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Abstract
Batch adsorption experiments are carried out by adding a known amount of adsorbent to a liquid solution at a known initial 
concentration and following the evolution in time of the concentration of the adsorbate. This is a very common method to 
obtain equilibrium and kinetic information in liquid systems, but in most cases kinetic results are analysed on the basis of 
empirical models. Two phenomenological models based on macropore diffusion in beads and shrinking core kinetics are 
used to generate data that are then interpreted with the widely used unconstrained linear regression methods. The results 
show that for both cases  R2 values close to unity are obtained leading to the incorrect interpretation of the mechanism of 
mass transport. It is recommended that batch adsorption experiments should be analysed using phenomenological models 
to obtain physical parameters that are applicable to other systems and to reduce the experiments required to characterise 
fully the kinetics of adsorption.

Keywords Batch adsorption · Immersion experiment · Pseudo first order kinetics · Pseudo second order kinetics · Elovich 
kinetics · Langmuir kinetics · Diffusion in particles

List of symbols
aS  Surface to volume ratio of solid  (m−1)
A  Constant defined in Eq. 9c
AD  Slope of short time regression line for the diffusion 

model (mol  m−3 s− 0.5)
b  Langmuir affinity  (m3  mol−1)
B  Elovich constant  (mol−1  m3)
c0  Initial concentration in the fluid phase (mol  m−3)
c∞  Final concentration in the fluid phase (mol  m−3)
c  Fluid phase concentration (mol  m−3)
C  Intercept of short time regression line for the diffu-

sion model (mol  m−3)
cP  Concentration in the macropores (mol  m−3)
c̄P  Average concentration in the macropores (mol 

 m−3)
Dm  Molecular diffusivity  (m2  s−1)
D

App

P
  Apparent diffusivity from linear and constant con-

centration model  (m2  s−1)

D
Eff

P
  Effective diffusivity defined in Eq. 12  (m2  s−1)

DEL
P

  Pore diffusivity linear model defined in Eq. 30b 
 (m2  s−1)

DS  Solid diffusivity in shrinking core model  (m2  s−1)
k1  Pseudo first order kinetic constant  (s−1)
k2  Pseudo second order kinetic constant  (mol−1  m3 

 s−1)
K  Slope of dimensionless secant of the equilibrium 

isotherm, Q∞

c∞

K2  Alternative pseudo second order kinetic constant 
Q̄∞k2  (s−1)

kA  Langmuir adsorption rate constant  (mol−1  m3  s−1)
kD  Langmuir desorption rate constant  (s−1)
kE  Elovich rate constant (mol  m−3 s−1)
kF  Film mass transfer coefficient (m  s−1)
kLDF  Linear driving force coefficient (m  s−1)
kQDF  Quadratic driving force coefficient  (mol−1  m3  s−1)
kS  Surface resistance mass transfer coefficient (m  s−1)
kV  Vermeulen driving force coefficient  (mol−1  m3  s−1)
MS  Mass of solid (kg)
q̄  Average concentration in the adsorbed phase (mol 

 m−3)
q−  Defined in Eq. 9d (mol  m−3)
q+  Defined in Eq. 9d (mol  m−3)
Q̄  Average concentration in the solid (mol  m−3)
Q̄eq  Solid concentration at equilibrium with fluid con-

centration (mol  m−3)
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Q∞  Final concentration in the solid (mol  m−3)
qS  Langmuir saturation capacity (mol  m−3)
QS  Concentration after reaction in shrinking core 

model  (mol−3)
r  Radial coordinate (m)
R2  Square of the linear correlation coefficient
RP  Particle radius (m)
Sh  Sherwood number
t  Time (s)
t0  Time shift in Elovich linearization defined in 

Eq. 29 (s)
VF  Volume of fluid  (m3)
VS  Volume of solid  (m3)
z  Dimensionless radial coordinate
z∞  Final position of shrinking core interface

Greek symbols
�  Volume ratio, VS

VF

�n  Eigenvalues of the diffusion equation calculated 
from Eq. 30c

�  Dimensionless ratio defined in Eq. 14
�P  Macropore void fraction of the particles
�  Dimensionless parameter defined in Eq. 9d
Γ  Nonlinearity parameter defined in Eq. 38
�  Dimensionless parameter defined in Eq. 30c
Λ  Dimensionless ratio defined in Eq. 15
�S  Solid density (kg  m−3)
�  Tortuosity

1 Introduction

A batch adsorption experiment from the liquid phase, also 
known as immersion experiment, is one of the most common 
tests used to measure adsorption equilibrium and kinetics 
from solutions. It consists of the addition of a known mass 
of sample to a fixed volume of liquid at an initial concentra-
tion. The liquid is mixed either using a stirrer or the entire 
cell is agitated to mix the liquid phase. The liquid is sampled 
or is circulated to a detector and the evolution of the liquid 
concentration in time is monitored up to equilibrium. This 
is schematically shown in Fig. 1 for a single cell.

To obtain an adsorption isotherm the experiment is 
repeated varying either the amount of solid or the initial con-
centration of the solution or both. Everett (1986) provides 
an excellent discussion of the different methods to measure 
adsorption isotherms from the liquid phase, along with rec-
ommendations on issues that may be sources of uncertainty.

Here the focus will be on kinetic measurements and con-
sider two general industrially relevant cases:

a Physisorption in porous beads where internal mass trans-
fer is governed by diffusion;

b Chemisorption represented by a shrinking core mecha-
nism.

For chemisorption one can develop more complex kinetic 
schemes, but these are system dependent and are beyond 
the scope of this contribution. Furthermore, as diffusion in 
the stagnant liquid in the macropores is relatively slow, the 
shrinking core model has been shown to describe well, for 
example, ion-exchange from concentrated solutions (Phelps 
and Ruthven 2001) and protein adsorption in porous parti-
cles (Zhu and Carta 2016) and is a very relevant limiting 
case to consider. The uptake curves obtained from the two 
mechanisms become mathematically very similar when deal-
ing with very sharp isotherms, i.e. the limit of the rectan-
gular isotherm (Teo and Ruthven 1986; Ruthven 2000; Do 
1998). Therefore, to confirm which mechanism is relevant 
imaging of carefully cut beads can be used to determine if 
the shrinking core model applies (Phelps and Ruthven 2001; 
Zhu and Carta 2016; Dominguez et al. 2019).

The main scope of this work is to use these phenom-
enological models to generate liquid batch sorption uptake 
curves that can then be used to demonstrate the potential 
pitfalls of correlating these kinetic processes using empirical 
models that are widely used because they lead to linear plots. 
The models considered are pseudo first order and pseudo 
second order kinetic models (Ho and McKay 1998) and the 
Elovich chemisorption kinetics (Low 1960; Aharoni and 
Ungarish 1977; Cheung et al. 2000). Although diffusion in 
a particle would be a phenomenological model, the typical 
approach is to use the solution valid for short times, crediting 
either Boyd et al. (1947a) or Weber and Morris (1963). What 
makes this also an empirical approach is the fact that the 
analytical solution used applies to the case of constant fluid 
concentration and linear isotherm and both these assump-
tions do not apply in the batch adsorption experiment.

Fig. 1  Schematic representation of a liquid phase batch adsorption 
experiment
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These models are widely used in the literature because 
of the ability to obtain their parameters using unconstrained 
linear regression, which is easily accessible. The fact that 
this is a very common methodology in adsorption from solu-
tion is evidenced by the fact that (Ho and McKay 1998; 
Cheung et al. 2000; Boyd et al. 1947a) are cited well over 
1000 times. Only considering issues of the journal Adsorp-
tion since 2015, 16 contributions reporting parameters 
based on linearized plots of these empirical models could 
be found (Câmara et al. 2020; Kong et al. 2016; Lupul et al. 
2015; Peralta et al. 2019; Rincon-Silva et al. 2016; Shen 
et al. 2018; van der Heyden et al. 2018; Bartczak et al. 2016; 
Bazargan et al. 2017; Ciesielczyk et al. 2016; Marques Fraga 
et al. 2020; Hubetska et al. 2020; Morales-Perez et al. 2016; 
Popugaeva et al. 2019; De Smedt et al. 2015; Yuan et al. 
2019). This shows that significant effort is being devoted to 
determining the kinetics of adsorption in liquid systems and 
it is therefore important to be able to interpret these results 
correctly and arrive at physical parameters that are directly 
applicable in the design and simulation of adsorption separa-
tion processes.

The paper presents a description of the phenomenological 
models and a brief outline of the empirical approaches and 
the corresponding linearised plots. Two well characterised 
systems that are examples of physisorption and chemisorp-
tion will be used to generate batch adsorption curves for 
dilute and concentrated solutions. Physisorption of xylenes 
in beads of Y zeolite are well characterised by Santacesaria 
et al. (1982a), who have also shown the portability of the 
parameters obtained to the prediction of breakthrough 
curves (Santacesarla et al. 1982b) and chromatographic 
pulses (Santacesarla et al. 1982c). For chemisorption  Cu++ 
uptake on a commercial ion-exchange resin was investigated 
in detail (Phelps and Ruthven 2001) and also in this case 
the parameters obtained where used to predict breakthrough 
curves and the performance of an endless belt adsorber 
(Phelps and Ruthven 2002). Teo and Ruthven (1986) also 
predict breakthrough curves based on the kinetic measure-
ments for water from an aqueous ethanol solution and use 
a rectangular isotherm for water on 3A molecular sieves.

1.1  Common basis for batch adsorption 
from the liquid phase

In a batch adsorption experiment, starting from a fully 
regenerated adsorbent, the mass balance in the system is 
given by

where c is the concentration of the fluid and Q is the concen-
tration in the solid, while VF and VS are the volumes of the 

(1)VFc0 = VFc̄(t) + VSQ̄(t)

fluid and solid. The overbar indicates the average over the 
corresponding volume.

Therefore an uptake curve of Q̄(t) vs. t is easily obtained 
from c(t) vs. t.

The typical experiment uses a solid that is initially dry, 
but alternatively the solid could be equilibrated with the pure 
solvent and then added to the solution. With a dry solid, the 
initial part of the experiment will have a transient associated 
with the wetting of the adsorbent and a temperature rise of 
the solid. This is typically neglected because the thermal 
mass of the fluid limits the temperature rise and the initial 
adsorption of the solvent is fast compared to the process 
being studied. An alternative improved configuration would 
be to pack a small column with the adsorbent and pump 
the fluid mixture through the column at high rate (Teo and 
Ruthven 1986; Babić et al. 2008; Wegmann et al. 2011). In 
this case the column could be exposed to the pure solvent 
prior to the start of the experiment. In all the configurations 
mixing is achieved either with a stirrer or through the rapid 
circulation. In what follows we make the assumption that 
the liquid is well mixed and the fluid is considered to be at 
a uniform concentration, i.e. c(t) = c̄(t).

With a liquid system, the solute molecules will have to 
reach the solid through a boundary layer. Whatever mass 
transport mechanism is considered in the solid phase, there 
will always be a film resistance and

where cs is the fluid concentration at the external surface of 
the solid and kF is the film mass transfer coefficient and aS is 
the surface to volume ratio for the solid. Experiments at dif-
ferent stirrer speeds are normally performed, but one should 
not assume that kF is negligible once the kinetic response 
becomes independent of the speed of the stirrer. At high stir-
rer speeds and corresponding high fluid velocities the parti-
cles will be fully fluidized and therefore the relative velocity 
between the fluid and the particles will become effectively 
independent of the speed of the stirrer. This is one advantage 
of the use of a fixed bed with a circulation pump, where the 
relative velocity is always the fluid velocity and results that 
become independent of the circulation rate could be used 
to indicate a negligible film resistance (Teo and Ruthven 
1986). A further advantage of the fluid circulation system is 
a reduction in particle attrition (Teo and Ruthven 1986). A 
simple method to assess the relative importance of the film 
resistance is to estimate the worst case scenario, where the 
Sherwood number is 2, which corresponds to the case of a 
stagnant liquid film.

(2)c(t) = c0 −
VS

VF

Q̄(t) = c0 − 𝛼Q̄(t) with 𝛼 =
VS

VF

(3)
dq̄

dt
= kFaS

(
c − cs

)
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For the solid phase we consider a biporous adsorbent, 
with macropores that lead to the adsorbing material. In the 
macropores a normal liquid solution is present and there is 
no selectivity to any molecule. The overall concentration in 
the particles is then

where �P is the macropore void fraction of the particles.
Having defined the fluid phase concentration at the sur-

face of the particle, it is possible to define the adsorbed 
phase concentration that would be at equilibrium with this 
fluid concentration, Q̄eq.

For the purposes of this contribution the Langmuir iso-
therm will be used

The Langmuir saturation capacity, qS , and the affinity 
b are constants and should be determined independently, 
regressing accurately the final equilibrium data at different 
fluid concentrations.

Q̄eq varies during the experiment because the measure-
ment is based on determining the variation of the fluid phase 
concentration in time, therefore the equilibrium isotherm 
becomes an integral part of the dynamic model.

To close the problem it is necessary to describe mass 
transport in the solid using a phenomenological model. Here 
the emphasis is on models that allow to determine meaning-
ful physical parameters from pure component immersion 
experiments which can be used to predict reliably multicom-
ponent separations.

1.2  Linear rate model

The linear rate model is the simplest case to consider

As an example, this model has been used to describe 
biosorption of dyes and corresponding binary breakthrough 
curves (Fernandez et al. 2015).

Glueckauf (1955) showed that the surface resistance con-
stant, kS , can be expressed in terms of the internal diffusion 
coefficient. For a sphere, kS =

5D

RP

 . This model can be gener-
alised to multiple resistances in series and becomes a lumped 
model approach. The relationships needed to include exter-
nal film resistance, surface resistance, diffusion in macropo-
res, and diffusion in micropores can be obtained from the 
moments of chromatographic or kinetic experiments and can 

(4)Q̄ = 𝜀Pc̄P +
(
1 − 𝜀P

)
q̄

(5)Q̄eq = 𝜀Pcs +
(
1 − 𝜀P

)
q̄eq

(6)q̄eq = qS
bcs

1 + bcs

(7)dQ̄

dt
= kSaS

(
Q̄eq − Q̄

)

be found in Ruthven (1984). The film and surface resistances 
can be combined into a linear driving force constant, kLDF , 
given by

For the case of strong adsorption, where the accumulation 
in the macropores is negligible compared to the adsorbed 
amount, i.e. Q̄eq = q̄eq, the LDF model can be solved analyti-
cally to obtain

 

where

and

with the final equilibrium concentration q̄eq(∞) = q̄∞ = q− . 
When matching this model to data the uptake curve vs. the 
dimensionless time is generated varying q̄ between 0 and 
a value close to q̄∞ . The regression of the data can be car-
ried out by a simple determination of the scaling factor for 
the time axis.

1.3  Diffusion in a biporous particle

If one considers the fact that normally materials are opti-
mized for a specific separation, the case of macropore dif-
fusion control is the most likely controlling mass transport 
mechanism in commercial beads. Here we limit the discus-
sion to macropores where the fluid has the same properties 
as a bulk liquid.

The mass balance in a spherical bead can be written as

where cP is the concentration in the fluid inside the pores and 
q is the concentration in the adsorbed phase. The porosity �P 

(8)1

kLDF
=

1

kS
+

dQ̄eq

dcS

kF
≈

1

kS
+

Q∞

c∞

kF

(9a)

ln

(
q+

q+ − q̄

)
+ Aln

[
q−

q+

(
q+ − q̄

)
(
q− − q̄

)
]
= kLDFaSt if 1 + bc0 > 𝛼bqs

(9b)

ln

(
q−

q− − q̄

)
− Aln

[
q−

q+

(
q+ − q̄

)
(
q− − q̄

)
]
= kLDFaSt otherwise

(9c)

A =

√
�2 − 4�

2�
+

1

2
with � =

��
1 + bc0 + �

�2
− 4�bc0

(9d)q± =
1 + bc0 + � ± �

2�b
with � = �bqs

(10)�P
�cP

�t
+
(
1 − �P

)�q
�t

=
�P

�

Dm

r2
�

�r

(
r2
�cP

�r

)
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and the tortuosity � are used to relate the diffusion coefficient 
to the molecular diffusivity Dm in the fluid phase.

If transport in the microporous material is fast compared 
to the effective diffusional time constant of the macropores, 
the adsorbed phase can be considered to be at local equilib-
rium with cP and

and Eq. 10 can be rearranged to

This is coupled to the boundary conditions.

Equation 12 shows how a concentration dependent effec-
tive pore diffusivity DEff

P
 is obtained in this case.

What is important to note is that this model, although 
mathematically more complex than what seen previously, 
has only the tortuosity that cannot be measured indepen-
dently. The adsorption isotherm has to be measured in any 
case and porosity is a known parameter in commercial 
materials or can be measured using mercury porosimetry 
(Lowell et al. 2006). Complexity can be added by including 
surface diffusion, but this will not be considered here. If 
surface diffusion can be neglected, once kinetic results for 

(11)
�cP

�r
=

1
dQ

dcP

�Q

�r

(12)
�Q

�t
=

1

r2
�

�r

⎛
⎜⎜⎝
�P

�

r2Dm

dQ

dcP

�Q

�r

⎞
⎟⎟⎠
=

1

r2
�

�r

�
D

Eff

P
r2
�Q

�r

�

(13)
(
𝜕Q

𝜕r

)

r=0

= 0 and (Q)r=RP
= Q̄eq(t)

one molecule are interpreted correctly and the tortuosity is 
determined, the kinetic response of other molecules as well 
as mixtures can be predicted if the adsorption isotherm is 
known.

For strongly adsorbed components dQ
dcP

 decreases rapidly 
with increasing concentration. Therefore, in an immersion 
experiment under highly nonlinear conditions the outer layer 
of the particle will equilibrate rapidly (high diffusivity), 
while the inner layer will still have a relatively slow transport 
process. Under these conditions the kinetic response of this 
model will be qualitatively very similar to a shrinking core 
model. This can also be seen considering the Langmuir iso-
therm in the limit of infinite affinity, where the rectangular 
isotherm (Ruthven 2000) is obtained.

1.4  Shrinking core model

The assumption in this case is that the process is controlled 
by diffusion in the external layer of the particle with a rapid 
reaction that effectively takes place at a surface which moves 
towards the centre of the particle. While more complex 
mechanisms can be considered, this is in fact a reasonable 
model for liquid phase systems with chemisorption. It is 
adopted here given the fact that also in this case particle 
porosity and tortuosity are the only physical parameters 
needed, once the equilibrium concentration of the adsorbed 
phase is known.

As discussed by Ruthven and Phelps (2001) the assump-
tion of finite volume and a shrinking core lead to the follow-
ing relationship.

The parameter � represents the ratio of the moles that 
are chemisorbed by the solid compared to the initial moles 
in the system when the final fluid concentration is not zero, 
which is normally the case in immersion experiments where 
a stoichiometric excess of adsorbate is used, i.e. 𝛿 < 1.

Analytical solutions to the shrinking core model are 
available for both the infinite system (Brauch and Schlünder 
1975) and the finite volume/variable concentration case (Teo 
and Ruthven 1986; Do 1998). To use a consistent notation 
the integral can either be calculated numerically by a suit-
able quadrature formula or from.

(14)
DS

R2
P

c0

QS

t = ∫
1

z

z(1 − z)

1 − � + �z3
dz with � =

VSQS

VFc0

(15)∫
1

z

z(1 − z)

1 − � + �z3
dz =

3
√
Λ

6�

�
2

3
√
Λ
ln
�
1 − � + �z3

�
− 2ln

�
3
√
Λ + 1

z
3
√
Λ + 1

�
+ ln

�
3
√
Λ2 −

3
√
Λ + 1

z2
3
√
Λ2 − z

3
√
Λ + 1

�
+
√
12

�
atan

�
2

3
√
Λ − 1√
3

3
√
Λ

�
− atan

�
2z

3
√
Λ − 1√
3

3
√
Λ

���
with Λ =

�

1 − �
=

VSQS

VFc∞

At the end of the experiment z∞ = 0 for 𝛿 < 1 , while for 
� ≥ 1 , the shrinking core will stop at z∞ =

−1
3
√
Λ
 and c∞ = 0 , 

i.e. all the adsorbate will be consumed. This reaction model 
will have a finite uptake rate at the end of the experiment.

2  Empirical models

2.1  Pseudo first order model

The pseudo first order (PFO) model is derived from the 
linear rate model assuming that the equilibrium amount is 
constant throughout the experiment and equal to the final 
concentration in the solid

(16)
dQ̄

dt
= k1

(
Q̄∞ − Q̄

)
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Here the kinetic constant of the PFO model is explicitly 
defined as a different parameter from kLDF to avoid confusion 
between the two models. Only for a rectangular isotherm 
(irreversible adsorption), Q̄eq is a constant if the accumula-
tion in the macropores is negligible.

Equation 13 can be solved analytically using the initial 
condition ( ̄Q0 = 0;t0 = 0 ) to obtain

or

While equivalent these two relationships are shown 
explicitly because Eq. 17a leads to a linear plot that is con-
strained to start at the origin, while Eq. 17b leads to a linear 
plot that is unconstrained. This distinction is in fact very 
important, because if ln(Q̄∞) is not fixed to the actual equi-
librium value the PFO model can be used to fit in a semi-
logarithmic plot any process which results in an exponential 
decay to equilibrium. Given that in physisorption any mass 
transport process will eventually conform to an exponential 
decay to equilibrium, selecting a portion of the uptake for 
the unconstrained regression of the parameters will lead to 
the square of the correlation coefficient, R2, close to unity if 
the points selected are close to the final equilibrium point. 
Without the test of actually plotting the original data on a 
linear uptake plot (McLintock 1967), R2 close to unity has 
very little value in determining which model applies.

We note also that the only apparent advantage of using 
the approximate Eq. 17 over Eq. 9 is due to the fact that 
the first allows to convert the data to a form that can be 
linearized. The kinetic curve from Eq. 9 can be computed 
easily by setting the value of q̄(t) , which varies from 0 to q̄∞ , 
and calculating the corresponding time. Thus a nonlinear 
regression of the data with Eq. 9 would be straightforward 
and to be preferred over the PFO model.

2.2  Pseudo second‑order model

The pseudo second order (PSO) model is derived from the 
quadratic driving force (QDF) model

One should note that Vermeulen suggested the use of the 
following driving force relationship for irreversible equilib-
rium (Vermeulen 1953)

(17a)ln

(
1 −

Q̄

Q̄∞

)
= −k1t

(17b)ln
(
Q̄∞ − Q̄

)
= ln

(
Q̄∞

)
− k1t

(18)dQ̄

dt
= kQDF

(
Q̄eq − Q̄

)2
= kQDF

(
Q̄eq − Q̄

)(
Q̄eq − Q̄

)

(19)dQ̄

dt
= kV

(
Q̄2

Eq
− Q̄2

)
= kV

(
Q̄eq + Q̄

)(
Q̄eq − Q̄

)

Glueckauf showed that this model was the best approxi-
mation for nearly rectangular isotherms (Glueckauf 1955), 
when kV could be related to the internal diffusion coefficient. 
Eq. 19 is significantly different from the QDF model and is 
in fact a concentration dependent LDF model, with the mass 
transfer coefficient increasing with concentration, which is 
typically true for systems with a Langmuir isotherm. Note 
that in a batch adsorption experiment 

(
Q̄eq + Q̄

)
≈ 2Q̄∞ 

apart from the very initial uptake, therefore Eq. 19 will not 
be discussed further.

Equation 18 is a kinetic model that has a rate of adsorp-
tion that decreases in time monotonically because 

(
Q̄eq − Q̄

)
 

is constantly decreasing throughout the experiment. The 
QDF model can be seen as a concentration dependent LDF 
model where the mass transfer coefficient goes to zero at 
equilibrium. While the QDF expression could be physically 
representative of a particular chemisorption process, in the 
opinion of the author it is not a physically realistic kinetic 
model of physisorption, where the mass transfer coefficient 
is not zero at equilibrium.

If the equilibrium concentration is assumed to be constant 
and equal to the final value, the PSO model is obtained

This can be solved analytically using the initial condition 
( ̄Q0 = 0;t0 = 0 ) to obtain

This shows that there are in fact two possible definitions 
of the pseudo-second order kinetic constant. It is important 
to note that if k2 is indeed a constant, then K2 would depend 
on the initial concentration in the fluid and the amount of 
solid added and vice versa.

Equation 21 has a similar structure to the Langmuir iso-
therm equation and can be linearized as

or

Note that any kinetic model that is based on a driving 
force will conform to Eq. 23 as the system approaches equi-
librium. For fast systems limited data will be available far 
from equilibrium and Eq. 23 will give the false impression 
of accuracy because it will have R2 close to unity. Similarly 
to the PFO model, further incorrect interpretations of results 
arise when Q̄∞ is used as an adjustable parameter.

(20)dQ̄

dt
= k2

(
Q̄∞ − Q̄

)2

(21)Q̄ =
Q̄2

∞
k2t

1 + Q̄∞k2t
=

Q̄∞
eq
K2t

1 + K2t
with K2 = Q̄∞k2

(22)
1

Q̄
=

1

Q̄∞K2

1

t
+

1

Q̄∞

(23)
t

Q̄
=

1

Q̄∞K2

+
t

Q̄∞
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2.3  Langmuir kinetics

Neglecting the accumulation in the macropores, one can 
consider adsorption and desorption kinetics (Azizian 2004) 
expressed as

where kA and kD are the adsorption and desorption kinetic 
constants. While this appears to be a two parameter model, 
the two constants are related to the affinity in the Langmuir 
isotherm. At equilibrium one obtains kA = bkD . It is useful 
to rearrange Eq. 24 to

Equation 25 shows that Langmuir kinetics are similar 
to the LDF model with a linear concentration dependence 
of the kinetic coefficient. In an immersion experiment the 
apparent LDF mass transfer coefficient will decrease in time 
between kD

(
1 + bc0

)
 and kD

(
1 + bc∞

)
 , consistent with two 

apparent kinetic regimes. When bc ≪ 1 the model reduces 
to Eq. 9 with kLDFaS = kD.

Azizian’s analytical solution (Azizian 2004) can be 
expressed in a more convenient form using the terms defined 
in Eq. 9b

As was the case for the LDF model, also here q̄ can be 
varied between 0 and q̄∞ to obtain the corresponding time.

Azizian has shown that Eq. 26 can be used to show con-
vergence to either PFO or PSO models depending on the 
concentrations in the fluid (Azizian 2004). The main result 
was to show that both models could match the more general 
model but resulted in concentration dependent k1 values (lin-
ear dependence on c0 ) and k2 (more complex dependence 
on c0 ). Here the approach is quite different, because the aim 
is to warn against use of these models in systems where 
the transport mechanisms are known to be not Langmuir 
kinetics.

2.4  The Elovich model

The Elovich model is discussed in detail by Low (1960) and 
Aharoni and Ungarish (1977), who also consider the possi-
ble derivation from reaction kinetic models and the fact that 
it does not conserve the number of surface sites, i.e. it is not 
compatible with the assumptions of Langmuir kinetics. The 
general expression for the rate is

(24)
dq̄

dt
= kAc

(
qS − q̄

)
− kDq̄

(25)
dq̄

dt
= kD(1 + bc)

(
q̄eq − q̄

)

(26)
1

𝜙
ln

[
q−

q+

(
q+ − q̄

)
(
q− − q̄

)
]
= kDt

This expression is not a “driving force” model since the 
rate is zero only for q̄ = ∞ . This is not a feasible model for 
physisorption because the rate will not be zero at equilib-
rium. In the simulation of an adsorption process one would 
need to couple Eq. 27 with the equilibrium isotherm and 
switch to dq̄

dt
= 0 when the equilibrium concentration is 

achieved. As such this model should only be used for chem-
isorption and should give a shape of the response similar to 
the shrinking core model.

The solution to Eq. 27 is

This can be re-arranged into.

In this case the data are time shifted varying t0 to obtain 
a linear plot and an unconstrained linear regression is then 
applied (Cheung et al. 2000).

Qualitatively Eq. 27 corresponds to an initially fast rate, 
kE , that progressively decreases. As such one can intuitively 
suggest that a time-shifted diffusion process should give a 
linear Elovich plot in a region not close to final equilibrium. 
The qualitative behaviour away from the final equilibrium 
is not dissimilar to the PSO model and Langmuir kinetics.

2.5  Linear diffusion model

This model assumes linearity even when the system follows 
a nonlinear isotherm like the Langmuir isotherm and the 
immersion experiment is carried out far from the region 
where Henry’s law applies. As such it is included in the list 
of empirical models, especially when the short time linear 
plot that results from this model is used to fit batch adsorp-
tion experiments.

For the case where the external film resistance is negli-
gible an analytical solution is readily available (Do 1998; 
Ruthven 1984; Crank 1975) and is given by

where

and

(27)
dq̄

dt
= kEe

−Bq̄

(28)
1

B
eBq̄ = kEt

(29)

q̄ =
1

B
ln
(
BkEt + 1

)
=

1

B
ln
(
BkE

)
+

1

B
ln
(
t + t0

)
t0 =

1

BkE

(30a)Q̄

Q∞

= 1 −
∑

n

6exp
(
−𝛽2

n

DEL
P

R2
P

t
)

9𝜆2 + 9𝜆 + 𝛽2
n

(30b)
DEL

P

R2
P

=
�P

�

Dm

K
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and

In a truly linear system K becomes the Henry law con-
stant of the particle when bc∞ ≪ 1.

Equation 30c has a root in each π interval, except the first 
and requires only a few terms to converge apart from the 
region close to t = 0 . It is therefore useful also to derive the 
short time expression valid in this region

Equation 31 suggests the plot of the dimensionless uptake 
response vs. 

√
t , which should be linear for short times.

While the finite volume solution is readily available, as 
a first approximation one could consider using the solution 
to the diffusion equation subject to a step change in surface 
concentration, which corresponds to the limiting case of 
� = 0 and �n = n� . There are however important differences 
between Eq. 30 and

and the corresponding

The short time behaviour differs by a coefficient 1 + � , 
therefore the apparent diffusivity, DApp

P
 , will be higher by a 

factor (1 + �)
2 compared to DEL

P
 and will depend on both the 

isotherm and the volume of solid added to the solution since 
� =

VS

VF

K . Note also that the third term of this series expan-
sion is zero which indicates that the finite volume solution 
deviates from the initial linear trend more rapidly than the 
constant concentration solution.

To see more clearly the origin of this difference con-
sider that for short times the external concentration is close 
to c0 and the fact that in the constant concentration case 
Q∞ = Kc0 . The initial trend should be similar, but the nor-
malization to 1 is different. Writing this explicitly

(30c)�ncot�n − 1 −
1

3�
�2
n
= 0 with � = �K

(30d)K =
ΔQ

Δc
=

Q∞

c∞
= �P +

(
1 − �P

) qSb

1 + bc∞

(31)Q̄

Q∞

≈ (1 + 𝜆)

⎡⎢⎢⎣
6

����DEL
P

R2
P

t

𝜋
− 3(1 + 3𝜆)

DEL
P

R2
P

t + 12𝜆(1 + 3𝜆)
DEL

P

R2
P

t

����DEL
P

R2
P

t

𝜋
+…

⎤⎥⎥⎦

(32)Q̄0

Kc0
= 1 −

∑
n

6exp

(
−n2𝜋2 D

App

P

R2
P

t

)

n2𝜋2

(33)

Q̄0

Kc0
≈ 6

√√√√D
App

P

R2
P

t

𝜋
− 3

D
App

P

R2
P

t + 0
D

App

P

R2
P

t

√√√√D
App

P

R2
P

t

𝜋
+…

The other important difference is the final approach to 
equilibrium where

(34)
Q̄

Kc∞
=

Q̄

Kc0

c0

c∞
≈

Q̄0

Kc0

c0

c∞
≈ (1 + 𝜆)6

√√√√DEL
P

R2
P

t

𝜋

(35)1 −
Q̄

Q∞

≈
6

9𝜆2 + 9𝜆 + 𝛽2
1

exp

(
−𝛽2

1

DEL
P

R2
P

t

)

From Eq. 30c it is possible to see that 1 <
𝛽1

𝜋
< 1.4302 

as � varies between 0 and ∞ . The long-time asymptote will 
yield an apparent diffusivity that will be up to double the 
value of DEL

P
 and different from the value obtained from the 

short time uptake, Eq. 33. The incorrect use of the constant 
concentration equations, could therefore lead to identifying 
two apparent kinetic regimes for strongly adsorbed species.

What limits further the validity of results found in the 
literature is the fact that uptake data are regressed using the 
short time Q̄ vs. 

√
t with the empirical expression

which is often attributed to Weber and Morris (1963) but 
no distinction is made with respect to the assumption of 
constant volume or constant concentration. Note also that 
often Eq. 37 is applied to separate segments of the uptake 
curve, linking this to the presence of an initial fast process 
followed by a much slower second kinetic regime. It is not 
clear how such an interpretation originated, but the Q̄ vs. 

√
t 

plot should only be used in the very first part of the uptake, 
i.e. for Q̄ < 0.5.

Boyd et al. (1947a) are also often referenced as the basis 
for Eq. 37. It is very instructive to read this reference in 
detail and realise the efforts made to achieve conditions 
of constant external concentration and linear equilibrium, 
which are the basis for the model adopted in that study. 
Boyd’s system was not a fixed volume system, but a shal-
low bed with once-through flow of the solution. This ensured 
constant external concentration, while the measurement of 

(36)1 −
Q̄0

Kc0
≈

6

𝜋2
exp

(
−𝜋2

D
App

P

R2
P

t

)

(37)Q̄ ≈ AD

√
t + C
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tracer exchange ensured linearity of the equilibrium iso-
therm. Using radioactive tracers the adsorbed amounts 
were measured directly from the particles, not calculated 
indirectly from the external concentration. Provided that the 
concentration change across the shallow bed is small, Eq. 32 
or the equivalent for diffusion and external film resistance 
is perfectly valid. The shallow bed with varying concentra-
tion in linear conditions would be similar to a liquid phase 
zero length column system (Brandani and Ruthven 1995). 
Boyd et al. confirmed that the uptake of different ions on an 
Amberlite ion-exchange resin could be either controlled by 
internal diffusion (Eq. 32) for strongly adsorbed species or a 
film resistance (Eq. 7 or the PFO model). This is consistent 
with an internal mechanism of macropore diffusion control 
leading to a strongly concentration dependent internal dif-
fusion coefficient.

The series of papers by Boyd et al. are still today an excel-
lent example of how tocharacterize rigorously the equilib-
rium properties (1947b) in ion-exchange processes and then 
carry out careful kinetic experiments (Boyd et al. 1947a) and 
subsequent breakthrough experiments (Boyd et al. 1947c), 
checking the independent measurements for consistency. 
Their aim was the design of ion-exchange separation pro-
cesses and anything more advanced than what Boyd et al. 
presented would have required numerical computational 
power not available between 1943 and 1946 when their 
work was carried out. Today, one would possibly consider 
extending the analysis introducing diffusion models that 
include the interactions between charged species (Wes-
selingh et al. 1995; Krishna and Wesselingh 1997), but this 
will not be discussed further as it is beyond the scope of this 
contribution.

3  Results and discussion

In the description of the empirical models the qualitative dis-
cussion of potential pitfalls of the use of linearized plots to 
extract kinetic information was introduced. To give a quan-
titative setting to the arguments made, specific examples will 
be presented based on generating “data” from the full non-
linear model and then applying the empirical approaches to 
see if the models appear to fit the data well and if any of the 
models produce parameters that could be considered to be 
physically meaningful.

3.1  Physical adsorption on zeolites: xylenes on Y 
zeolite beads

The first in a series of three papers by Santacesaria et al. 
(1982a) covered immersion experiments to obtain equilib-
rium properties and formulate a mass transport model based 

on combined film resistance and diffusion inside the beads 
(Table 1).

The supplementary information includes all the results. 
Here we discuss in greater detail the case of pure diffu-
sion for p-xylene ( c0 = 500 mol  m−3 and MS = 40 gr) and 
m-xylene ( c0 = 250 mol  m−3 and MS = 40 gr). p-Xylene and 
m-xylene were chosen because they are the strongest and 
weakest adsorbate respectively.

While these are specific examples, the shape of the kinetic 
response of macropore diffusion control with a Langmuir 
adsorption isotherm will always conform to being between 
close to linear (m-xylene example) and strongly nonlinear 
(p-xylene example). A measure of the nonlinearity is the 
ratio of the equilibrium concentration of the solid to the 
value at complete saturation of the adsorbed phase (Brandani 
1998), which in this case is given by

Table 1  The parameters used in this study

a Arbitrary large value to obtain pure diffusion limit. The lower value 
corresponds to Sh = 2

Parameters p-xylene m-xylene

�P 0.20 0.20
� 2.15 2.15
RP (mm) 0.65 0.65
Dm × 10

9 (m2  s−1) 2.15 2.15

kF ×106 (m  s−1) 1 ×  109a, 3.31 1 ×  109a, 
3.31

c
0
 (mol  m−3) 250, 500 250, 500

�S (kg  m−3) 1400 1400
MS × 10

3 (kg) 10, 40 10, 40

VF × 10
6 (m) 200 200

qS (mol  m−3) 2450 2450
b  (m3  mol−1) 0.036 0.006

0

500

1000

1500

2000

0 500 1000 1500 2000 2500 3000
Time, s

p-xylene

m-xylene

Fig. 2  Batch adsorption uptake curves for p-xylene ( c
0
= 500 mol 

 m−3 and MS = 40 gr) and m-xylene ( c
0
= 250 mol  m−3 and MS = 40 

gr). Full lines diffusion model (Sh = ∞ ); dashed lines combined 
model and Sh = 2
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A value of Γ < 0.5 is an indication of mild nonlinearity 
(Brandani 1998). The nonlinearity increases as Γ approaches 
1.

Figure 2 shows the uptake curves for the two cases of 
interest. Qualitatively the shapes of the curves are similar, 
even when nonlinearity is considered. As expected, the sur-
face resistance modifies the take-off from zero and in general 
results in a smoother shape. It is interesting to note though 
that overall, on the uptake plot, the worst case scenario, 
Sh = 2, is not significantly different from the case of pure 
diffusion, Sh = ∞ . Therefore particular care should be used 
in analysing results with the combined film resistance and 
diffusion model when experimental scatter will give a large 
uncertainty on the individual values of the two mass transfer 
resistances, but the overall effect should still be estimated 
with sufficient accuracy. To discriminate better between 
the two mechanisms it would be better to modify the con-
figuration of the experimental system so that the relative 
velocity between the particles and the fluid can be controlled 
directly. Examples of these systems are discussed in Kärger 
and Ruthven (1992).

(38)Γ =
Q∞

�Pc∞ +
(
1 − �P

)
qS

Figure  3  shows the simulated kinetic response for 
p-xylene, Γ = 0.90 . The data between 3 and 25 min are used 
to apply the PFO, PSO and Elovich empirical approaches. 
Figure 3 shows the relevant plots along with the linear 
regression trend-line. In the Elovich kinetics case one has 
to plot the data varying t0 , which introduces a small potential 
bias from the analyst. The data with t0 = 45 s, conform well 
to the linear plot, even though there are no chemical reac-
tions involved

The order in which one would rank the models in terms of 
goodness of fit is PFO > PSO > Elovich. There is very little 
to discriminate between the three given that the range of  R2 
is between 0.9982 and 0.9993. Experimental scatter of the 
data would reduce  R2, possibly modifying the order. What is 
important to emphasise though is that the trend observed is 
perfectly consistent with the qualitative observations made 
previously. All models fit well the data in the linearized 
plots even though they do not represent the correct trans-
port phenomena.

Figure 3 shows also the test of the fits (McLintock 1967), 
where the regression parameters are used to generate the 
actual uptake curves to compare the models to the original 
data. We now see that the PFO model is in fact a very poor 
match to the data, whether the equilibrium concentration 
from the fit is used or the actual equilibrium concentration 
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R² = 0.99929
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Fig. 3  Linearized plot and linear regression of data using the PFO, 
PSO and Elovich models. Filled points are those used in establish-
ing the trendline. Lower right plot shows the linear plot of the uptake 
data with the curves calculated from the parameters obtained from 

the unconstrained linear regression. For the PFO model an addi-
tional curve is shown with the correct final concentration. p-Xylene 
c
0
= 500 mol  m−3 and MS = 40 gr
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is used. In the long time region the PSO model appears to 
be the best match, but in the short time deviations close to 
100% can be observed with the actual response being much 
faster. The Elovich kinetic model matches the initial part 
well but as expected cannot describe the final approach to 
equilibrium. This is in fact the best model if one decouples 
the kinetics from the final equilibrium. Plotting the uptake 
data on linear scales would lead to the incorrect conclusion 
that one of the two physically unrealistic models describes 
this system well. It should be clear in this case that the 
parameters of these models are not physical parameters and 
therefore of very limited portability to other systems, if any.

Figure 4 shows the Q̄ vs. 
√
t plot of the data. Here only the 

data over the first 10 min are used in the linear regression. 
Again a high  R2 is obtained, 0.9896, but this is the lowest for 
all models. It is worth emphasizing again that the fact that  R2 
is close to unity cannot be used to identify the mechanism of 
mass transport. If anything, this measure leads to the wrong 
conclusion, given that in this case it would be better to use 
the linear diffusion model, even though the match to the data 
is not as good. This crucial consideration can be understood 
if the particle size is changed and only the diffusion model 
would capture the quadratic dependence of the kinetic time 
constant on the radius of the particles. The empirical models 
are only correlative and not predictive, they cannot be used 
for conditions different from those used in the actual experi-
ment from which the parameters were obtained.

The intercept of the linear regression in Fig. 4 is a sig-
nificant deviation from 0 and this would be interpreted as 
evidence of combined surface resistance and internal dif-
fusion (Câmara et al. 2020; Kong et al. 2016; Lupul et al. 
2015; Peralta et al. 2019; Rincon-Silva et al. 2016; Shen 
et al. 2018; Heyden et al. 2018), even though if this was the 
case the intercept should be negative. The positive intercept 

is actually a result of the fact that the points used are already 
outside the range where the first term in the series expansion 
is sufficient to describe the response. Assuming a contribu-
tion from film resistance leads again to identifying the incor-
rect transport mechanism.

Additional information can be inferred when the slope of 
the short time regression is converted to a diffusional time 
constant

to obtain approximately 289 min. The PFO fit of the data can 
also be interpreted as the long-time asymptote of the linear 
diffusion equation. From the slope of the PFO regression 
curve and Eq. 36, it is possible to estimate a value of the 
apparent time constant of approximately 104 min. This sim-
ple check would allow to confirm that the system is strongly 
non-linear and that the data should be analysed with the full 
model.

The nonlinearity of this system is also evident from the 
comparison of the data and the linear model that includes 
variable fluid concentration, Eq. 30. This comparison, shown 
in Fig. 4, provides much more information than the empiri-
cal linear regression and should always be preferred over 
the linear short time approach. The practical barrier to gen-
erating the curve from Eq. 30 are the roots of Eq. 30c. The 
simplest and most robust method of generating the �n values 
is the bisection method applied in each � interval after the 
first, given that the sign of the function is always positive to 
the left of the root and negative to the right. Any solver of a 
single nonlinear equation will also work, provided that the 
search for the solution is kept within the correct � interval. 
Note that � is the ratio of the moles in the solid to those 
in the fluid at equilibrium, and is a constant which allows 

(39)
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6Q∞
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Fig. 4  Regression of uptake data based on linear diffusion model. 
Filled points are those used in establishing the trendline. Uptake pre-
dicted using Eq.  30 passing through the first two points. p-Xylene 
c
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Fig. 5  Internal concentration profiles after 3 and 30 min. Note strong 
nonlinearity as evidenced by the sharp inflection in the profiles. 
p-Xylene c
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= 500 mol  m−3 and MS = 40 gr
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the calculation of �n before the attempt to estimate the time 
constant is carried out. Therefore, rate of convergence to a 
solution is not an issue and robustness is key.

Figure 5 shows the internal concentration profiles at 3 and 
30 min. Note how the profiles are qualitatively similar to a 
shrinking core model. On close inspection there are however 
two main differences: the sharp but continuous transition to 
the initial concentration in the inner part and the fact that the 
plateau close to the surface shifts down with time because 
of the decrease in concentration in the fluid phase, i.e. there 
is desorption taking place in the outer layer of the particle.

Without a detailed analysis of the kinetic response or a 
comparison with the full solution of the diffusion equation, 
the strong nonlinearity could be detected from results over a 
range of adsorbed phase concentrations, always taking into 
account the finite volume and variable fluid concentration 
during the experiment.

Given the importance of the nonlinearity of the isotherm 
on the resulting kinetic responses, an alternative that could 
be useful to consider would be a desorption experiment. This 
could be carried out by allowing the solution to equilibrate 
first and then adding a known quantity of solvent after the 
adsorption step. Note that this additional experiment is not 
common, but would allow to distinguish between reversible 
and irreversible adsorption. It would be recommended when 
enough sensitivity is available in the concentration detector.

Figure  6 shows the results for m-xylene, Γ = 0.44 . 
Here the nonlinearity is mild as can be seen from the con-
centration profiles shown in Fig. 7. Also in this case the 
trends observed match closely the observations made for 
the p-xylene example. Again  R2 values close to unity are 
obtained for all the unconstrained linear regressions and the 
values range from 0.996 to 0.999. When the linear uptake 
plot is used to check results, the PFO model is seen to match 
poorly the data. The PSO and Elovich kinetic models would 
be chosen to represent this system.
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Fig. 6  Linearized plot and linear regression of data using the PFO, 
PSO and Elovich models. Filled points are those used in establish-
ing the trendline. Lower right plot shows the linear plot of the uptake 
data with the curves calculated from the parameters obtained from 

the unconstrained linear regression. For the PFO model an addi-
tional curve is shown with the correct final concentration. m-Xylene 
c
0
= 250 mol  m−3 and MS = 40 gr

0

300

600

900

1200

0 0.2 0.4 0.6 0.8 1
Dimensionless radius

3 minutes

30 minutes
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It is possible to see now that the PSO and Elovich mod-
els will match the pure diffusion uptake curves with both 
strong and mild nonlinearity in the isotherm. This simply 
reflects the nature of the models that start with a fast rate and 
approach equilibrium with a significantly lower rate. This 
is a result of the shape that these empirical kinetic models 
can reproduce and the fact that this is consistent with the 
diffusion model and what happens in the batch adsorption 
experiment. However, both empirical models are not physi-
cally meaningful for physisorption and should not be used 
to correlate the data.

Figure 8 shows the comparison of the data and the linear 
diffusion model. Equation 30 is now seen to match closely 
the data over the entire kinetic response. In this case the lin-
ear model would provide an accurate method to determine 
the tortuosity of the particles.

The addition of a film resistance to mass transport will 
affect primarily the short time response where the rate is 
faster. The worst case scenario for external film resistance 
can be estimated from the Sherwood number set to 2, i.e. 
kF =

Dm

RP

 . The uptake curves for the diffusion with and with-
out film resistance cases are qualitatively similar as shown 
in Fig. 2. Therefore the same trends already observed will 
apply to the empirical models. The only noticeable differ-
ence is the more gradual transition from a fast initial rate to 
a slower final approach to equilibrium, and this in turn will 
favour the PSO model for nonlinear systems which becomes 
the model of choice based on the goodness of fit. Figure 9 
shows the uptake response for the p-xylene case with Sh = 2 
along with the match to the Langmuir kinetics and LDF 
models. Due to the effect of the variation in fluid concentra-
tion on the apparent mass transfer coefficient, the Langmuir 
kinetics model is a very good match to the data and the best 

model in Fig. 9. Even by eye one can see that the  R2 is very 
close to unity, but again there are no reactions taking place 
and Langmuir kinetics is not the physical mechanism of 
mass transport. The excellent match to the data is only the 
result of the shape of the uptake curves obtained from Lang-
muir kinetics.

Very similar results are obtained for the m-xylene case 
with Sh = 2. This shows that a diffusion process with or 
without some surface film resistance can be incorrectly 
interpreted to conform to the PSO, Elovich and Langmuir 
kinetic models simply due to the characteristic shape of the 
uptake curves in a batch adsorption experiment. Figure 10 
shows the Q̄ vs. 

√
t plot of the data for m-xylene with Sh = 2.

Note that in Fig. 10 the intercept is negative, as one would 
expect in this case. A recent example of  Cu++ kinetics in a 
coke derived porous carbon (Yuan et al. 2019) shows  R2 

y = 21.312x + 151.46
R² = 0.987
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Fig. 8  Regression of uptake data based on linear diffusion model. 
Filled points are those used in establishing the trendline. The model 
shown is calculated from Eq.  30. m-Xylene c

0
= 250 mol  m−3 and 

MS = 40 gr
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Fig. 9  Uptake curves for p-Xylene c
0
= 500 mol  m−3 and MS = 40 

gr and Sh = 2. Langmuir kinetics and LDF models are calculated 
adjusting qS to give the same fluid phase concentration at equilibrium. 
The PSO model is calculated from the parameters obtained from the 
unconstrained linear regression

y = 25.104x - 35.737
R² = 0.9955
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Fig. 10  Regression of uptake data based on linear diffusion model. 
Filled points are those used in establishing the trendline. m-Xylene 
c
0
= 250 mol  m−3 and MS = 40 gr and Sh = 2
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values close to unity for the unconstrained linear regressions 
from all empirical models considered here, with the Elovich 
being the worst. The data also lead to a negative intercept 
of the linear diffusion regression. All these results seem to 
suggest that this particular system was in fact limited primar-
ily by a film resistance, especially because the PFO model 
shows a calculated equilibrium concentration that is close 
to the actual measured value. This is very similar to the 
case p-Xylene c0 = 500 mol  m−3, MS = 10 gr, Γ = 0.94 and 
Sh = 2 shown in fig. S-2.

We turn now briefly to a case where adsorption is irre-
versible and generate the data with the shrinking core model. 
There were no substantial differences observed compared 
to the p-xylene case, therefore the curves and linear regres-
sions are shown in the Supplementary Information for one 
of the experiments reported by Phelps and Ruthven (2001). 
The linear regressions give  R2 values of 0.9978, 0.9989, 
0.9959 for the PFO, PSO and Elovich models respectively. 
Also in this case there is very little to discriminate between 
the models based on this figure of merit. Figure 11 shows 
the uptake curve and the calculated responses, including 
Langmuir kinetics. There is very little difference between 
the shapes of the PSO and the Langmuir kinetics models. 
The unconstrained regression of the parameters of the PFO 
model is shown to be the worst model.

Based on Fig. 11 the PSO model would be selected as the 
kinetic model in this case, but again this would be inconsist-
ent with the actual mechanism, given that Phelps and Ruth-
ven report experiments carried out with different bead sizes 
that show that for this system uptake is a diffusion controlled 
process, which at high concentrations is well described by 
the shrinking core model (Phelps and Ruthven 2001).

4  Conclusions and recommendations

The analysis carried out has shown that empirical models, 
that lead to linear regression of uptake data from batch 
adsorption experiments, can match the data well if the 
goodness of fit is based on how close to unity  R2 is. This 
can be very misleading especially if unconstrained regres-
sion of data is applied, particularly for the pseudo first order 
model. The models and the data should always be shown 
on a full uptake plot to avoid the incorrect interpretation of 
the results.

For two nonlinear models, namely macropore controlled 
diffusion in beads with a Langmuir isotherm and the shrink-
ing core model, the empirical approaches lead to the incor-
rect identification of the mechanism if only one uptake 
experiment is carried out. Experiments in a wide range of 
conditions will result in coefficients that vary significantly, 
generating a confusing picture of the kinetic behaviour. This 
can lead to inefficient experimentation, given that the effect 
of many different parameters has to be investigated, even 
when the actual physical mechanism contains only one or 
two parameters that need to be determined.

When uptake curves conform to the pseudo second order 
model and the pseudo first order model has an  R2 close to 
unity, but a low calculated equilibrium amount, it is likely 
that a diffusion model coupled with an appropriate isotherm 
will match the data very well. It would be important to carry 
out experiments with particles of different sizes to confirm 
that this is indeed the case.

When using the linear plot based on the solution of the 
diffusion equation for short times, a positive intercept is an 
indication that the initial rate of uptake is fast and that the 
data selected are already beyond the range of validity of 
the approximate model. The resulting apparent diffusivity 
will be lower than the true value. It is preferable to use the 
full solution, Eq. 30, in this case. Furthermore, identifying 
multiple linear regions in the Q̄ vs. 

√
t plot is inconsistent 

with the diffusion model.
All the approximate models should be used only to arrive 

at an initial estimate of the mass transfer coefficients. This 
may be sufficient if the scope of the investigation is a direct 
qualitative comparison between materials tested in the same 
experimental system.

For a more accurate determination of the mass transfer 
coefficients the full nonlinear models should be used with 
the measured equilibrium isotherm parametrised indepen-
dently. Furthermore, given that the experiment relies on 
measuring the variation of the fluid concentration in time, 
models based on the assumption of constant fluid concentra-
tion should not be used.

Phenomenological models should be preferred over 
empirical kinetic expressions. This is particularly important 
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Fig. 11  Uptake curves for  Cu++ in Ionac SR-5 Cation Exchange 
Resin. C

0
= 0.0059 gr Cu/ml; VF = 100 ml; MS = 3.6 gr; QS = 0.09 

gr Cu/gr resin. Langmuir kinetics are calculated setting b = 10
6 . The 

other models are calculated from the parameters obtained from the 
unconstrained linear regression
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when the scope of the investigation is the measurement of 
kinetic responses to aid the design of separation processes 
or reactors. In such applications the models used and the 
corresponding parameters have to be applicable also to mul-
ticomponent mixtures and to conditions that can be far from 
those explored in the batch experiments.
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