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Highlights 

 Fe(II)-bearing minerals can support Cr(VI) bio-reduction in groundwater. 

 Mackinawite performs best in Cr(VI) removal. 

 Groundwater chemistry and hydrodynamics influence the process. 

 Biotic and abiotic contributions to Cr(VI) reduction are quantified. 

 Synergistic mechanisms between microbial consortia are revealed. 

 

 

Abstract 

To date, comparatively little is known about the role of natural Fe(II)-bearing 

minerals in bioremediation of chromium (VI) contaminated aquifers subject to 

chemoautotrophic conditions. This work employed four kinds of Fe(II)-bearing 

minerals (pyrite, mackinawite, wustite, and magnetite) as inorganic electron donors to 

support Cr(VI) bio-reduction. In batch experiments, mackinawite (FeS) performed 

best, with Cr(VI) removal efficiency of 98.1 ± 1.21% in 96 h. Continuous column 
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experiments lasting 180 d implied that groundwater chemistry and hydrodynamics 

influenced the Cr(VI) removal process. A breakthrough study suggested that biotic 

and abiotic contributions to Cr(VI) reduction were 76.0 ± 1.12% and 24.1 ± 1.43%, 

respectively. Cr(VI) was reduced to insoluble Cr(III), whereas Fe(II) and S(-II) in 

mackinawite were finally oxidized to Fe(III) and sulfate. Mackinawite evolved 

progressively into pyrrhotite. High-throughput 16S rRNA gene sequencing indicated 

that mackinawite-driven Cr(VI) reduction was mediated through synergistic 

interactions of microbial consortia; i.e. autotrophs as Acidovorax synthesized volatile 

fatty acids as metabolic intermediates, which were consumed by Cr(VI) reducers as 

Geobacter. Genes encoding enzymes for S oxidation (soxB) and Cr(VI) reduction 

(chrA, yieF) were upregulated. Cytochrome c participating in Fe(II) oxidation 

increased significantly. This work advances the development of sustainable 

techniques for Cr(VI) polluted groundwater remediation. 

Keywords: Chromium (VI); Bio-reduction; Fe(II)-bearing minerals; Mackinawite

1. Introduction 

Owing to its extensive application in industry, chromium (Cr) has become 

widespread in the environment (Chebeir et al., 2018). There are frequent reports of 

groundwater contaminated by Cr. For example, aquifers in California (USA) have Cr 

concentration above 1 mg/L, far exceeding the state maximum contaminant level for 

Cr in drinking water (10 μg/L) (Hausladen et al., 2018). In Henan Province, China, 

groundwater from a residue-contaminated site had a Cr concentration of 164 mg/L 

(Huang et al., 2017). Cr usually occurs in stable oxidative state, i.e. as hexavalent Cr 
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(Cr(VI)) and trivalent Cr (Cr(III)) (Wang et al., 2018). Cr(VI) is a human carcinogen 

that causes chronic health conditions such as dermatitis, and damages organs and the 

human respiratory system (Liu et al., 2016). Highly toxic Cr(VI) is easily dispersed in 

groundwater, whereas Cr(III) tends to precipitate under alkaline conditions, with 

relatively low toxicity (Barrera-Diaz et al., 2012; Zhang et al., 2012). 

Remediation of Cr(VI)-contaminated aquifers may be achieved through high 

efficiency, low cost biotransformation of Cr(VI) to Cr(III) under anaerobic conditions 

(Qian et al., 2017; Gang et al., 2019; Zhang et al., 2020). Electron donors are pivotal 

to these bioprocesses (Luo et al., 2019). Although organics can support higher 

microbial activities, supplementary additions are necessary due to the low availability 

of organics underground, which increases operational cost (Zhang et al., 2018). 

Furthermore, biomass yields are larger for heterotrophic processes, which can 

potentially clog aquifers (Xu et al., 2016). Solubility of Cr(III) can also be enhanced 

by the formation of organic-Cr(III) complexes (Lai et al., 2016). Microbial Cr(VI) 

reduction under chemoautotrophic conditions is of interest for practical applications. 

Gaseous inorganic electron donors, such as hydrogen, can provide electrons for Cr(VI) 

bio-reduction (Chung et al., 2006). Obviously, the safe usage and storage of such 

donor gases are important issues. Cr(VI) can be biologically removed by solid 

elemental sulfur or zerovalent iron (Shi et al., 2019), both of which are engineered 

materials with poor environmental compatibility. The use of natural materials which 

provide electrons would make Cr(VI) bio-reduction more sustainable. Hence, 

Fe(II)-bearing minerals, such as pyrite (FeS2), mackinawite (FeS), wustite (FeO), and 
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magnetite (Fe3O4) are attractive options for remediation because they occur in 

abundance in the natural environment ( Kantar et al., 2015). Their oxidations can be 

coupled to abiotic reductive detoxification of pollutants such as chlorinated ethylene, 

pertechnetate, and Cr(VI) (Cui et al., 1996; Lee et al., 2002; Park et al., 2018; Li et al., 

2019; Cai et al., 2019; Wang et al., 2019). Although Cr(VI) bio-reduction by 

Fe(II)-bearing minerals have been reported (Gan et al., 2019), the performance by 

pure culture restricts practical applications. Information on microbially mediated 

Fe(II)-bearing minerals oxidation and Cr(VI) reduction with quantitative 

identification of biotic and abiotic contributions is still lacking. 

This work investigates the bioprocesses of microbial Cr(VI) reduction, supported 

by Fe(II)-bearing minerals. Both batch and column experiments are conducted. 

Breakthrough study, analysis of microbial community, quantifications of possible 

functional genes and proteins, and examination of metabolic intermediates are 

performed. The main research objectives are: (1) to understand the performance of 

Fe(II)-bearing minerals dependent Cr(VI) bio-reduction; (2) to distinguish biotic and 

abiotic contributions to Cr(VI) reduction during these processes; and (3) to reveal the 

microbial community evolution and associated mechanisms. 

 

2. Materials and methods 

2.1. Batch experiment 

Four kinds of Fe(II)-bearing minerals, i.e. pyrite, mackinawite, wustite, and 
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magnetite were commercially purchased from Haoyu Company (Guangdong, China). 

Table S1 and Fig. S1 in Supporting Information (SI) listed the constituents and 

structure. The minerals were grounded and sieved to obtain particles of diameter 

about 1 mm. 5 g amounts of these particles were added to four 250 mL glass 

bioreactors, which were then sealed with silica gel stoppers and covered by aluminum 

(Fig. S2a, SI). Each batch bioreactor was inoculated with 50 mL anaerobic consortium 

obtained from a brewery wastewater treatment facility (organic loading: 5.1 kg 

chemical oxygen demand (COD)/(m3·d); hydraulic residence time (HRT): 12 h) and 

200 mL synthetic groundwater with ingredients as previously reported (Wang et al., 

2018). Cr(VI) was added in the form of K2Cr2O7 with initial concentration of 50 mg/L 

considering Cr(VI) levels in actual contaminated aquifer (Novak et al., 2018). All 

microbial consortia in bioreactors were acclimated for two months before data 

collection, then Cr(VI) removals were recorded during 96 h operation to evaluate the 

performance of the four Fe(II)-bearing minerals. Another three reactors, which were 

respectively inoculated without minerals, fed with sterilized consortium, and with 

mackinawite solely added, were also employed as controls. All experiments were 

conducted at room temperature (22 ± 2 oC) and in triplicate. 

2.2. Column experiment and breakthrough study 

The column comprised a plexiglass cylinder of 25 cm height and 5 cm diameter 

(Fig. S2b, SI), covered by aluminum foil. A total of 50 g ground shells (CaCO3, 1-3 

mm) was added as the inorganic carbon source, supplemented by 50 mL anaerobic 

consortium and 200 g mackinawite. The left space was filled with quartz sand (1-2 
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mm) to adjust the porosity. All media were mixed fully in the column. Synthetic 

Cr(VI)-contaminated groundwater without bicarbonate was upflowed into the column 

by a peristaltic pump (BT100-1L, Longer, UK). Column operation lasted 180 days, 

divided into five stages to investigate the influences of groundwater chemistry and 

hydrodynamics (Table 1). Cr(VI) removal, chemicals in aqueous phase, and the 

microbial dynamics were monitored at every stage. Solid reaction products, functional 

genes and proteins were intensively investigated at Stage 5. 

Two cylindrical columns (each of 25 cm height and 5 cm diameter) were used for 

the breakthrough study, with 4 sampling ports evenly distributed along the length of 

each cylinder. One contained the same constituents as in the column experiment 

(Biotic column), the other was equipped with only 200 g mackinawite (Abiotic 

column). Quartz sand was used to pack the columns fully. The flow rate was set with 

2 h duration for 1 PV (pore volume). Cr(VI) concentration was continuously recorded. 

2.3. Analytical methods 

All aqueous samples were ready for analysis after passing through 0.22 μm 

filters. Concentrations of Cr(VI), nitrate, nitrite, and ammonium were 

spectrophotometrically monitored using an UV-visible spectrophotometer (UV2300, 

Shanghai, China) (Zhai et al., 2019). Concentration of dissolved total Cr was 

determined by means of inductively coupled plasma mass spectrometry (X series, 

Thermo Fisher, Germany). The limits of quantitation for Cr(VI) and total Cr were 4 

μg/L and 0.003 ng/L, respectively. Ion chromatography (Basic IC 792, Metrohm, 

Switzerland) measured sulfate, sulfite, and thiosulfate. A multifunctional meter 
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(SevenExcellenceS400, Mettler-Toledo, Switzerland) monitored pH, ORP, and 

conductivity. Volatile fatty acids (VFAs) in aqueous solution were determined by a 

gas chromatograph (Agilent 4890, J&W Scientific, USA) equipped with a flame 

ionization detector. For solid samples, the raw minerals, and resulting precipitates 

were examined as follows. Elemental content was evaluated using X-ray fluorescence 

(XRF, F7000, Hitachi, Japan). Components were analyzed by energy dispersive X-ray 

(EDS) on a scanning electron microscope (SEM) (JEOL JAX-840, Hitachi, Japan). 

X-ray diffraction (XRD) analysis of the material structures was performed with 

Cu-Kα (λ = 1.5405 Å) as the radiation source, operated at 40 kV and 200 mA 

(Rigaku-D/MAX-PC 2500, Rigaku, Japan). X-ray photoelectron spectroscopy (XPS) 

measurement was undertaken using a Kratos XSAM-800 spectrometer (UK) with a 

Mg-Kα radiator to determine the valences of responding elements. 

2.4. Microbiological analysis 

Microbial samples collected at different stages of the column experiment were 

ultrasonically pretreated. The FastDNA® SPIN Kit for Soil (Qiagen, CA, the USA) 

was used to extract total genomic DNA of the samples. The DNA was then amplified 

by PCR (GeneAmp® 9700, ABI, the USA) with primer pair 338F and 806R. 

Extracted DNA was purified for high-throughput 16S rRNA gene sequencing using 

MiSeq (Illumina, USA), furnished by Shanghai Majorbio Technology (Shanghai, 

China). Information on the microbial community was obtained from sequencing data 

using the method previously described (Zhang et al., 2018). Functional genes 

involved in S(-II) oxidation (soxB) and Cr(VI) reduction (chrA and yieF) were 
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quantified using a real-time quantitative PCR (qPCR) detecting system (ABI 7500, 

Applied Biosystems, the USA), with previously reported primers (Table S2, SI) and 

procedures (Meyer et al., 2007; He et al., 2011). Cytochrome c falls within a category 

of specific proteins that can facilitate Fe(II) oxidation through electron transfer (Liu et 

al., 2012). The content of cytochrome c was measured spectrophotometrically, and 

normalized to volatile suspended solids (VSS) (Kang et al., 2018; Zhang et al., 

2019b). 

 

3. Results and discussion 

3.1. Cr(VI) bio-reduction by Fe(II)-bearing minerals 

Cr(VI) removal efficiency gradually increased with time in the four batch 

bioreactors (Fig. 1a), demonstrating the feasibility of Cr(VI) bio-reduction by natural 

Fe(II)-bearing minerals. After 96 h operation, Cr(VI) removal efficiency ranged from 

87.6 ± 1.21% to 98.1 ± 1.21% (p < 0.05), with removal rate varying from 0.45 ± 0.03 

mg/L·h to 0.54 ± 0.04 mg/L·h (p < 0.05). This indicates the advantage of 

Fe(II)-bearing minerals rather than gaseous electron donors, noting that the Cr(VI) 

removal rate was only 0.003 mg/L·h with hydrogen as electron donor (Chung et al., 

2006). The effectiveness of Fe(II)-bearing minerals as electron donors in supporting 

Cr(VI) reduction could be attributed to reduced Fe(II) with high reactivity in the 

minerals (Grabb et al., 2017). Mackinawite performed best out of the minerals 

considered in this study. It also performed better than a previously employed solid 
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electron donor, elemental sulfur, which had Cr(VI) removal efficiency of 92.9% in 

120 h (Shi et al., 2019), and was comparable to organic electrons, where Cr(VI) 

removal rate of 0.62 mg/L·h was achieved using acetate (Reddy et al., 2017). 

Mackinawite has stronger reducing activities with metastable structure (He et al., 

2010). Besides Fe(II), reduced S(-II) in mackinawite could also provide 

supplementary electrons for Cr(VI) reduction. Although pyrite also possesses reduced 

S species, it resists proton attack under anaerobic conditions with lower 

bioavailability (Schippers et al., 2002; Bryce et al., 2018), and so was less effective 

than mackinawite in Cr(VI) bio-reduction. 

Cr(VI) removal was also initially detected in the abiotic control (Fig. S3, SI), 

consistent with previous studies due to superior reducibility of mackinawite (Gong et 

al., 2017). However, Cr(VI) reduction progressively weakened, as mackinawite was 

gradually passivated because of the formation of a surface covering of Cr(III) and 

Fe(III) oxides (Fig. S4, SI). This might hinder the electron transfer process, causing 

the reaction to retard or even stop, as reported previously (Mullet et al., 2004). 

Microbial activities could alleviate passivation through partially dissolving the 

precipitates (Zhong et al., 2017). Cr(VI) was hardly removed in the sterilized control, 

which excluded any contribution from biomass adsorption. Cr(VI) reduction was 

retarded as residual organics became exhausted in the inoculum in the control 

containing a solely anaerobic consortium, suggesting that the electron donor had a 

critical function in Cr(VI) bio-reduction. 

3.2. Long-term Cr(VI) removal under varied chemical and hydrodynamic conditions 
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Figure 1b showed time series of influent and effluent Cr(VI) concentrations, and 

Cr(VI) removal efficiency and capacity during 180 d operation in the 

mackinawite-packed biological column. In Stage 1 (Day 0-50), Cr(VI) was 

completely removed from the influent with Cr(VI) concentration of 10 mg/L for a 

HRT of 24 h. In Stage 2 (Day 51-80), when the influent Cr(VI) concentration was 

increased to 50 mg/L, the Cr(VI) removal efficiency slightly decreased to 94.2 ± 

1.52%, whereas the Cr(VI) removal capacity increased from 10.0 g/(m3·d) at Stage 1 

to 47.1 ± 1.16 g/(m3·d). In Stage 3 (Day 81-107), when the HRT was further 

shortened to 12 h (influent Cr(VI) concentration of 50 mg/L), an obvious decrease in 

Cr(VI) removal efficiency to 43.6 ± 1.71% and a slight decrease in Cr(VI) removal 

capacity to 45.3 ± 9.10 g/(m3·d) were observed. Similar trends were also reported in 

abiotic Cr(VI) reduction by pyrite and methane-dependent Cr(VI) bio-reduction (Liu 

et al., 2015; Lai et al., 2016). 

In Stage 4 (Day 108-150), when 10 mg/L NO3
- was introduced in parallel, with 

operating conditions the same otherwise as in Stage 2, the Cr(VI) removal efficiency 

decreased considerably to 23.1 ± 1.22%, with complete removal of nitrate. Cr(VI) 

removal lagged behind nitrate, as also reported previously (Chung et al., 2006). Given 

that nitrate is distributed ubiquitously in aquifers, the competitive removals of both 

Cr(VI) and nitrate confirms that our proposed biosystem could successfully handle 

co-contaminated groundwater. In Stage 5 (Day151-180), when the operational 

conditions returned to those of Stage 1, Cr(VI) removal efficiency progressively 

recovered to 100%. This outcome proved that the proposed biosystem was robust in 
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resisting fluctuations in groundwater chemistry and hydrodynamics, highlighting its 

practical applicability. 

3.3. Quantification of biotic and abiotic Cr(VI) reductions 

Fig. 2a showed Cr(VI) breakthrough curves for different reactive media. In the 

Abiotic column, structural Fe(II) reduced Cr(VI) chemically, but the passivation by 

produced iron oxides restricted Cr(VI) removal, and its breakthrough occurred in 33 

PV. In the Biotic column with mackinawite, Cr(VI) was removed both chemically and 

biochemically. Furthermore, the reaction sites of mackinawite could be regenerated 

through microbial activities, such as secreting acidic metabolites and/or reducing the 

amount of Fe(III) produced (Gan et al., 2018). Thus, the reaction between Cr(VI) and 

mackinawite was restored, effectively extending the reaction duration and hence the 

lifetime of the column, with Cr(VI) penetrating at 168 PV. The longevity of the 

inoculated column was 5.09 times longer than that of the abiotic one. By fitting the 

obtained breakthrough curves, biotic and abiotic contributions to Cr(VI) reduction in 

the Biotic column were calculated to be 76.0 ± 1.12% and 24.1 ± 1.43%, respectively. 

Cr(VI) migration in the Biotic column was further investigated. At Port 1 (5 cm 

from the inlet), rapid breakthrough occurred, whereas migration patterns at the other 

ports and outlet remained almost the same. The migration rates of the Cr(VI) fronts 

decreased from Port 1 to the outlet in turn. The Abiotic column also displayed similar 

behavior (Fig. S5, SI). Using linear regression, the migration rate of the Cr(VI) front 

in the Biotic column was estimated to be 0.53 ± 0.03 cm/PV (Fig. 2b), a lower figure 
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than in the Abiotic column (2.08 ± 0.13 cm/PV) (Fig. S7, SI), consistent with previous 

results (Zhong et al., 2017). 

3.4. Reaction products identification and bioprocess elucidation 

During the column experiment, the concentration of dissolved total Cr was 

almost equal to that of Cr(VI) in the effluent (Fig. S6a, SI), implying that precipitation 

of Cr(VI) reduction products had occurred. Microbes were associated with the 

precipitates, according to the SEM image (Fig. 3a). EDS analysis suggested that the 

precipitates contained elemental Cr (Fig. 3b). Distinct characteristic peaks of Cr(III) 

occurred in the XRD pattern for the precipitates, in the forms of Cr(OH)3 and 

CrO(OH) (Fig. 3c). Two peaks in the Cr 2p spectrum were evident at 577.6 eV and 

587.4 eV from XPS analysis (Fig. 3d), implying that the valence of Cr in the 

precipitates was +3 (Shi et al., 2019), and confirming that Cr(VI) was reduced to 

insoluble Cr(III). 

Elemental Fe was also detected in the produced precipitates by EDS analysis 

(Fig. 3b), with characteristic peaks of Fe(III) related to Fe(OH)3 and FeO(OH) 

displayed in the XRD pattern (Fig. 3c). Fe 2p peaked at 711.7 eV and 725.2 eV in the 

XPS pattern (Fig. 3e), corresponding to Fe(III) (Tang et al., 2016). No soluble Fe 

species were detected in the effluent. These results indicated that the structural Fe in 

mackinawite was oxidized to Fe(III). Sulfate accumulated in the effluent (Fig. 1b), 

with trace sulfite and undetected thiosulfate (Fig. S6b, SI), which could be derived 

from oxidation of S(-II) in mackinawite. There was also an S peak visible in the EDS 

results (Fig. 3b). The S 2p spectrum peaked at 163.4 eV in the XPS pattern, 
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corresponding to S0 (Fig. 3e) ( Mullet et al., 2004). These intermediates also resulted 

from oxidation of mackinawite, and they might also act as supplementary electron 

donors for Cr(VI) bio-reduction (Shi et al., 2019). Although FeS was detected in the 

feed minerals after reaction, transformation of mackinawite into pyrrhotite was 

observed (Fig. 3f) (Li et al., 2008). Similar phenomena had also been observed in 

microbially-driven mineralogical composition of red-gray bauxite and phase 

transitions of iron sulfides formed by steel microbial corrosion (Laskou et al., 2007; 

El Mendili et al., 2013). 

Considering the observed products and slightly increased solution pH (Fig. S6c, 

SI), the process of Cr(VI) bio-reduction supported by mackinawite may be expressed 

by Eq. (1), 

3CrO4
2- + FeS + 8H2O

 
 Fe3+ + 3Cr3+ + SO4

2- + 16OH-        (1) 

Nitrogen loss in aqueous solution occurred once nitrate was introduced (Fig. S6d, SI), 

with the denitrification reaction expressed by Eq. (2) (Schippers et al., 2002), 

9NO3
- + 5FeS + 7H2O  5Fe3+ + 5SO4

2- + 4.5N2 + 14OH-   (2) 

Accumulation of trace ammonium also occurred, with the ammonium production 

arising from dissimilatory nitrate reduction to ammonium through the following 

process (Eq. (3)) (Liu et al., 2015), 

9NO3
- + 8FeS + 31H2O  8Fe3+ + 8SO4

2- + 9NH4
+ + 26OH-   (3) 

3.5. Microbial community evolution and functional gene examination 

Microbial richness and diversity increased from Stage 1 to Stage 2 (Fig. S7, 
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Table S3, SI). Nevertheless, both richness and diversity decreased when either the 

loading was further enhanced (Stage 3) or co-contaminant nitrate was present (Stage 

4). These changes were irreversible, as evidenced by Stage 5 which possessed the 

lowest richness and diversity, with even the operating conditions and Cr(VI) removal 

performance the same as in Stage 1. Deltapotoobacteria and Anaerolineae 

predominated in all stages at class level (Fig. 4a). Betaproteobacteria and 

Gammaproteobacteria gradually accumulated during operation. Actinobacteria 

seemed to be more tolerant to Cr(VI), with highest relative abundance (17.1%) 

appearing at Stage 3 at the highest Cr(VI) loading. 

High relative abundance of Geobacter occurred during all stages, at genus level 

(Fig. 4b). Geobacter had well established ability to reduce Cr(VI) (Gong et al., 2018), 

and so was most likely to be responsible for Cr(VI) removal in the present proposed 

bio-system. Anaerolineaceae accumulated under lower Cr(VI) loadings (Stage 1 and 

Stage 2) and cooccurrence of Cr(VI) and nitrate (Stage 4). Anaerolineaceae could 

reduce selenate with synthesized selenate reductases (Fakra et al., 2018). It might be 

also involved in Cr(VI) as the reductases were nonselective, however, its relative 

abundance decreased at Stage 5. The sulfate-reducing bacterium 

Syntrophobacteraceae enriched progressively during operation, especially in Stage 4, 

perhaps was stimulated by sulfate produced by mackinawite oxidation (Peng et al., 

2018). Acidovorax, a reported neutrophilic chemoautotrophic nitrate-reducing Fe(II) 

iron oxidizer (Pantke et al., 2011), was collectively enriched through the experiment, 

and might have actively participated in mackinawite oxidation. 
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qPCR determination showed that soxB gene was abundantly present (Fig. 5a), 

Among sulfur-oxidizing bacteria, soxB gene is a representative gene that encodes 

components of the Sox enzyme system, and presents a widespread pathway by which 

to oxidize reduced inorganic sulfur compounds (Meyer et al., 2007). This result 

suggested that S(-II) oxidation in mackinawite could be attributed to the soxB gene 

during microbial metabolic processes. The abundances of two potential Cr(VI) 

reduction genes chrA and yieF also increased significantly. Regarding Cr(VI) 

transport, ChrA is responsible for Cr(VI) efflux, and so the chrA gene could be related 

to Cr(VI) resistance in the microbial consortium employed here (He et al., 2018). The 

transformation of Cr(VI) to Cr(III) was possibly completed through Cr(VI) reductase 

encoded by the yieF gene, which had previously been reported to be involved in 

Cr(VI) reduction in Lysinibacillus (He et al., 2011). Moreover, extracellular Fe(II) 

oxidation by neutrophilic microorganisms such as Acidovorax is realized through an 

electron transfer pathway formed by cytochrome c components such as MtoA and 

MtoB (Lu et al., 2013; Shi et al., 2016). The substantial increase in cytochrome c in 

column experiment was probably associated with oxidation of Fe(II) in mackinawite. 

VFAs, possible intermediates in microbial metabolisms, accumulated in Stage 5, 

with an average concentration of 9.80 ± 1.09 mg/L (Fig. 5b). These metabolites might 

be derived from reduction of inorganic carbon sources catalyzed by hydrogenases 

(Khdhiri et al., 2015), with energy supplied from mackinawite oxidation. VFAs could 

be consumed directly as electron donors for heterotrophic Cr(VI) reducers such as 

Geobacter to detoxify Cr(VI) (Gong et al., 2018). Valerate species accounted for the 
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majority of residual VFAs, differing from butyrate accumulations mainly in elemental 

sulfur or zerovalent iron supported biosystems (Shi et al., 2019). Heterotrophs favored 

small molecule VFAs, which might be directly consumed after synthesis, resulting in 

lower enrichment (Liu et al., 2016). 

3.6. Proposed mechanism and environmental significance 

Combining the results of reaction products, microbial community succession, 

functional genes and intermediate metabolites, a synergistic mechanism between 

microbial oxidation of mackinawite and Cr(VI) bio-reduction is proposed (Fig. 6). 

First, autotrophic microorganisms such as Acidovorax oxidize mackinawite to Fe(III) 

and sulfate as the final product and release energy (Pantke et al., 2011). At the same 

time, the electrons produced reduce inorganic carbon sources to form VFAs as 

byproducts (Khdhiri et al., 2015). Cr(VI)-reducing functional genus such as 

Geobacter directly reduce Cr(VI) to Cr(III) using VFAs as electron donors (Gong et 

al., 2018). The upregulated genes are responsible for S oxidation (soxB) and Cr(VI) 

reduction (chrA, yieF), while cytochrome c performs Fe(II) oxidation (He et al., 2011; 

Liu et al., 2012). Finally, Cr(III) and Fe(III) precipitate naturally in a near-neutral pH 

environment. 

This study has demonstrated the bioprocesses of microbial Cr(VI) reduction 

supported by Fe(II)-bearing minerals for the first time (to the authors’ knowledge). 

Batch experiments showed that mackinawite possesses the highest efficiency of the 

four Fe(II)-bearing minerals considered in Cr(VI) removal. Column experiments 

lasting 180 d indicated that Cr(VI) concentrations, HRT, and the presence of 
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additional contaminants such as nitrate all affect removal efficiency. The 

breakthrough study implied that the biological process accounts for 76.0 ± 1.12% and 

the abiotic process accounts for 24.1 ± 1.43% of Cr(VI) removal. It also indirectly 

verified that the combination of biological and chemical processes significantly 

improves system performance and lifespan. Analyses of microbial communities, 

related functional genes, proteins, and metabolites suggested that synergy of 

autotrophic and heterologous microorganisms is critical in Cr(VI) removal. The 

reduction product Cr(III) would naturally precipitate in groundwater. As an electron 

donor for Cr(VI) bio-reduction, the oxidation products of mackinawite can precipitate 

concomitantly as Fe(III) or as harmless sulfate (Veeramani et al., 2013), preventing 

secondary pollution of groundwater. The co-existence of other metal ions, such as 

vanadate, with Cr(VI) in natural aquifers should be taken into account when 

bioremediation based on Fe(II)-bearing minerals is conducted in practice (Zhang et al., 

2019a). It should be noted that re-oxidation of produced Cr(III) to Cr(VI) can occur, 

especially with the presence of oxygen (Apte et al., 2006). Anaerobic condition 

should be kept for the remediated aquifer and electron donors should be sustainably 

provided to prevent this re-oxidation phenomenon. 

 

4. Conclusions 

In this work, Cr(VI) bio-reduction with Fe(II)-bearing minerals (pyrite, 

mackinawite, wustite, and magnetite) as inorganic electron donors was evaluated. 

Batch test indicated that mackinawite (FeS) performed best, with Cr(VI) removal 
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efficiency of 98.1 ± 1.21% in 96 h and removal rate of 0.54 ± 0.04 mg/L·h. 

Groundwater chemistry and hydrodynamics influenced Cr(VI) removals in continuous 

column experiments. Biotic and abiotic contributions of mackinawite to Cr(VI) 

reduction were 76.0 ± 1.12% and 24.1 ± 1.43%, respectively. The dynamics of 

microbial communities and functional genes provide evidence for both direct and 

synergetic mechanisms were involved, as revealed by microbial community dynamics, 

functional gene abundance and related protein content. 
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Table 1. Operating conditions and corresponding Cr(VI) removal performance for 

each stage in column experiment. 

Stage 
Period 

(d) 

HRT 

(h) 

Initial 

Cr(VI) 

(mg/L) 

Initial 

nitrate 

(mg/L) 

Cr(VI) removal  

efficiency (%)   

Cr(VI) removal capacity  

(g/m3·d) 

1 0-50 24 10 0 100 10 

2 51-80 24 50 0 94.2 ± 1.52 47.1 ± 1.16 

3 81-107 12 50 0 43.6 ± 1.71 45.3 ± 9.10 

4 108-150 24 50 10 23.1 ± 1.22 11.4 ± 3.63 

5 151-180 24 10 0 100 10 

Figure captions. 

Fig. 1. Cr(VI) removal performance in batch and column experiments. (a) Temporal 

variations in Cr(VI) removal efficiency in three continuous operating cycles after 

two-month domestication in batch bioreactors fed with different Fe(II)-bearing 

minerals. Each cycle lasts 96 h. (b) Time profiles of Cr(VI) and NO3
- in influent, 

Cr(VI), NO3
-, SO4

2- in effluent, and corresponding Cr(VI), NO3
- removal efficiencies 

and capacities in mackinawite packed inoculated column during 180 d operation. 

Fig. 2. Cr(VI) breakthrough curves in Biotic column and Abiotic column. (a) Effluent 

Cr(VI) concentration in both columns and Cr(VI) concentrations at different 

elevations along the Biotic column; (b) Linear regression equation for Cr(VI) 

migration. Biotic column is equipped with mackinawite and inoculated with anaerobic 

consortium. Abiotic column is packed solely with mackinawite, and the left space in 

both columns is filled with quartz sand. 
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Fig. 3. Physicochemical characterization of reaction products and mackinawite in the 

column experiment. (a) SEM image of microbes and produced precipitates; (b) EDS 

pattern of the precipitates; (c) XRD pattern of the precipitates; (d) Cr 2p spectrum for 

the precipitates obtained using XPS analysis; (e) XPS spectra of Fe 2p and S 2p for 

the precipitates; (f) XRD patterns of mackinawite before and after reaction. 

Fig. 4. Phylogenetic profiling of biomass in the inoculated column packed by 

mackinawite during 180 d operation at (a) class and (b) genus levels. 

Fig. 5. Contents of functional genes, related proteins, and accumulated intermediate 

metabolites in Stage 5 of the column experiment. (a) Abundance of genes involved in 

S(-II) oxidation, Cr(VI) reduction, and content of cytochrome c; (b) Mean 

concentrations of residual VFAs. 

Fig. 6. Proposed pathways of microbial Cr(VI) reduction supported by mackinawite. 
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Fig. 1. Cr(VI) removal performance in batch and column experiments. (a) Temporal 

variations in Cr(VI) removal efficiency in three continuous operating cycles after 

two-month domestication in batch bioreactors fed with different Fe(II)-bearing 

minerals. Each cycle lasts 96 h. (b) Time profiles of Cr(VI) and NO3
- in influent, 

Cr(VI), NO3
-, SO4

2- in effluent, and corresponding Cr(VI), NO3
- removal efficiencies 

and capacities in mackinawite packed inoculated column during 180 d operation. 
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Fig. 2. Cr(VI) breakthrough curves in Biotic column and Abiotic column. (a) Effluent 

Cr(VI) concentration in both columns and Cr(VI) concentrations at different 

elevations along the Biotic column; (b) Linear regression equation for Cr(VI) 

migration. Biotic column is equipped with mackinawite and inoculated with anaerobic 

consortium. Abiotic column is packed solely with mackinawite, and the left space in 

both columns is filled with quartz sand. 
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Fig. 3. Physicochemical characterization of reaction products and mackinawite in the 

column experiment. (a) SEM image of microbes and produced precipitates; (b) EDS 

pattern of the precipitates; (c) XRD pattern of the precipitates; (d) Cr 2p spectrum for 

the precipitates obtained using XPS analysis; (e) XPS spectra of Fe 2p and S 2p for 

the precipitates; (f) XRD patterns of mackinawite before and after reaction. 
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Fig. 4. Phylogenetic profiling of biomass in the inoculated column packed by 

mackinawite during 180 d operation at (a) class and (b) genus levels. 
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Fig. 5. Contents of functional genes, related proteins, and accumulated intermediate 

metabolites in Stage 5 of the column experiment. (a) Abundance of genes involved in 

S(-II) oxidation, Cr(VI) reduction, and content of cytochrome c; (b) Mean 

concentrations of residual VFAs.
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Fig. 6. Proposed pathways of microbial Cr(VI) reduction supported by mackinawite. 
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