convolution Neural Networks arXiv preprint arXiv:
1906.03051.

L€ovd�en, M., Laukka, E.J., Rieckmann, A., Kalpouzos, G., Li, T.-Q., Jonsson, T.,
Wahlund, L.-O., Fratiglioni, L., B€ackman, L., 2013. The dimensionality of between-
person differences in white matter microstructure in old age. Hum. Brain Mapp. 34
(6), 1386–1398.

Maier-Hein, K.H., Neher, P.F., Houde, J.-C., Côt�e, M.-A., Garyfallidis, E., Zhong, J.,
Chamberland, M., Yeh, F.-C., Lin, Y.-C., Ji, Q., et al., 2017. The challenge of mapping
the human connectome based on diffusion tractography. Nat. Commun. 8 (1), 1349.

McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack Jr., C.R., Kawas, C.H.,
Klunk, W.E., Koroshetz, W.J., Manly, J.J., Mayeux, R., et al., 2011. The diagnosis of
dementia due to alzheimer’s disease: recommendations from the national institute on
aging-alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s
disease. Alzheimer’s Dementia 7 (3), 263–269.

Meijboom, R., Steketee, R., Ham, L., Mantini, D., Bron, E., van der Lugt, A., van
Swieten, J., Smits, M., 2019. Exploring Quantitative Group-wise Differentiation of
Alzheimer’s Disease and Behavioural Variant Frontotemporal Dementia Using Tract-

http://www.surfsara.nl/systems/cartesius
https://doi.org/10.1016/j.neuroimage.2020.116993
https://doi.org/10.1016/j.neuroimage.2020.116993
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref1
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref1
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref1
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref1
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref2
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref2
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref2
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref2
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref3
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref3
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref3
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref3
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref4
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref4
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref4
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref4
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref4
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref5
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref5
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref5
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref6
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref6
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref6
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref7
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref7
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref8
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref8
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref8
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref8
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref8
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref9
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref9
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref9
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref9
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref10
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref10
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref10
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref10
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref10
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref10
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref11
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref11
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref11
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref11
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref12
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref12
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref12
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref12
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref13
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref13
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref13
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref13
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref13
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref14
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref14
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref14
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref14
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref15
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref15
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref15
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref15
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref16
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref16
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref16
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref16
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref17
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref17
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref17
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref17
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref18
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref18
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref18
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref18
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref19
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref19
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref20
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref20
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref20
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref21
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref21
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref21
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref21
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref22
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref22
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref22
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref23
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref23
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref23
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref23
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref23
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref24
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref24
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref24
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref24
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref25
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref25
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref25
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref26
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref26
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref26
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref26
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref27
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref27
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref28
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref28
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref28
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref29
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref29
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref29
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref29
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref29
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref30
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref30
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref30
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref31
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref31
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref31
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref32
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref32
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref32
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref33
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref33
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref33
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref33
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref33
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref34
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref34
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref34
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref34
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref35
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref35
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref35
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref35
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref35
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref36
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref36
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref36
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref36
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref36
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref36
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref37
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref37
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref37
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref38
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref38
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref38
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref38
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref38
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref38
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref38
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref38
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref39
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref39
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref39
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref39
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref39
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref40
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref40
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref40
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref40
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref40
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref40
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref41
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref41
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref41


B. Li et al. NeuroImage 218 (2020) 116993
specific Microstructural White Matter and Functional Connectivity Measures at
Multiple Time Points. European radiology, pp. 1–12.

Milletari, F., Ahmadi, S.-A., Kroll, C., Plate, A., Rozanski, V., Maiostre, J., Levin, J.,
Dietrich, O., Ertl-Wagner, B., B€otzel, K., et al., 2017. Hough-cnn: deep learning for
segmentation of deep brain regions in mri and ultrasound. Comput. Vis. Image
Understand. 164, 92–102.

Milletari, F., Navab, N., Ahmadi, S.-A., 2016. V-net: fully convolutional neural networks
for volumetric medical image segmentation. In: 3D Vision (3DV), 2016 Fourth
International Conference on. IEEE, pp. 565–571.

Mori, S., Wakana, S., Van Zijl, P.C., Nagae-Poetscher, L., 2005. MRI Atlas of Human White
Matter. Elsevier.

O’Donnell, L.J., Westin, C.-F., 2007. Automatic tractography segmentation using a high-
dimensional white matter atlas. IEEE Trans. Med. Imag. 26 (11), 1562–1575.

Oishi, K., Faria, A., Jiang, H., Li, X., Akhter, K., Zhang, J., Hsu, J.T., Miller, M.I., van
Zijl, P.C., Albert, M., et al., 2009. Atlas-based whole brain white matter analysis using
large deformation diffeomorphic metric mapping: application to normal elderly and
alzheimer’s disease participants. Neuroimage 46 (2), 486–499.

Poulin, P., Cote, M.-A., Houde, J.-C., Petit, L., Neher, P.F., Maier-Hein, K.H.,
Larochelle, H., Descoteaux, M., 2017. Learn to track: deep learning for tractography.
In: International Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer, pp. 540–547.

Poulin, P., J€orgens, D., Jodoin, P.-M., Descoteaux, M., 2019. Tractography and Machine
Learning: Current State and Open Challenges. Magnetic Resonance Imaging.

Prasad, G., Joshi, S.H., Jahanshad, N., Villalon-Reina, J., Aganj, I., Lenglet, C., Sapiro, G.,
McMahon, K.L., de Zubicaray, G.I., Martin, N.G., et al., 2014. Automatic clustering
and population analysis of white matter tracts using maximum density paths.
Neuroimage 97, 284–295.

Rascovsky, K., Hodges, J.R., Knopman, D., Mendez, M.F., Kramer, J.H., Neuhaus, J., Van
Swieten, J.C., Seelaar, H., Dopper, E.G., Onyike, C.U., et al., 2011. Sensitivity of
revised diagnostic criteria for the behavioural variant of frontotemporal dementia.
Brain 134 (9), 2456–2477.

Ratnarajah, N., Qiu, A., 2014. Multi-label segmentation of white matter structures:
application to neonatal brains. Neuroimage 102, 913–922.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: convolutional networks for biomedical
image segmentation. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, pp. 234–241.

Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E.,
Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., et al., 2006. Tract-based
spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31
(4), 1487–1505.

Steketee, R.M., Bron, E.E., Meijboom, R., Houston, G.C., Klein, S., Mutsaerts, H.J.,
Orellana, C.P.M., de Jong, F.J., van Swieten, J.C., van der Lugt, A., et al., 2016. Early-
stage differentiation between presenile Alzheimer’s disease and frontotemporal
dementia using arterial spin labeling MRI. Eur. Radiol. 26 (1), 244–253.

Suarez, R.O., Commowick, O., Prabhu, S.P., Warfield, S.K., 2012. Automated delineation
of white matter fiber tracts with a multiple region-of-interest approach. Neuroimage
59 (4), 3690–3700.
13
Sydnor, V.J., Rivas-Grajales, A.M., Lyall, A.E., Zhang, F., Bouix, S., Karmacharya, S.,
Shenton, M.E., Westin, C.-F., Makris, N., Wassermann, D., et al., 2018. A comparison
of three fiber tract delineation methods and their impact on white matter analysis.
Neuroimage 178, 318–331.

Tournier, J.-D., Calamante, F., Connelly, A., 2007. Robust determination of the fibre
orientation distribution in diffusion mri: non-negativity constrained super-resolved
spherical deconvolution. Neuroimage 35 (4), 1459–1472.

Vernooij, M.W., de Groot, M., van der Lugt, A., Ikram, M.A., Krestin, G.P., Hofman, A.,
Niessen, W.J., Breteler, M.M., 2008. White matter atrophy and lesion formation
explain the loss of structural integrity of white matter in aging. Neuroimage 43 (3),
470–477.

Vrooman, H.A., Cocosco, C.A., van der Lijn, F., Stokking, R., Ikram, M.A., Vernooij, M.W.,
Breteler, M.M., Niessen, W.J., 2007. Multi-spectral brain tissue segmentation using
automatically trained k-Nearest-Neighbor classification. Neuroimage 37 (1), 71–81.

Wakana, S., Caprihan, A., Panzenboeck, M.M., Fallon, J.H., Perry, M., Gollub, R.L.,
Hua, K., Zhang, J., Jiang, H., Dubey, P., et al., 2007. Reproducibility of quantitative
tractography methods applied to cerebral white matter. Neuroimage 36 (3),
630–644.

Wakana, S., Jiang, H., Nagae-Poetscher, L.M., Van Zijl, P.C., Mori, S., 2004. Fiber
tract–based atlas of human white matter anatomy. Radiology 230 (1), 77–87.

Wassermann, D., Makris, N., Rathi, Y., Shenton, M., Kikinis, R., Kubicki, M., Westin, C.-F.,
2016. The white matter query language: a novel approach for describing human
white matter anatomy. Brain Struct. Funct. 221 (9), 4705–4721.

Wasserthal, J., Neher, P., Maier-Hein, K.H., 2018. TractSeg-Fast and accurate white
matter tract segmentation. Neuroimage 183, 239–253.

White, T., Schmidt, M., Karatekin, C., 2009. White matter ‘potholes’ in early-onset
schizophrenia: a new approach to evaluate white matter microstructure using
diffusion tensor imaging. Psychiatr. Res. Neuroimaging 174 (2), 110–115.

Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Z€ollei, L., Augustinack, J., Wang, R.,
Salat, D., Ehrlich, S., Behrens, T., et al., 2011. Automated probabilistic reconstruction
of white-matter pathways in health and disease using an atlas of the underlying
anatomy. Front. Neuroinf. 5, 23.

Yendiki, A., Reuter, M., Wilkens, P., Rosas, H.D., Fischl, B., 2016. Joint reconstruction of
white-matter pathways from longitudinal diffusion MRI data with anatomical priors.
Neuroimage 127, 277–286.

Zhang, F., Hoffmann, N., Karayumak, S.C., Rathi, Y., Golby, A.J., O’Donnell, L.J., 2019.
Deep white matter analysis: fast, consistent tractography segmentation across
populations and dmri acquisitions. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, pp. 599–608.

Zhang, H., Avants, B.B., Yushkevich, P.A., Woo, J.H., Wang, S., McCluskey, L.F.,
Elman, L.B., Melhem, E.R., Gee, J.C., 2007. High-dimensional spatial normalization
of diffusion tensor images improves the detection of white matter differences: an
example study using amyotrophic lateral sclerosis. IEEE Trans. Med. Imag. 26 (11),
1585–1597.

Z€ollei, L., Jaimes, C., Saliba, E., Grant, P.E., Yendiki, A., 2019. Tracts constrained by
underlying infant anatomy (traculina): an automated probabilistic tractography tool
with anatomical priors for use in the newborn brain. Neuroimage 199, 1–17.

http://refhub.elsevier.com/S1053-8119(20)30479-1/sref41
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref41
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref41
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref42
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref42
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref42
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref42
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref42
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref42
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref43
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref43
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref43
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref43
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref44
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref44
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref45
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref45
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref45
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref46
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref46
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref46
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref46
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref46
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref47
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref47
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref47
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref47
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref47
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref48
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref48
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref48
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref49
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref49
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref49
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref49
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref49
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref50
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref50
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref50
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref50
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref50
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref51
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref51
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref51
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref52
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref52
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref52
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref52
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref53
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref53
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref53
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref53
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref53
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref54
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref54
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref54
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref54
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref54
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref55
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref55
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref55
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref55
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref56
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref56
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref56
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref56
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref56
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref57
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref57
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref57
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref57
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref58
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref58
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref58
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref58
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref58
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref59
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref59
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref59
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref59
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref60
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref60
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref60
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref60
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref60
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref61
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref61
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref61
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref61
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref62
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref62
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref62
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref62
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref63
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref63
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref63
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref64
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref64
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref64
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref64
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref65
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref65
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref65
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref65
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref65
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref66
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref66
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref66
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref66
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref67
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref67
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref67
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref67
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref67
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref68
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref68
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref68
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref68
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref68
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref68
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref69
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref69
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref69
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref69
http://refhub.elsevier.com/S1053-8119(20)30479-1/sref69

	Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging
	1. Introduction
	2. Neuro4Neuro
	2.1. Materials and methods
	2.1.1. Study population
	2.1.2. MRI acquisition
	2.1.3. Image preprocessing
	2.1.4. Reference method
	2.1.5. White matter tract segmentation model
	2.1.6. Evaluation metric

	2.2. Optimization experiments
	2.2.1. Experiment 1: input
	2.2.2. Experiment 2: network architecture
	2.2.3. Experiment 3: loss function and tract weight
	2.2.4. Optimization results


	3. Validation on a normal and a dementia population
	3.1. Materials
	3.1.1. Study population
	3.1.2. MRI acquisition
	3.1.3. Image preprocessing

	3.2. Experiments
	3.2.1. Accuracy
	3.2.2. Reproducibility
	3.2.3. Application in normal aging
	3.2.4. Generalizability and application in dementia

	3.3. Results
	3.3.1. Accuracy
	3.3.2. Reproducibility
	3.3.3. Tract-specific neurodegeneration in aging
	3.3.4. Generalization to a dementia dataset
	3.3.5. Groupwise differentiation of bvFTD and AD


	4. Discussion
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A. Supplementary data
	References


