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bouchra.aylaj@gmail.com

(2): University of Granada, Departamento de Matemática Aplicada, 18071-Granada, Spain, and
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This paper proposes a multiscale vision to human crowds which provides a consis-
tent description at the three possible modeling scales, namely, microscopic, mesoscopic,

and macroscopic. The proposed approach moves from interactions at the microscopic
scale and shows how the same modeling principles lead to kinetic and hydrodynamic
models. Hence, a unified framework is developed which permits to derive models at each
scale using the same principles and similar parameters. This approach can be used to

simulate crowd dynamics in complex environments composed of interconnected areas,
where the most appropriate scale of description can be selected for each area. This offers
a pathway to the development of a multiscale computational model which has the capa-
bility to optimize the granularity of the description depending on the pedestrian local

flow conditions. An important feature of the modeling at each scale is that the complex
interaction between emotional states of walkers and their motion is taken into account.
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1. Plan of the Paper

Mathematical modeling and numerical simulation of human crowds represent a

challenging research field which has motivated an intense activity in recent years.

1
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The interest is related not only to the theoretical value of this topic, but also to

the potential benefits that these studies can bring to the society, for instance in the

fire safety design process or in crowd management under specific threats, such as

turmoil, panic and so forth 32.

Human crowds are complex systems, namely, systems composed of many en-

tities undergoing nonlinearly additive interactions. Individual behaviors play the

prominent role in the collective emerging behaviors. Therefore, the dynamics of a

crowd cannot simply rely on mechanical and deterministic causality principles, but

it should account for the heterogeneous behavior of individual entities, their emo-

tional states, walking ability, and the the resulting changes that individual based

interactions undergo. This is a specific feature of all living, hence complex, systems

due to their ability to develop a self-organizing intelligence. In addition, collective

learning ability 21 progressively modifies the rules of the interactions.

Indeed, researchers have effectively accepted the message delivered in 10, which

addressed the modeling approach to account for behavioral features of walkers to be

interpreted as active, rather than classical, particles. The rapidly growing interest

of researchers towards active particle methods is witnessed in the edited book 9,

where a broad bibliography is reported together with hints on modeling, qualitative

analysis, and computational methods for differential models of living systems.

The interested reader is addressed to 35 for a survey of the literature produced

in the past century on the physics and modeling of self-propelled particles, while the

mathematical literature on crowd modeling by the individual-based and by the hy-

drodynamic approach has been reviewed more recently in 10. The book 26 is mainly

focused on the modeling at the macroscopic scale with some vision on multiscale

problems. These references indicate that the description of the dynamics of the sys-

tem by differential equations can be developed at the three usual scales, namely,

microscopic (individual-based), macroscopic (hydrodynamic), and mesoscopic (ki-

netic).

Models at each scale present advantages and drawbacks. However, rather than

discussing this topic, our paper chases the objective of developing a general unified

approach related to a multiscale vision. This objective also accounts for the need of

introducing aspects of social dynamics in large crowds. In more detail, the following

two issues are taken into account:

Multiscale vision: By multiscale approach we mean selecting and modeling the

microscopic dynamics which is necessary to correctly implement the derivation of

mesoscopic and macroscopic models. In particular, the strategy tackles also the

problem of the derivation of models at the macroscopic scale by suitable limits of

kinetic models by letting tend to zero the distance between individuals.

Social behaviors: Recent papers have introduced the modeling of some aspects

of social behaviors in crowds 6,13,16,51. This development has been also motivated

by human safety problems 33,41,43,47,48,52. It has been shown that the strategy de-

veloped by walkers in stress conditions is subject to important modifications that
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might even induce unsafe situations 13. The conceptual framework towards modeling

social dynamics is delivered in 1.

Focusing on the multiscale vision, we observe that the modeling of individual-

based interactions can take advantage of results reported in various papers which

have been recently devoted to this topic 22,24,44,45. Microscopic interaction models

can be then used to derive kinetic-type models which, in turn under asymptotic

limits, can lead to models at the macroscopic scale 4,17. A hierarchy of phenomena

at different scales is possible as shown in 28,29. This approach has also been applied

to vehicular traffic, see for instance 8.

Focusing on social behaviors, it is worth highlighting that models should have

the capability of describing the dynamics of crowds composed of pedestrians whose

emotional state is heterogeneously distributed and propagates in space and time.

Examples range from the spreading of violence during a demonstration, where two

groups of people confront each other, to the propagation of panic during emer-

gency evacuations. Our paper aims at dealing with this challenging topic within the

framework of the multiscale vision proposed in the following sections.

Bearing all of the above in mind, a description of the contents can be rapidly

given as follows.

Section 2 firstly proposes some basic principles which should guide a common

approach to model interactions at each scale. Then, some general mathematical

structures, suitable to provide the conceptual framework towards modeling, are

reported for each scale. We refer to structures already available in the literature

which, however, need further modifications to chase the objective of our paper.

Section 3 focuses on crowds in unbounded domains and deals with the modeling

of interactions, at each scale, according to the principles proposed in Section 2. These

can be inserted into the aforementioned structures to derive models of collective

behaviors.

The modeling of the dynamics in domains with boundaries and obstacles is

studied in Section 4, which develops the approach in bounded domains to account for

the presence of walls which are perceived by walkers at a distance from the boundary

thus modifying their trajectories. This feature generates interesting analytic and

computational problems with nonlocal boundary conditions.

Section 5 proposes a multiscale approach to model the propagation in space of

specific behaviors, such as stress conditions, which can have an important influence

on the support to safety problems, where stress conditions can drive the crowd

towards irrational behaviors with influence on safety.

Finally, Section 6 proposes a critical analysis of the overall contents of this paper

and looks at possible research perspectives focusing mainly on additional reasonings

on multiscale problems referring to the derivation of models at the macroscopic scale

from the underlying description delivered by the kinetic theory approach and on

some perspective ideas on the modeling of swarms.
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2. Modeling interactions and mathematical structures

Human crowds exhibit complexity features, typical of living systems, which can

have an important impact on the collective dynamics. Indeed, unlike inert matter,

the behavioral ability of heterogeneous human beings to develop walking strategies

and to adapt themselves to the context generates observable effects arising from

causes that often do not appear evident.

Collective behaviors emerging from interactions are the core of the complexity

of crowd systems and significantly affect the individual behavioral strategy, which

can be rational or irrational. As a matter of fact, even when the strategy is essentially

rational, it may not be the best possible one, while emergent collective irrational

behaviors can be generated under certain specific circumstances. In some extreme

cases, as in stress situations due to incidents or overcrowding (see for instance 11),

interactions may generate results rather distant from any predictable outcome.

Therefore, the modeling approach, in addition to the aforementioned multiscale

vision, should account for walkers having the ability to express a strategy which

depends on the state of the entities in their surrounding environment. This ability is

heterogeneously distributed and can include also different walking objectives. It also

depends on the quality of the environment, namely, weather conditions, geometry of

the venue, abrupt changes of directions, luminosity conditions, presence of smoke,

and many others.

An additional aspect to be accounted for is the nonlinearly additive features of

interactions as these involve immediate neighbors but also distant individuals. In

some cases, the topological distribution of a fixed number of neighbors can play a

prominent role in the development of strategies and interactions as living entities

interact, in certain physical conditions, with a fixed number of other entities rather

than with all those in their visibility domain.

This section defines at each scale the mathematical structures that can offer

the conceptual framework for the derivation of specific models and subsequently

presents the guidelines for the modeling of interactions. This presentation is confined

to the case of a crowd where the emotional state is equally shared by all walkers.

The structures refer to a crowd in unbounded domains, while the study of the role

of obstacles and walls is treated in the next section. Hence, this section provides

the conceptual framework for the derivation of models. The contents refer to the

existing literature 10 which is critically analyzed and revisited.

2.1. Variables and parameters of the modeling approach

We consider the dynamics in a two dimensional domain Σ, where the crowd moves,

while Σ0 ⊆ Σ denotes the region which contains the whole crowd at the initial time,

t = t0. The following reference quantities and parameters are introduced:

– ρM is the maximum density (occupancy) of walkers per square meter.

– ℓ is a characteristic length to be taken as the diameter of the circle containing Σ
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or, if the motion is in unbounded domains, Σ0.

– vM is the highest individual speed which can be reached by a very fast walker in

a free flow in high quality venues.

– T = ℓ/vM is the characteristic time, corresponding to the time needed by a fast

walker to cover the distance ℓ in a free flow in high quality venues.

– α ∈ [0, 1] models the overall quality of the venue, where α = 0 corresponds to

very low quality which prevents motion, while α = 1 to very high quality allowing

fast motion.

– β ∈ [0, 1] models the overall stress of the crowd, where β = 0 corresponds to very

low stress, while β = 1 to very high stress. The role of this parameter on the motion

is defined focusing on interactions.

Let us now consider the variables to be used to represent, at each scale, the

overall state of the system under consideration. As discussed below, all variables

are made dimensionless with respect to characteristic quantities and take values in

the range [0, 1].

Individual-based models - microscopic scale: The dependent variables are the

positions xi = xi(t) = (xi(t), yi(t)) and the velocities vi = vi(t) = (vx,i(t), vy,i(t)),

with i ∈ {1, . . . , N}, of N walkers. Positions and velocities are referred to ℓ and

vM , respectively. The independent variable is the dimensionless time t, obtained by

scaling the dimensional time by the characteristic time T .

Kinetic models - mesoscopic scale: The dependent variable is a probability

distribution function f = f(t,x,v) at time t and position x over the microscopic

state v. The distribution function is normalized by ρM . The one-particle represen-

tation is used so that f is linked to the so-called test particle (walker) assumed to

be representative of the whole system. Time, space, and the microscopic velocity

are the independent variables.

Hydrodynamic models - macroscopic scale: The dependent variables are the

local density ρ = ρ(t,x) and the local mean velocity ξ = ξ(t,x), where ρ is divided

by ρM and the mean speed ξ is divided by vM . The dimensionless time t and space

x are the independent variables.

Visibility domain: The visibility domain has the same geometrical properties at

each scale and is assumed to be an arc of circle symmetric with respect to the

walker’s velocity direction. At the microscopic scale, it is denoted by Ω(xi,νi), and

it refers to the i-th walker in xi walking with velocity vi = vi νi, where vi is the

speed and νi is the unit vector directed as vi; at the mesoscopic scale, it is denoted

by Ω(x,ν) and it refers to the walker, called test walker, representative of the whole

system, in x with velocity v = vν, where v is the speed and ν is the unit vector

directed as v; at the macroscopic scale, it is denoted by Ω(x,νξ), and it refers to

the elementary physical domain in x with locally averaged velocity ξ = ξ νξ where

ξ is the mean speed and νξ is the unit vector directed as the mean velocity.
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2.2. Mathematical structures

The structures which provide the mathematical framework supporting the deriva-

tion of models at each scale are presented in this section. The reader interested to

the pertinent bibliography is addressed to the survey 10.

Structures at the microscopic (individual based) scale: Let us consider the

motion of N walkers in a two-dimensional domain, where N might depend on time,

whileN0 is the number of individuals at the initial time. The dynamics of the system

is defined by a large system of ordinary differential equations for the position and

velocity of the walkers, considered as active particles:
dxi

dt
= vi,

dvi

dt
= Fi(x1, . . . ,xN ,v1, . . . ,vN ;α, β) = Fi(x,v;α, β)

(2.1)

where Fi(·) is a psycho-mechanical acceleration acting on the i–th walker based

on the action of other walkers in his/her visibility domain Ω(xi,νi) which might

be shaded by walls/obstacles, while x and v denote the whole set of positions and

velocities. This term depends on the quality of the venue and on the emotional state,

which can be modeled, respectively, by the parameters α and β. A simplification

consists in modeling Fi as the superposition of binary interactions between pairs

of walkers, but this assumption is questionable as interactions between walkers

depend on the presence of all other walkers. The so-called social force model 36 is

the reference model derived in the framework of (2.1).

More in general, the modeling of Fi might involve macroscopic quantities, e.g.

the density, by a functional dependence to be properly defined for each specific

model. In this case the following notation is used Fi = Fi[ρ, ξ](x,v;α, β), while

time might appear for non autonomous systems.

Structures at the mesoscopic (kinetic) scale: The representation is defined by

the statistical distribution of the microscopic position and velocity of a test walker,

given by the distribution function f = f(t, x, v). If f is locally integrable then

f(t, x, v) dx dv is the infinitesimal number of pedestrians who, at time t, have a

microscopic state (x, v) comprised in the elementary volume dx dv of the phase

space centered at (x, v).

Observable macroscopic quantities can be obtained, under suitable integrability

assumptions, by moments of the distribution function. For instance, the dimension-

less local density ρ and the total number of pedestrians N in Σ at time t are given,

respectively, by

ρ(t, x) =

∫
Dv

f(t, x, v) dv and N(t) =

∫
Σ

ρ(t, x) dx, (2.2)

where Dv ⊆ Rd, being d the number of dimensions of the problem. Analogously,
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the mean velocity ξ and the speed variance σ can be computed as

ξ(t, x) =
1

ρ(t, x)

∫
Dv

vf(t, x, v) dv, (2.3)

and

σ(t, x) =
1

ρ(t, x)

∫
Dv

|v − ξ(t, x)|2f(t, x, v) dv. (2.4)

Kinetic models are stated in terms of an evolution equation for the distribution

function f , deduced as a balance law in the space of the microscopic states. A basic

structure is: (
∂

∂t
+ v · ∇x

)
f(t,x,v)

= G[f ](t,x,v;α, β)− f(t,x,v)L[f ](t,x,v;α, β), (2.5)

where ∇x denotes the gradient operator with respect to the space variables. In

addition, G and L are operators acting on the distribution function f , which express

the gain and the loss of pedestrians in the elementary volume of the phase space

around the test microscopic state (x, v).

The detailed expression of these terms corresponds to different ways of model-

ing pedestrian interactions at the microscopic scale; specializations of this structure

have been proposed in 6 for models with discrete velocities and in 11 for models

with continuous velocity distributions. Recent developments of this approach are

proposed in 42. The derivation can be obtained by distinguishing the interacting ac-

tive particles into three types, namely, the test, the field, and the candidate particles.

Their distribution functions are, respectively f(t,x,v), f(t,x∗,v∗), and f(t,x,v∗).

The test particle is representative of the whole system, while the candidate parti-

cle can acquire, in probability, the micro-state of the test particle after interaction

with the field particles. The test particle loses its state by interaction with the field

particles.

In addition the following two quantities are introduced: The interaction rate

η[f ](x,x∗,v∗,v
∗;α, β),

(
resp. η[f ](x,x∗,v,v∗;α, β)

)
which models the frequency by which a candidate (resp. test) particle in x interacts,

in the visibility domain, with a field particle in x∗, and the transition probability

density

A[f ](v∗ → v|x,x∗,v∗,v
∗;α, β)

which models the probability density that a candidate particle in x modifies the

velocity into that of the test particle due to the interaction with a field particle in

the visibility domain. It is worth enlightening that square brackets have been used

to denote that η and A can depend on f .

The following structure is formally derived:
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(
∂

∂t
+ v · ∇x

)
f(t,x,v) = J [f ](t,x,v;α, β)

=

∫
Dv×Dv

∫
Ω(x,ν∗)

η[f ](x,x∗,v∗,v
∗;α, β)A[f ](v∗ → v|x,x∗,v∗,v

∗;α, β)

× f(t,x,v∗)f(t,x
∗,v∗) dx∗ dv∗ dv∗

−f(t,x,v)

∫
Dv

∫
Ω(x,ν)

η[f ](x,x∗,v,v∗;α, β) f(t,x∗,v∗) dx∗ dv∗. (2.6)

Structures at the macroscopic (hydrodynamical) scale: The macroscopic

Eulerian description can be adopted for large scale systems in which the local be-

havior of groups is sufficient to capture the global dynamics. Models at the macro-

scopic scale are mostly inspired by the equations of fluid dynamics. The approach of

modeling crowd dynamics by modifying the equations of hydrodynamics has been

arguably initiated by the pioneering paper 37, while a model which is even nowadays

object of studies has been proposed in 39, where the equation of conservation of mass

has been linked to a model suitable to describe the dynamics of the mean velocity

by the assumption that walkers attempt to reduce density gradients. The interested

reader is addressed to the book 26 which provides a general overview, critical analy-

sis, and applications of crowd modeling by methods of continuum mechanics which

are properly related at approaches at lower scales.

The structure of second order models is given by the balance equations for the

mass and linear momentum:
∂ρ

∂t
+∇x · (ρ ξ) = 0

∂ξ

∂t
+ ξ · ∇xξ = F [ρ, ξ](x;α, β),

(2.7)

where F is the psycho-mechanical acceleration acting locally on pedestrians con-

tained in an infinitesimal volume of the physical space. The key problem of the

approach is precisely the modeling of F which might depend, in some functional

form, on the density and the mean velocity.

2.3. Rationale towards modeling interactions

As mentioned, none of the representation and modeling scales presented in the

previous section can’t fully capture the complexity features of human crowds. In

principle, the microscopic scale offers the most appropriate modeling framework,

but leads to large systems of ordinary differential equations inducing nontrivial

analytic and computational difficulties. These ultimately make the microscopic ap-

proach prone to fluctuations which affect the computation of macroscopic quantities

from data at the microscopic scale. In addition, a small scale description requires
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a highly detailed modeling of individual behaviors, which may not entirely be phe-

nomenologically observable.

Concerning the mesoscopic scale, we observe that the assumption of a continu-

ous distribution of the microscopic states, borrowed from the kinetic theory of gases,

is questionable in the present context, due to the typically much lower number of

pedestrians in a crowd than molecules in a gas.

The macroscopic scale is susceptible to criticisms as well, since crowds clearly

do not fit the paradigm of continuity of the matter. In addition, local averaging

suppresses the heterogeneity which is a prominent feature to be taken into account.

On the other hand, the really useful quantitative information that a model should

deliver is required directly at the macroscopic scale. In fact, it is less prone to glob-

ally unnecessary details and to fluctuations, besides referring to quantities directly

observable and measurable, such as mass density and flux, which depict well the

emergence of collective patterns.

The common feature of all approaches is that the derivation of models relies

on the mathematical description of interactions within the framework offered at

each scale. The development of a multiscale approach requires that the modeling

of interactions is based on the same principles at each scale. This requirement is

a preliminary step for the derivation of macroscopic models from the underlying

description at the microscopic scale, which might move from microscopic to meso-

scopic by a common modeling of individual-based interactions, and, subsequently,

from mesoscopic to macroscopic by asymptotic methods.

Bearing all of the above in mind, let us indicate the common features which

should be taken into account, according to the authors’ belief, in the modeling of

interactions. The presentation is here given simply at a qualitative level, leaving

their formalization to the next sections.

Note that, in the following, walkers will be generically referred to as active

particles, (in short a-particles), having in mind a different meaning at each scale,

namely, individuals at the micro-scale, statistical particles at the meso-scale, and

number of individuals in the elementary physical space at the macroscopic scale.

The following five common features of particle interactions may be identified.

(1) All a-particles have a visibility angle related to their velocity direction and a

visibility radius depending on the quality and shape of the venue, namely, the

presence of obstacles or walls can reduce the area of the circular sector.

(2) All a-particles are subject to different stimuli, namely, a trend towards a well

defined direction corresponding to a meeting point, a walking direction, the

attraction by the motion of the other a-particles which, however, is contrasted

by a desire to avoid overcrowded areas.

(3) The selection of the velocity direction corresponds to a weighted selection of

the stimuli mentioned in Item 2 depending on the quality of the venue, the

emotional state, and the local density.
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(4) Once a walking direction has been selected, a-particles adapt their speed to

local density depending also on the parameters the quality of the venue and

pedestrians’ emotional state.

(5) The presence of obstacles and walls geometrically modifies the visibility, and

consequently the visibility domains, and induces an additional desire to avoid

them.

The following remarks are in order:

Remark 2.1. A common feature of all structures is that interactions generate a

double nonlinearity as equations not only present algebraic nonlinearities for the

dependent variable, but also functional dependence on them which have been de-

noted by square brackets. This remark will be made precise at each scale of the

modeling approach as we shall see in the next section.

Remark 2.2. The aforementioned five common features of interactions have been

selected according to the authors’ belief and experience. Additional study, supported

by empirical data, might improve this selection. Validation should be developed as

in 12, based on the ability of models to reproduce empirical data and depict emerging

behaviors observed in experimental investigation.

Remark 2.3. In order to describe the space propagation of emotional states, β

must be treated not as a constant parameter, but rather as a microscopic variable

to be inserted in the interactions at each scale.

Remark 2.4. The multiscale vision presented in the next Sections 3–4 is limited,

to avoid heavy notations, to the study of a crowd which shares the same strat-

egy although heterogeneously distributed. However, introducing the interactions of

different groups is necessary to model real flow conditions.

3. Derivation of models in unbounded domains

This section shows how the rationale presented in Section 2, focused on interactions

by common modeling criteria, can be used to derive models at the three scales

introduced in Subsection 2.2. The approach is developed for each scale in the next

three subsections for a crowd flow in unbounded domains.

The models derived in the following refer to the mathematical structure pro-

posed in Section 2. Note, however, that a further simplifying assumption is made

in deriving kinetic-type models, namely, it is supposed that field particles trigger

interactions but their microscopic state does not directly contribute neither to the

interaction rate nor to the transition probability density. Some comments at the

end of each subsection are deemed to enlighten the use of notations introduced in

Remark 1.
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3.1. Derivation of individual-based models

Let us consider the mathematical structure defined by Eq. (2.1), where the modeling

essentially consists in deriving the acceleration term Fi for each a-particle i. We look

for a model of the strategy by which each a-particle selects the velocity direction

ωi and subsequently moves with an acceleration φi along ωi. Polar coordinates are

used for the velocity

vi = {vi, θi} = vi (cos θi i+sin θi j) = viνi, νi =
vi

||vi||
= cos θi i+sin θi j, (3.1)

where i and j are the unit vectors of an orthogonal frame, vi is the speed and θi is

the angle which identifies the velocity direction νi.

Let us now show how the rationale reported in Subsection 2.3 can provide the

implementation of the structure (2.1), thus leading to a model suitable to describe

the dynamics in unbounded domains.

(1) The decision process leading to the velocity dynamics assumes that an a-particle

firstly selects the velocity direction ωi and subsequently modifies the speed.

The selection of ωi is a weighted choice accounting for the direction towards

the target ν
(t)
i , the attraction towards the main stream ν

(s)
i of a-particles in

Ωi, and the search of paths with less congested local density ν
(v)
i .

(2) The selection of the velocity direction depends on the parameter β and is

weighted by the local density ρi. In more details, increasing values of β cor-

respond to a trend towards the stream with respect to the trend towards the

target, while the local density increases the trend towards vacuum zones.

Detailed calculations, corresponding to the qualitative behaviors conjectured

in Items 1–2, yield:

ωi = ωi[ρ, ξ](xi,νi;β) =

ρνi ν
(v)
i +

(
1− ρνi

) β ν
(s)
i + (1− β)ν

(t)
i

||β ν(s) + (1− β)ν
(t)
i ||∣∣∣∣∣

∣∣∣∣∣ρνi ν
(v)
i +

(
1− ρνi

) β ν
(s)
i + (1− β)ν

(t)
i

||β ν
(s)
i + (1− β)ν

(t)
i ||

∣∣∣∣∣
∣∣∣∣∣
, (3.2)

where νi has been defined in (3.1), while the direction towards empty zones, the at-

traction towards the main stream, and the direction towards the target are denoted,

respectively, by the unit vectors

ν
(v)
i = − ∇xρνi

∥∇xρνi∥
, ν

(s)
i =

ξνi∥∥ξνi

∥∥ , and ν
(t)
i =

xt − xi

∥xt − xi∥
, (3.3)

being xt the target point. In Eqs. (3.2) and (3.3), ρνi and ξνi
are given by:

ρνi =
1

measure(Ω(xi,νi)

∑
j∈Ω

δ(xi − xj), (3.4)

ξνi
=

1

ρνi

∑
j∈Ω

vjδ(vi − vj)δ(xi − xj). (3.5)
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where Ω = Ω(xi,νi). Note that the definition of the unit vectors given by Eq. (3.3)

suppose that suitable regularity conditions hold for the density and velocity field

averaged over the visibility domain, given respectively by Eqs. (3.4) and (3.5).

The dynamics of the speed depends on the parameter α which enhances modi-

fications of the speed and on the difference between the densities over the visibility

domains Ω(xi,νi) and Ω(xi,ωi) corresponding to directions νi and ωi, respectively:

φi = φi[ρ](xi,vi,ωi;α) =


α (1− vi)(ρνi

− ρωi
), ρνi

≥ ρωi

α vi(ρνi − ρωi), ρνi < ρωi ,

(3.6)

where ρωi is the density computed in the visibility domain related to ωi.

The acceleration term is then obtained as follows:

Fi = Fi[ρ, ξ](xi,vi;α, β) = φi[ρ](xi,vi,ωi;α)ωi[ρ, ξ](xi,νi;β), (3.7)

where ωi and φi are delivered by Eqs. (3.2) and (3.6). Let us highlight that the

acceleration Fi is a nonlocal quantity which depends on the averaged state of all

a-particles in the domains Ω(xi,νi) and Ω(xi,ωi).

Remark 3.1. The functional dependence of ωi on ρ, and ξ in Eq. (3.2) is related to

the fact that ξ defines the visibility domain Ωi for each particle as well as the stream

direction, while ρ leads to all subsequent calculations. This dependence is explicitly

indicated, to avoid heavy notations, only on the left-hand side of the equations, but

it is implicit in the right-hand side equations. This explains the square brackets in

Eq. (3.7).

Remark 3.2. The role of the parameters is that α contributes to the acceleration,

while β to the selection of the direction. In more detail, increasing values of α,

i.e., the quality of the venue, induce increasing values of the acceleration, while

increasing values of β, i.e., the intensity of the stress, induce increasing values of

the attraction towards the main stream.

3.2. Derivation of kinetic-type models

The derivation of kinetic models moves from the structure defined by Eq. (2.6)

and is carried out by extending the rationale proposed at the microscopic scale to

model the terms η and A. As in the microscopic case, it is convenient to introduce

polar coordinates, namely, the velocity v = {v,ν} in a plane motion is given by the

speed v and the velocity direction ν. Accordingly, the transition probability density

A which describes the dynamics of the velocity, namely speed and direction, can

be formally written as A[f ](v∗ → v, ν∗ → ν;α, β) depending on the parameters

involved in a detailed modeling of interactions.

A simple way to model the encounter rate consists in assuming that it is con-

stant, namely, η = η0, and assuming that the transition probability density does

not depend on position and velocity of the field particle.
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Substituting η into (2.6) yields:(
∂

∂t
+ v · ∇x

)
f(t,x,v) = J [f ](t,x,v;α, β)

= η0

∫
Dv

A[f ](v∗ → v, ν∗ → ν|x,v∗;α, β)f(t,x,v∗)ρν∗(x,ν∗) dv∗

− η0 ρν(t,x,ν)f(t,x,v). (3.8)

where ρ(t,x,ν∗) and ρ(t,x,ν) are the densities in the visibility domain related to

the velocity directions ν∗ and ν∗, respectively, i.e.,

ρν∗ = ρν∗ [f ](t,x,ν∗) =

∫
Dv

∫
Ω(x,ν∗)

f(t,x∗,v∗)dx∗dv∗ (3.9)

ρν = ρν [f ](t,x,ν) =

∫
Dv

∫
Ω(x,ν)

f(t,x∗,v∗)dx∗dv∗ (3.10)

The modeling of A can be developed following the same rationale proposed at the

microscopic scale, namely, the a-particle firstly modifies the velocity direction and

subsequently the speed. A simple model consists in assuming that this process is

described by a product of delta functions as follows:

A[ρ, ξ](v∗ → v, ν∗ → ν|x,v∗;α, β) =

δ
(
v − φ∗[ρ](x,v∗,ω∗;α)

)
δ
(
ν − ω∗[ρ, ξ](x,ν∗;β)

)
, (3.11)

where, in analogy with the microscopic approach, ω∗ and φ∗ are, respectively, given

by:

ω∗ = ω∗[ρ, ξ](x,ν∗;β) =

ρν∗ ν
(v)
∗ + (1− ρν∗)

β ν
(s)
∗ + (1− β)ν

(t)
∗

||β ν
(s)
∗ + (1− β)ν

(t)
∗ ||∣∣∣∣∣

∣∣∣∣∣ρν∗ ν
(v)
∗ + (1− ρν∗)

β ν
(s)
∗ + (1− β)ν

(t)
∗

||β ν
(s)
∗ + (1− β)ν

(t)
∗ ||

∣∣∣∣∣
∣∣∣∣∣
, (3.12)

where

ν
(v)
∗ = − ∇xρν∗

∥∇xρν∗∥
, ν

(s)
∗ =

ξν∗∥∥ξν∗

∥∥ , and ν
(t)
∗ =

xt − x∗

∥xt − x∗∥
, (3.13)

being ξν∗
the mean velocity in the visibility domain, while

φ∗ = φ∗[ρ](x,v∗,ω∗;α) =


v∗ + α (1− v∗)(ρν∗ − ρω∗), ρν∗ ≥ ρω∗ ,

v∗ + α v∗(ρν∗ − ρω∗), ρν∗ < ρω∗ .

(3.14)

Here φ∗ refer to the instantaneous stochastic modification of the speed and not

precisely to the acceleration.
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Remark 3.3. The selection of the velocity direction and the subsequent modifi-

cation of the speed are modeled by a rationale analogous to that applied in the

modeling at the micro-scale. This functional dependence is put in square brackets

in the transition probability density A[f ](v∗ → v, ν∗ → ν|x,v∗;α, β). Analogous

dependence, in this case for the local density, might be discovered if the assumption

of constant interaction rate is replaced by assuming that η grows with ρ starting

from a sentinel level.

3.3. Derivation of models at the macro-scale

The derivation of hydrodynamical models moves from the structure defined by

Eq. (2.7). Models can be obtained by modeling the acceleration term F based on

the same rationale proposed at the microscopic scale. Namely, a-particles in the

elementary volume dx first select a direction ω and subsequently accelerate or

decelerate according to the local density conditions. Hence, the same rationale of

the previous subsections yields:

F = F [ρ, ξ](x;α, β) = φ[ρ](x, ξ;α)ω[ρ, ξ](x;β), (3.15)

where ω is computed as in Eq. (3.12),

ω = ω[ρ, ξ](x;β) =

ρξ ν
(v) + (1− ρξ)

β ν(s) + (1− β)ν(t)

||β ν(s) + (1− β)ν(t)||∣∣∣∣∣∣∣∣ρξ ν(v) + (1− ρξ)
β ν(s) + (1− β)ν(t)

||β ν(s) + (1− β)ν(t)||

∣∣∣∣∣∣∣∣
, (3.16)

and

φ = φ[ρ, ξ](x,ω;α) =


α (1− ξ)(ρξ − ρω), ρξ ≥ ρω,

α ξ(ρξ − ρω), ρξ < ρω.

(3.17)

Remark 3.4. The selection of the velocity direction and the subsequent modi-

fication of the speed are modeled by a rationale analogous to the applied in the

modeling at the lower scales. This naturally implies that the acceleration term F
depends on the density and mean speed. Here, square brackets are used to denote

functional dependence, while the role of the parameters α and β is analogous to

that at the low scale.

4. Modeling flows in the presence of obstacles and walls

The modeling approach presented in the previous subsections is valid for crowds in

unbounded domains. Herein, we instead consider the modeling of the dynamics in

venues which include obstacles, walls, and exits.

The initial value problem for models in unbounded domain, which we have

studied in Section 3, can be transferred to an initial-boundary value problem. How-

ever, it is not simply a matter of implementing boundary conditions, but also of
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modifying the models to account for the sensitivity of a-particles to the presence of

walls. A deep analysis of this key problem has been proposed in 3. Such a sensitiv-

ity modifies the walking strategy and hence the trajectories. Following the rationale

proposed in the previous subsections, the models should include modified veloc-

ity direction and acceleration terms. In addition, boundary conditions are required

since walkers, in probability, might reach the boundaries even though their walking

strategy encompasses the tendency to keep distance from them.

The modeling of the velocity direction is achieved by introducing the distance

γ = γ(x,ν) between the localization of a-particles and the wall, measured along

the velocity direction. The role of γ is such that, when γ → 0, the attraction

to the exit becomes dominant with respect to the trends to vacuum and stream

which, in turn, tend to zero. Therefore, γ plays the role of a weight for the trend

to avoid walls. Once the new direction has been chosen, then the acceleration term

is modeled exactly as in the preceding subsections. It is worth mentioning that the

use of dimensionless space coordinates implies that γ ∈ [0, 1] and that γ = 0 if

the velocity direction happens to be precisely addressed to the exit. This rationale

should be specialized at each scale by an appropriate calculation of γ. The modeling

is achieved by implementing a dynamics by which a-particles cannot penetrate into

walls.

This section is organized in two parts: Firstly, the derivation of models and of

the statement of boundary conditions is developed at each scale, and, subsequently,

a description of the overall rationale towards the derivation of models accounting

also for the presence of walls is presented.

4.1. Derivation of models and boundary conditions

In the following, the new velocity direction is derived by the rationale which has

been defined above accounting, in addition, for the role of γ. Full details are given for

models at the microscopic scale, while only the technical differences are presented

for the mesoscopic and macroscopic modeling approaches.

Microscopic scale: The velocity direction modeling of ωB
i , corresponding to each

a-particle, is obtained from ωF
i , the flow direction selected by each particle in un-

bounded domains, and from ν
(t)
B , the target direction at the point xB ∈ ∂Σ, iden-

tified by the intersection of the velocity direction of the a-particle in xi with the

wall. Therefore, the weight γ can be applied to both directions as follows:

ωB
i = ωB

i [ρ, ξ](xi,νi;β) =

γ(xi,νi)ω
F
i [ρ, ξ](xi,νi;β) +

(
1− γ(xi,νi)

)
ν
(t)
B (xi)

∥γ(xi,νi)ωF
i [ρ, ξ](t,xi,νi;β) +

(
1− γ(xi,νi)

)
ν
(t)
B (xi)∥

· (4.1)

Subsequently, the acceleration term can be computed as in (3.6-3.7), however ac-

counting for the velocity direction computed by (4.1).



October 26, 2019 11:40 WSPC/INSTRUCTION FILE ABGR-Revised-09-
09-2019

16 B. Aylaj, N. Bellomo, L. Gibelli, and A. Reali

Mesoscopic scale: The same reasonings can be applied to the modeling of the

dynamics at the mesoscopic scale where, in addition, boundary conditions for kinetic

models have to be implemented.

Focusing on the derivation of the model, the same structure defined in (3.8) can

be used, but the calculation of the velocity direction and the speed have to account

for (4.1) referred to the test particle. The modeling of the transition probability

density is developed as in Subsection 3.2 accounting for ωB and consequently for

the post-interaction velocities.

Concerning the statement of the boundary conditions, the difference with re-

spect to the microscopic scale consists in the statistical description of the flow, and

an appropriate scattering model needs to be given. In more detail, we assume that

the interaction with the wall at xB ∈ ∂Σ modifies the velocity according to the

following statistical boundary conditions which impose zero-net-flux at the solid

surface:

f(t,xB,v)|v · nB | =∫
v∗·n

δ
(
v − φ∗[ρ](xB,v∗,ν

(t)
B ;α)

)
δ
(
ν − ν

(t)
B

)
f(t,xB ,v∗)|v∗ · nB|dv∗,

(4.2)

where nB is the unit vector orthogonal to the wall at xB and φ∗ is the speed as

given by Eq. (3.14).

Macroscopic scale: The mathematical structure is that of (3.15), but the following

velocity direction has to be used to account for the influence of walls over the velocity

direction:

ωB = ωB [ρ, ξ](x,νξ;β) =

γ(x,νξ)ω
F [ρ, ξ](t,x,νξ;β) +

(
1− γ(x,νξ)

)
ν
(t)
B (x)

∥γ(x,νξ)ωF [ρ, ξ](t,x,νξ;β) +
(
1− γ(x,νξ)

)
ν
(t)
B (x)∥

, (4.3)

while the acceleration terms can be computed as in (3.17), but accounting for (4.3)

which modifies the modulus of the acceleration.

4.2. Additional reasonings on the modeling of interactions

This subsection provides a final summary of the strategy to derive models at differ-

ent scales, always according to the same rationale. A critical analysis follows with

the aim of contributing to further modeling hints. The decision process by which

walkers modify their dynamics can be summarized as follows:

(1) Hierarchy: Selection of the velocity direction and subsequent modification of

the speed.

(2) Hints towards the selection of the velocity directions: Walkers are sub-

ject to the following trends: Reaching the nearest exit, avoiding overcrowded
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areas, attraction towards the main steam, avoiding walls.

(3) Selection of the velocity direction: The hierarchy of the selection of the

velocity direction is as follows: Walkers first select between target and stream

directions according to their stress conditions; subsequently, they choose be-

tween this firstly selected direction and the trend towards less congested areas;

finally they modify this direction to avoid interactions with walls.

(4) Role of the stress in the selection of the velocity direction: An in-

creasing stress increases the trend towards the stream with respect to the trend

towards the target.

(5) Role of the density in the selection of the velocity direction: An in-

creasing local density increases the trend towards less congested areas with

respect to the stress-weighted trends towards the stream and the target.

(6) Role of the distance from the wall in the selection of the velocity

direction: The distance from the walls only enters into play if the walking

direction encounters a wall. Then the distance contributes to weight the velocity

direction selected in unbounded domains with respect to the direction by which

walkers on the wall, met along the velocity direction, would move towards the

target.

(7) Adaptation of the speed to the density conditions: Once the velocity

direction has been selected, the dynamics of the speed depends on the difference

of the local density in the new direction with respect to the direction before

the change. Namely, lower densities increase the speed, while higher densities

decrease it. This dynamics is enhanced by the quality of the venue.

Let us now rapidly enlighten the technical differences to develop the modeling

approach at each scale:

• The local density is evaluated over the pedestrian’s visibility domain with some

technical differences at each scale. For individual-based models, it is computed

as the average of discrete quantities, while for kinetic models as integral of the

probability distribution function; finally, for hydrodynamical models the local

density is directly a dependent variable.

• Our minimal model includes only two parameters, namely, the quality of the

venue α, which affects both components of the dynamics, and the level of

stress β, which affects the attraction towards the stream with respect to the

trend towards the target. Both parameters can have an important influence on

the overall dynamics. Therefore, a research perspective consists in investigating

their role in the overall dynamics and pattern formation.

• The multiscale vision allows to account for crowd dynamics in venues made of

interconnected areas, where the selection of the modeling scale can be differ-
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ently related in each area due to their specific features. However, this is not

the final step as applications might require either simplified models aiming at

reducing the computational complexity or advanced models with the ability of

accounting for additional important features of human crowds, like for instance

the propagation of emotional states.

5. On the propagation of emotional states

The modeling approach presented in Section 4 is based on the rationale and related

mathematical frameworks proposed in Section 3. However, a key problem has been

postponed until now, namely, the modeling of the propagation of emotional states

which needs to go beyond a dynamics induced by an homogeneously distributed

psychological state, like for instance stress conditions up to real panicking which

propagate in space, where patterns of high concentration can appear 40.

Contributions of mathematical modeling to this specific dynamics are still lim-

ited and almost confined to the kinetic theory approach. A systematic analysis of

this challenging topic has been initiated in 16,51 in the case of one dimensional

motion. The contagion dynamics is modeled by a consensus interaction somehow

analogous the the BGK model of the Boltzmann equation, see for instance 23. How-

ever, the modeling of contagion is not simply a dynamics of consensus towards a

commonly shared emotional state, but it should account for communications by

vocal or visual signs of walkers who transfer the emotional state across the crowd.

Therefore, it is a problem of collective learning 21,20 which is distributed in

space and which can induce significant modifications in the overall self-organization,

and hence on the collective dynamics. A modeling approach, accounting at least

partially for these features, has been developed in 13 based on the mathematical

tools of the kinetic theory for active particles 5. It essentially consists in introducing

in the microscopic state an additional variable accounting for the level of stress,

and inserting a social dynamics for such a variable so that space patterns of the

emotional state can be studied.

It can be shown how the achievements of 13 can be extended to lower and

higher scales. It is not going to be a straightforward generalizations as it needs

additional sharp models of interactions. Bearing all these reasonings in mind, let us

consider the simple case of a system constituted by one functional subsystem only.

The rationale, following the results in 13, can be summarized as follows:

• The mechanical state of the a-particles is defined by the position x and the

velocity v = {v, θ}, while the emotional state is modeled by a variable which

is referred to as activity and is assumed to take values in the domain [0, 1].

• Interactions are supposed not only to modify the mechanical variables, but also

the activity which, in turn, may affect the mechanical dynamics. Indeed, differ-

ent behaviors induce different interactions and, in turn, different pedestrians’

trajectories.
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• The interaction rate and the dynamics by which walkers modify their velocity

direction are modeled according to the same assumptions presented in Section 3.

• The modeling of the transition probability density is based on the assumption

that interactions trigger a decision process which comprises the following steps:

(1) Exchange of the stress state; (2) Selection of the walking direction; (3)

Selection of the walking speed. Decisions are supposed to be sequential and

dependent on the local flow conditions being modeled by a transition probability

density which factorizes as follows:

A[ρ, ξ](v∗ → v, u∗ → u|x,v∗, u∗, u
∗;α, β, ε) =

Av[ρ, ξ](v∗ → v|x,v∗;α, β)Au(u∗ → u|u∗, u
∗; ε). (5.1)

• The dynamics of the velocity is given by Eq. (3.11) while the emotional state is

supposed to spread through the crowd based on the following model of transition

probability density:
u∗ > u∗ : Au(u∗ → u|u∗, u

∗; ε) = δ
(
u− u∗ − ε(u∗ − u∗)(1− u∗)

)
,

u∗ ≤ u∗ : Au(u∗ → u|u∗, u
∗; ε) = δ

(
u− u∗

)
,

(5.2)

where ε is a parameter that measures the tendency of pedestrians to modify

their emotional state.

6. Critical analysis

In this paper, a multiscale vision has been proposed based on the concept that crowd

models at the micro/meso/macro-scale should be derived referring to mathematical

structures specific of each scale and by implementing models of interactions which

can be obtained by a rationale commonly shared at all scales. The aim of this

approach has been the design of new tools towards the modeling and simulation of

human crowds in complex venues.

An additional problem, to be taken into account within the framework of a

multiscale vision, is the derivation, by averaging or perturbation methods, of models

at the macroscopic scale from the underlying description delivered by kinetic theory

models. Averaging methods are often developed by a mean field approximation

inspired to the celebrated Hilbert problem 38 which has been revisited in 18,19

focusing on the dynamics of multicellular systems previously treated in 7.

The development of these methods requires tackling some nontrivial difficul-

ties, for instance the need of averaging over the sensitivity-visibility domains in the

former method or identifying an equilibrium solution to be used as basis for initi-

ate the perturbation method. Some results have been obtained in 4 in unbounded

domains, while a possible speed equilibrium solution can be obtained as suggested

in 12. However, a detailed study of this problem for the dynamics in presence of

boundaries is still missing. Nevertheless, the approach here proposed can, at least,

relate precisely models at each scale guiding the aforementioned derivation.
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Finally, let us mention that the approach proposed in this paper can be quite

naturally extended to the derivation of models of swarm dynamics, namely, to a

research topic promoted by the celebrated Cucker-Smale model 27. An important

contribution to derive kinetic models from the underlying description at the mi-

croscopic scale has been given in 34, subsequently revisited by various authors as

reported in the survey 2, while the derivation of kinetic models by accounting for

models of interactions in the visibility domain has been proposed in 15 and in 14. The

topic which has been briefly outlined above is here addressed to possibly interested

readers to be taken as a research perspective. Looking for hyperbolic limits (see 46

as an example) is an objective consistent with the multiscale vision developed in

our paper.
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