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Abstract 

Background  

Active case-finding (ACF) may be valuable in tuberculosis (TB) control, but questions remain 

about its optimum implementation in different settings. For example, smear microscopy 

misses up to half of TB cases, yet is cheap, and detects the most infectious TB cases. What, 

then, is the incremental value of using more sensitive and specific, yet more costly, tests such 

as Xpert MTB/RIF, in ACF in a high burden setting? 

 

Methods and Findings  

We constructed a dynamic transmission model of TB, calibrated to be consistent with an urban 

slum population in India. We applied this model to compare the potential cost and impact of 

two hypothetical approaches, following initial symptom screening: (i) ‘moderate accuracy’ 

testing employing a microscopy-like test (that is, lower cost but also lower accuracy) for 

bacteriological confirmation and (ii) ‘high accuracy’ testing employing an Xpert-like test 

(higher-cost but also higher accuracy, while also detecting rifampicin resistance).  

 

Results suggest that ACF using a moderate-accuracy test could in fact cost more overall than 

using a high-accuracy test. Under an illustrative budget of USD 20 million in a slum population 

of 2 million, high-accuracy testing would avert 1·14 (95% Bayesian credible intervals 0·75 – 

1·99, with p = 0.28) cases relative to each case averted by moderate-accuracy testing. Test 

specificity is a key driver: high-accuracy testing would be significantly more impactful at the 

5% significance level, as long as the high-accuracy test has specificity at least 3 percentage 

points greater than the moderate-accuracy test. Additional factors promoting the impact of a 
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high-accuracy are that: its ability to detect rifampicin resistance can lead to long-term cost 

savings in second-line treatment; and its higher sensitivity contributes to the overall cases 

averted by ACF.  

   

Amongst limitations of this study, our cost model has a narrow focus on the commodity costs 

of testing and treatment; our estimates should not be taken as indicative of the overall cost of 

ACF. There remains uncertainty about the true specificity of tests such as smear and Xpert-

like tests in ACF, including variations in the accuracy of the reference standard under such 

conditions. 

 

Conclusions  

Our results suggest that cheaper diagnostics do not necessarily translate to less costly ACF, 

as any savings from the test cost can be strongly outweighed by factors including false-positive 

TB treatment, reduced sensitivity, and foregone savings in second-line treatment. In resource-

limited settings, it is therefore important to take all of these factors into account, when 

designing cost-effective strategies for ACF.  
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Authors’ Summary 

 

Why was this study done? 

 Active case-finding (ACF) is a strategy for reducing the burden of tuberculosis (TB), 

which aims to identify and treat TB cases in the community, as rapidly as possible. 

 However, because ACF can be very resource-intensive, it is important to understand 

how best to conduct it, in the most cost-efficient way. 

 Concentrating on the tests used to diagnose TB, we hypothesised that cheaper tests, 

although less accurate than more costly tests, would be important in bringing down the 

overall cost of ACF. 

 

What did the researchers do and find? 

 Using a mathematical model of TB in urban slums in India, we simulated the cost and 

impact of an ACF intervention over the next 15 years. 

 Contrary to our initial hypothesis, we found that the use of cheaper diagnostic tests 

with lower accuracy can in fact increase, not decrease, the overall cost of ACF. 

 The reason is that the cost of a test can be outweighed by the costs of treatment: 

specifically, false-positive (unnecessary) TB treatment, and second-line treatment for 

drug-resistant TB; cheaper tests would also have lower impact overall, as a result of 

their lower sensitivity. 

 

What do these findings mean? 

> Our findings show how cheaper diagnostic tests may represent a false economy in 

active case-finding, i.e. leading to larger intervention costs overall, if they are also 

associated with reduced performance in ruling out TB. 

> Those implementing ACF in resource-limited, high-burden settings should consider all 

of these factors in their planning, and not just the cost of the test.  
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Introduction 

Tuberculosis (TB) remains a major concern for global health, with 10.4 million incident cases 

globally in 2017 and approximately 1·3 million deaths (1). The End TB strategy calls for a 

reduction in incidence of 90% by 2035 (2); to reach these targets, it will be necessary to 

accelerate the rate at which TB cases are diagnosed and initiated on treatment (2). Active 

case-finding (ACF) is one way of doing so: modelling suggests that ACF could be cost-

effective under certain cost thresholds, particularly over longer (>10 years) time horizons (3) 

However, direct evidence for the potential impact of such measures in practice is limited (4), 

including in settings like India, the country with the world’s largest TB burden, which alone has 

an estimated 26% of the 3·6 million estimated ‘missing cases’ (1).  

 

In response to these challenges, a key component in India’s 2017 National Strategic Plan for 

TB elimination is the need to perform intensive, sustained ACF in specific populations such as 

urban slums, which are known to have a greater TB burden than the general population (5). 

In general, ACF in these and other settings employs screening for symptoms suggestive of 

TB, followed by bacteriological testing. The latter is often performed using molecular tools 

such as Xpert MTB/RIF (hereafter referred to as ‘Xpert’) a cartridge-based nucleic acid 

amplification test. More recently, the ‘Ultra’ diagnostic platform offers higher sensitivity than 

Xpert, but at the expense of lower specificity (6). In the present work, we concentrate on the 

deployment of Xpert. Key advantages of Xpert are that (i) it is more sensitive than the 

conventionally used smear microscopy, which can miss up to half of pulmonary TB cases (7), 

and (ii) offers faster recognition of rifampicin resistance at the point of TB diagnosis (1,8), thus 

allowing the timely initiation of second-line treatment. However, those cases detectable 

through smear microscopy tend to be the most infectious (9), and this approach is  

considerably cheaper than Xpert. Therefore, the use of smear may achieve substantial 

epidemiological impact, at a lower cost.  

 

Could smear-based ACF be more cost-effective than Xpert-based ACF, in settings such as 

India? What are the benefits of using Xpert in comparison to smear, and vice-versa? Our 

scope is not simply on yield (defined as the proportion of positive cases identified), a major 

focus of operational research, but also on potential epidemiological impact, taking into account 

the potential transmission implications of ACF. In line with India’s National Strategic Plan, we 

model case-finding efforts in conditions typical of urban slums using a transmission model 

combined with a simple costing approach. Building on previous modelling analyses of ACF 

(10,11), in this work we focus on both the specificity and sensitivity of the diagnostic strategy 

employed in ACF. 
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Methods 

Transmission model 

We developed a dynamic transmission model of TB, illustrated in Fig 1, and described in 

further technical detail in S1 Text. The model captures key features in the natural history of 

TB, including asymptomatic but infectious disease; smear status; and TB mortality and 

spontaneous cure. The model focuses on pulmonary TB and neglects extrapulmonary TB, 

assuming ACF to focus on the former. Amongst those with TB (indicated by the orange box in 

the figure), we assumed that smear-negative pulmonary TB cases are, on average, 20% as 

infectious as smear-positive ones (9) (see Table 1 for model parameters). We incorporated 

‘passive’ TB service delivery, including the split between public and private sectors that is a 

major feature of the health system in India (12). Additionally, the model also distinguishes 

drug-susceptible (DS) and drug-resistant (DR) TB, the latter including both rifampicin-resistant 

and multi-drug-resistant forms of TB. Although DR-TB only accounts for approximately 5% of 

the TB burden in India, it also consumes a disproportionate amount of the TB budget due to 

the high cost of second-line treatment (1). In the model, we account for the delay in recognition 

of DR-TB as a result of missed opportunities for drug sensitivity testing, as well as the potential 

impact of Xpert-based ACF in reducing this delay. 

 

We separately simulated the dynamics of a ‘Non-TB Symptomatic’ (NTS) population, i.e. 

individuals who would be eligible for a TB diagnosis based on the presence of TB-like 

symptoms, but who do not have TB. This population is necessary for tracking the overall 

number of diagnostic tests being conducted during the case-finding intervention, as well as 

the unnecessary treatment of false-positive TB (13). 
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Fig 1. Schematic illustration of the model. The TB transmission model (left) distinguishes TB by 

smear status, and by symptom status. Upon developing symptoms, symptomatic individuals seek care 

through either the private or public sectors (‘passive’ TB services) after a certain delay, estimated to 

match data in Table 2. Although not shown here for clarity, the model captures these sectors separately, 

including the lower standard of TB care in the private sector (see S1 Text for full model details). Those 

successfully diagnosed initiate TB treatment; we assume that 15% of diagnoses in the public sector are 

conducted with Xpert, the remainder by microscopy. All those lost from the TB care cascade, whether 

because of missed diagnosis, pre-treatment loss-to-follow-up, or failed treatment, temporarily 

disengage from care-seeking, before once again seeking care after a given delay. Compartments 

shown in orange denote the effect of an active case finding (ACF) intervention on this ‘passive’ system; 

we assume that ACF consists of initial symptom screening, followed by microbiological confirmation. 

Meanwhile, the dark blue compartments on the right represent a subset of the general population that 

may be detected by the ACF intervention (orange compartments) because they have TB-like symptoms, 

but without TB: these may include, for example, individuals with COPD, bronchitis, and other lung 

conditions. They incur a cost in diagnosis and – if they are mistakenly diagnosed with TB – a cost in 

false-positive treatment. The number incorrectly identified as having TB is dependent on the specificity 

of both the screening and confirmatory stages. Finally, at any stage individuals may die of natural 

causes or of TB (in the diseased compartments) or recover spontaneously. For simplicity, these 

transitions are not shown in the figure (see S1 Text for full model details). 

 

 

 

 

 

 

Model calibration 
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The model described above was calibrated to annual risk of Mycobacterium tuberculosis 

(M.tb) infection (ARTI) and prevalence estimates representative of urban slums in India (Table 

2). To inform model parameters for symptom onset from asymptomatic stages, and for 

progression of smear status with developing disease, we drew from a prevalence survey in 

Chennai (5). In particular, we calibrated the model to the proportion of TB prevalent cases that 

are symptomatic and the proportion smear-positive amongst those who had not yet presented 

for care, stratified by symptom status (Table 2). We adjusted the size of the NTS population 

to capture an overall 3% prevalence of TB amongst symptomatic individuals, as indicated by 

the Chennai prevalence survey (5). 

 

Uncertainty was estimated using Latin hypercube sampling to sample model parameters from 

their respective ranges (10,000 samples) and simulating the model to 2018, as described in 

S1 Text. Parameter sets were accepted in the sampling if they provided model projections that 

fell within the calibration target ranges, while the rest were rejected.  

 

Intervention 

Using the calibrated model, we simulated an ACF algorithm using symptom screening followed 

by a confirmatory microbiological test. We assumed that all TB diagnoses through ACF would 

be microbiologically confirmed, that is, assuming that there is no role for presumptive clinical 

diagnosis in ACF. For the screening stage, we modelled the use of symptom screening, with 

individuals reporting any symptom suggestive of TB to be deemed eligible for microbiological 

confirmation. For the sensitivity and specificity of this approach for TB, we drew from a recent 

meta-analysis of screening approaches (14). We also performed sensitivity analyses 

(described below) under an alternative screening approach identifying those with prolonged 

cough, rather than any TB symptom (prolonged cough screening having higher specificity but 

lower sensitivity than ‘any TB symptom’).  

 

For the confirmatory test, we distinguished two types of strategy: a ‘moderate-accuracy’ 

strategy, using a confirmatory test with performance and cost consistent with smear 

microscopy, and a ‘high-accuracy’ strategy, with performance and cost consistent with Xpert 

(see Table 1 for parameters). The reason for these designations is that – although there exists 

data from clinical trials on the performance of smear and Xpert – there is currently little 

evidence for characteristics such as the specificity of either test in real-world conditions. In 

particular, test specificity is often assessed against culture as a reference standard, and thus 

do not address how to interpret smear-positive, culture-negative results that nonetheless show 

clear signs of having TB (15,16). We do not address the important question of how reference 

standards might be improved, to meet these challenges. Instead, our analysis casts light on 
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which types of uncertainty are most critical for future studies to address, in strategic planning 

for ACF activities. Consistent with the capabilities of smear and molecular tests such as Xpert, 

we assumed that the high-accuracy test can detect rifampicin resistance at the same time as 

detecting TB, while the moderate-accuracy test cannot. We assumed that all those recognised 

as having rifampicin resistance are immediately initiated on second-line therapy, while those 

with unrecognised rifampicin resistance are only switched to second-line therapy after failing 

first-line treatment. 

 

We considered ‘sensitivity’ as the proportion of TB cases that would yield a positive 

microbiological result under a given test, and likewise ‘specificity’ as the proportion of those 

without TB that would yield a negative microbiological result. Moreover, we assumed that all 

smear-positive cases test positive through a smear-like test, and that no smear-negative cases 

do (i.e. sensitivities of 1, 0 respectively). This is a simplification for model purposes: we also 

performed a sensitivity analysis under alternative assumptions, where smear-status is 

associated with a given probability of diagnosis.  

 

We simulated the intervention at different levels of coverage to run from 2020 to 2035, scaled 

up linearly over the first four years (2020-2024), ultimately to screen a given proportion of the 

population per year. We assumed for simplicity that this proportion is selected at random from 

the slum population each year. The impact of ACF was measured as the percentage reduction 

in cumulative incidence between 2020 and 2035. Finally, we calculated the incremental costs 

of the intervention relative to a baseline of status quo, i.e. current standards of TB care 

continued indefinitely, and without ACF. 

 

Economic evaluation 

We focus on the programmatic perspective, i.e. considering only costs borne by the TB 

programme, and ignoring broader societal costs. The model accounts for ‘passive’ TB 

services, i.e. those routine services (diagnosis and treatment, both first and second-line), 

independent of ACF, and contingent on patients presenting for care. Since these services 

could be lowered by the rollout of ACF, this will impact the overall incremental costs. 

Concentrating on programmatic costs, we counted only the costs of diagnosis and treatment 

in the public sector, and not the private sector. Moreover, new second-line regimens 

introduced in 2017 present a range of possible costs for DR-TB treatment. However, as the 

focus of the current study is on ACF, for simplicity we assumed costs and outcomes consistent 

with currently used regimens (Tables 1 and 3), while performing sensitivity analyses to this 

assumption. For all unit costs, for simplicity we assumed uncertainty intervals of +/-20%.  
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For the ACF costs, we assumed that all patients identified through ACF are linked to treatment 

in the public sector. We focused for simplicity on service costs, related to the numbers of 

confirmatory tests and patient-months of first- and second-line treatment incurred by the 

intervention. In doing so, we are neglecting the ‘intervention costs’ needed to facilitate the 

delivery of these interventions (for example, human resources). As discussed below, these 

are important cost components in any exercise aiming to estimate the full costs of ACF (17). 

For the purpose of the present study, however, if these intervention costs are similar for 

moderate- and high-accuracy testing, they may not substantially impact a comparison in cost 

between the two.  

 

Finally, we tracked the costs of treating false-positive TB diagnoses, as driven by the imperfect 

specificity of the screening and diagnostic tools involved, and the low prevalence of TB (<5% 

amongst those with symptoms, even in urban slums). Unnecessary TB treatment carries 

heavy societal costs, including avoidable stigma (13), as well as the monetary costs to patients 

and households (e.g. travel costs) involved in completing a regimen of TB treatment (18). Such 

factors are outside the scope of our current study: here we focus on the unnecessary 

programmatic spending on the treatment of false-positive TB, recognising (as discussed 

below) that this approach represents only one narrow part of the overall adverse effects of 

false-positive treatment (13). All unit costs are provided in Table 3. Overall, we caution that 

our estimates should not be interpreted as representing the overall cost of any ACF 

intervention, given that it misses these cost components, as well as the implementation costs 

described above. 

 

Sensitivity analysis 

To test model sensitivity to alternative screening strategies, we first simulated impact on 

incidence and incremental costs when using ‘prolonged cough’ as a symptom screening 

strategy, with higher specificity and lower sensitivity than an approach using any symptom 

suggestive to TB that we use as a baseline. For additional sensitivity analyses, as a focal 

model output, we calculated the cumulative cases averted between 2020 and 2035 under an 

assumed budget of USD 20 million, taking a ratio of cases averted between the ‘high-accuracy’ 

and ‘moderate accuracy’ scenarios. This ratio offers an estimate of the relative cost-efficiency 

of the two approaches. We examined model sensitivity to individual parameters by conducting 

a partial rank correlation between this model output and each of the model inputs listed in 

Table 1. We additionally evaluated the focal model output under different scenarios: (i) 

Assuming that smear microscopy can detect 25% and 75% of smear-negative and -positive 

cases, respectively (as opposed to 0% and 100% in the main analysis). (ii) Alternative 

scenarios for the burden and management of DR-TB, which can consume a disproportionate 
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share of programmatic spending. We modelled a scenario consistent with Mumbai, having a 

substantially higher DR-TB burden than the national average. We also modelled a scenario 

with the adoption of new, more effective and less costly second-line regimens.  

 

Planning and execution of Methods 

At the outset of this analysis, the modelling plan focused on the confirmatory test, assuming 

the use of ‘any symptoms suggestive of TB’ as a screening strategy. Subsequently, our main 

adjustment to this initial plan was in response to constructive reviewer comments, on the need 

to better understand the influence of the screening algorithm. In response, we incorporated 

the additional analysis as described above, on the alternative use of ‘prolonged cough’ as a 

screening strategy. Also in response to reviewer comments, we incorporated the additional 

sensitivity analyses described above, for the alternative scenarios for the burden and 

management of DR-TB. Our initial modelling plan otherwise underwent no data-driven 

changes.  
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Results 

Results of model calibration are shown in S1 Text Fig A. Simulating the ACF interventions, 

Fig 2 shows model projections for how epidemiological impact varies with coverage 

(proportion of the slum population screened per year). The higher the proportion of the slum 

population being screened each year, the greater the reduction in the prevalent pool of 

infectious TB; the impact shown in Fig 2 is the result of reducing opportunities for transmission 

in this way, measuring impact as the percentage reduction in cumulative incidence between 

2020 and 2035. The figure illustrates that high-accuracy testing would have a greater impact 

than a moderate-accuracy strategy, at a given level of coverage, as a result of its higher 

sensitivity. Even with the latter diagnosing the most infectious cases, this difference in impact 

is robust to parameter uncertainty. Taking the example of 50% coverage, the relative impact 

of high- vs moderate-accuracy strategies is 1·16 (95% credible interval 1·11-1·22).  

 

Next, Fig 3 illustrates how impact varies with incremental spending between 2020 and 2035, 

under the two ACF strategies. Here we assume an illustrative slum population of 2 million 

people, motivated by a mean population of major cities in India of ~10m, of whom roughly a 

third are slum-dwellers (19) (for smaller or larger cities, incremental spending will be 

proportional to population size). The vertical dashed line shows the number of cases that could 

be averted under an illustrative spend of USD 20 million. As noted above, this spend relates 

only to service costs of ACF, and does not reflect the full implementation costs of ACF. Under 

this budget, the impact of high-accuracy testing, relative to that of moderate-accuracy testing, 

is 1·14 (95% simulation intervals 0·75 – 1·99). Overall, therefore, results suggest that high-

accuracy testing would not only be more impactful at a given level of coverage (Fig 2), it could 

– under certain circumstances – also be more cost-efficient. 
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Fig 2. ACF impact as a function of coverage. Here we measure ‘impact’ as the percentage reduction 

in cumulative incidence between 2020 and 2035, and ‘coverage’ as the proportion of the slum 

population being screened per year. We assume for simplicity that a randomly selected proportion of 

the slum population is selected for screening each year, independent of screening in previous years. 

An ACF intervention with symptom screening is followed by bacteriological confirmation, using either a 

smear-like test (red curve) or an Xpert-like test (blue curve). The shaded areas represent the 95% 

uncertainty intervals. Each of the curves is generated by taking a range of annual screening from 0 (no 

ACF) to 1 (whole slum population screened for symptoms once a year): the upper endpoints of each 

curve occur at the upper limit of this range. Shaded areas represent the 95% credible intervals. Overlap 

between these areas does not imply a lack of significant difference between the interventions, as points 

in the red and blue areas are correlated. Indeed, the relative impact of the two strategies is robust to 

this parameter uncertainty (see main text). 
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Fig 3. ACF impact as a function of incremental programmatic spending, in an assumed slum 

population of 2 million people. As in Fig 2, we measure ‘impact’ as the percent cases averted by ACF. 

Incremental spending is the overall service cost of diagnostics and treatment, relative to a baseline 

scenario of no ACF, and assuming current conditions continue indefinitely. The vertical, dashed line 

shows an illustrative budget of USD 20 million; in spite of using a lower-cost test, a moderate-accuracy 

strategy is overall less cost-efficient than a high-accuracy one. The shaded areas represent the 95% 

credible intervals. As in Fig 2, overlapping regions does not imply similar cost-efficiency, and indeed 

the cost-per-case averted for a high-accuracy strategy is robustly greater (see main text). 

 

 

Fig 4 shows analysis to better resolve these circumstances. Fig 4A shows the most influential 

model parameters in the relative impact of a high- vs moderate-accuracy test at a budget of 

USD 20 million, highlighting the respective specificities of the two tests as the most influential 

parameters. In particular, the difference in specificity between the two tests is an important 

driver: Fig 4B shows the absolute difference, plotted against relative impact, highlighting that 

a high-accuracy test would be robustly more cost-efficient than a moderate-accuracy one, as 

long as it has specificity that is at least 3 percentage points greater.  
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Fig 4. Sensitivity analysis to identify key model parameters in the relative impact of high- vs 

moderate-accuracy strategies, under a given budget of USD 20million between 2020 and 2035. Here, 

we denote ‘relative impact’ as the cases averted over this period, by a high-accuracy testing strategy, 

relative to a moderate-accuracy one. In Fig 3, this focal model output is estimated to be 1·14 (95% 

simulation intervals 0·75 – 1·99). (A) Partial rank correlation coefficients of model parameters against 

relative impact, showing only the 10 highest correlations, and highlighting the test specificities as being 

the most influential two parameters. (B) Association between relative impact and test specificity, 

showing that rather than individual specificities, it is their absolute difference that matters most for 

relative impact. All points to the right of the vertical, dashed line correspond to a high-accuracy test 

being more impactful than a moderate-accuracy one; these results suggest that an absolute  specificity 

difference of at least 3 percentage points is sufficient to ensure that a high-accuracy test is more 

impactful than a moderate-accuracy one.  

 

 

Fig 5 illustrates why specificity is a driving factor, as well as identifying additional drivers in the 

impact of a high-accuracy test. Taking the example of 50% coverage, the figure shows the 

separate components of incremental cost through time, for both diagnostic tests. Fig 5A 

illustrates that false-positive treatment is by far the largest cost driver of a moderate-accuracy 

ACF intervention, followed by the cost of second-line treatment. For a high-accuracy test (Fig 

5B), major cost drivers are the cost of the test itself; the cost of treating false-positive 

diagnoses; and the cost of second-line treatment. Two comparisons bear mention. First, false-

positive TB is strongly affected by the specificity of the confirmatory test, with a moderate-

accuracy test being associated with 350k false-positive treatment initiations (95% CI 100k – 

710k), compared to 180k for high accuracy testing (95% CI 30k – 560k). Second, the effects 

of each test on DR-TB plays an important role in cost dynamics: by identifying DR-TB cases 

early, high-accuracy testing tends to have a stronger impact on reducing DR-TB incidence, 

thus leading to cost-savings in second-line treatment costs, over 15 years.  
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Fig 5. Breakdown of the incremental ACF service cost, shown here at 50% screening coverage for 

the two ACF algorithms. In the left-hand panel, the major driver of the incremental cost of moderate-

accuracy testing is the treatment of false-positive TB, from the NTS population (green dashed line). 

Notably, the cost of treatment of false-positive individuals is nearly halved when using an Xpert-like test 

for diagnosis (solid orange line, right-hand panel) and alongside diagnosis (red solid line) the two 

components are the main cost drivers for high-accuracy testing. The shaded areas represent the 95% 

simulation intervals. 

 

 

Both cost drivers are further explored in Fig 6. The role of false-positive TB treatment is 

illustrated in Fig 6A, which shows how the positive predictive value (PPV) of the whole 

diagnostic algorithm (including symptom screening) changes over time under both algorithms. 

For both scenarios, this value substantially decreases over time as a result of decreasing TB 

prevalence in the community but remains considerably lower for smear than for Xpert. 

Likewise, the role of DR-TB is further illustrated in Fig 6B, which shows the strong incidence 

reductions that would be brought about by a high-accuracy testing strategy, on DR-TB burden 

over time.  
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Fig 6. Additional comparisons between testing strategies (A) Comparison of the positive predictive 

value (PPV) of ACF strategies. Plots show the positive predictive value (PPV) of the entire diagnostic 

algorithm (including symptom screening), and not just that of the confirmatory test. Percentages on the 

right-hand of the figure (20%, 50% etc) show ACF coverage scenarios, for the proportion of the slum 

population being screened per year. The shaded areas represent the 95% simulation intervals. Overall, 

as TB prevalence is reduced over time by ACF, the PPV also decreases. Improved diagnostic 

algorithms, with improved specificity, may be needed in these advanced stages. (B) Comparison of 

both testing strategies shown in Fig 3, by their impact on the incidence of DR-TB over time, at fixed 

50% coverage. Because a high-accuracy test is able to diagnose rifampicin resistance at the point of 

TB diagnosis, it can contribute strongly to long-term reductions in DR-TB incidence, thus also averting 

future costs of second-line treatment (Fig 5B). A moderate-accuracy strategy also leads to a decline in 

DR-TB incidence, although to a lesser extent, as individuals with DR-TB are only switched to second-

line therapy after failing first-line therapy.  

 

 

The cost-efficiency of the overall ACF algorithm can be shaped as much by the choice of 

screening algorithm as by the choice of confirmatory test. S1 Text Fig B shows results for 

incidence and impact under an alternative screening algorithm, using ‘prolonged cough’ as an 

eligibility criterion for confirmatory testing, an approach having lower sensitivity and higher 

specificity (25% and 96% respectively (14)). At a given level of coverage, such a screening 

approach would reduce the overall impact of both high- and moderate-accuracy strategies, 

owing to its lowered sensitivity. As a result of its higher specificity, such an approach also 

substantially reduces the number of false-positive treatments overall, narrowing this specific 

advantage of a high-accuracy test. However, under a given budget of USD 20 million (as used 

in Fig 4), a prolonged-cough screening algorithm could allow many more people to be 

screened over time, potentially leading to a greater impact overall (S1 Text Table A and Fig 

B), than that shown in Fig 3. In turn, this enhanced impact promotes the long-term effect of 

the high-accuracy test in averting second-line costs. The overall effect is for the relative 

impact, of the two testing strategies at a budget of USD 20 million, to remain qualitatively 
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similar to that estimated from Fig 3 above, and indeed shifted in favour of the high-accuracy 

test. 

 

Finally, we conducted sensitivity analyses. Focusing on the relative impact of the high- vs 

moderate-accuracy strategies shown in Fig 3, S1 Text Fig D shows how this focal model 

output varies under a range of scenarios. The figure illustrates that the essential qualitative 

results remain, under alternative scenarios for the sensitivity of smear microscopy; the burden 

and management of DR-TB; and the size of the NTS population.  
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Discussion 

Active case-finding is potentially highly impactful, but also highly resource-intensive: our 

analysis therefore addresses the critical need to optimise its cost-effectiveness. We used 

mathematical modelling to examine strategies for microbiological testing in ACF for TB, aiming 

to identify the type of confirmatory test that would yield greatest epidemiological impact at 

lowest cost.  

 

Findings 

We hypothesised that a moderate-accuracy testing strategy, using a relatively cheap test that 

can nonetheless detect the most infectious cases, may be more cost-efficient (achieving 

incidence reductions at lower cost) than a high-accuracy strategy. However, our results 

suggest that the converse is true (Fig 3), wherever lower test cost is associated with reduced 

specificity. The reasons are threefold: (i) small improvements in test specificity can translate 

to large reductions in unnecessary (false-positive) TB treatments, that outweigh the cost of 

the test, (ii) a high-accuracy test that can also identify rifampicin resistance can offer long-term 

savings by reducing the burden of rifampicin resistant TB  (and thus need for costly second-

line treatment), and (iii) a high-accuracy test has greater impact than a moderate-accuracy 

test, as a result of its higher sensitivity (Figs 2 - 4).  

 

We have conservatively designated the confirmatory tests as ‘smear-like’ and ‘Xpert-like’, in 

recognition that performance data drawn from meta-analyses of clinical trials (Table 1) do not 

necessarily reflect the numbers of appropriate or erroneous TB treatment that would arise in 

real-world ACF implementation. In light of this uncertainty, the key conclusion of our analysis 

is not that one test should be preferred over another, but rather that specificity in field ACF 

conditions – for any diagnostic test – is a critical data gap to address, for future ACF planning. 

In recent years the availability of molecular diagnostics has rapidly expanded for routine TB 

services in India (20–22); our findings support the use of similar tests, with equal or higher 

specificity and the ability to detect rifampicin resistance, in active case-finding.   

 

Quantifying specificity 

We note that quantifying ‘true’ specificity is a complex challenge, partly as the culture 

reference standard (against which specificity is judged) also has imperfect sensitivity, raising 

the question of how to interpret smear positive, culture negative results, particularly amongst 

those with strong clinical signs of TB. As initial steps in this direction, future ACF 

implementation research could aim, for example, to supplement microbiological reference 

standards with ‘composite’ reference standards, that additionally incorporate clinical diagnosis 

and patient assessment on follow-up, including response to anti-TB treatment. Our results 
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also have implications beyond the particular diagnostic tests being examined here. For 

example, a new generation of molecular diagnostic tests, Xpert Ultra, has higher sensitivity 

than Xpert, but also lower specificity (6). Its use in ACF would lead to similarly unacceptable 

numbers of false positive TB treatment, as those illustrated in Fig 4 (left-hand panel).  

 

Role of screening 

Our sensitivity analysis shows that the performance of the screening stage can also play an 

influential role, although whether this widens or narrows the gap between the two diagnostic 

tests (at a given budget) depends on the relative magnitudes of: (i) the reduction in false-

positive TB treatments arising from a higher-specificity screening algorithm, and (ii) the long-

term second-line TB treatment costs that can be averted by a high-accuracy test (S1 Text Fig 

C and Table A). In our current work, the overall effect is for our qualitative findings to remain 

unchanged. Strategies such as X-ray screening (not modelled in the current study) can show 

greater sensitivity and specificity than symptom screening alone (23), while allowing TB 

detection amongst those not reporting symptoms. Implementation of X-ray screening is more 

resource-intensive than symptom screening, but could be facilitated by the use of mobile 

radiography units (24,25), along with newly emerging technology for automated X-ray reads 

(26,27). While the present analysis has focused on confirmatory tests, a more systematic 

exploration of these and other screening strategies will be an important area for future work. 

 

The patient perspective 

Focusing on programmatic costs, our analysis does not address the important issue of patient 

costs associated with TB (28–30). In the context of routine TB services, the costs of care-

seeking and TB treatment can have a substantial impact on productivity and household 

income, and is an important cause of catastrophic health expenditure (29). Previous work in 

India has shown that ACF can bring about substantial reductions in these patient costs (18), 

essentially by bringing TB services to those in need in a timely way. By neglecting patient 

costs, our analysis therefore does not capture the societal cost-savings that would result, from 

higher-sensitivity testing strategies. Our analysis also does not address the societal costs of 

false-positive TB diagnosis, including the potentially life-changing impact of stigma (13), and 

the potential side effects of TB treatment. Our analysis thus does not capture the societal cost-

savings that would result, from higher-specificity ACF approaches. Overall, therefore, we 

expect that inclusion of societal costs would act to widen the gap between the strategies 

shown in Fig 3. The extension of our analysis, to incorporate these important costs to the 

patient, is an important area for future work. 

 

Key considerations in intervention costs 
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Our study has focused on the performance of confirmatory tests in ACF but has not addressed 

the implementation of these tests. For example, the overall cost of an Xpert test will depend 

on whether Xpert units are readily accessible for use in ACF, or whether they are only available 

in central laboratories, requiring the additional expense of sample transport and relaying test 

results to the patient. Previous work has addressed these considerations in the context of 

routine TB services (31). Although such considerations are outside the scope of our current 

analysis, we note that access to Xpert facilities is likely to be more pressing in peripheral health 

facilities in rural India than in urban slums. India’s current National Strategic Plan includes 

measures to improve the capacity for Xpert testing nationwide (32). Moreover, recent 

developments offer prospects for reduced reliance on laboratory infrastructure, for example 

with the development of new, more mobile molecular diagnostics such as Xpert Omni (33) and 

Truenat (34), as well as the deployment of Xpert MTB/Rif through mobile diagnostic vans (35). 

All of these developments would tend to reduce the per-test cost of high-accuracy diagnostic 

tools, through allowing closer proximity to the ACF intervention. For any study aiming 

systematically to estimate the full cost of ACF, these and other implementation factors will be 

important to take into account (for example, as demonstrated in refs. (17,31)). Nonetheless, 

our findings illustrate an important consideration in any such study: i.e. in addition to these 

important cost components, that the specificity of the confirmatory test, along with that of the 

whole ACF cascade, is likely to be a key driver of the cost/impact ratio of any ACF intervention.  

 

Our analysis has ignored intervention costs directly associated with the roll-out of the 

intervention, such as human resources and costs associated with the purchase of equipment. 

We also take a simple approach of assuming unit costs that are unaffected by the scale of the 

intervention, thus ignoring the potential for economies of scale, especially at high levels of 

population coverage. If human resource costs are similar under the two strategies, they would 

have little effect on the relative costs of these strategies. Overall, however, we emphasise that 

our estimates should not be interpreted as estimates of the actual cost of ACF. An important 

area for future work would be to incorporate these important elements (17,36), for more 

comprehensive estimates of the full cost of ACF.  

 

Model limitations 

For simplicity, we ignored pre-treatment loss-to-follow-up. Although commonly observed in 

practical implementations of ACF (37), we do not expect this simplification to alter our essential 

findings, as long as it affects the two testing strategies roughly equally. Again, for simplicity, 

we assume that all false-positive TB diagnoses have the same rates of treatment completion 

as true positive diagnoses; if their completion rates are substantially lower, this would tend to 

reduce the treatment cost associated with false-positive TB diagnosis. Finally, we note that 
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there is considerable uncertainty about the potential transmission impact of ACF interventions, 

owing partly to a lack of direct evidence, particularly in South-Asian settings (4). In the present 

analysis, our impact projections are based on a series of assumptions, including perfect 

implementation of symptom screening and diagnosis; high-quality engagement with and 

participation by the community; effective linkage to treatment; immediate rapid bacteriological 

suppression upon treatment (thus interrupting transmission); and the degree to which ACF is 

able to identify TB cases while they still have substantial potential for passing on infection.(4) 

Lessons from current and future ACF initiatives will be invaluable in identifying which of these 

assumptions needs most attention.  

 

Conclusion 

As ACF efforts are scaled up in India and other high-burden settings, implementation planning 

could benefit from a population perspective of potential costs and benefits. Such a perspective, 

complementing other approaches such as operational research, takes into account both the 

epidemiological impact and unintended consequences (such as false-positive diagnosis) of 

large-scale deployment. Addressing important questions about the optimum implementation 

of ACF could open the way for considerable impact on TB burden, in India and elsewhere. 

 

 

 

 

  



   
 

 22 

Parameter Symbol Value Source / 
Notes 

Natural History 

Infection rate, smear-positive DS-TB 𝛽𝐷𝑆 9·10 yr-1 

[7·35 – 10·70] 

Fitted to 
epidemiological 
data (Table 2) 

Infection rate, smear-positive DR-TB 𝛽𝑀𝐷𝑅 5·19 yr-1 

[4·12 – 6·26] 

Relative infectiousness, smear negative 
vs. smear positive 

𝜀 0·2 

[0·1 – 0·3] 

(9) 

Rate of progression to active disease 
from latency 

a  [0·0005 – 
0·0015] 

(38) 

Proportion of infections being ‘fast’ 
progressors to active disease 

𝑝𝐹𝑎𝑠𝑡  [0·05 – 0·15] (39) 

Per-capita rate of initial care-seeking 
upon first developing symptoms 

𝑟𝐶𝑆 0·73 yr-1 

[0·57 – 0·91]  

Fitted: 
corresponds to 
a mean initial 
delay of over a 
year 

Per-capita rate of repeat care-seeking 𝑟𝑐𝑠
(2)

 

 

12 yr-1 

[9 - 15] 

Assumption: 
corresponds to 
a mean delay of 
1 – 6 weeks 

Per-capita rate of 
smear conversion  

Symptomatic 
TB 

m0 0·71 yr-1 

[0·40 - 1·04] 

Fitted to 
prevalence 
survey data 
(Table 2)  

Asymptomatic 
TB 

m1 0·63 yr-1 

[0·62 - 0·64] 

Per-capita rate of 
symptom 
development 

Smear-positive 
TB 

e0 1·24 yr-1 

[1·02 - 1·65]  

Smear-
negative TB 

e1 2·37 yr-1 

[1·90 - 3·05] 

Proportion of prevalent TB cases that 
are smear positive 

𝜔+ 0·6 

[0·5 – 0·7] 

(1) 

Per-capita rate of 
relapse 

Post treatment 
completion 

𝑟1 0·032 yr-1 

[0·024 – 0·04] 

(38) 

Post treatment 
default 

𝑟2 0·14 yr-1 

[0·105 – 0·175] 

Long-term (>2 
years) relapse 
risk 

𝑟3 0·002 yr-1 

[0·0011 – 
0·0019] 

Per-capita rate of spontaneous 
recovery 

𝛾 0·1667 yr-1 

[0·1250 – 
0·2083] 

(38) Together, 
yielding a 50% 
case fatality rate 
over 3 years of 
untreated TB 

Per-capita rate of mortality, untreated 
TB 

µ𝑇𝐵 0·1667 yr-1 

[0·1250 – 
0·2083] 
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Proportion reduction in susceptibility to 
reinfection owing to previous infection 

𝜌 0·21 

[0·15 – 0·25] 

(40) 

Per-capita background mortality rate µ 0·0152 yr-1 (38) 
Corresponding 
to mean life 
expectancy of 
66 years 

Per capita birth rate b 0.0682 (41) Adjusted to 
yield 2.4% 
annual 
population 
growth from 
1970 

Diagnosis (routine TB services, in absence of ACF) 

Proportion seeking care from private 
sector 

𝑝1 0·5 

[0·4 – 0·6] 

Assumption, 
consistent with 
(12) 

Proportion correctly 
diagnosed per 
provider visit 

Public sector 𝑝0
(𝐷𝑥)

 

 

0·83  

[0·81 – 0·85] 

(42) 

Private sector 𝑝1
(𝐷𝑥)

 

 

0·7 

[0·6 – 0·8] 

Assumption 

Proportion of 
diagnoses 
successfully initiating 
treatment  

First-line, 
public sector 

𝑝0
(𝑇𝑥)

 0·88 

[0·85 – 0·91] 

Aggregated for 
first- and 
second-line (42) 

First-line, 
private sector 

𝑝1
(𝑇𝑥)

 0·7 

[0·6 – 0·8] 

Assumption 

Second-line, 
public only 

𝑝0
(𝑇𝑥2)

 0·88 

[0·85 – 0·91] 

Aggregated for 
first- and 
second-line (42) 

Proportion of TB recognized as DR-TB 
at point of diagnosis (public only*) 

𝑝𝐷𝑆𝑇 

 

  0·12 

[0·08 – 0·20] 

(22) 

Treatment  

Per-capita rate of 
regimen completion  

First-line 𝑑𝑇𝑥𝐹𝐿 2 yr-1 (1,3) 
Corresponds to 
a duration of 6 
months 

Second-line 𝑑𝑇𝑥𝑆𝐿 0·5 yr-1 (1) Corresponds 
to a duration of 
2 years 

Proportion first-line 
treatment success 

Public sector 𝑐0
1 0·85 

[0·83 – 0·87] 

(1,3)  

Private sector 𝑐1
1 

 

0·6  

[0·5 – 0·7] 

Assumption 

Proportion second-line treatment 
success (public only*) 

𝑐2 0·46 

[0·44 – 0·5] 

(1,3) 
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Table 1. List of model parameters. Footnotes: (*) We assume that all DR-TB management 

occurs in the public, not private, sector. (**) In the parameter sampling, we adopt only those 

joint parameter sets in which Xpert specificity is greater than that of smear. (***) The size of 

Amongst DR-TB cases failing first-line 
treatment, proportion successfully 
transferred onto second-line treatment 
(public only*)  

𝑝𝑆𝐿 0·88 

[0·85 – 0·92] 

Assumption 

Rate of DR-TB acquisition amongst DS-
TB cases on first-line treatment 

𝑟𝑀𝐷𝑅 0·01 yr-1 (1,38) 

Active case-finding 

High-accuracy test 
performance 
(consistent with 
available data for 
Xpert) 

Sensitivity  
(smear-positive 
TB) 

𝑠1 1 Assumption (at 
least as 
sensitive as 
smear) 

Sensitivity 
(smear-negative 
TB) 

𝑠0 0·7 

[0·6 – 0·8] 

(43,44) 

Specificity 𝜎 0·99 

[0·90 - 1·0] 

(45) (see 
footnote **) 

Per-capita rate for 
performing 
diagnostic test 

𝑑𝐷𝑥 52 yr-1 We assume 1 
week for sample 
collection, 
transportation 
and analysis 

Proportion of TB 
recognized as 
DR-TB at point of 
diagnosis  

𝑝𝐷𝑆𝑇𝐴 

 
0·95 

  [0·90 – 0·97] 

 

(8) 

Moderate-accuracy 
test performance 
(consistent with 
available data for 
smear) 

Sensitivity  
(smear-positive 
TB) 

𝑠1 1 Simplifying 
model 
assumptions  

Sensitivity 
(smear-negative 
TB) 

𝑠0 0 

Specificity 𝜎 0·98 

[0·93 – 1·0] 

(45)  

(see footnote **) 

Per-capita rate for 
performing 
diagnostic test  

𝑑𝐷𝑥 52 yr-1 We assume 1 
week for sample 
collection, 
transportation 
and analysis 

Symptom screening 
(any TB symptom) 

Sensitivity  𝑠 0·70 
  [0·58– 0·82] 

(14) 

Specificity (***) 𝜎 0·61 
  [0·35 – 0·87] 

(14) 

Per-capita rate for 
performing 
symptom 
screening 

𝒅𝒔𝒙 365 yr-1 Assumption, 
corresponds to 
1 day 
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the non-TB symptomatic (NTS) population was calculated using the specificity of the symptom 

screening method used (see S1 Text for full model specifications). For a strategy screening 

for ‘any TB symptom’, the size of the NTS population would therefore be 39% of the size of 

the population in which TB dynamics are modelled. 

 

Data Calibration target 

(95%CI) 

Source/Notes 

Slum prevalence (per 100,000 

population) of culture-positive TB, as 

of 2012 

432 (341 - 527) Drawn from ref (5), using 

prevalence of culture-

positive TB (259 per 

100,000), and inferring the 

slum prevalence from the 

univariate odds ratio of 

culture-positive TB in slum 

vs non-slum settings (2.3), 

together with an assumed 

slum size of 20% of the 

urban population 

Slum ARTI, as of 2006 2.5% (1.9 – 3.1%) (46) and V.K. Chadha, 

personal communication  

Proportion of TB incidence that is DR-

TB as of 2018 

5% (4 – 6%) (47) 

Proportion of prevalent TB having any 

TB symptoms  

70% (58 – 82%) By definition, same as 

assumed value of 

sensitivity of symptom 

screening (Table 1) 

Proportion 

prevalent TB 

that is smear-

positive as of 

2012  

In symptomatic 

individuals 

67% (60 – 74%) (5) 

In asymptomatic 

individuals 

66% (56 – 77%) (5) 

Table 2. Data used to calibrate the compartmental model. ARTI denotes ‘Annual Risk of 

TB Infection’. ‘DR-TB’ denotes ‘drug-resistant’ TB, including both rifampicin-resistant and 

multi-drug-resistant forms of TB. Although largely drawn from a prevalence survey in Chennai, 

South India (5), these data are broadly consistent with prevalence surveys in urban settings 

elsewhere in India (48). 
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Unit cost Cost (USD) Source 

Active case-finding 

Symptom screening 2 (1.60 – 2.40) Table S15 from (49) 

supplementary information – 

unit cost of symptom 

screening in South Africa. 

Sputum smear-microscopy 2.26 (1.81 – 2.71) Table 2 from (50) reports unit 

cost of USD 1.13 for a single 

AFB smear in India. With a 

minimum of two smears 

required for diagnosis, we 

double this cost. 

GeneXpert MTB/RIF 17.53 (14.02 – 21.04) Table S12 from (49) 

supplementary information – 

difference between unit cost 

of Xpert and microscopy is 

given to be 16.4. 

Treatment (cost per patient-month) 

First-line treatment 2.42 (1.93 – 2.90) For an average cost of 

USD14.5 (11.6 – 17.4). 

Electronic Supplementary 

Material, Annex 4, provider 

drug costs for DS-TB in India 

(28). 

Second-line treatment 

 

100 (80 – 120) For an average cost of 

USD2,400 (1,920-2,880) for 

the full regimen (28,51). 

Table 3. Unit (service) costs used in the analysis. For simplicity we ignore the ‘new’ 

second-line regimens, as it is unclear what proportions of patients will be eligible for the 

different treatment options. However, in S1 Text we provide a sensitivity analysis to the 

potential future uptake of these regimens. To capture uncertainty in costs, we allowed variation 

by +/- 20% for each of these cost components.  
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