

Edinburgh Research Explorer

Bankrupt Covert Channel: Turning Network Predictability into
Vulnerability

Citation for published version:
Ustiugov, D, Petrov, P, Katebzadeh, MRS & Grot, B 2020, Bankrupt Covert Channel: Turning Network
Predictability into Vulnerability. in 14th USENIX Workshop on Offensive Technologies (WOOT 20). USENIX
Association, 14th USENIX Workshop on Offensive Technologies, 11/08/20.
<https://www.usenix.org/conference/woot20/presentation/ustiugov>

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
14th USENIX Workshop on Offensive Technologies (WOOT 20)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 04. Jan. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/363992433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/boris-grot(2026e8cc-5cb9-4397-b9a9-490ed120e2a5).html
https://www.research.ed.ac.uk/portal/en/publications/bankrupt-covert-channel-turning-network-predictability-into-vulnerability(6d41bc04-f8ee-4c74-82e5-ba9f172aa22a).html
https://www.research.ed.ac.uk/portal/en/publications/bankrupt-covert-channel-turning-network-predictability-into-vulnerability(6d41bc04-f8ee-4c74-82e5-ba9f172aa22a).html
https://www.usenix.org/conference/woot20/presentation/ustiugov
https://www.research.ed.ac.uk/portal/en/publications/bankrupt-covert-channel-turning-network-predictability-into-vulnerability(6d41bc04-f8ee-4c74-82e5-ba9f172aa22a).html

In Proceedings of 14th USENIX Workshop on Offensive Technologies (WOOT’20)

Bankrupt Covert Channel:
Turning Network Predictability into Vulnerability

Dmitrii Ustiugov∗ Plamen Petrov* M.R. Siavash Katebzadeh Boris Grot

University of Edinburgh

Abstract
Recent years have seen a surge in the number of data

leaks despite aggressive information-containment measures
deployed by cloud providers. When attackers acquire sensitive
data in a secure cloud environment, covert communication
channels are a key tool to exfiltrate the data to the outside
world. While the bulk of prior work focused on covert chan-
nels within a single CPU, they require the spy (transmitter)
and the receiver to share the CPU, which might be difficult to
achieve in a cloud environment with hundreds or thousands
of machines.

This work presents Bankrupt, a high-rate highly clandes-
tine channel that enables covert communication between the
spy and the receiver running on different nodes in an RDMA
network. In Bankrupt, the spy communicates with the receiver
by issuing RDMA network packets to a private memory re-
gion allocated to it on a different machine (an intermediary).
The receiver similarly allocates a separate memory region on
the same intermediary, also accessed via RDMA. By steering
RDMA packets to a specific set of remote memory addresses,
the spy causes deep queuing at one memory bank, which is the
finest addressable internal unit of main memory. This exposes
a timing channel that the receiver can listen on by issuing
probe packets to addresses mapped to the same bank but in
its own private memory region. Bankrupt channel delivers
74Kb/s throughput in CloudLab’s public cloud while remain-
ing undetectable to the existing monitoring capabilities, such
as CPU and NIC performance counters.

1 Introduction
In the digital era, information security has become the crucial
necessity that drives private and public cloud vendors to take
all available measures to contain sensitive and confidential
data within customer and government-defined boundaries. De-
spite the efforts, security breaches are commonplace, often
compromising highly sensitive data including personal infor-
mation [15, 23, 50, 52], passwords [11, 16, 57], and medical
records [19, 20].

Often staying in the shadow of side channels that acquire
the sensitive data, covert communication channels are a criti-

∗The first two authors contributed equally to this work.

cal tool used by attackers to exfiltrate the data from a secure
environment. Due to strict information containment measures,
like firewalls, a spy software may not have a direct access to
the Internet and, instead, has to communicate – via a covert
channel – the acquired data to a co-operative receiver software
that is outside of the secure environment and with Internet
access. Recent study by Reardon et al. spotlights a wide usage
of covert channels by attackers in the real world [46].

From an attacker’s perspective, constructing an efficient
covert channel poses several practical challenges. In a public
or private cloud with thousands of nodes, it may be difficult to
ensure that spy and receiver applications get scheduled to the
same node. A more reliable strategy is to construct a covert
channel that works across the datacenter, thus allowing the
spy and the receiver to reside on different nodes. Second, the
channel needs to be fast enough to transmit any amount of
sensitive data, which could reach into gigabytes (e.g., medical
records [19, 20]). Finally, the channel must remain stealthy
even if the cloud vendor is actively monitoring for its exis-
tence.

In this work, we introduce a timing-based covert commu-
nication channel, called Bankrupt, that meets all of these re-
quirements. Bankrupt enables high-rate covert communica-
tion across a datacenter’s RDMA-enabled network, thus de-
coupling the physical placement of the spy and the receiver
from their ability to communicate covertly while avoiding
detection by existing monitoring facilities, including CPU
and NIC performance counters.

Bankrupt relies on an RDMA-enabled network, a tech-
nology that is being adopted by public and private cloud
operators [4, 18, 22, 38]. The wide deployment of RDMA
technology is due to its fundamental latency advantages over
traditional datacenter networks. These advantages come from
the fact that RDMA offers direct access to a remote server’s
memory via an RDMA-enabled NIC with full bypass of the
remote CPU. The Bankrupt attack turns the low latency and
predictability of RDMA into a vulnerability, as predictable
latencies enable a highly robust timing channel.

Bankrupt uses a remote node’s main memory as a timing
channel accessed via RDMA. Figure 1 shows how the attack
works. In the figure, the spy (also referred to as a sender)
wishes to communicate a secret to the receiver residing on a

different node. Although unable to communicate directly, e.g.,
in case of logical separation of the network, both the sender
and the receiver have access to another node’s (an interme-
diary) memory (e.g., a storage server [37, 47]), where both
the sender and the receiver have legitimately allocated private
RDMA-exposed memory regions. The sender and the receiver
do not share physical memory, thus being isolated from the
cloud operator’s perspective. The sender sends a stream of
RDMA read requests to its private memory region at the inter-
mediary, but concentrates all of the reads on a single memory
bank inside the intermediary’s memory.1 By exploiting the
much higher bandwidth of RDMA (up to 200Gb/s with to-
day’s commodity NICs) in comparison to that of a single
memory bank (~10Gb/s), the spy can trivially induce queuing
at the target bank, causing the latency of accesses to that bank
to spike. By issuing RDMA reads to the same bank, the re-
ceiver can detect the latency spike. The presence or absence
of high latency, as in a modulated analog signal, informs the
receiver of the current bit’s value.

In order for Bankrupt to succeed, both the spy and the
receiver must be able to consistently target a single memory
bank on a server with hundreds of banks. A memory controller
inside the intermediary CPU uses a subset of physical address
bits (the bank bits) to route the memory requests, originated
both from the CPU and the RDMA NIC, to the target bank.
As RDMA legitimately exposes the virtual addresses of the
intermediary, we show that a remote attacker is able to use
this information to reverse-engineer the position of the bank
bits in the address space of the intermediary with an algorithm
that is of linear complexity in the number of address bits.

Another challenge for Bankrupt is to guarantee that the
latency spike on the target node is sufficiently high that the
receiver on another node can reliably observe it by issuing
probes over RDMA to the same bank. The quality of the signal
may be compromised by network noise or the presence of
memory-intensive applications on the intermediary. However,
our experiments show that the massive bandwidth offered by
today’s RDMA networks and memory subsystems create a
favorable environment for a highly robust channel.

We evaluate the Bankrupt channel in a private cluster
and on CloudLab, a large-scale public cloud used by com-
puter researchers. In the private cluster, the Bankrupt channel
achieves 114Kb/s throughput in isolation. Under network
load, Bankrupt still provides 67Kb/s throughput, as the sender
needs to issue larger bursts of RDMA reads to overcome the
noise level. We find that the channel’s bandwidth and accuracy
are unaffected in the presence of local memory traffic from
innocuous memory-intensive applications that concurrently
run on the intermediary because a CPU efficiently balances
regular memory traffic. On CloudLab, we show that Bankrupt
delivers 74Kb/s channel throughput.

To summarize, our contributions are as follows:

1A memory bank is a memory-internal device that hosts the data. A
modern memory subsystem comprises up to hundreds of banks (§2.3).

ReceiverSender NICNIC

NIC

Memory
Banks

CPU

PCIe
Intermediary

Cores

......

Memory
Controller

DDR

...

DIMM

RDMA Network

ProbeBurst

Figure 1: Bankrupt attack environment and operation.

• We construct a timing channel, called Bankrupt, that en-
ables covert communication between participants, which
share the same RDMA network but run on different nodes,
via queuing inside remote memory hosted on a third – in-
nocuous – node.

• We provide guidelines for setting up Bankrupt with an
arbitrary RDMA network and CPU; namely for discovering
the addresses that belong to the target memory bank in
remote memory as well as establishing and dynamically
adjusting the channel’s modulated signal by issuing shaped
bursts of RDMA traffic even in a noisy environment.

• We show that the attack is undetectable by software-based
memory access latency monitoring, Infiniband NIC and
CPU performance counters.

2 Background

The Bankrupt channel leverages features of a modern RDMA-
enabled network and the CPU memory subsystem. This sec-
tion introduces the relevant aspects of these technologies in
order to explain how they work together in Bankrupt.

2.1 Covert Channels
Covert channels, introduced first by Lampson [28], enable
communication between independent entities over isolation
boundaries, bypassing firewalls and communication audit-
ing. The basic setup of a covert channel consists of the two
participants: a spy (or sender) program that would like to
communicate (exfiltrate) the previously obtained secret to the
outside world, and a receiver that is aware of the sender’s
existence. Finally, the sender and the receiver should share

2

a common resource that they can use to communicate and
decode the signal.

To communicate, the sender and the receiver usually ex-
ploit resource sharing in a computer system by establishing
a communication channel via legitimate innocuous actions.
For example, a timing channel can be established by mod-
ulating access latencies to a shared CPU cache [29, 31, 56],
main memory [43, 54, 55] or by modulating temperature on a
multi-core CPU chip [30].

Despite the variety of the previously proposed covert chan-
nels, only a few of them may pose a threat in a realistic deploy-
ment scenario, as indicated by prior work [53]. We identify
three key requirements that a practical covert channel has to
meet for maximum impact and generality, namely wide visi-
bility, high communication bandwidth, and stealthiness. We
next discuss each of these requirements.

Wide visibility: An attacker seeking to exfiltrate secrets
needs a covert channel that avoids or minimizes the degree
of colocation between the sender and the receiver. While the
most straight-forward way for the sender and the receiver to
covertly communicate is by co-running on the same node,
such a high degree of colocation is difficult to achieve in prac-
tice because cloud vendors purposefully randomize placement
of the applications on their nodes. However, many providers
do provide their customers with means to localize applica-
tions within the same physical network to offer low latency
networking [7,8]. Hence, a cross-network covert channel may
significantly simplify the attack setup for an attacker.

High bandwidth: Certain types of sensitive data may have
a significant volume, potentially reaching into gigabytes (e.g.,
healthcare records [20]). Hence, to be broadly applicable, a
covert channel should deliver high transmission bandwidth
channel to exfiltrate data of an arbitrary size. Moreover, a
channel’s bandwidth should remain high even in the pres-
ence of various types of system noise, e.g., network traffic or
CPU activity of numerous innocuous applications and system
services that share the same network or CPU.

Stealthiness: An ideal covert channel should remain
stealthy even if platform owners suspect its existence and
actively monitor for it. Indeed, modern servers feature a
wide range of monitoring capabilities, for example, CPU
performance counters and network latency anomaly detec-
tors [3, 10, 12, 26, 44, 45, 58]. A truly covert channel should
remain undetectable by these techniques.

Previously proposed covert channels struggle to comply
with all three requirements. CPU-cache based covert chan-
nels restrict the sender and receiver colocation scenario to the
same physical core or CPU chip [29, 31, 53, 56]. Cache-based
channels also tend to increase the miss rate of the caches
exposing themselves to system monitoring software [17, 53].
The attacks across a network often struggle to deliver band-
width higher than 1Kb/s [41, 48] or may be difficult to use in
a noisy environment due to a relatively small latency gap in
their timing channel [27].

2.2 RDMA networks
Originating from high-performance computing, Remote Di-
rect Memory Access (RDMA) networks see rapid adoption
by cloud providers that strive to deliver low latency and high
throughput to their customers at the scale of an entire datacen-
ter [4, 18, 22, 38]. For example, Azure customers can rent a
virtual RDMA-connected cluster of 80 000 virtual cores [39].

RDMA allows the applications to access the remote mem-
ory via user-level one-sided RDMA read and write primitives
that bypass the destination CPU completely, allowing network
packets to directly read or write to its memory. First, to ex-
pose remote memory for RDMA operations, an application
running on one node needs to register a memory region on the
node that hosts the memory. After that, the application can
issue RDMA read (write) network packets to read (write) the
remote memory contents directly – by specifying the remote
node’s virtual address and the accessed memory chunk length.

When an RDMA packet arrives at the destination node’s
NIC, the NIC translates the virtual address, specified in the
packet’s header, to the corresponding physical memory ad-
dress and engages a DMA (read or write) transaction. The root
complex unrolls the transaction into a sequence of CPU cache-
block sized memory requests that eventually reach a memory
controller of the CPU. Finally, the memory controller serves
these requests from the destination’s main memory and sends
the responses back to the NIC. Upon receiving the responses
from the memory controller, the NIC forms a response packet
and sends it out to the requesting node.

Figure 2: Round-trip latency, as a complementary cumulative
distribution function (CCDF), of an RDMA read operation
in isolation and when network links and switch run at 70%
utilization. See §5 for the setup details.

Because RDMA bypasses the destination CPU, the net-
work round-trip time remains predictable even in the presence
of other network-intensive applications that use the network
infrastructure simultaneously. To showcase RDMA network
predictability, we plot the 64B RDMA read latency, in isola-
tion and under network load of ~40Gb/s (which represents
~70% of the link bandwidth) from a client node to a server
node (Figure 2). Despite the loaded network links and switch
ports, the 99th percentile of the network round-trip delay is
larger than in the unloaded case by just 1.2 microseconds.
This high RDMA predictability indicates the potential for

3

constructing a robust timing channel in an RDMA network.

2.3 Memory Organization
The memory subsystem of a modern server CPU has a hierar-
chical structure: there are 2-6 memory channels, each with its
own memory controller, and each channel has 2-4 DIMMs.
Each DIMM consists of up to 64 independent memory de-
vices called memory banks.2 In total, today’s server may have
hundreds of memory banks across its multitude of DIMMs,
channels and sockets [5].

The high overall bandwidth of a modern memory system
is delivered by this ensemble of small independent banks,
where each bank provides only a small fraction of the total
memory bandwidth. Internally, a memory bank stores data
as an array of DRAM rows, bringing one row at a time to
an SRAM row buffer before serving a memory request. A
single bank’s bandwidth is bounded by the time the bank
takes to bring and serve the corresponding DRAM row from
the array. Assuming no access locality, this time is the sum of
the three key DRAM latency components, namely tCL, tRCD,
and tRP. Each of the three latency components is 13-15ns
which means that the total latency of serving a single 64-byte
memory request is 39-45ns, resulting in the peak theoretical
1.4-1.6GB/s bandwidth of a single bank. Due to the end of
DRAM technology scaling, these key latency components
have stayed the same over the last two decades [35, 36].

The memory controller manages each bank independently
from others, hence all requests to a particular bank reside in a
dedicated per-bank queue inside the memory controller. The
memory controller routes memory requests to banks based
on their physical addresses by employing a manufacturer-
specific fixed hash function (referred to as a memory inter-
leaving scheme) that determines the destination bank based
on a subset of the memory request’s physical address.

To deliver maximum overall memory bandwidth, manu-
facturers choose the scheme that maximises the parallelism
across memory banks. For example, many processors use a
cache-block interleaving scheme that implies that accesses to
adjacent cache blocks are served from different banks. While
some manufacturers disclose memory interleaving informa-
tion, others keep this information proprietary [6, 43].

3 Threat Model
We assume a highly restricted setting that is similar to the
public cloud environment [4, 18, 22, 38]. Both sender and
receiver run either natively or in a virtual machine. They do
not have means to guarantee colocation on the same server,
and thus, might be unable to leverage one of the known local
(i.e., on the same node) covert channels. Furthermore, the
sender and receiver are not allowed to directly communicate
with each other over the network, as if the network is logically

2DIMMs normally consist of 1-4 ranks, and each rank of 8-16 banks.

separated. We assume that no privilege escalation is possible
and both the sender’s and the receiver’s applications have
normal user privileges. The applications are unable to alter any
of the existing firewall policies and do not have the capability
to observe the network traffic.

To establish a covert communication channel in this envi-
ronment, the sender and the receiver can instead communicate
via an intra-datacenter network by modulating local or remote
memory access latency. For example, both the sender and
the receiver may be able to allocate non-shared remote mem-
ory regions on one of the shared storage servers [37, 47], as
assumed by prior work [27]. The remote memory access la-
tency can be modulated by performing one-sided read and/or
write operations via RDMA. Ideally, the sender can allocate
remote memory on a receiver’s node, allowing the receiver
to observe memory access latency on its own server. How-
ever, this might be difficult to guarantee as the sender has no
knowledge where the receiver is running, and furthermore, is
unable to control where its remote memory is allocated by
the datacenter resource manager.

With Bankrupt, the sender and the receiver can communi-
cate by using the remote memory of one of the other nodes in
the cluster (further referred to as an intermediary), where both
sides can allocate remote memory. To find an intermediary,
both the sender and the receiver may request many storage
servers and periodically create and search for the modulated
signal inside the remote memory of each server by period-
ically probing a specific set of addresses (§4.2.1) in each
server’s memory with RDMA reads.

The intermediary is non-malicious and the attacker does
not have direct control over it. The sole requirement is that
the sender and the receiver need to have access to their cor-
responding – completely private – memory regions that have
been allocated for their exclusive use with RDMA one-sided
operations (i.e., remote reads and writes).

4 The Bankrupt Channel

The Bankrupt attack turns the main advantage of RDMA
networks – the direct access to remote memory – into a high-
rate stealthy communication channel that remains robust even
in the presence of noise arising from the network and other
innocuous co-running applications/VMs.

In this section, we describe the attack, introducing a cross-
network timing channel, and provide guidelines for setting up
the Bankrupt channel in an arbitrary RDMA cluster.

4.1 The Bankrupt Timing Channel
Direct access to remote memory enables the sender to cre-
ate a fast timing channel by modulating the access latency
to a single memory bank by selectively steering legitimate
network traffic to a small subset of memory addresses in the
intermediary’s memory.

4

The timing channel relies on several features of the RDMA
NIC and the CPU in a modern server. First, CPU and RDMA
network cards are tightly integrated via PCIe. This allows
the network traffic to flow directly into the destination CPU’s
memory subsystem without any software mediation from the
destination CPU (§2.2). Second, the memory bank address-
ing (memory interleaving) scheme is static, which enables a
remote attacker to steer their network traffic to a single mem-
ory bank (§2.3). Finally, the bandwidth disparity between the
100-200Gb/s network and ~10Gb/s memory bank enables a
remote attacker to easily modulate the access latency of a
single memory bank by forcing queuing at the target memory
bank with excessive traffic.

To set up reliable communication, we use a unidirectional
communication protocol. The sender transmits information
as a synchronous analog signal by modulating, at a fixed
frequency, the response latency of a single bank that is located
in remote memory. By doing that, the sender modulates the
entire network round-trip delay, as observed by the receiver,
for those RDMA packets that go to the target bank in the
remote memory. To transmit a 1, the sender switches the
target memory bank to the contended state (i.e., high access
time during a period) by steering the network traffic in the
form of bursts of RDMA read operations to the bank.3 To
transmit a 0, the sender does not issue network traffic, leaving
the bank in the uncontended state (i.e., low access time) for
the time period that is defined by the sending frequency.

To read the transmitted signal, the receiver issues probes,
which are normal RDMA read operations, at a certain fre-
quency to measure and record the observed remote memory
access latency. The sender splinters the messages into fixed-
sized packets with a pre-defined preamble as a packet header,
followed by a payload. The preamble contains a number of
bits that would indicate the beginning of a message to the re-
ceiver while the payload contains the transmitted information.
Transmission accuracy can be further improved by adding
error correction codes to the packet header, though we do not
take advantage of it in this work.

4.2 Bankrupt Setup Guidelines

To set up the channel, both the sender and the receiver need
to find a subset of remote memory addresses that belong to
the same memory bank in the intermediary’s memory – this
bank will serve as the actual timing channel. The sender needs
to adjust the size of the bursts of RDMA operations and to
select the appropriate sending frequency. The receiver needs
to tune its probing frequency. We next discuss each of these
requirements.

3Cache blocks, accessed by RDMA reads, are not allocated in a CPU’s
last-level cache to avoid cache pollution [24].

4.2.1 Identifying RDMA Addresses that Belong to the
Same Memory Bank

The sender and the receiver (which, together, we refer to as
the “attacker”) can use an arbitrary bank in the intermediary.
The choice of the bank is defined by the subset of the virtual
address bits (further referred to as bank bits), the value of
which tells the memory controller which bank to route a mem-
ory request to (§2.3). For simplicity, the attacker can set the
bank bits to a pre-defined value (e.g., all zeros). The attacker
(both the sender and the receiver can do it separately) just
needs to find any addresses with bank bits set to that value.

The attacker starts by locating the bank bits. These bits
are normally located in the least-significant, i.e., [6:X] where
X > 6, part of the address in order to balance the load across
all available banks. Hence, the attacker needs to derive X to
locate the positions of the bank bits.

Since modern computer systems manage memory at the
granularity of pages (Linux/x86 uses 4KB, 2MB, and 1GB
pages), a subset of least-significant bits (LSBs) in a virtual ad-
dress and the corresponding physical address are identical. In
RDMA-connected systems where low latency is a priority, the
vendors often use large, 2MB or 1GB, pages for remote mem-
ory to avoid the bulk of translation cache misses in RDMA
NICs [13, 40, 51, 59]. If 2MB or 1GB pages are used, vir-
tual and physical addresses share 21 or 30 LSBs, respectively.
Knowing 30 bits is enough to locate the positions of all the
bits in a virtual address that identify a bank for all the tested
systems both in this work and in prior work [43]. For some
systems, knowing 21 LSB bits suffices.

The attacker can identify the positions of the bank bits in
an address by using only RDMA read operations in a search
algorithm, which is of linear complexity in the number of
address bits. This algorithm allows to find addresses that
belong to a single bank by iteratively excluding addresses
belonging to other banks.

First, the attacker chooses a set of unique arbitrary virtual
addresses that are 64-byte (cache-block) aligned, i.e., the bits
[0:5] in the address must be zero while bits [6:63] have arbi-
trary values. The number of addresses needs to be big enough
to not fit in a memory controller’s hardware buffer at once to
avoid coalescing requests to the same address. We find that
64 addresses are enough for all the platforms that we tested.

Second, the attacker issues RDMA reads to those addresses
and estimates the resulting network throughput based on the
number of RDMA reads that complete in the measurement in-
terval. If the traffic exceeds the throughput of a single memory
bank (~1.2GB/s in our experiments), the attacker infers that
memory requests are being served by several banks. To ex-
clude addresses from a half of the banks in each iteration, the
attacker sets one more LSB bit to 0 ([0:6] bits in the second
iteration, [0:7] in the third one, etc.) and estimates the net-
work throughput. After a number of iterations, the throughput
converges to that of a single bank, meaning that the most-

5

significant bank bit is set to zero, revealing the X parameter.
Note, that not all bits in [6:X] define a bank so some iterations
may not lead to a throughput reduction.

4.2.2 Tuning Burst Characteristics
The sender modulates the access time of the target memory
bank by forcing queue build-up at the target bank’s queue
inside the memory controller. To force queuing, the sender
issues bursts of RDMA reads to addresses that map to the
target bank. Below we provide guidelines for the sender to
shape the traffic to produce a robust signal that is visible
across the RDMA network.

To guarantee visibility of the signal, the sender must issue
bursts that require a large amount of time to drain by the target
bank (e.g., a microsecond or more). A memory bank serves
read accesses to any of these addresses serially and each one
within a fixed service time that is in the 39-45ns range (§2.3).
This enables the sender to accurately estimate the service
time of a bank depending on the queue depth. Given the
predictability of the RDMA network (§2.2), it is possible to
accurately modulate the RDMA network round-trip delay.

4.2.3 Tuning Sender’s and Receiver’s Frequency
To maximize the transmission bandwidth of the channel, the
sender needs to find the maximum frequency, i.e., the mini-
mum period, which depends on the time the target bank takes
to serve a burst as well as the level of noise in the system.
There are two types of noise that may impact Bankrupt’s trans-
mission speed and accuracy. First is the network traffic from
other innocuous applications, which share the same physical
network, that may increase network delays. The other type
of noise is the memory traffic that comes from innocuous
software that runs on the intermediary, causing extra queuing
at the memory banks.

To overcome the noise, the sender may need to increase
the burst size so that the modulated delay is higher than the
noise level, i.e., maintain the signal/noise ratio more than 1.
Hence, the sender should periodically adjust its frequency
according to the environment changes: larger bursts improve
the signal/noise ratio but take longer to drain which limits
the sending frequency. To determine the optimal sending fre-
quency, both the sender and the receiver measure the current
network round-trip time (which serves as an indicator of the
noise level) and determine the minimal required burst size
for the current noise level. Given the pre-defined preamble in
packet headers, the receiver can derive the sending frequency
and adjust to its changes.

The receiver needs to issue probes, in the form of RDMA
reads, to the intermediary’s bank to detect the transmitted
signal. The probing frequency needs to be high enough to
allow the receiver to decode the bit transmitted in each send-
ing period. Before the transmission starts, the receiver first
determines the unloaded latency as the 95th percentile latency

Private Cluster CloudLab Utah

CPU
Xeon E5-2630v4
@2.20GHz
(Broadwell)

Xeon E5-2640v4
@2.40GHz
(Broadwell)

RAM 4×16GB, DDR4-2400 4×16GB, DDR4-2400

NIC
Mellanox MT27800
CX-5, 56Gb/s

Mellanox MT27710
CX-4 Lx, 50Gb/s

Core
switches — 1 Mellanox 2700

ToR
switches Mellanox SX6012 5 Mellanox 2410

OS Ubuntu 18.04 Ubuntu 16.04
Kernel 4.15.0-58-generic 4.15.0-88-generic
Nodes 6 200

Table 1: Specifications of studied platforms.

of the network round-trip when the channel is inactive, to dis-
count the rare RDMA network latency outliers. Then, during
each sending period, the receiver performs several measure-
ments of round-trip time and compares the round-trip latency
to the unloaded latency to determine if the target bank is in
the contended state. The receiver computes the round-trip
latency as the arithmetic mean of the measurements that are
taken in the middle of that period to capture the peak of the
potential bank contention, by dropping first and last 25% of
the measurements. If the round-trip latency is larger than the
unloaded latency, the receiver records 1, otherwise a 0. To
account for sporadic changes in network load, the receiver
periodically re-computes the unloaded latency.

5 Methodology
We evaluate Bankrupt in terms of transmission bandwidth,
accuracy, and stealthiness.

We mount Bankrupt on a private cluster to examine the
performance in isolation and under various types of load. To
demonstrate the feasibility of the Bankrupt channel in a public
cloud, we evaluate it on CloudLab [2, 14] – a public cloud
in use by Computer Science researchers. We evaluated the
Bankrupt channel using CloudLab’s Utah cluster that connects
200 nodes with a high-speed RDMA network. At the time of
testing, the utilization of the nodes in the cluster was 80%.
The specifications of our private cluster and the CloudLab
cluster are presented in Table 1. Similarly to prior work [43],
we enable 1GB large pages on our experimental platforms as
they are widely used in RDMA deployments [40, 51, 59]. In
all of our experiments, the sender and the receiver use RDMA
reads of 64 Bytes.

To evaluate the bandwidth and accuracy of transmission
over the Bankrupt channel, we send a sequence of packets
where each packet carries a constant preamble and a randomly-
generated payload. For all experiments, unless stated other-
wise, we use a 32-bit long preamble of 10..10 to tune the
decoder before decoding the payload of 200 bits. We report

6

channel throughput as its true channel capacity, which we
define as achieved channel bandwidth discounting preambles
and incorrectly transmitted bits. We measure accuracy as the
fraction of correctly decoded bits in the message that we
are sending. We keep the receiver’s probing frequency set to
500ns in all our experiments as we found that its impact on
accuracy is rather moderate.

6 Evaluation
In this section we demonstrate the properties of the Bankrupt
attack in isolation and under various types of load. We con-
clude the section with an evaluation of the stealthiness char-
acteristics of the channel and its performance in a realistic
datacenter environment.

6.1 Performance in Isolation
Following the algorithm in §4.2.1, we found that the bank bits
are located at the positions of bits [6:26] in the address.

Figure 3 shows that the latency measurements during the
transmission for different burst sizes. Note that each subfig-
ure shows a different number of transmitted bits in a fixed
amount of time (200 microseconds) because varying the burst
size also changes the (maximum) sending frequency (§4.2.3).
The difference between latencies, further referred to as the
latency gap, that are measured during transmitting 1-s and
0-s grows with the burst size. The minimal burst size that
allows decoding is 32 (2KB) that shows the latency gap of 0.5
microsecond. With the burst size of 128 (8KB), the latency
gap is more than twice bigger, around a microsecond that is
comparable to the network round-trip time, making the signal
more pronounced.

Figure 4 shows how the channel throughput and transmis-
sion accuracy depend on the burst size. Increasing the burst
size from 16 to 32 nearly doubles the transmission accuracy
that leads to a surge in the channel throughput, despite the
lower signaling frequency with a larger burst size. However,
increasing the burst size beyond 32 results in a diminished
channel throughput as large burst sizes decrease the signaling
frequency that is not compensated for by the gain in accuracy.
Thus, we find that the burst size of 32 delivers the highest
channel throughput of 114Kb/s (with transmission accuracy
of 82.4%) in isolation in the private cluster.

6.2 Performance Under Load
To evaluate the channel in the presence of noise, we model
both the noise coming from other workloads scheduled on the
intermediary’s CPU and network traffic.

6.2.1 Local Load
To model the local load in the intermediary’s memory, we
launch 16 instances of the mcf benchmark, taken from the
popular SPEC 2006 benchmark suite [21], on the intermedi-
ary node. mcf is the most memory-intensive benchmark from

(a) Burst size 32

(b) Burst size 64

(c) Burst size 128

Figure 3: Signal observed by the receiver in isolation in the
private cluster, with the corresponding transmitted messages.

that suite [25]. 16 instances of mcf that together generate a
variable load on the intermediary’s memory ranging from
2GB/s to 8GB/s. This is equal to 32MB/s to 128MB/s for
each bank, assuming that on average the load spreads evenly
among banks.

Figure 5 shows the signal observed by the receiver for the
burst size of 32 in the presence of the local load. The signal
is indistinguishable from the one observed in isolation for
the same burst size (Figure 3). The throughput and the accu-
racy remain the same as in isolated execution. The channel
is unaffected by other workloads running on the intermedi-
ary because each individual bank receives a relatively small
amount of traffic, since the load is spread across all of the
banks in the system (§2.3).

6.2.2 Network Load
To model network load on the intermediary, we use the
ib_read_bw benchmark, which is part of the RDMA Perftest

7

(a) Channel throughput as true channel capacity

(b) Transmission accuracy

Figure 4: True channel capacity and transmission accuracy
of the Bankrupt covert channel in isolation and in CloudLab.
Error bars show the standard deviation.

Figure 5: Signal observed by the receiver in the presence of
local load in the private cluster. The burst size is 32.

[34]. We launch ib_read_bw from a node, which is different
from the three nodes we use for the channel. The network
loader generates network traffic to the intermediary, loading
the network link, top-of-the-rack switch, and the NIC of the
intermediary. The generated load is equal to ~40Gb/s which
is around 70% of the intermediary’s total link bandwidth.

Figure 6 shows the signal observed by the receiver in the
presence of network load. With the burst size of 32, the signal
is noisy, which prevents its decoding because the round-trip
delay, recorded by the receiver, often spikes to 3 microseconds.
However, with the burst size of 64-128, the signal is clearly
visible atop of the noise as the latency gap between contended
and uncontended states of the bank exceeds 1 microsecond.

For the burst size of 64, the throughput of the channel
reaches 67Kb/s with accuracy of 73.5%. Compared to the best
performance in isolated execution, the throughput decreases
by 41%. For the burst size of 128, the transmission accuracy is
much higher, reaching 95.4%; however, the resulting channel
throughput of 65Kb/s is lower than with a burst size of 64 due
to a diminished signaling rate.

(a) Burst size 32

(b) Burst size 64

(c) Burst size 128

Figure 6: Signal observed by the receiver in the presence of
network load in the private cluster.

Our experiments suggest that the accuracy drop can be mit-
igated at the cost of a degradation in the channel throughput.
We thus conclude that the channel remains robust in the pres-
ence of the network load provided that the size of the bursts
is adjusted accordingly.

6.3 Stealthiness
We measure the stealthiness of Bankrupt by transmitting 1s
to cause maximum memory bandwidth pressure at the inter-
mediary (because transmitting 0s does not generate traffic).
We use Perf [3] to monitor the memory traffic on the inter-
mediary. First, we inspect available Infiniband counters [33],
e.g., port_xmit_wait, but none of them reveal the network
round-trip delays induced by the channel activity. Second, we
use aggregate CPU counters, as, to the best of our knowledge,
there are no CPUs that feature CPU counters that account for
memory requests at the granularity of memory banks.

8

Burst 1024 512 256 128 64 32 16
Traffic 1.04 0.97 0.82 0.67 0.48 0.31 0.18

Table 2: Memory traffic (in GB/s) generated by the Bankrupt
channel, depending on the burst size, on the intermediary. The
maximum bank throughput on this platform is 1.22GB/s.

Figure 7: Local memory access latency percentiles recorded
on the intermediary during active communication over the
Bankrupt channel. Burst size of 0 stands for no active channel.
Lines for the 90th and for 50th percentiles appear overlapping.

Table 2 shows the memory traffic that is generated by an
active Bankrupt channel on the intermediary. For the burst
sizes of 32 and 128, the attack generates memory bandwidth
of 0.31GB/s and 0.67GB/s, accordingly. For modern CPUs,
which feature 20-32GB/s per channel thanks to the many
memory banks, the attack increases their memory bandwidth
counters negligibly.

We use a random-access microbenchmark that measures
the memory access latency individually using rdtsc regis-
ter with and without the active Bankrupt channel. Figure 7
demonstrates the median and the tail memory latency on our
cluster while the channel is not active and while the channel is
active with different burst sizes. The 99th percentile increases
by less than 10% between the unloaded case and burst size
128. For burst size 32, the 99.9th and the 99.99th percentiles
increase by approximately 20% and 70%, respectively. For
burst sizes of 512 and larger, the 99.9th and 99.99th percentiles
increase from 200% to 400%, but such large bursts are not
necessary to transmit a message, as we show in §6.1.

Overall, the Bankrupt attack influences only very high per-
centiles of the memory access time, and injects negligible
memory traffic. Capturing such subtle differences with soft-
ware is challenging even in the absence of other workloads
scheduled on the intermediary’s CPU, or other types of the
system noise, that renders the attack virtually undetectable.

6.4 Public Cloud Performance
Similarly to the experiments in the private cluster, we iden-
tified that the bank bits in CloudLab’s servers are located at
the positions of bits [6:27] in the address.

As expected for a public cloud, we found that CloudLab’s
network is more noisy than the private cluster in isolation

(§6.1), however less noisy than in the adversarial scenario
where we inject network noise with a network loader bench-
mark (§6.2.2). To stabilize the signal for efficient decoding
in CloudLab, we use a smaller 100-bit payload size while
keeping the preamble of the same 32-bit size.

Figure 4 shows that the channel achieves ~35% less chan-
nel throughput than in the private cluster with almost the same
accuracy. This bandwidth reduction can be attributed to two
factors: first, the network round-trip in CloudLab is larger
due to its scale, and, second, we reduced the payload size in a
packet, devoting 13% more of the channel’s raw bandwidth
for transmitting headers (i.e., preambles). We find that the
minimal burst size that allows decoding is 32, which is equal
to the minimum burst size in our experiments in the private
cluster. With the burst size of 32, Bankrupt provides the chan-
nel throughput of 74Kb/s (the accuracy is 82.2%). Increasing
the burst size to 128 allows to increase the transmission accu-
racy to 96.8% while providing 51Kb/s throughput.

7 Detection and Mitigation

Bankrupt does not impact the local memory access time, up
to the 99th percentile (§6.3). Available CPU counters account
memory requests per memory controller, which is not suffi-
ciently fine-grained to reliably detect memory traffic spikes
of <1GB/s directed at just one memory bank. We propose
adding per-bank CPU counters to detect the load skew at a
finer granularity. However, even though these counters are
likely to reveal the attack happening, they would not allow
to track down the source of the attack because many applica-
tions within the same RDMA network may have access to the
remote memory on the intermediary node simultaneously.

We anticipate that architectural changes of the CPU are
required to close the Bankrupt channel. As we showed in §6,
the Bankrupt channel is robust to different types of noise; as a
result, noise injection is unlikely to be an effective preventive
measure. Instead, we suggest eliminating the root cause of the
vulnerability that is the static memory interleaving scheme
that RDMA exposes to an attacker. Hence, CPU architects
may consider using a cryptographic block-cipher function,
that a memory controller can use for routing memory requests
to memory banks, instead of the static one. Using a crypto-
graphic function would significantly complicate the search of
addresses that belong to one bank (§4.2.1). Prior work demon-
strate that a block-cipher ASIC can perform an encryption
operation (e.g., for routing memory requests) in as little as
10ns, and integrating these ASICs inside memory controllers
would come at the cost of <0.1% silicon area for a modern
CPU [9]. Compared to the memory access latency of a modern
CPU, which is normally slightly over 100ns [1], we anticipate
a moderate performance impact both for the software that
runs locally on the CPU and the RDMA network latency.

9

8 Responsible Disclosure & Code Availability

We responsibly disclosed the vulnerability to Intel on January
27th 2020, and provided our proof-of-concept code to their
security team that confirmed that "an adversary can exfiltrate
information leveraging the Bankrupt attack". However, Intel’s
response highlighted that Intel provide no security guarantees
if RDMA-equipped servers are available for use of untrusted
parties, i.e., in a public cloud. We disclosed our work to Mi-
crosoft Azure’s security team that "determined that the attack
does not pose a risk to Azure infrastructure due to their ar-
chitectural decisions". The proof-of-concept source code is
published at https://github.com/ease-lab/bankrupt.

9 Related Work

Single-CPU covert channels: Maurice et al. [32] thoroughly
studies the peculiarities of cache-based covert channels and
demonstrates necessary communication protocol support for
robust data transmission. Wu et al. [53] constructs a robust
covert channel between virtual machines on different cores
of the same node by locking the memory bus with atomic op-
erations. The DRAMA covert channel is based on the timing
difference of row buffer hits and misses at DRAM memory
banks that can be measured if the sender and the receiver
share the same CPU [43]. However, this timing difference
(~30ns for DRAM memory) is insufficient to form a robust
signal that is visible across a network. To achieve reliable
cross-network communication, Bankrupt builds up queuing
inside a single memory bank with bursts of row buffer misses,
elevating the timing gap to microseconds that is widely visi-
ble across an RDMA network. Similar to this work, DRAMA
reverse-engineers, using a brute-force search approach, the ex-
act positions and functions of all the bits in a memory address
but does so by running software on the target node directly.
In contrast, our method allows to retrieve the positions of all
the bits that identify memory banks, in a time linear in the
number of address bits that is fast in practice, which is neces-
sary to locate addresses in memory banks, across an RDMA
network. Contrary to the above memory-based channels, the
Bankrupt timing channel relies on inducing queuing effects
in the per-bank queues inside a memory controller.

Masti et al. leverage the heat that CPU cores emit to estab-
lish covert communication [30]. Xiao et al. exploit memory
deduplication to construct a covert channel in a virtualized
environment [54, 55]. Other works rely on accesses to pri-
vate [42] and shared CPU caches [29, 31], including the use
of clflush instructions [17]. In contrast to all these chan-
nels, Bankrupt overcomes the requirement of colocating the
sender and the receiver on the same CPU, enabling covert
communication across an RDMA network.

Cross-network covert channels: Ovadya et al. exploit the
design of network protocols such as ARP, SSH, an ICMP to
construct covert channels in routers in TCP/IP networks [41].

Tahir et al. design a covert channel exploiting network links
and routers sharing across virtual networks [48]. Both of these
channels deliver transmission bandwidth below 2 Kb/s in con-
trast to 99Kb/s provided by Bankrupt. Recent works have
discovered covert channels in modern RDMA deployments.
Pythia [49] demonstrates a timing channel in the NIC-internal
translation buffer. The channel requires the use of small (e.g.,
4KB) pages for the RDMA-exposed regions while the use
of large pages is widespread in settings where low latency is
a priority [13, 18, 40, 51, 59]. The use of large pages imme-
diately exposes the system to the Bankrupt attack. NetCAT
designs a covert channel by leveraging Intel Data-Direct I/O
(DDIO) [24] that allows buffering of RDMA packets in the
destination’s CPU’s last-level cache (LLC) [27]. Contrary to
NetCAT, Bankrupt cannot be mitigated by disabling DDIO
as its timing channel resides in the memory controller. Net-
CAT delivers similar throughput and accuracy as Bankrupt but
lacks sufficient evaluation in the presence of noise. Bankrupt
is able to deliver comparable throughput even in an noisy envi-
ronment thanks to the Bankrupt channel’s microsecond-scale
latency gap between transmitted 0-s and 1-s, which is an order
of magnitude larger than the LLC miss delay in NetCAT.

10 Conclusion

Covert channels enable exfiltration of sensitive data by by-
passing information containment measures from secure cloud
environment to the outside world. From the attacker’s per-
spective, an ideal covert channel should be general enough
to unlock high-rate data transfers of an arbitrary size within
a datacenter while remaining undetectable from a cloud ven-
dor’s monitoring capabilities.

Our work introduces Bankrupt, a high-rate cross RDMA-
network covert channel, that meets all of these requirements,
by allowing the spy (sender) and the receiver malware, run-
ning on different nodes in the network, to communicate via
the remote memory that is hosted on yet another – innocuous
– node in the same network. We showcase that Bankrupt deliv-
ers the channel throughput of 74Kb/s in a large-scale public
cloud environment inside the Cloudlab datacenter facility,
and up to 114Kb/s in the private cluster. We demonstrate that
Bankrupt remains highly robust even in a noisy environment
while remaining stealthy to anomaly monitoring capabilities,
like Infiniband NIC and CPU counters.

Acknowledgements

The authors thank Prof. Mathias Payer for his valuable feed-
back on this work as well as the EASE lab members at the
University of Edinburgh for the numerous discussions that
gave inspiration to this work. The research was supported
by the ARM Center of Excellence at the University of Edin-
burgh.

10

https://github.com/ease-lab/bankrupt

References

[1] 7-Zip LZMA Benchmark. Available at https://www.7-
cpu.com.

[2] CloudLab. Available at https://www.cloudlab.us.

[3] Linux Perf tools. Available at https://man7.org/
linux/man-pages/man1/perf.1.html.

[4] Alibaba. Alibaba builds high-speed RDMA network
for AI and scientific computing, 2019. Available at
https://www.alibabacloud.com/blog/alibaba-
builds-high-speed-rdma-network-for-ai-and-
scientific-computing_594895.

[5] AMD. AMD EPYC 7002 Series Processors. Avail-
able at https://www.amd.com/en/processors/epyc-
7002-series.

[6] AMD. BIOS and Kernel Developer’s Guide for AMD
Family 16h Models 30h-3Fh Processors. Available
at https://www.amd.com/system/files/TechDocs/
52740_16h_Models_30h-3Fh_BKDG.pdf.

[7] AWS. Placement groups. Available at
https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/placement-groups.html.

[8] Azure. Announcing the general availability
of proximity placement groups. Available at
https://azure.microsoft.com/en-us/blog/
announcing-the-general-availability-of-
proximity-placement-groups.

[9] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Le-
ander, Amir Moradi, Thomas Peyrin, Yu Sasaki, Pascal
Sasdrich, and Siang Meng Sim. The skinny family of
block ciphers and its low-latency variant mantis. In
Annual International Cryptology Conference. Springer,
2016.

[10] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jen-
nifer Rexford, and Ori Rottenstreich. Catching the mi-
croburst culprits with snappy. In SelfDN colocated with
SIGCOMM, 2018.

[11] Cybersecurity Insiders. Top 5 cloud se-
curity related data breaches! Available at
https://www.cybersecurity-insiders.com/top-
5-cloud-security-related-data-breaches.

[12] Richard Cziva, Christopher Lorier, and Dimitrios P.
Pezaros. Ruru: High-speed, flow-level latency mea-
surement and visualization of live internet traffic. In
SIGCOMM, 2017.

[13] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast remote memory.
In NSDI, 2014.

[14] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, et al. The
design and operation of CloudLab. In USENIX ATC,
2019.

[15] Forbes. EasyJet hacked for four months, data on
9 million customers and 2,000 credit cards stolen.
Available at https://www.forbes.com/sites/
thomasbrewster/2020/05/19/easyjet-hacked-
9-million-customers-and-2000-credit-cards-
hit.

[16] Fortune. LinkedIn lost 167 million account
credentials in data breach. Available at
https://fortune.com/2016/05/18/linkedin-
data-breach-email-password.

[17] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+Flush: A fast and stealthy cache
attack. In DIMVA, 2016.

[18] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over commodity ethernet at scale. In SIGCOMM, 2016.

[19] Health IT Security. The 10 biggest healthcare
data breaches of 2019, so far. Available at https:
//healthitsecurity.com/news/the-10-biggest-
healthcare-data-breaches-of-2019-so-far.

[20] Healthcare IT News. Data on 150,000 patients
exposed in another misconfigured AWS bucket.
Available at https://www.healthcareitnews.com/
news/data-150000-patients-exposed-another-
misconfigured-aws-bucket.

[21] John L. Henning. SPEC CPU2006 benchmark descrip-
tions. ACM SIGARCH Computer Architecture News,
2006.

[22] Huawei. Huawei launches Mellanox-based InfiniBand
EDR 100 Gbps switch solution, 2016. Available
at https://www.huawei.com/en/press-events/
news/2016/6/Mellanox-Based-InfiniBand-EDR-
100Gbps-Switch-Solution.

[23] Information Age. Addressing the issue of
data leakage from the cloud. Available at
https://www.information-age.com/addressing-
data-leakage-cloud-123486781.

[24] Intel. Intel Data Direct I/O Technology (In-
tel DDIO): A Primer. Available at https:

11

https://www.7-cpu.com
https://www.7-cpu.com
https://www.cloudlab.us
https://man7.org/linux/man-pages/man1/perf.1.html
https://man7.org/linux/man-pages/man1/perf.1.html
https://www.alibabacloud.com/blog/alibaba-builds-high-speed-rdma-network-for-ai-and-scientific-computing_594895
https://www.alibabacloud.com/blog/alibaba-builds-high-speed-rdma-network-for-ai-and-scientific-computing_594895
https://www.alibabacloud.com/blog/alibaba-builds-high-speed-rdma-network-for-ai-and-scientific-computing_594895
https://www.amd.com/en/processors/epyc-7002-series
https://www.amd.com/en/processors/epyc-7002-series
https://www.amd.com/system/files/TechDocs/52740_16h_Models_30h-3Fh_BKDG.pdf
https://www.amd.com/system/files/TechDocs/52740_16h_Models_30h-3Fh_BKDG.pdf
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://azure.microsoft.com/en-us/blog/announcing-the-general-availability-of-proximity-placement-groups
https://azure.microsoft.com/en-us/blog/announcing-the-general-availability-of-proximity-placement-groups
https://azure.microsoft.com/en-us/blog/announcing-the-general-availability-of-proximity-placement-groups
https://www.cybersecurity-insiders.com/top-5-cloud-security-related-data-breaches
https://www.cybersecurity-insiders.com/top-5-cloud-security-related-data-breaches
https://www.forbes.com/sites/thomasbrewster/2020/05/19/easyjet-hacked-9-million-customers-and-2000-credit-cards-hit
https://www.forbes.com/sites/thomasbrewster/2020/05/19/easyjet-hacked-9-million-customers-and-2000-credit-cards-hit
https://www.forbes.com/sites/thomasbrewster/2020/05/19/easyjet-hacked-9-million-customers-and-2000-credit-cards-hit
https://www.forbes.com/sites/thomasbrewster/2020/05/19/easyjet-hacked-9-million-customers-and-2000-credit-cards-hit
https://fortune.com/2016/05/18/linkedin-data-breach-email-password
https://fortune.com/2016/05/18/linkedin-data-breach-email-password
https://healthitsecurity.com/news/the-10-biggest-healthcare-data-breaches-of-2019-so-far
https://healthitsecurity.com/news/the-10-biggest-healthcare-data-breaches-of-2019-so-far
https://healthitsecurity.com/news/the-10-biggest-healthcare-data-breaches-of-2019-so-far
https://www.healthcareitnews.com/news/data-150000-patients-exposed-another-misconfigured-aws-bucket
https://www.healthcareitnews.com/news/data-150000-patients-exposed-another-misconfigured-aws-bucket
https://www.healthcareitnews.com/news/data-150000-patients-exposed-another-misconfigured-aws-bucket
https://www.huawei.com/en/press-events/news/2016/6/Mellanox-Based-InfiniBand-EDR-100Gbps-Switch-Solution
https://www.huawei.com/en/press-events/news/2016/6/Mellanox-Based-InfiniBand-EDR-100Gbps-Switch-Solution
https://www.huawei.com/en/press-events/news/2016/6/Mellanox-Based-InfiniBand-EDR-100Gbps-Switch-Solution
https://www.information-age.com/addressing-data-leakage-cloud-123486781
https://www.information-age.com/addressing-data-leakage-cloud-123486781
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf

//www.intel.com/content/dam/www/public/
us/en/documents/technology-briefs/data-
direct-i-o-technology-brief.pdf.

[25] Aamer Jaleel. Memory characterization of workloads
using instrumentation-driven simulation. Technical re-
port, 2010. Available at http://www.jaleels.org/
ajaleel/publications/SPECanalysis.pdf.

[26] Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and
Boon Thau Loo. BurstRadar: Practical real-time mi-
croburst monitoring for datacenter networks. In APSys,
2018.

[27] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. NetCAT:
Practical cache attacks from the network. In S&P, 2020.

[28] Butler W. Lampson. A note on the confinement problem.
In CACM, 1973.

[29] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-level cache side-channel attacks are
practical. In S&P, 2015.

[30] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ran-
ganathan, Christian Müller, Lothar Thiele, and Srdjan
Capkun. Thermal covert channels on multi-core plat-
forms. In USENIX Security, 2015.

[31] Clémentine Maurice, Christoph Neumann, Olivier Heen,
and Aurélien Francillon. C5: Cross-cores cache covert
channel. In DIMVA, 2015.

[32] Clémentine Maurice, Manuel Weber, Michael Schwarz,
Lukas Giner, Daniel Gruss, Carlo Alberto Boano, Stefan
Mangard, and Kay Römer. Hello from the other side:
SSH over robust cache covert channels in the cloud. In
NDSS, 2017.

[33] Mellanox. Understanding mlx5 linux coun-
ters and status parameters. Available at
https://community.mellanox.com/s/article/
understanding-mlx5-linux-counters-and-
status-parameters.

[34] Mellanox. Mellanox Perftest package, 2017. Available
at https://community.mellanox.com/s/article/
perftest-package.

[35] Micron. Micron DDR2 SDRAM datasheet.
Available at http://www.micron.com/-/media/
documents/products/data%20sheet/dram/ddr2/
2gb_ddr2.pdf.

[36] Micron. Micron DDR4 SDRAM datasheet. Available
at https://www.micron.com/-/media/client/
global/documents/products/data-sheet/dram/
ddr4/8gb_ddr4_sdram.pdf.

[37] Microsoft. SMB-Direct. Available at
https://docs.microsoft.com/en-us/windows-
server/storage/file-server/smb-direct.

[38] Microsoft. Availability of Linux RDMA
on Microsoft Azure, 2015. Available at
https://azure.microsoft.com/en-gb/blog/
azure-linux-rdma-hpc-available.

[39] Microsoft. Introducing the new HBv2 Azure virtual
machines for high-performance computing, 2019.
Available at https://azure.microsoft.com/en-
us/blog/introducing-the-new-hbv2-azure-
virtual-machines-for-high-performance-
computing.

[40] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli,
Michael Cui, Yiying Zhang, Haggai Eran, Boris Pis-
menny, Liran Liss, Michael Wei, Dan Tsafrir, and Mar-
cos Aguilera. StoRM: A fast transactional dataplane for
remote data structures. In SYSTOR, 2019.

[41] Adar Ovadia, Rom Ogen, Yakov Mallah, Niv Gilboa,
and Yossi Oren. Cross-router covert channels. In WOOT
colocated with USENIX Security, 2019.

[42] Colin Percival. Cache missing for fun and profit. In
BSDCan, 2005.

[43] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael
Schwarz, and Stefan Mangard. DRAMA: Exploiting
DRAM addressing for cross-CPU attacks. In USENIX
Security, 2016.

[44] Diana Andreea Popescu and Andrew W. Moore.
PTPmesh: Data center network latency measurements
using PTP. In MASCOTS, 2017.

[45] Diana Andreea Popescu and Andrew W. Moore. A first
look at data center network condition through the eyes
of PTPmesh. In TMA, 2018.

[46] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit
Elazari Bar On, Narseo Vallina-Rodriguez, and Serge
Egelman. 50 ways to leak your data: An exploration of
apps’ circumvention of the Android permissions system.
In USENIX Security, 2019.

[47] RedHat. NFS over RDMA. Available at
https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/6/html/
storage_administration_guide/nfs-rdma.

[48] Rashid Tahir, Mohammad Taha Khan, Xun Gong, Adnan
Ahmed, Amiremad Ghassami, Hasanat Kazmi, Matthew
Caesar, Fareed Zaffar, and Negar Kiyavash. Sneak-peek:
High speed covert channels in data center networks. In
INFOCOM, 2016.

12

https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
http://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf
http://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/perftest-package
https://community.mellanox.com/s/article/perftest-package
http://www.micron.com/-/media/documents/products/data%20sheet/dram/ddr2/2gb_ddr2.pdf
http://www.micron.com/-/media/documents/products/data%20sheet/dram/ddr2/2gb_ddr2.pdf
http://www.micron.com/-/media/documents/products/data%20sheet/dram/ddr2/2gb_ddr2.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://docs.microsoft.com/en-us/windows-server/storage/file-server/smb-direct
https://docs.microsoft.com/en-us/windows-server/storage/file-server/smb-direct
https://azure.microsoft.com/en-gb/blog/azure-linux-rdma-hpc-available
https://azure.microsoft.com/en-gb/blog/azure-linux-rdma-hpc-available
https://azure.microsoft.com/en-us/blog/introducing-the-new-hbv2-azure-virtual-machines-for-high-performance-computing
https://azure.microsoft.com/en-us/blog/introducing-the-new-hbv2-azure-virtual-machines-for-high-performance-computing
https://azure.microsoft.com/en-us/blog/introducing-the-new-hbv2-azure-virtual-machines-for-high-performance-computing
https://azure.microsoft.com/en-us/blog/introducing-the-new-hbv2-azure-virtual-machines-for-high-performance-computing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/storage_administration_guide/nfs-rdma
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/storage_administration_guide/nfs-rdma
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/storage_administration_guide/nfs-rdma

[49] Shin-Yeh Tsai, Mathias Payer, and Yiying Zhang.
Pythia: Remote oracles for the masses. In USENIX
Security, 2019.

[50] UpGuard. What are cloud leaks? Available at https:
//www.upguard.com/blog/what-are-cloud-leaks.

[51] Zhi Wang, Xiaoliang Wang, Zhuzhong Qian, Baoliu Ye,
and Sanglu Lu. RDMAvisor: Toward deploying scalable
and sample RDMA as a service in datacenters, 2018.
Available at http://arxiv.org/abs/1802.01870.

[52] Wired. Hack Brief: 4-year-old Dropbox hack
exposed 68 million people’s data. Available at
https://www.wired.com/2016/08/hack-brief-
four-year-old-dropbox-hack-exposed-68-
million-peoples-data.

[53] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers
in the hyper-space: High-speed covert channel attacks
in the cloud. In USENIX Security, 2012.

[54] Jidong Xiao, Zhang Xu, Hai Huang, and Haining Wang.
A covert channel construction in a virtualized environ-
ment. In CCS, 2012.

[55] Jidong Xiao, Zhang Xu, Hai Huang, and Haining Wang.
Security implications of memory deduplication in a vir-
tualized environment. In DSN, 2013.

[56] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A high resolution, low noise, L3 cache side-channel
attack. In USENIX Security, 2014.

[57] ZDNet. Hacker leaks passwords for more than
500,000 servers, routers, and IoT devices. Available at
https://www.zdnet.com/article/hacker-leaks-
passwords-for-more-than-500000-servers-
routers-and-iot-devices.

[58] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia
Tang. Treadmill: Attributing the source of tail latency
through precise load testing and statistical inference. In
ISCA, 2016.

[59] Peipei Zhou, Zhenyuan Ruan, Zhenman Fang, Megan
Shand, David Roazen, and Jason Cong. Doppio: I/O-
aware performance analysis, modeling and optimization
for in-memory computing framework. In ISPASS, 2018.

13

https://www.upguard.com/blog/what-are-cloud-leaks
https://www.upguard.com/blog/what-are-cloud-leaks
http://arxiv.org/abs/1802.01870
https://www.wired.com/2016/08/hack-brief-four-year-old-dropbox-hack-exposed-68-million-peoples-data
https://www.wired.com/2016/08/hack-brief-four-year-old-dropbox-hack-exposed-68-million-peoples-data
https://www.wired.com/2016/08/hack-brief-four-year-old-dropbox-hack-exposed-68-million-peoples-data
https://www.zdnet.com/article/hacker-leaks-passwords-for-more-than-500000-servers-routers-and-iot-devices
https://www.zdnet.com/article/hacker-leaks-passwords-for-more-than-500000-servers-routers-and-iot-devices
https://www.zdnet.com/article/hacker-leaks-passwords-for-more-than-500000-servers-routers-and-iot-devices

	Introduction
	Background
	Covert Channels
	RDMA networks
	Memory Organization

	Threat Model
	The Bankrupt Channel
	The Bankrupt Timing Channel
	Bankrupt Setup Guidelines
	Identifying RDMA Addresses that Belong to the Same Memory Bank
	Tuning Burst Characteristics
	Tuning Sender's and Receiver's Frequency

	Methodology
	Evaluation
	Performance in Isolation
	Performance Under Load
	Local Load
	Network Load

	Stealthiness
	Public Cloud Performance

	Detection and Mitigation
	Responsible Disclosure & Code Availability
	Related Work
	Conclusion

