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Regularisation of Neural Networks by Enforcing Lipschitz
Continuity

Henry Gouk · Eibe Frank · Bernhard

Pfahringer · Michael J. Cree

Abstract We investigate the effect of explicitly enforcing the Lipschitz continuity
of neural networks with respect to their inputs. To this end, we provide a simple
technique for computing an upper bound to the Lipschitz constant—for multiple
p-norms—of a feed forward neural network composed of commonly used layer
types. Our technique is then used to formulate training a neural network with a
bounded Lipschitz constant as a constrained optimisation problem that can be
solved using projected stochastic gradient methods. Our evaluation study shows
that the performance of the resulting models exceeds that of models trained with
other common regularisers. We also provide evidence that the hyperparameters
are intuitive to tune, demonstrate how the choice of norm for computing the
Lipschitz constant impacts the resulting model, and show that the performance
gains provided by our method are particularly noticeable when only a small amount
of training data is available.

Keywords Neural Networks · Regularisation · Lipschitz Continuity

1 Introduction

Supervised learning is primarily concerned with the problem of approximating a
function given examples of what output should be produced for a particular input.
For the approximation to be of any practical use, it must generalise to unseen
data points. Thus, we need to select an appropriate space of functions in which
the machine should search for a good approximation, and select an algorithm to
search through this space. This is typically done by first picking a large family of
models, such as support vector machines or decision trees, and applying a suitable
search algorithm. Crucially, when performing the search, regularisation techniques
specific to the chosen model family must be employed to combat overfitting. For
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example, one could limit the depth of decision trees considered by a learning
algorithm, or impose probabilistic priors on tunable model parameters.

Regularisation of neural network models is a particularly difficult challenge.
The methods that are currently most effective (Srivastava et al., 2014; Ioffe and
Szegedy, 2015) are heuristically motivated. In contrast, well-understood regularisa-
tion approaches adapted from linear models, such as applying an `2 penalty term
to the model parameters, are known to be less effective than the heuristic ap-
proaches (Srivastava et al., 2014). This provides a clear motivation for developing
well-founded and effective regularisation methods for neural networks. Following
the intuition that functions are considered simpler when they vary at a slower
rate, and thus generalise better, we develop a method that allows us to control the
Lipschitz constant of a network—a measure of the maximum variation a function
can exhibit. Our experiments show that this is a useful inductive bias to impose
on neural network models.

One of the prevailing themes in the theoretical work surrounding neural net-
works is that the magnitude of the weights directly impacts the generalisation
gap (Bartlett, 1998; Bartlett et al., 2017; Neyshabur, 2017; Golowich et al., 2020),
with larger weights being associated with poorer relative performance on new
data. In several of the most recent works (Bartlett et al., 2017; Neyshabur, 2017;
Golowich et al., 2020), some of the dominant terms in these bounds are equal to
the upper bound of the Lipschitz constant of neural networks as we derive it in
this paper. While previous works have only considered the Lipschitz continuity of
networks with respect to the `2 norm, we put a particular emphasis on working
with `1 and `∞ norms and construct a practical algorithm for constraining the
Lipschitz constant of a network during training. The algorithm takes a hyperpa-
rameter for each layer that specifies its maximum allowable Lipschitz constant,
and these parameters together determine an upper bound on the allowable Lip-
schitz constant of the entire network. We reuse the same parameter value across
multiple layers in our experiments to accelerate the hyperparameter optimisation
process.

Several interesting properties of this regularisation technique are demonstrated
experimentally. We show that although our algorithm is not competitive when used
in isolation, it is highly effective when combined with other commonly used regu-
larisers. Moreover, gains over conventional regularisation approaches are relatively
more pronounced when only a small amount of training data is available. We verify
that the hyperparameters behave in an intuitive manner: when set to small val-
ues, the model capacity is reduced, and as the values of the hyperparameters are
increased, the model capacity also increases. Crucially, there is a range of hyper-
parameter settings where the performance is greater than that of a model trained
without our regulariser.

The paper begins with an outline of previous work related to regularisation
and the Lipschitz continuity of neural networks in Section 2. This is followed by a
detailed derivation of the upper bound on the Lipschitz constant of a wide class of
feed forward neural networks in Section 3, where we give consideration to multiple
choices of vector norms. Section 4 shows how this upper bound can be used to
regularise the neural network in an efficient manner. Experiments showing the
utility of this regularisation approach are given in Section 5, and conclusions are
drawn in Section 6.
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2 Related work

One of the most widely applied regularisation techniques currently used for deep
networks is dropout (Srivastava et al., 2014). By randomly setting the activa-
tions of each hidden unit to zero with some probability, p, during training, this
method noticeably reduces overfitting for a wide variety of models. Various ex-
tensions have been proposed, such as randomly setting weights to zero instead of
activations (Wan et al., 2013). Another modification, concrete dropout (Gal et al.,
2017), allows one to directly learn the dropout rate, p, thus making the search for
a good set of hyperparameters easier. Kingma et al. (2015) have also shown that
the noise level in Gaussian dropout can be learned during optimisation. Srivastava
et al. (2014) found that constraining the `2 norm of the weight vector for each
unit in isolation—a technique that they refer to as maxnorm—can improve the
performance of networks trained with dropout.

The recent work on optimisation for deep learning has also contributed to our
understanding of the generalisation performance of neural networks. Most work
in this area aims to be descriptive, rather than prescriptive, in the sense that the
focus is on providing explanations for existing heuristic methods as opposed to
developing new approaches to improving performance. For example, Hardt et al.
(2016) quantify the relationship between generalisation error and early stopping.
Several papers have shown that the generalisation gap of a neural network is
dependent on the magnitude of the weights (Bartlett et al., 2017; Neyshabur,
2017; Bartlett, 1998; Golowich et al., 2020). Early results, such as Bartlett (1998),
present bounds that assume sigmoidal activation functions, but nevertheless relate
generalisation to the sum of the absolute values of the weights in the network. More
recent work has shown that the product of spectral norms, scaled by various other
weight matrix norms, can be used to construct bounds on the generalisation gap.
Bartlett et al. (2017) scale the spectral norm product by a term related to the
element-wise `1 norm, whereas Neyshabur et al. (2018) use the Frobenius norm.
The key quantity used in these bounds is the Lipschitz constant of the parameters
of a class of neural networks, which are in turn used in covering number arguments
to bound the generalisation performance of models in the hypothesis space.

Neyshabur et al. (2018) speculate that Lipschitz continuity with respect to the
`2 norm alone is insufficient to guarantee generalisation. However, the upper bound
presented in Section 3 appears in multiple generalisation bounds (Neyshabur, 2017;
Bartlett et al., 2017; Golowich et al., 2020), and we show empirically in this paper
that it is an effective aide for controlling the generalisation performance of a deep
network. Moreover, the work of Xu and Mannor (2012) demonstrate the concrete
link between the Lipschitz constant of a model with respect to its inputs and
the resulting generalisation performance. This is accomplished using robustness
theory, rather than the tools more typically used in learning theoretic bounds, such
as Rademacher complexity and VC dimensions (Shalev-Shwartz and Ben-David,
2014). Interestingly, Golowich et al. (2020) present a bound on the Rademacher
complexity of deep networks that depends only on the product of `∞ operator
norms for each weight matrix, which corresponds exactly to the upper bound
for the `∞ Lipschitz constant we consider in this paper. This provides yet more
evidence that constraining the `∞ Lipschitz constant of a network is a principled
method for improving generalisation performance.
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Yoshida and Miyato (2017) propose a new regularisation scheme that adds
a term to the loss function which penalises the sum of spectral norms of the
weight matrices. This is related to but different from what we do in this paper.
Firstly, we investigate norms other than `2. Secondly, Yoshida and Miyato (2017)
use a penalty term, whereas we employ a hard constraint on the induced weight
matrix norm, and they penalise the sum of the norms. The Lipschitz constant
is determined by the product of operator norms. Finally, they use a heuristic to
regularise convolutional layers. Specifically, they compute the largest singular value
of a flattened weight tensor, as opposed to deriving the true matrix corresponding
to the linear operation performed by convolutional layers, as we do in Section 3.2.
Explicitly constructing this matrix and computing its largest singular value—even
approximately—would be prohibitively expensive. We provide efficient methods
for computing the `1 and `∞ norms of convolutional layers exactly, and show how
one can approximate the spectral norm efficiently by avoiding the need to explicitly
construct the matrix representing the linear operation performed by convolutional
layers. Balan et al. (2017) provide a means for computing an upper bound to the
Lipschitz constant of a restricted class of neural networks known as scattering
networks. Although their approach computes tighter bounds than those presented
in this paper for the networks they consider, most neural networks that are used
in practice do not fit into the scattering network framework.

Enforcing Lipschitz continuity of a network is not only interesting for regulari-
sation. Miyato et al. (2018) show that constraining the weights of the discriminator
in a generative adversarial network to have a specific spectral norm can improve
the quality of generated samples. They use the same technique as Yoshida and Miy-
ato (2017) to compute these norms, and thus may benefit from the improvements
presented in this paper. Szegedy et al. (2014) demonstrate that a näıve approach
to constraining the Lipschitz constant can improve the adversarial robustness of
neural networks.

Several pieces of related work have been carried out concurrently to this study.
Sedghi et al. (2018) propose a method for characterising all the singular values of
a convolutional layer through the use of Fourier analysis. Tsuzuku et al. (2018)
propose a similar method for computing the spectral norm of a convolutional layer,
with the intention of regularising it in order to improve the adversarial robustness
of the resulting model. Zou et al. (2019) propose a general framework for computing
bounds on Lipschitz constants by solving a linear program.

3 Computing the Lipschitz Constant

A function, f : X → Y , is said to be Lipschitz continuous if it satisfies

DY (f(x1), f(x2)) ≤ kDX(x1,x2) ∀x1,x2 ∈ X, (1)

for some real-valued k ≥ 0, and metrics DX and DY . The value of k is known as
the Lipschitz constant, and the function can be referred to as being k-Lipschitz.
Generally, we are interested in the smallest possible Lipschitz constant, but it is
not always possible to find it. In this section, we show how to compute an upper
bound to the Lipschitz constant of a feed-forward neural network with respect
to the input features. Such networks can be expressed as a series of function
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compositions:
f(x) = (φl ◦ φl−1 ◦ ... ◦ φ1)(x), (2)

where each φi is an activation function, linear operation, or pooling operation. A
particularly useful property of Lipschitz functions is how they behave when com-
posed: the composition of a k1-Lipschitz function, f1, with a k2-Lipschitz function,
f2, is a k1k2-Lipschitz function. Denoting the Lipschitz constant of some function,
f , as L(f), repeated application of this composition property yields the following
upper bound on the Lipschitz constant for the entire feed-forward network:

L(f) ≤
l∏
i=1

L(φi). (3)

Thus, we can compute the Lipschitz constants of each layer in isolation and
combine them in a modular way to establish an upper bound on the constant of
the entire network. It is important to note that k1k2 will not necessarily be the
smallest Lipschitz constant of (f2 ◦ f1), even if k1 and k2 are individually the best
Lipschitz constants of f1 and f2, respectively. It is possible in theory that a tighter
upper bound can be obtained by considering the entire network as a whole rather
than each layer in isolation. In the remainder of this section, we derive closed
form expressions for the Lipschitz constants of common layer types when DX and
DY correspond to `1, `2, or `∞ norms respectively. As we will see in Section 4,
Lipschitz constants with respect to these norms can be constrained efficiently.

3.1 Fully Connected Layers

A fully connected layer, φfc(x), implements an affine transformation parameterised
by a weight matrix, W , and a bias vector, b:

φfc(x) = Wx + b. (4)

Others have already established that, under the `2 norm, the Lipschitz constant
of a fully connected layer is given by the spectral norm of the weight matrix (Miyato
et al., 2018; Neyshabur, 2017). We provide a slightly more general formulation that
will prove to be more useful when considering other p-norms. We begin by plugging
the definition of a fully connected layer into the definition of Lipschitz continuity:

‖(Wx1 + b)− (Wx2 + b)‖p ≤ k‖x1 − x2‖p. (5)

By setting a = x1 − x2 and simplifying the expression slightly, we arrive at

‖Wa‖p ≤ k‖a‖p, (6)

which, assuming x1 6= x2, can be rearranged to

‖Wa‖p
‖a‖p

≤ k, a 6= 0. (7)

The smallest Lipschitz constant is therefore equal to the supremum of the
left-hand side of the inequality,

L(φfc) = sup
a6=0

‖Wa‖p
‖a‖p

, (8)
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which is the definition of the operator norm of W .

For the p-norms we consider in this paper, there exist efficient algorithms for
computing operator norms on relatively large matrices. Specifically, for p = 1, the
operator norm is the maximum absolute column sum norm; for p =∞, the operator
norm is the maximum absolute row sum norm. The time required to compute both
of these norms is linearly related to the number of elements in the weight matrix.
When p = 2, the operator norm is given by the largest singular value of the weight
matrix—the spectral norm—which can be approximated relatively quickly using
a small number of iterations of the power method.

3.2 Convolutional Layers

Convolutional layers, φconv(X), also perform an affine transformation, but it is
usually more convenient to express the computation in terms of discrete convolu-
tions and point-wise additions. For a convolutional layer, the i-th output feature
map is given by

φconvi (X) =

Ml−1∑
j=1

Fi,j ∗Xj +Bi, (9)

where each Fi,j is a filter, each Xj is an input feature map, Bi is an appropriately
shaped bias tensor exhibiting the same value in every element, and the previous
layer produced Ml−1 feature maps.

The convolutions in Equation 9 are linear operations, so one can exploit the
isomorphism between linear operations and square matrices of the appropriate size
to reuse the matrix norms derived in Section 3.1. To represent a single convolution
operation as a matrix–vector multiplication, the input feature map is serialised
into a vector, and the filter coefficients are used to construct a doubly block cir-
culant matrix. Due to the structure of doubly block circulant matrices, each filter
coefficient appears in each column and row of this matrix exactly once. Conse-
quently, the `1 and `∞ operator norms are the same and given by ‖Fi,j‖1, the sum
of the absolute values of the filter coefficients used to construct the matrix.

Summing over several different convolutions associated with different input
feature maps and the same output feature map, as done in Equation 9, can be
accomplished by horizontally concatenating matrices. For example, suppose Vi,j is
a matrix that performs a convolution of Fi,j with the j-th feature map serialised
into a vector. Equation 9 can now be rewritten in matrix form as

φconvi (x) = [V1,1 V1,2 ... V1,Ml−1
]x + bi, (10)

where the inputs and biases, previously represented by X and Bi, have been se-
rialised into vectors x and bi, respectively. The complete linear transformation,
W , performed by a convolutional layer to generate Ml output feature maps can be
constructed by adding additional rows to the block matrix:

W =

 V1,1 . . . V1,Ml−1

...
. . .

VMl,1 VMl,Ml−1

 . (11)
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To compute the `1 and `∞ operator norms of W , recall that the operator norm
of Vi,j for p ∈ {1,∞} is ‖Fi,j‖1. A second matrix, W ′, can be constructed from W ,
where each block, Vi,j , is replaced with the corresponding operator norm, ‖Fi,j‖1.
Each of these operator norms can be thought of as a partial row or column sum
for the original matrix, W . Now, based on the discussion in Section 3.1, the `1

operator norm is given by

‖W‖1 = max
j

Ml∑
i=1

‖Fi,j‖1, (12)

and the `∞ operator norm is given by

‖W‖∞ = max
i

Ml−1∑
j=1

‖Fi,j‖1. (13)

We now consider the spectral norm for convolutional layers. Yoshida and Miy-
ato (2017) and Miyato et al. (2018) both investigate the effect of penalising or
constraining the spectral norm of convolutional layers by reinterpreting the weight
tensor of a convolutional layer as a matrix,

U =

 u1,1 . . . u1,Ml−1

...
. . .

uMl,1 uMl,Ml−1

 , (14)

where each ui,j contains the elements of the corresponding Fi,j serialised into a
row vector. They then proceed to compute the spectral norm of U , rather than
computing the spectral norm of W , given in Equation 11. As Cisse et al. (2017)
and Tsuzuku et al. (2018) show, this only computes a loose upper bound of the
true spectral norm.

Explicitly constructing W and applying a conventional singular value decom-
position to compute the spectral norm of a convolutional layer is infeasible, but
we show how the power method can be adapted to use standard convolutional net-
work primitives to compute it efficiently. Consider the usual process for computing
the largest singular value of a square matrix using the power method, provided in
Algorithm 1. The expression of most interest to us is inside the for loop, namely

xi = WTWxi−1, (15)

which, due to the associativity of matrix multiplication, can be broken down into
two steps:

x′i = Wxi−1 (16)

and
xi = WTx′i. (17)

When W is the matrix in Equation 11, the expressions given in Equations 16 and
17 correspond to a forward propagation and a backwards propagation through a
convolutional layer, respectively. Thus, if we replace these matrix multiplication
with convolution and transposed convolution operations respectively, as imple-
mented in many deep learning frameworks, the spectral norm can be computed
efficiently. Note that only a single vector must undergo the forward and backward
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Algorithm 1 Power method for producing the largest singular value, σmax, of a
non-square matrix, W .

Randomly initialise x0

for i = 1 to n do
xi ←WTWxi−1

end for
σmax ← ‖Wxn‖2

‖xn‖2

propagation operations, rather than an entire batch of instances. This means, for
most cases, only a small increase in runtime will be incurred by using this method.
It also automatically takes into account the padding and stride hyperparameters
used by the convolutional layer. In contrast to the reshaping method used by
Yoshida and Miyato (2017) and Miyato et al. (2018), the approach we use is ca-
pable of computing the spectral norm of a convolutional layer exactly if it is run
until convergence.

3.3 Pooling Layers and Activation Functions

Computing Lipschitz constants for pooling layers and activations is trivial for com-
monly used pooling operations and activation functions. Most common activation
functions and pooling operations are, at worst, 1-Lipschitz with respect to all p-
norms. For example, the maximum absolute sub-gradient of the ReLU activation
function is 1, which means that ReLU operations have a Lipschitz constant of one.
A similar argument yields that the Lipschitz constant of max pooling layers is one.
The Lipschitz constant of the softmax is one (Gao and Pavel, 2017).

3.4 Residual Connections

Recently developed feed-forward architectures often include residual connections
between non-adjacent layers (He et al., 2016). These are most commonly used to
construct structures known as residual blocks:

φres(x) = x + (φj+n ◦ ... ◦ φj+1)(x), (18)

where the function composition may contain a number of different linear transfor-
mations and activation functions. In most cases, the composition is formed by two
convolutional layers, each preceded by a batch normalisation layer1 and a ReLU
function. While networks that use residual blocks still qualify as feed-forward net-
works, they no longer conform to the linear chain of function compositions we for-
malised in Equation 2. Fortunately, networks with residual connections are usually
built by composing a linear chain of residual blocks of the form given in Equa-
tion 18. Hence, the Lipschitz constant of a residual network will be the product
of Lipschitz constants for each residual block. Each block is a sum of two func-
tions (see Equation 18). Thus, for a k1-Lipschitz function, f1, and a k2-Lipschitz

1 We discuss batch normalisation and the corresponding Lipschitz constant in Section 4.2
below.
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function, f2, we are interested in the Lipschitz constant of their sum:

‖(f1(x1) + f2(x1))− (f1(x2) + f2(x2))‖p (19)

which can be rearranged to

‖(f1(x1)− f1(x2)) + (f2(x1)− f2(x2))‖p. (20)

The subadditivity property of norms and the Lipschitz constants of f1 and f2 can
then be used to bound Equation 20 from above:

‖(f1(x1)− f1(x2)) + (f2(x1)− f2(x2))‖p ≤ ‖f1(x1)− f1(x2)‖p + ‖f2(x1)− f2(x2)‖p
(21)

≤ k1‖x1 − x2‖p + k2‖x1 − x2‖p (22)

= (k1 + k2)‖x1 − x2‖p. (23)

Thus, we can see that the Lipschitz constant of the addition of two functions is
bounded from above by the sum of their Lipschitz constants. Setting f1 to be the
identity function and f2 to be a linear chain of function compositions, we arrive at
the definition of a residual block as given in Equation 18. Noting that the Lipschitz
constant of the identity function is one, we can see that the Lipschitz constant of
a residual block is bounded by

L(φres) ≤ 1 +
j+n∏
i=j+1

L(φi), (24)

where the property given in Equation 3 has been applied to the function compo-
sitions.

4 Constraining the Lipschitz Constant

The assumption motivating our work is that adjusting the Lipschitz constant of
a feed-forward neural network controls how well the model will generalise to new
data. Using the composition property of Lipschitz functions, we have shown that
the Lipschitz constant of a network is the product of the Lipschitz constants associ-
ated with its layers. Ideally, one would simply add a term to the training objective
consisting of the product of weight matrix norms. In practice, we found it difficult
to train any deep networks with such an approach, and we suspect this is due
to very poor conditioning of the resulting optimisation problem, as the product
of norms can become very large. Instead, controlling the Lipschitz constant of a
network can be accomplished by constraining the Lipschitz constant of each layer
in isolation. This can be achieved by performing constrained optimisation when
training the network. In practice, we pick a single hyperparameter, λ, and use it
to control the upper bound of the Lipschitz constant for each layer. This means
the network as a whole will have a Lipschitz constant less than or equal to λd,
where d is the depth of the network.

Instead of using a projected gradient descent method, one might be tempted
to add a sum of norms penalty term, which would not have the same issues en-
countered when attempting to train with a product of norms term. Although the
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penalty and constraint-based formulations of common regularisation methods are
equivalent when training linear models (Oneto et al., 2016), the line of reasoning
used to prove this does not extend to deep learning for two reasons that we can see.
First, it relies on the convexity of the objective function. Second, it assumes the
resulting penalty-based regularisation algorithm finds a critical point of the train-
ing objective. In practice, this is rarely the case in deep learning—practitioners
typically determine convergence by looking at the validation accuracy rather than
the training loss or gradient magnitudes.

The easiest way to adapt existing deep learning methods to allow for con-
strained optimisation is to introduce a projection step and perform a variant of
the projected stochastic gradient method. In our particular problem, because each
parameter matrix is constrained in isolation, it is straightforward to project any
infeasible parameter values back into the set of feasible matrices. Specifically, after
each weight update step, we must check that none of the weight matrices (includ-
ing the filter banks in the convolutional layers) are violating the constraint on the
Lipschitz constant. If the weight update has caused a weight matrix to leave the
feasible set, we must replace the resulting matrix with the closest matrix that does
lie in the feasible set. This can all be accomplished with the projection function

π(W,λ) =
1

max(1,
‖W‖p
λ )

W, (25)

which will leave the matrix untouched if it does not violate the constraint, and
project it back to the closest matrix in the feasible set if it does. We measure close-
ness by the matrix distance metric induced by taking the operator norm of the
difference between two matrices. Note that in order for the stochastic subgradient
method to have guaranteed convergence, the measure of closeness should actually
be Euclidean distance (Bubeck, 2015). In practice, the results of our experiments
show that our improper projection method does not have an adverse impact on
performance—likely because current techniques for optimising deep networks al-
ready disregard conditions required for convergence. This method of projection
will work with any valid operator norm because all norms are absolutely homo-
geneous (Pugh, 2002). In particular, it will work with the operator norms with
p ∈ {1, 2,∞}, which can be computed using the approaches outlined in Section 3.

Pseudocode for this projected gradient method is given in Algorithm 2. We
have observed fast convergence when using the Adam update rule (Kingma and
Ba, 2015), but other variants of the stochastic gradient method also work. For
example, in our experiments, we show that stochastic gradient descent with Nes-
terov’s momentum is compatible with our approach.

4.1 Stability of p-norm Estimation

A natural question to ask is which p-norm should be chosen when using the training
procedure given in Algorithm 2. The Euclidean (i.e., spectral) norm is often seen
as the default choice, due to its special status when talking about distances in the
real world. Like Yoshida and Miyato (2017), we use the power method to estimate
the spectral norms of the linear operations in deep networks. The convergence
rate of the power method is related to the ratio of the two largest singular values,
σ2
σ1

(Larson, 2016). If the two largest singular values are almost the same, it will
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Algorithm 2 Projected stochastic gradient method to optimise a neural network
subject to the Lipschitz Constant Constraint (LCC). W1:l is used to refer to all
Wi for i ∈ {1, ..., l}.
t← 0
while W

(t)
1:l not converged do

t← t+ 1

g
(t)
1:l ← ∇W1:l

f(W
(t−1)
1:l )

Ŵ
(t)
1:l ← update(W

(t−1)
1:l , g

(t)
1:l )

for i = 1 to l do
W

(t)
i ← π(Ŵ

(t)
i , λ)

end for
end while

converge very slowly. Because each iteration of the power method for computing
the spectral norm of a convolutional layer requires both forward propagation and
backward propagation, it is only feasible to perform a small number of iterations
before one will notice an impact in the training speed. However, regardless of the
quality of the approximation, we can be certain that it does not overestimate the
true norm: the expression in the final line of Algorithm 1 is maximised when xn
is the first eigenvector of W . Therefore, if the algorithm has not converged, xn
will not be a singular vector of W and our approximation of σmax will be an
underestimate.

In contrast to the spectral norm, we compute the values of the `1 and `∞

norms exactly, in time that is linear in the number of weights in a layer, so it
always comprises a relatively small fraction of the overall runtime for training the
network. Of course, it may be the case that the `1 and `∞ constraints do not
provide as suitable an inductive bias as the `2 constraint. This is something we
investigate in our experimental evaluation.

4.2 Compatibility with Batch Normalisation

Constraining the Lipschitz constant of the network will have an impact on the
magnitude of the activations produced by each layer, which is what batch normal-
isation attempts to explicitly control (Ioffe and Szegedy, 2015). Thus, we consider
whether batch normalisation is compatible with our Lipschitz Constant Constraint
(LCC) regulariser. Batch normalisation can be expressed as

φbn(x) = diag

(
γ√

Var[x]

)
(x− E[x]) + β, (26)

where diag(·) denotes a diagonal matrix, and γ and β are learned parameters. This
can be seen as performing an affine transformation with a linear transformation
term

diag

(
γ√

Var[x]

)
x. (27)
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Based on the operator norm of this diagonal matrix, the Lipschitz constant
of a batch normalisation layer, with respect to the three p-norms we consider, is
given by

L(φbn) = max
i

∣∣∣∣∣ γi√
Var[xi]

∣∣∣∣∣. (28)

Thus, when using batch normalisation in conjunction with our technique, the γ

parameter must also be constrained. This is accomplished by using the expression
in Equation 28 to compute the operator norm in the projection function given
in Equation 25. In practice, when training the network with minibatch gradient
descent, we use a moving average estimate of the variance for performing the
projection, rather than the variance computed solely on the current minibatch of
training examples. This is done because the minibatch estimates of the mean and
variance can be quite noisy.

4.3 Interaction with Dropout

In the standard formulation of dropout, one corrupts activations during training
by performing pointwise multiplication with vectors of Bernoulli random variables.
As a consequence, when making a prediction at test time—when units are not
dropped out—the activations must be scaled by the probability that they remained
uncorrupted during training. This means the activation magnitude at both test
time and training time is approximately the same. The majority of modern neural
networks make extensive use of rectified linear units, or similar activation functions
that are also homogeneous. This implies that scaling the activations at test time is
equivalent to scaling the weight matrices in the affine transformation layers. That
is, for a homogeneous activation function, ϕ(·), and a dropout rate of r, we have

(1− r)ϕ(Wx + b) = ϕ((1− r)Wx + b).

Moreover, from the homogeneity of norms we also have that

‖(1− r)W‖p = (1− r)‖W‖p,

indicating that when a network is trained with dropout, the Lipschitz constant of
each layer is scaled by 1−r. As a result, one may expect that when using our tech-
nique in conjunction with dropout, the λ hyperparameter will need to be increased
in order to maintain the desired Lipschitz constant. Note that this does not imply
that the optimal value for λ, from the point of view of generalisation performance,
can be found by performing hyperparameter optimisation without dropout, and
then dividing the best λ found on the validation set by one minus the desired
dropout rate: the change in optimisation dynamics and regularisation properties
of dropout make it difficult to predict analytically how these two methods interact
when considering generalisation performance.
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5 Experiments

The experiments in this section aim to answer several questions about the be-
haviour of the Lipschitz Constant Constraint (LCC) regularisation scheme pre-
sented in this paper. The question of most interest is how well this regularisa-
tion technique compares to related regularisation methods, in terms of accuracy
measured on held-out data. In addition to this, experiments are performed that
demonstrate how sensitive the method is to the choice of values of the λ hyper-
parameters, how it interacts with existing regularisation methods, and how the
additional inductive bias imposed on the learning system impacts the sample effi-
ciency.

Several different network architectures are employed in the experiments. Specif-
ically, fully connected multi-layer perceptrons, VGG-style convolutional networks,
and networks with residual connections are used. This is to ensure that the regu-
larisation method works for a broad range of feed-forward architectures. SGD with
Nesterov momentum is used for training networks with residual connections, and
the Adam optimiser (Kingma and Ba, 2015) is used otherwise. Batch normalisation
is used in all networks to accelerate training. All regularisation hyperparameters
for the convolutional networks were optimised on a per-layer type basis using the
hyperopt package2 of Bergstra et al. (2015). Separate dropout, spectral decay, and
λ hyperparameters were optimised for fully connected and convolutional layers. All
network weights were initialised using the method of Glorot and Bengio (2010),
and the estimated accuracy reported in all tables is the mean of five networks
that were each initialised using different seeds, unless stated otherwise. The stan-
dard deviation is also reported to give an idea of how robust different regularisers
are to different initialisations. The code for running these experiments is available
online.3

5.1 CIFAR-10

The CIFAR-10 dataset (Krizhevsky and Hinton, 2009) contains 60,000 tiny im-
ages, each belonging to one of 10 classes. The experiments in this section follow
the common protocol of using 10,000 of the images in the 50,000 image training
set for tuning the model hyperparameters. Two network architectures are consid-
ered for this dataset: a VGG19-style network (Simonyan and Zisserman, 2014),
resized to be compatible with the 32× 32 pixel images in CIFAR-10, and a Wide
Residual Network (WRN) (Zagoruyko and Komodakis, 2016). All experiments on
this dataset utilise data augmentation in the form of random crops and horizontal
flips, and the image intensities were rescaled to fall into the [−1, 1] range. Each
VGG network is trained for 140 epochs using the Adam optimiser (Kingma and
Ba, 2015). The initial learning rate is set to 10−4 and decreased by a factor of 10
after epoch 100 and epoch 120. The WRNs are trained for a total of 200 epochs
using the stochastic gradient method with Nesterov’s momentum. The learning
rate was initialised to 0.1, and decreased by a factor of 5 at epochs 60, 120, and
160.

2 https://github.com/hyperopt/hyperopt
3 https://github.com/henrygouk/keras-lipschitz-networks
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Table 1 Performance of VGG19 and WRN-16-10 networks trained with spectral decay,
dropout, LCC, and combinations thereof on CIFAR-10. LCC-`p denotes the Lipschitz Constant
Constraint method for a given p-norm.

Method VGG19 WRN-16-10

None 90.43±0.17 95.13±0.17
Dropout 90.46±0.10 95.46±0.20
Spectral Decay 90.14±0.16 95.21±0.08
LCC-`1 92.48±0.13 95.34±0.21
LCC-`2 92.57±0.28 95.32±0.15
LCC-`∞ 91.64±0.20 95.82±0.19
Dropout + Spectral Decay 90.29±0.17 95.22±0.08
Dropout + LCC-`1 91.72±0.17 95.47±0.15
Dropout + LCC-`2 91.23±0.24 95.57±0.15
Dropout + LCC-`∞ 92.71±0.29 95.68±0.11

Table 2 Average time (in seconds) required per epoch to train a VGG-19 network on CIFAR-
10. Networks were trained using an NVIDIA V100 GPU.

Method Time (s)

None 40
Dropout 40
Spectral Decay 48
LCC-`1 42
LCC-`2 52
LCC-`∞ 42

The performance of LCC is compared to dropout and the spectral decay
method of Yoshida and Miyato (2017). Dropout is a widely used regularisation
method, often acting as key components of state-of-the-art models (Simonyan
and Zisserman, 2014; He et al., 2016; Zagoruyko and Komodakis, 2016), and the
spectral decay method has a similar goal to the `2 instantiation of our method: en-
couraging the spectral norm of the weight matrices to be small. For this particular
experiment, each regulariser is considered in isolation, but we also consider com-
binations of LCC and spectral decay with dropout. Results are given in Table 1.
Interestingly, the performance of the VGG network varies considerably more than
that of the Wide Residual Network. VGG networks see the most benefit from LCC-
`2, but dropout and spectral decay do not provide any noticeable inmprovement
in performance. Combining dropout with the other methods is not an effective
strategy on this dataset. In the case of WRNs, LCC performs similarly to dropout
and marginally better than spectral decay, but there is little separation between
methods on this dataset.

We also report the average per-epoch runtime of training a VGG-19 under each
regulariser in Table 2. Measurements were made using an NVIDIA V100 GPU.
We can see that the `1 and `∞ variants of LCC result in negligible increases in
runtime compared to using no regularisation or dropout, and the two approach
that use the power method result in approximately 20–30% increase in runtime.
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Table 3 Performance of networks trained with spectral decay, dropout, LCC, and combina-
tions thereof on CIFAR-100. LCC-`p denotes our Lipschitz Constant Constraint method for
some given p-norm.

Method VGG19 WRN-16-10

None 65.46±0.43 77.94±0.33
Dropout 66.75±0.40 77.98±0.24
Spectral Decay 65.32±0.24 77.93±0.20
LCC-`1 69.59±0.29 78.16±0.04
LCC-`2 68.25±0.38 79.00±0.33
LCC-`∞ 69.16±0.22 79.39±0.28
Dropout + Spectral Decay 66.97±0.24 77.70±0.33
Dropout + LCC-`1 70.17±0.21 79.08±0.11
Dropout + LCC-`2 71.76±0.26 79.45±0.26
Dropout + LCC-`∞ 69.25±0.43 78.17±1.86

5.2 CIFAR-100

CIFAR-100, like CIFAR-10, is a dataset of 60,000 tiny images, but contains 100
classes rather than 10. The same data augmentation methods used for CIFAR-10
are also used for training models on CIFAR-100—random crops and horizontal
flips. Once again, WRNs and VGG19-style networks ared trained on this dataset.
The learning rate schedules used in the CIFAR-10 experiments also worked well
on this dataset, which is not surprising given their similarities. However, the regu-
larisation hyperparameters were optimised specifically for CIFAR-100. The results
for the VGG and WRN models are given in Table 3.

It can be seen that the Lipschitz-based regularisation scheme is an effective
technique for improving generalisation of networks both with and without resid-
ual connections. The results on CIFAR-100 follow a similar trend to those observed
on CIFAR-10: LCC performs the best, dropout provides a small increase in per-
formance over no regularisation, and combining dropout other approaches can
sometimes provide a small boost in accuracy. Spectral decay performs noticeably
worse than LCC-`2, often having comparable performance to no regularisation.

5.3 MNIST and Fashion-MNIST

The Fashion-MNIST dataset (Xiao et al., 2017) is designed as a more challenging
drop-in replacement for the original MNIST dataset of hand-written digits (Le-
Cun et al., 1998). Both contain 70, 000 greyscale images labelled with one of 10
possible classes. The last 10,000 instances are used as the test set. The final 10,000
instances in the training set are used for measuring performance when optimis-
ing the regularisation hyperparameters. In these experiments, small convolutional
networks are trained on both of these datasets with different combinations of reg-
ularisers. The networks contain only two convolutional layers, each consisting of
5 × 5 kernels, and both layers are followed by 2 × 2 max pooling layers. The first
layer has 64 feature maps, and the second has 128. These layers feed into a fully
connected layer with 128 units, which is followed by the output layer with 10 units.
ReLU activations are used for all hidden layers, and each model is trained for 60
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Table 4 Test accuracies of the small convolutional networks trained with spectral decay,
dropout, LCC, and combinations thereof on the MNIST and Fashion-MNSIT datasets.

Method MNIST Fashion-MNIST

None 99.29±0.03 92.54±0.10
Dropout 98.93±0.17 91.68±0.17
Spectral Decay 99.28±0.07 92.59±0.03
LCC-`1 99.41±0.05 93.06±0.15
LCC-`2 99.41±0.05 92.62±0.18
LCC-`∞ 99.32±0.09 92.87±0.12
Dropout + Spectral Decay 98.85±0.15 91.86±0.18
Dropout + LCC-`1 99.35±0.08 93.23±0.23
Dropout + LCC-`2 99.42±0.10 91.71±0.38
Dropout + LCC-`∞ 99.36±0.04 92.75±0.25

epochs using Adam (Kingma and Ba, 2015). The learning rate was started at 10−4

and decreased by a factor of 10 at the fiftieth epoch.

The test accuracies for each of the models trained on these datasets are given
in Table 4. For both datasets, dropout and spectral decay decrease performace,
whereas LCC-`1 results in a consistent performance increase.

5.4 Street View House Numbers

The Street View House Numbers dataset contains over 600, 000 images of digits
extracted from Google’s Street View platform. Each image contains three colour
channels and has a resolution of 32 × 32 pixels. As with the previous datasets,
the only preprocessing performed is to rescale the input features to the range
[−1, 1]. However, in contrast to the experiments on CIFAR-10 and CIFAR-100,
no data augmentation is performed while training on this dataset. The first net-
work architecture used for this dataset, which follows a VGG-style structure, is
comprised of four conv–conv–maxpool blocks with 64, 128, 192, and 256 feature
maps, respectively. This is followed by two fully connected layers, each with 512
units, and then the logistic regression layer. Due to the large training set size, it
is only necessary to train for 20 epochs. The Adam optimiser (Kingma and Ba,
2015) is used with an initial learning rate of 10−4, which is decreased by a factor
of 10 at epochs 15 and 18. Small WRN models are also trained on this dataset.
Once again, due to the large size of the training set, it is sufficient to only train
each network for 20 epochs in total. Therefore, compared to the WRNs trained
on CIFAR-10 and CIFAR-100, a compressed learning rate schedule is used. The
learning rate is started at 0.1, and is decreased by a factor of 5 at epochs 6, 12,
and 16. Measurements of the test set performance for each of the models trained
on SVHN are provided in Table 5.

For VGG, using dropout in conjunction with other approaches results in the
best performance, but in isolation is not effective. LCC improves accuracy in both
the VGG and WRN models, whereas spectral decay does not help for either.
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Table 5 Prediction accuracy of VGG-style and WRN-16-4 networks trained with spectral
decay, dropout, LCC, and combinations thereof on the SVHN dataset.

Method VGG WRN-16-4

None 96.90±0.05 97.97±0.04
Dropout 96.98±0.10 98.23±0.05
Spectral Decay 96.88±0.04 98.02±0.04
LCC-`1 97.17±0.09 98.00±0.06
LCC-`2 96.94±0.04 97.93±0.07
LCC-`∞ 97.35±0.03 98.03±0.05
Dropout + Spectral Decay 97.10±0.06 98.15±0.04
Dropout + LCC-`1 97.30±0.07 98.21±0.02
Dropout + LCC-`2 97.73±0.30 98.17±0.05
Dropout + LCC-`∞ 97.32±0.06 98.24±0.06

5.5 Scaled ImageNet Subset (SINS-10)

The SINS-10 dataset is a collection of 100,000 images taken from ImageNet by Gouk
et al. (2018). Each image in this dataset is 96×96 pixels and is labelled with one of
10 classes. What makes this dataset distinct from other commonly used image clas-
sification benchmarks is that it is divided into 10 non-overlapping and equal sized
predefined folds. Within each fold, 9,000 images are used for training and 1,000
are used for testing. By gathering multiple estimates of algorithm performance,
one can perform hypothesis tests to determine statistically significant differences
between methods.

The experiments conducted on SINS-10 in this paper make use of the same
VGG-style and WRN network architectures used for the SVHN experiments. How-
ever, because each fold of the SINS-10 dataset has many fewer instances than
SVHN, the number of epochs and learning rate schedules are changed. The VGG
networks are trained for a total of 60 epochs, beginning with a learning rate of
10−4 that is decreased by a factor of 10 at epochs 40 and 50. The WRN models are
trained for 100 epochs each, with a starting learning rate of 0.1 that is decreased
by a factor of five at epochs 30, 60 and 80. The regularisation hyperparameters
are optimised on a per-fold basis. The final 1,000 instances of the training set are
repurposed as a validation set to determine the quality of a given hyperparameter
setting. The results for these experiments are given in Table 6 for the VGG mod-
els, and Table 7 for the wide residual network models. Hypothesis tests are carried
out using a paired t-test to determine whether using the regulariser improves per-
formance. In the case where a method is used in conjunction with dropout, the
hypothesis test compares the performance of the combination with that of dropout
along.

In contrast to the previous experiments, spectral decay is a very effective reg-
ulariser for wide residual network models trained on this dataset, with the combi-
nation of dropout and spectral decay being the best results. The hypothesis tests
indicate that for both architectures, networks trained with LCC perform statisti-
cally significantly better than comparable networks trained without LCC.
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Table 6 Prediction accuracies of VGG-style networks trained with spectral decay, dropout,
batchnorm, LCC, and combinations thereof on the SINS-10 dataset. The +/- column indicates
whether adding LCC to the combination of regularisers results in a statistically significant
improvement or degradation in performance at the 95% confidence level.

Method VGG +/-

None 63.73±1.18
Dropout 68.65±1.00 +
Spectral Decay 63.81±1.25
LCC-`1 71.24±1.31 +

LCC-`2 69.96±2.16 +
LCC-`∞ 70.92±2.04 +
Dropout + Spectral Decay 68.97±1.31
Dropout + LCC-`1 72.18±1.97 +

Dropout + LCC-`2 71.15±1.13 +
Dropout + LCC-`∞ 70.99±1.03 +

Table 7 Prediction accuracies of WRNs trained with spectral decay, dropout, batchnorm,
LCC, and combinations thereof on the SINS-10 dataset. The +/- column indicates whether
adding LCC to the combination of regularisers results in a statistically significant improvement
or degradation in performance at the 95% confidence level.

Method WRN-16-4 +/-

None 68.26±1.89
Dropout 68.14±2.78
Spectral Decay 76.85±1.29 +

LCC-`1 72.85±1.63 +

LCC-`2 75.89±2.02 +
LCC-`∞ 74.09±2.19 +
Dropout + Spectral Decay 78.57±1.37 +

Dropout + LCC-`1 73.27±1.19 +

Dropout + LCC-`2 77.93±1.19 +
Dropout + LCC-`∞ 76.80±1.05 +

5.6 Fully Connected Networks

Neural networks consisting exclusively of fully connected layers have a long his-
tory of being applied to classification problems arising in data mining scenarios.
To evaluate how well the LCC regularisers work on tabular data, we have trained
fully connected networks on the classification datasets collected by Geurts and
Wehenkel (2005). These datasets are primarily from the University California at
Irvine dataset repository. The only selection criterion used by Geurts and Wehenkel
(2005) is that they contain only numeric features. In these experiments, each net-
work contains two hidden layers consisting of 100 units each, and uses the ReLU
activation function. Two repetitions of 5-fold cross-validation are performed for
each dataset. Hyperparameters for each regulariser were tuned on a per-fold basis
using grid search. The accuracy of a particular hyperparameter combination tried
during the grid search was determined using a hold-out set drawn from the training
data in each fold. The values considered for dropping a unit when using dropout
were p ∈ {0.2, 0.3, 0.4, 0.5}. The values considered for λ when using the `2 and `∞

approaches were {2, 4, ..., 18, 20}, and for the `1 variant we used {5, 10, ..., 45, 50}.
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Table 8 Mean test set accuracies obtained using two repetitions of 5-fold cross validation.
The highest mean accuracy achieved on each dataset is bolded.

None DO `1 `2 `∞ DO+`1 DO+`2 DO+`∞

dig44 96.96 95.79 96.83 96.85 97.11 96.04 96.04 96.81
letter 95.37 90.28 95.29 95.34 96.42 91.44 91.37 93.24
pendigits 99.44 99.14 99.45 99.45 99.52 99.21 99.25 99.41
sat 90.82 89.18 90.75 90.73 91.00 90.08 89.84 90.06
segment 95.37 93.70 95.91 95.89 96.52 93.90 93.85 95.52
spambase 94.11 93.88 94.06 93.86 94.37 93.68 93.68 94.06
twonorm 97.16 97.64 97.10 97.05 97.41 97.71 97.68 97.69
vehicle 78.02 72.52 77.84 78.07 80.14 74.94 74.65 77.60
vowel 86.21 68.18 82.98 83.13 90.86 70.61 71.21 77.07
waveform 85.40 86.16 86.00 85.82 86.51 86.71 86.54 86.59

Once again, the combination of LCC with each of the regularisation methods is
also evaluated.

Several interesting trends can be found in this table. One particularly surprising
trend is that the presence of dropout is a very good indicator of a degradation in
accuracy. Interestingly, the only exceptions to this are the two synthetic datasets,
where dropout is associated with an improvement in accuracy. LCC is one of
the more reliable approaches to regularisation. In particular, the LCC-`∞ method
achieves the highest mean accuracy on eight of the 10 datasets. On the other two
datasets there is no substantial difference in performance between all methods.
This provides strong evidence that LCC-`∞ is a good choice for regularisation of
neural network models trained on tabular data.

These results can also be visualised using a critical difference diagram (Demšar,
2006), as shown in Figure 1. When ordering the methods by descending accuracy
on each dataset, the average rank of LCC-`∞ is just over 1.5, whereas the next best
method—using no regularisation at all—achieves an average rank of just over 3.5.
However, there is insufficient evidence to be able to state that LCC-`∞ statistically
significantly outperforms standard neural networks. Nevertheless, it can also be
seen from this diagram that LCC-`∞ is statistically significantly better than most
of the combinations of regularisers that include dropout.

5.7 Sensitivity to λ

The ability to easily tune the hyperparameters of a regularisation method is im-
portant. The previous experiments have primarily taken advantage of automated
hyperparameter tuning through the use of the hyperopt package (Bergstra et al.,
2015), but investigating how sensitive the algorithm is to the choice of λ could
lead to useful intuition for both manual hyperparameter tuning and automated
methods. The networks that have been trained with LCC regularisation thus far
have required up to three different λ hyperparameters—one for each parameterised
layer type. Therefore, one cannot simply plot the model accuracy for given val-
ues of λ: it is not a scalar quantity. However, one can multiply all three of these
hyperparameters by a single scalar value, and vary this scalar quantity to in-
vestigate the relationship between hyperparameter magnitude and generalisation
performance. Figure 2 visualises this relationship using the CIFAR-100 dataset
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Fig. 1 A critical difference diagram showing the statistically significant (95% confidence)
differences between the average rank of each method. The number beside each method is the
average rank of that method across all datasets. The thick black bars overlaid on groups of thin
black lines indicate a clique of methods that have not been found to be statistically significantly
different.

0.8 1 1.2 1.4 1.6 1.8
45

50

55

60

65

70

c

A
cc

u
ra

cy

LCC-`1

LCC-`2

LCC-`∞

None

Fig. 2 This figure demonstrates the sensitivity of the algorithm to the choice of λ for each
of the three p-norms when used to regularise VGG19 networks trained on the CIFAR-100
dataset. Because a different hyperparameter was optimised for each layer type, the horizontal
axis represents the value of a single constant that is used to scale the three different λ hyper-
parameters associated with each curve. Note that when c = 0.6, the LCC-`1 network fails to
converge.

and several models with the VGG19-style architecture. This plot was generated
by defining a hyperparameter vector, λ = [λconv, λfc, λbn], where each component
is set to the value found during the hyperparameter optimisation procedure per-
formed as part of the experiments carried out in Section 5.2. Each data point in
the plot is created by training a network with hyperparameters specified by cλ,
where c is a user-provided scalar value, and plotting the resulting test set accuracy
for different values of c.

One trend that is particularly salient in Figure 2 is that choosing values for
the hyperparameters that are even slightly too small results in a massive degra-
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Fig. 3 Learning curves for VGG (left) and WRN (right) trained on CIFAR-10 with each of
the regularisation methods.

dation in performance. Conversely, when c is set above the optimal value, each
method exhibits a slow decline in performance until the accuracy is comparable to
that of a network trained without any regularisation. Although this is the type of
behaviour one might expect from a sensible means for controlling model capacity,
this second phenomenon can cause difficulty during hyperparameter tuning. It is
easy to determine when the hyperparameters have been assigned values that are
too small, as the model fails to converge. However, it is not easy to determine
how much the hyperparameters should be increased by. It was found that for each
dataset, network architecture, and p-norm choice, vastly different hyperparameter
settings were chosen by the automated tuning process. This means there is no typ-
ical range one should expect the optimal hyperparameters to lie in, and one must
use a very uninformative prior when performing hyperparameter optimisation.

5.8 Sample Efficiency

Imposing on a learning algorithm additional inductive biases that accurately reflect
the underlying relationship between the input and output variables should result in
a method that can produce well-performing models with fewer training examples
than an algorithm without such inductive biases: more informative inductive biases
should yield better sample efficiency. To determine if LCC improves the sample
efficiency of training neural networks on image data, a series of networks are trained
on progressively larger subsets of the CIFAR-10 training set. The full test set is
still used for computing estimates of the accuracy of the resulting models. The
learning curves for the VGG and WRN models are given in Figure 3.

In the VGG plot, there is a difference of approximately 10 percentage points
between the performance of the networks trained with LCC and those trained
with one of the weaker baselines, for the case where only 5,000 instances are used
during training. As the number of available training instances is increased, the gap
between the performance of all methods becomes smaller because each method
must rely less on the prior knowledge built into the learning algorithm and more
on the evidence provided by the examples in the training set. Interestingly, the
wide residual networks trained with the spectral decay method achieve very good
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performance when only a small amount of training data is available. This agrees
with the previous results on the SINS-10 dataset. However, it is interesting to
note that as the number of available training examples grows, this advantage is
lost and the performance of networks regularised with the spectral decay method
tend towards the performance of the unregularised baseline—a trend that is also
noticeable in the experiments on other datasets.

5.9 Do Other Methods Constrain the Lipschitz Constant?

The results presented so far have indicated that constraining the Lipschitz con-
stant of a network provides effective regularisation, but it is interesting to consider
how different the resulting Lipschitz constants are compared to not using LCC reg-
ularisation. To further investigate this, we supply plots of the Lipschitz constant
of each layer of VGG-19 networks trained on CIFAR-10. These plots are given in
Figure 4. When the network is trained with dropout, we scale each of the operator
norms by the probability of retaining an activation for the reasons described in
Section 4.3. The constants for batch normalisation operations are plotted sepa-
rately due to the large difference in magnitude. We identify two salient trends.
First, the different variants of LCC result in significant reductions in the Lipschitz
constant of each layer, and therefore the whole network. Second, spectral decay—
another method aimed at reducing the `2 Lipschitz constant, but via a penalty
approach—is less effective than LCC-`2.

6 Conclusion

This paper has presented a simple and effective regularisation technique for deep
feed-forward neural networks called Lipschitz Constant Constraint (LCC), shown
that it is applicable to a variety of feed-forward neural network architectures, and
established that it is particularly suited to situations where only a small amount of
training data is available. The investigation into the differences between the three
p-norms (p ∈ {1, 2,∞}) considered has provided some useful information about
which one might be best-suited to the problem at hand. In particular, the `∞

norm appears particularly suitable for tabular data, and the `2 norm showed the
most consistently competitive performance when used as a regulariser on natural
image datasets. However, given that LCC-`2 with few power method iterations
is only approximately constraining the norm, if one wants a guarantee that the
Lipschitz constant of the trained network is bounded below some user-specified
value, then using the `1 or `∞ norm would be more appropriate.

Lastly, recent and concurrent work suggests that the utility of constraining
the Lipschitz constant of neural networks is not limited to improving classification
accuracy. There is already evidence that constraining the Lipschitz constant of
the discriminator networks in GANs is useful (Arjovsky et al., 2017; Miyato et al.,
2018). Given the drawbacks in previous approaches to constraining Lipschitz con-
stants we have outlined (cf. Section 3.2), one might expect improvements training
GANs that are k-Lipschitz with respect to the `1 or `∞ norms, and approximately
1-Lipschitz with respect to the `2 norm, by applying the methods presented in this
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Fig. 4 Plots of the per-layer `1 (top left), `2 (top right), and `∞ (bottom left) Lipschitz
constants for convolutional and fully connected operations in models trained with different
regularisation methods. The bottom right plot shows the Lipschitz constants for the batch
normalisation components.

paper. Exploring how well the technique presented in this paper works with recur-
rent neural networks would also be of interest. Finally, the experiments carried out
in this paper forced all layers of the same type to have the same Lipschitz constant.
This is likely an inappropriate assumption in practice, and a more sophisticated
hyperparameter tuning mechanism that allows for selecting a different value of
λ for each layer could provide a further improvement to performance. However,
devising a means for efficiently allocating modelling capacity on a per-layer basis
is an open problem.
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