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The Use of Max-Sat for Optimal Choice of Automated
Theory Repairs?

Marius Urbonas, Alan Bundy, Juan Casanova, and Xue Li

University of Edinburgh, UK

Abstract. The ABC system repairs faulty Datalog theories using a combination
of abduction, belief revision and conceptual change via reformation. Abduction
and Belief Revision add/delete axioms or delete/add preconditions to rules, re-
spectively. Reformation repairs them by changing the language of the faulty the-
ory. Unfortunately, the ABC system overproduces repair suggestions. Our aim
is to prune these suggestions to leave only a Pareto front of the optimal ones.
We apply an algorithm for solving Max-Sat problems, which we call the Partial
Max-Sat algorithm, to form this Pareto front.

Keywords: Faulty logical theory repair ·Max-Sat ·Reformation ·Belief revision
· Abduction · Datalog theories · Automated theorem proving.

1 Introduction

We model the environment as a logical theory. Such a theory will need to be repaired
when: errors are detected; the environment changes; or it needs to be re-tuned to cope
with new tasks. The ABC system repairs faulty logical theories [9]. It is given a theory,
T, as a set of axioms in the decidable logic Datalog [2], and some observations S,
represented as a pair of sets of ground propositions. One set, T (S), is of propositions
observed to be true of the environment and the other, F(S), of those observed to be
false. T is used to make predictions about the environment. When these predictions
conflict with the observations in S, the ABC system applies a sequence of repairs to T
until it is fault free. ABC is unique in repairing the language of T as well as the axioms.

T’s predictions are wrong if it proves something in F(S) (incompatibility) or fails
to prove something in T (S) (insufficiency). The ABC system then tries to repair T
either by adding/deleting axioms, deleting/adding preconditions to rules or changing
T’s language. Language changes are implemented by reformation [1] and consist of
splitting/merging predicates or constants, or adding/deleting arguments of predicates.
Unfortunately, ABC produces too many repair options. In this paper, we describe and
evaluate the use of Partial Max-Sat to detect and prune sub-optimal repairs. Optimal
repairs, are those that minimise the number of any remaining or newly introduced faults.
Our hypothesis then is:

? Marius Urbonas was funded by a studentship from the Student Awards Agency Scotland, Alan
Bundy was funded by EPSRC grant F14R10199 and Juan Casanova by an EPSRC CDT in
Data Science and a Brainnwave studentship. We are grateful to Joshua Knowles for suggesting
this project, and to several anonymous reviewers for suggestions that improved the paper.



Our Partial Max-Sat based algorithm prunes sub-optimal repairs from ABC’s
output. It usually terminates successfully with a significantly smaller set of
fault-free, optimal repaired theories.

The results supporting this claim are discussed in §5.
Note that a Pareto-front is required because there are conflicting requirements on

the repair process. Repairing an incompatibility reduces the number of theorems in
order to remove the false one. Repairing an insufficiency, on the other hand, increases
the number of theorems to add the true but unprovable one. So, there may be multiple
incomparable and conflicting optimal repairs.

Several of the algorithms we use have worst-case exponential complexity in time
and/or space. These complexities do not compound and our scaling experiment at the
end of §2.4 shows a quadratic time complexity.

The ABC system is not intended to be a stand-alone system, but to be a compo-
nent of a larger system, for instance, with sensors, planners, actuators, etc. The wider
context will help address some of the current gaps in ABC, e.g., Where do the obser-
vations come from? How to choose the best optimal, fault-free repair? How to assign
meaningful names to newly created concepts?

2 Background

We first describe the ABC system. We define: what we mean by a fault; the Datalog
theories that ABC repairs; SL Resolution, which ABC uses for deduction; the repair op-
erations it uses; and we illustrate the overproduction problem that this paper addresses.

2.1 Faults as Reasoning Failures

Both incompatibility and insufficiency arise from reasoning failures: mismatches be-
tween the theorems of a theory T and the observations of the environment 〈T (S),F(S)〉.
A ground proposition is a formula of the form P (C1, . . . , Cn), where P is an n-ary
predicate and the Cis are constants. So, ideally:

R ∈ T (S) =⇒ T ` R R ∈ F(S) =⇒ T 6` R

That is, the true ground propositions are theorems of T and the false ones are not. The
language of T is given in Definition 2 and the inference system in §2.3.

Definition 1 (Incompatible and Insufficient)

Incompatible: T is incompatible with S iff ∃R. T ` R ∧R ∈ F(S).
Insufficient: T is insufficient for S iff ∃R. T 6` R ∧R ∈ T (S).

The ABC system detects and repairs both kinds of faults.



2.2 Datalog Theories

To ensure termination of proof search, it is convenient to limit the ABC System to a
decidable logic. Datalog theories are not only decidable but are sufficiently expressive
to admit a wide range of practical applications. Although reformation has been imple-
mented for richer logics [1, 11]. Datalog is a logic programming language consisting
of Horn clauses in which there are no functions except constants. We represent clauses
in Kowalski normal form: an implication between a conjunction of the negated propo-
sitions and a disjunction of the positive propositions, i.e., in Kowalski normal form, a
clause: ¬Q1 ∨ . . . ∨ ¬Qm ∨R1 ∨ . . . ∨Rn is represented as:

Q1 ∧ . . . ∧Qm =⇒ R1 ∨ . . . ∨Rn

In Horn clauses n = 0 or n = 1, so they fit one of the four forms in Definition 2.

Definition 2 (Datalog Formulae)
Let the language of a Datalog theory T be a triple 〈P, C,V〉, where P are the propo-

sitions, C are the constants and V are the variables. We will adopt the convention that
variables are written in lower case, and constants and predicates start with a capital
letter1. A proposition is a formula of the form P (t1, . . . , tn), where tj ∈ C ∪ V for
1 ≤ j ≤ n, i.e., there are no compound terms. Let R ∈ P and Qi ∈ P for 0 ≤ i ≤ m
in T. R is called the head of the clause and the conjunction of the Qis forms the body.

Implication: (Q1 ∧ . . . ∧Qm) =⇒ R. These usually represent the rules of T.
Assertion: =⇒ R. These usually represent the facts of T.
Goals: Q1 ∧ . . . ∧ Qm =⇒ . These usually arise from the negation of the conjecture

to be proved and from subsequent subgoals in a derivation.
Empty Clause: =⇒ . This represents false, which is the target of a refutation-style

proof. Deriving it, therefore, represents success in proving a conjecture.

Repairs operate on the language of T and on both its implications and assertions.
The Datalog safety condition requires that every variable that appears in the head of

a clause also appears in the body. Variables in the head but not the body are called or-
phans2. There are other Datalog restrictions, but these are to make it behave efficiently
as a programming language and we do not need to adopt them. As we will see, despite
these restrictions, Datalog is sufficiently expressive for many practical applications.

A small Datalog theory is given in Example 1. The axioms assert that all birds can
fly and are feathered, penguins are birds, and Tweety and Polly are both birds.

1 The opposite of the Prolog convention.
2 Although orphans cannot appear in a well-formed Datalog theory, we define them here because

they may be created temporarily during the repair process, so must be identified and then
eliminated by subsequent repairs.



Example 1 (Tweety Theory) TTw consists of the following set of axioms:

Bird(x) =⇒ Fly(x) (1)
Bird(x) =⇒ Feathered(x)

Penguin(y) =⇒ Bird(y) (2)
=⇒ Penguin(Tweety) (3)
=⇒ Bird(Polly)

2.3 Deduction by SL Resolution

Deduction in Datalog is decidable but exponential. So, if there is no proof of a con-
jecture, the search will eventually terminate without success, so we can be sure that the
conjecture is not a theorem. Such finite failure is important for detecting insufficiencies,
so was one of the technical reasons for choosing Datalog.

However, if the minimal proof is long then the search for it could exhaust the avail-
able resources. Fortunately, in many practical applications, the number of rules is small
compared to the facts3. So proofs are quite short, even when the number of axioms is
large. Resolution proofs work by refutation: the conjecture to be proved is negated and
added to the axioms. If the empty clause, =⇒ , is derived then the conjecture has been
proved by reductio ad absurdum. In Horn clauses, the negated conjecture takes the form
of a goal clause. For deduction, we use SL Resolution [8], a deductive rule that is par-
ticularly well suited to fault diagnosis. A single SL Resolution step takes the following
form: ∧i−1

k=1Rk ∧ Ri ∧
∧n

k=i+1Rk =⇒

(
∧i−1

k=1Rk ∧
∧m

k=1Qk ∧
∧n

k=i+1Rk)σ =⇒

∧m
k=1Qk =⇒ P

(4)

where the highlighted Ri is the selected goal, the highlighted P is the rule head it
is resolved with and σ is the most general substitution of terms for variables that will
make P and Ri identical. Note that, to prevent the same variable appearing in both the
selected proposition and the head of the axiom, the variables in the axiom should be
renamed to new variables. To aid readability, we will do this conservatively.

A SL Resolution refutation on Horn clauses takes the form of a linear sequence of
SL Resolutions steps (4) in which a goal in each goal clause is resolved with either
the head of an implication (rule) or an assertion (fact). This has the advantage that we
can apply any repair directly to the axiom involved in either the current or an earlier
SL Resolution step in the current branch, so we do not need to inherit the repair back
up through derived clauses to an axiom. This advantage is inherited by restricting to
Datalog, as all its formulae are Horn clauses, which is the second technical reason for
choosing Datalog.

3 Personal communication from Frank van Harmelen. Based on the LOD-a-lot survey of the
Linked Open Data cloud, he estimates that of 23.8 billion unique statements only 565 million
could be classified as rules - the rest being facts, i.e., rules make up just under 2% of the to-
tal. For more detail, see https://frankvanharmelen.home.blog/2020/07/13/
2-makes-all-the-difference-on-the-lod-cloud/ accessed 14.7..20.



Example 2 uses SL Resolution to infer Fly(Tweety). The highlighting is explained
in §2.4.

Example 2 We use TTw from Example 1.

Fly(Tweety) =⇒
Bird(Tweety) =⇒

Bird(x) =⇒ Fly(x)

Penguin(Tweety) =⇒
Penguin(y) =⇒ Bird(y)

=⇒ =⇒ Penguin(Tweety) (5)

2.4 Repair Operations

Incompatibility and insufficiency faults are diagnosed and repaired in a dual way. F(S)
and T (S) are both finite sets. The ABC system tries to prove each member of these sets.
If a member of F(S) is proved then we have discovered an incompatibility. Similarly, if
a member of T (S) is not proved then we have discovered an insufficiency. Incompati-
bilities can be repaired by blocking the unwanted proof. Insufficiencies can be repaired
by unblocking a wanted, but failed proof.

The repair operations used by the ABC system are listed in Definitions 3 and 4.
They are drawn from the literature on abduction and belief revision, plus our own work
on reformation. Note that a single repair application may not produce a fault-free theory.
Several applications may be required.

New applications, however, occasionally reveal the opportunity or necessity of new
kinds of repair operations or the generalisation of existing operations. So, the space of
repair operations seems open-ended and we make no claim to have exhausted the pos-
sibilities. In fact, given the unbounded nature of ingenuity, we doubt that an exhaustive
classification of repair operations exists or, even if one did, that it could be proved to be
exhaustive.

Definition 3 (Repair Operations for Incompatibility) In the case of incompatibility,
the unwanted proof can be blocked by causing any of the resolution steps to fail.
Suppose the targeted resolution step is between a goal P (s1, . . . , sn) and an axiom
Body =⇒ P (t1, . . . , tn), where each si and ti pair can be unified. Possible repair
operations are as follows:

Belief Revision 1: Delete the targeted axiom.
Belief Revision 2: Add an additional precondition to the body of an earlier rule axiom

which will become an unprovable subgoal in the unwanted proof.
Reformation 1: Rename P in the targeted axiom to the new predicate P ′.
Reformation 2: Increase the arity of all occurrences P in the axioms by one. Ensure,

recursively, that the new arguments, sn+1 and tn+1, in the targeted occurrence of
P , are not unifiable.

Reformation 3: For some i, suppose si is C. Since si and ti unify, ti is either C or a
variable. Change ti to the new constant C ′.

Definition 4 (Repair Operations for Insufficiency) In the case of insufficiency, the
wanted but failed proof can be unblocked by causing a currently failing resolution step



to succeed. Suppose the chosen resolution step is between a goal P (s1, . . . , sm) and an
axiomBody =⇒ P ′(t1, . . . , tn), where either P 6= P ′ or, for some i, si and ti cannot
be unified. Possible repair operations are:

Abduction 1: Add a new axiom whose head unifies with the goal P (s1, . . . , sm).
Abduction 2: Locate the rule whose body proposition created this goal and delete this

proposition from the rule.
Reformation 4: Replace P ′(t1, . . . , tn) in the axiom with P (s1, . . . , sm).
Reformation 5: Suppose si and ti are not unifiable. Remove the ith argument from all

occurrences of P ′.
Reformation 6: If si and ti are not unifiable, then they are unequal constants, say, C

and C ′. Either (a) rename all occurrences of C ′ in the axioms to C or (b) replace
the offending occurrence of C ′ in the targeted axiom by a new variable.

Note that we disallow repairs that would change S. This is because S consists of
observations of the environment. Our goal is to repair the theory T so that it predicts
our observations S of the environment - not the other way around. There is also the
practical consideration that if a predicate, say, P (C) ∈ T (S), were changed to, say,
P (C,Normal) and P (C,Abnormal) then we would have no basis to say whether
either of them belonged to T (S) or F(S). This would make it difficult to track the
progress of a sequence of repairs. This restriction is implemented by a mechanism that
protects nominated predicates and constants from being changed by repairs [9].

A repair of an incompatibility can be illustrated with TTw from Example 1 and
the refutation in Example 2. Suppose we observe that Tweety cannot fly, i.e., that
Fly(Tweety) ∈ F(S). Since refutation 2 proves Fly(Tweety), we have an incom-
patibility. Suppose we decide to break the unwanted refutation 2 at the highlighted res-
olution step. One repair suggestion is to apply Reformation 2 from Definition 3. This
will give the repaired theory ν(TTw)

4:

Bird(x, Normal ) =⇒ Fly(x)

Bird(x, y ) =⇒ Feathered(x)

Penguin(y) =⇒ Bird(y, Abnormal )

=⇒ Penguin(Tweety)

=⇒ Bird(Polly, Normal )

where Normal and Abnormal are two new constants. Fly(Tweety) is no longer a
theorem of this repaired theory.

The naming of these two new constants was suggested by the observation that new
constants introduced by repair Reformation 2, i.e.. by giving P a new argument, often
distinguish two kinds of P , where the abnormal kind was from the axiom in the now
broken resolution step.

These repair operations have been applied to a wide range of examples, some of
which can be found in Table 1. In addition, we have evaluated the scalability of the
ABC system by applying it to the alignment of two commercial databases with sample

4 Pronounced ‘new TTw’.



sizes up to 1020 entries5. Known misalignments were put into F(S) and the remainder
into T (S). The time taken to find all repairs for a sample was shown to be a quadratic
function of the size of the sample, so the ABC system was shown experimentally to
have a feasible computational complexity.

2.5 Overproduction of Repair Suggestions

The main problem with the theory repair mechanism outlined in §2.4, is overproduction,
i.e., it makes too many repair suggestions. The contribution of this paper is a Partial
Max-Sat-based mechanism for pruning sub-optimal repair suggestions. To illustrate
the problem, let us consider some of the other repair suggestions that the ABC system
generates for repairing the incompatibility in the theory TTw from Example 1.

Note that the ABC system can break the unwanted proof in Example 2 at each
of the 3 resolution steps, and those steps can be broken using each of the 5 repair
operations described in Definition 3, sometimes in more than one way. For the purposes
of analysis, let us additionally assume the observations Feathered(Tweety) ∈ T (S)
and Fly(Polly) ∈ T (S). Note that both Feathered(Tweety) and Fly(Polly) are
theorems of T. So a new insufficiency will be introduced if either of them is not a
theorem of the repaired theory ν(T). Consider the following repair suggestions to T.

Belief Revision 1: Delete axiom (2), for instance. Note that, Feathered(Tweety) is
no longer a theorem, so this deletion will cause an insufficiency.

Belief Revision 2: Add an additional precondition to the body of axiom (2). User inter-
action is required to suggest a suitable precondition. Moreover,Feathered(Tweety)
is no longer a theorem, so this repair will also cause an insufficiency.

Reformation 1: Rename Bird in axiom (2) to the new predicate Bird′. Note that
Feathered(Tweety) is no longer a theorem, which causes the same insufficiency
as in the previous two repairs. If, instead, Bird in axiom 1 were renamed, then
Fly(Polly) would cease to be a theorem which would cause a different insuffi-
ciency.

Reformation 2: This is the repair described in §2.4. Note that Feathered(Tweety)
and Fly(Polly) are still theorems, so this repair avoids the insufficiencies caused
by the other four repairs.

Reformation 3: This is not applicable to axiom (2), but could be applied to axiom (3)
to rewrite it to =⇒ Penguin(Tweety′). Note that Feathered(Tweety) is no
longer a theorem. In addition, a new incompatibility will be caused if it is observed
that Fly(Tweety′) ∈ F(S).

Without pruning sub-optimal repairs, the ABC System makes 10 repair suggestions
for this faulty theory. For incompatibilities with several or longer unwanted proofs, the
number of repair suggestions can be much more. The pruning mechanism described in
§4, will prune all but the Reformation 2 repair described in §2.4.

5 The details are subject to NDA, so have been anonymised.



3 Pruning out Sub-Optimal Repairs

The ABC System is applied to Datalog theories, whereas Partial Max-Sat, which is
the main component of our pruning mechanism, and similar Sat-based algorithms, are
designed for propositional logic. The theory behind reducing Datalog-like theories to
propositional ones is well known, but is briefly discussed in §3.1. This is followed by a
brief introduction to Partial Max-Sat in §3.2 and how we use it in §4.

3.1 Turning First-Order Theories into Propositional Logic

All Datalog theories can be converted into equivalent propositional ones. Note that if we
ground all axioms in a theory T by instantiating their variables in all possible ways with
constants we will get another theory Ground(T) in which all the axioms are variable-
free Horn clauses. Since Datalog theories have no non-nullary functions, Ground(T)
has only a finite number of axioms. Moreover, Ground(T) has a model iff T has one
[6]. We can view Ground(T) as a propositional theory, so SAT-related algorithms can
be applied to it to solve T problems. Since every occurrence of each variable in T must
be instantiated in |C| ways then this grounding is an exponential process in time and
space.

Definition 5 (Grounding a Datalog Theory)

Ground(T) = {φσ | φ ∈ T ∧ σ : V 7→ C}

The Ground function is illustrated in Example 3.

Example 3 (Grounding a Theory) Let Tpqr be the following set of axioms:

P (x) =⇒ Q(x), =⇒ P (A), =⇒ R(B)

Then Ground(Tpqr) is the set: {P (A) =⇒ Q(A), P (B) =⇒ Q(B), =⇒
P (A), =⇒ R(B)}

3.2 Partial Max-Sat

Partial Max-Sat (pMaxSat) specifies the problem in which given two arguments, ϕh

and ϕs, denoting sets of ground hard and soft clauses respectively, the goal is to find all
assignments of truth values to them such that: (a) all clauses in ϕh are satisfied, i.e., have
a model, and (b) the maximum number of clauses in ϕs are satisfied. We use Herbrand
models instead of Tarskian models. Herbrand [6] has shown that a theory has a Tarskian
model iff it has a Herbrand model. A Herbrand model that meets this specification is
called optimal.

Definition 6 (Optimal Herbrand Models)
A Herbrand model assigns a truth value to each propositional variable. In our case

these are the ground propositions created by the Ground function.



The Herbrand BaseHB(T) of a Datalog theory T is:

HB(T) = {P (t1, . . . , tn)σ|σ : V 7→ C ∧ P (t1, . . . , tn) ∈ P}

The Herbrand ModelsHM(T) of T are subsets ofHB(T) for which

∀α ∈ T,∀hm ∈ HM(T). hm |= α

A Herbrand Model hm ∈ HM(T) is optimal iff

∀β ∈ ϕh. hm |= β ∧ ∀hm′ ∈ HM(T).
|{(β) ∈ ϕs|hm |= (β)}| ≥ |{(β =⇒ ) ∈ ϕs|hm′ |= (β)}| (6)

Let pMaxSat be an algorithm, specified in Definition 7, that returns size of the sub-
set of ϕs that is not satisfied by an optimal Herbrand model. Note that, as a consequence
of (6), this size will be the same for all such models.

Definition 7 (Partial Max-Sat Specification)

pMaxSat(ϕh, ϕs) = |{(β) ∈ ϕs|hm 6|= (β)}|

where hm is any optimal Herbrand Model.

We augmented the ABC system with a third-party Partial Max-Sat solver [7], based
on the Fu & Malik algorithm [3].

3.3 Evaluating Fitness of Repairs

This section discusses which repairs are considered to be sub-optimal and how to detect
them using automated reasoning.

We want to find repairs ν(T) of a faulty T so as to maximise the size of {φ ∈
T (S)|ν(T) ` φ} and minimise the size of {φ ∈ F(S)|ν(T) ` φ}. It will not, in general,
be possible to achieve both of these requirements with a single repair, so we need to
find all repairs ν that are optimal wrt some measures of these potentially conflicting
requirements.

3.4 Pareto Optimality

It suffices to define what it means for one theory to strictly dominate another. The Pareto
front of optimal repairs is then just the maximal set of repairs such that no member is
strictly dominated by any other repair. Any repair not in the Pareto front is sub-optimal.

We will first need to define the insufficiency set IS(T,S) of members of T (S) that
are not theorems and the incompatibility set IC(T,S) of members of F(S) that are
theorems.

Definition 8 (The Incompatibility and Insufficiency sets) Let:

IS(T,S) = {φ ∈ T (S)|T 6` φ} ∧ IC(T,S) = {φ ∈ F(S)|T ` φ}



Then we can define when one repair strictly dominates another.

Definition 9 (Strictly Dominated Repair) Given two repairs νk and νj , νj is strictly
dominated by νk iff:

|IS(νk(T),S)| ≤∗ |IS(νj(T),S)| ∧ |IC(νk(T),S)| ≤∗ |IC(νj(T),S)|

≤∗: one of the signs has to be a strict inequality.

Example 4 (Strict Domination) We compare two of the repairs of TTw in Definition
1 from §2.5. Let νb1 be the deletion of axiom (1) and νr2 be the addition of an argument
to Bird. Where:

T (S) = {Feathered(Tweety), F ly(Polly)} ∧ F(S) = {Fly(Tweety)}

Then IC(νk(T),S) is empty for both repairs and IS(νk(T),S) is empty for νr2, but
for νb1, IS(νk(T),S) = {Feathered(Tweety), F ly(Polly)}. Therefore, νr2 strictly
dominates νb1 and, hence, νb1 is sub-optimal.

4 Pruning mechanism

The pruning mechanism provides a way to reduce the search space of repairs of a given
faulty theory in an automatic way. The inputs to the pruning mechanism are given by the
ABC theory-repair algorithm: a Datalog-like theory T, a set of repairs {ν1, ν2, . . . , νk}
and a pair of sets of environmental observations 〈T (S),F(S)〉. The output is the sub-set
of repair suggestions that are Pareto optimal: {νn1

, . . . , νnj
}.

C1. Convert to
Propositional Logic

C2. Calculate
Number of Faults

C3. Select Pareto
Optimal Repiars

⟨ (�), (�)⟩

{ (�), … , (�)}�1 �� ABC System { (�), … , (�)}��1
���

Pruning Mechanism (PM)

Inputs to PM Outputs from PM

Fault-free
 repairs

Input theory and
 observations

User

No repairs 
are found

Fig. 1. The components (C1-C3) of the pruning mechanism repair, where T is a Datalog-like
theory, {ν1, ..., νk} is a set of repairs generated by the ABC algorithm, 〈T (T),F(T)〉 are the
observations from the environment and the output is a set of optimal, fault-free repairs.



Figure 1 shows the high-level components of the mechanism. At each step the ABC
system generates a set of repairs of a faulty theory. C1 applies each generated repair
and converts the resulting Datalog-like theory to propositional logic usingGround (see
§3.1). C2 is the central part of the mechanism, which uses pMaxSat to determine how
many faults were fixed by each repair ν, and how many new faults it introduces to the
repaired theory ν(T). In C3 the set of Pareto optimal repairs are returned to the cycle
as (possibly only partially) repaired Datalog theories. This process is repeated on the
repaired theories until no faults remain or no further repairs are generated. Any fault-
free theories are returned to the user. S remains unchanged throughout.

Even though, given unbounded resources, the constituent processes of this cycle
each terminate, there is the possibility of non-termination of the whole cycle. ABC
might reach a situation in which faults still remain, but each repair of them fails to
decrease the overall number of faults. This can happen because, as we saw in §2.5, a
repair can introduce new faults when fixing an old one. This has not happened in any of
our test examples, but it remains a theoretical possibility. It is this kind of whole cycle
non-termination that gives rise to the ‘usually’ caveat in our hypothesis.

4.1 The use of Partial MAX-SAT for Determining Optimal Repairs

Definition 9 is used to determine whether a repair νk is sub-optimal and should be
pruned. This requires us to calculate the sizes of incompatibility and insufficiency
sets: |IC(νk(T),S)| and |IS(νk(T),S)|. Definition 10 calculates NC and NS by spec-
ifying the ϕh and ϕs to apply pMaxSat to. Theorem 1 proves NC and NS to be
|IC(νk(T),S)| and |IS(νk(T),S)|, respectively.

Definition 10 (Calculating NC and NS for νk using pMaxSat)
Let NC = pMaxSat(ϕh, ϕs), where:

ϕh = Ground(νk(T)) ∧ ϕs = {β =⇒ |β ∈ F(S)}

Let NS = |T (S)| − pMaxSat(ϕh, ϕs), where:
ϕh = Ground(νk(T)) ∧ ϕs = {β =⇒ |β ∈ T (S)}

Theorem 1 (Correctness of Definition 10) Definition 10 correctly calculates the size
of the incompatibility and insufficiency sets of a repaired theory νk(T), i.e.

NC = |IC(νk(T),S)| ∧ NS = |IS(νk(T),S)|

Proof Summary The proofs forNC andNS are similar. First apply the definitions of ϕh

given in Definition 10. Use Definition 7 to apply the definitions ofNC andNS . Then use
Definition 8 to show the equivalences, appealing to the consistency of Datalog theories.

5 Evaluation

In this section we evaluate the hypothesis:



Our Partial Max-Sat based algorithm prunes sub-optimal repairs from ABC’s
output. It usually terminates successfully with a significantly smaller set of
fault-free, optimal repaired theories.

By construction, the Pareto-fronts generated by the Partial Max-Sat based filter con-
sist solely of optimal repairs. Table 1 shows the result of repairing a test set of 10 faulty
theories6. It shows the reductions in size between the set of repair suggestions originally
generated by the ABC system and these Pareto-fronts.

No one standard benchmark test set is available that could be used to evaluate the
diverse abilities of the ABC system. In order to show the generality of our techniques
and avoid bias in the evaluation, these test examples were instead drawn from bench-
mark test and development sets used in research papers in a diverse range of areas of
AI, including non-monotonic reasoning, belief revision, etc.

As previously noted, even these optimal repairs may not eliminate all the faults
in the input theory. Further rounds of repair may be required to the resulting partially
repaired theories. The size reductions are given for only the first round of repairs. This
recursive process may be viewed as a search tree, where the nodes are labelled with
theories and the arcs between them with optimal repairs. For success, we require only
one branch of this search tree to terminate with a leaf node labelled with a fault-free
theory, but sometimes multiple fault-free theories are found. Table 1 shows that success
was achieved in all 10 examples.

The columns of Table 1 give the following statistics:

Name: The names of the 10 faulty theories in our test set, plus Tweety (1)7.
#A: The number of axioms in each faulty theory.
#Unfil: The number of first-round,unfiltered repair suggestions.
#Fil: The size of the Pareto front after the first round. The percentages in parentheses

indicate the reduction achieved.
#H and S: The size of the initial hard and soft clause sets.
#PV: The size of the initial propositional variable set.
Time: The average, over 3 runs, of the time (µs) to generate a fault-free theory.
Succ(n): n is the number of fault-free theories generated, if any.
Reference: The citations of the source of the example, with a note on any adaptions.

Note that the repair process terminates with success for all our 11 examples. The
size reduction achieved by our filtering process varies widely from 0% to 93%. This
variation can be partially explained by the number of fault-free theories that are eventu-
ally returned - where a large number of fault-free repairs exist, then at least that number
of repair sequences are needed to find them all. From these results we conclude that our
hypothesis has been empirically confirmed.

6 Plus our development example 1.
7 Space limitations prohibit us from giving the axioms for each of these theories, except for

the Tweety example (1). The remaining theories can be found online at https://github.
com/MariusUrbonas/AutomatedPruningMechanismForTheoryRepairs.

8 Adapted by adding goodPrice(Blockbuster) and closing(Blockbuster) as suggested in [5]; on-
tology should infer that you should not buy stocks of a company which has good stock price
but is closing down.



Name #A #Unfil #Fil #H #S #PV Time Succ(n) Reference
CapOf 3 14 12 (15%) 29 4 18 575 ms Y (12) [1]
TooManyMums 3 14 14 (0%) 29 3 19 188 ms Y (14) [1]
Tweety 5 10 1 (90%) 8 3 8 158 ms Y (1) [14]
MarriedWoman 5 12 6 (50%) 8 2 8 159 ms Y (6) Adapted from Exa. 3.6 [5]
Researcher 5 13 5 (62%) 9 2 10 154 ms Y (5) Adapted from Exa. 1 [13]
Swan 6 20 11 (45%) 8 4 9 1940 ms Y (54) [4]
Bat 6 12 4 (67%) 11 4 14 4199 ms Y (24) [16]
SuperPenguin 6 16 14 (13%) 6 2 6 164 ms Y (14) Adapted from Exa. 3.1 [5]
BuyStock 8 20 18 (10%) 15 2 16 156 ms Y (18) Adapted from Exa. 3.3 [5]
SuperPenguin v2 8 20 12 (40%) 12 4 12 169 ms Y (12) Adapted from Exa. 3.1 [5]

BuyStock v2 10 27 2 (93%) 26 4 23 6260 ms Y (2)
Adapted from Example 3.38

[5]

Table 1. Experimental results showing the comparison between the first-round of repairs using
the baseline unfiltered ABC system vs. the pruning mechanism.

6 Conclusion

The ABC system automates the repair of faulty Datalog theories. It detects faults in
a theory T by testing it against observations of the environment S, represented as a
pair of sets of ground propositions 〈T (S),F(S)〉, where T (S) is a set of true ground
propositions and F(S) is a set of false ones. A fault can be an incompatibility, where
T ` φ for some φ ∈ F(S), or an insufficiency, where T 6` φ for some φ ∈ T (S). ABC
repairs theories by a combination of abduction, belief revision and reformation.

Unfortunately, the ABC system overproduces repair suggestions. In this paper, we
describe a pruning mechanism based on Partial Max-Sat, which outputs a Pareto front
of optimal repair suggestions. Our empirical results confirm that, by pruning out sub-
optimal repair suggestions, this mechanism significantly reduces the number of repair
suggestions while retaining repairs that lead to a successful outcome of a fault-free
theory. Further details can be found in [15].

Inductive Logic Programming [12] also constructs logic programs from positive and
negative examples and can invent new intermediate predicates to complete recursive
programs. The main differences between ILP and the ABC system is that: ABC repairs
faulty theories, which may not be recursive programs; it can change the arity of pred-
icates; split/merge constants, predicates and preconditions. We are currently working
with Muggleton’s team to apply both techniques to the modelling of virtual bargaining
[10], which will provide a vehicle to further compare and contrast them.

In future work, we intend to explore the application of similar pruning mechanisms
to richer logics, including some of those for which we have previously implemented
reformation [11, 1]. When these logics are not decidable or when examples require in-
feasible run times, we will need to impose resource limits. These limits might mean
that we sometimes fail to detect incompatibilities or misclassify an insufficiency. But
it will still be useful to find a subset of all incompatibilities or to repair a false insuffi-
ciency so that the repaired theory finds a shorter proof of it. It is also the case that for



large enough problems the Partial Max-Sat algorithm might not terminate in a feasible
amount of time. We will look into using intermediate solutions.
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