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Conversion of cellulosic biomass (non-edible plant material) to products such as chemical feedstocks 

and liquid fuels is a major goal of industrial biotechnology and an essential component of plans to 

move from an economy based on fossil carbon to one based on renewable materials. Many 

microorganisms can effectively degrade cellulosic biomass, but attempts to engineer this ability into 

industrially useful strains have met with limited success, suggesting an incomplete understanding of 

the process. The recent discovery and continuing study of enzymes involved in oxidative 

depolymerisation, as well as more detailed study of natural cellulose degradation processes, may 

offer a way forward.  

Importance of the problem 

Many governments and organizations aim to move away from the use of non-renewable fossil 

carbon towards renewable production of organic compounds required for our economy; for 

example, a 2017 report published by the UK Industrial Biotechnology Leadership Forum [1] calls for 

‘greener, cleaner manufacturing processes’, ‘using renewable bio-based sources’. Microbial 

processes based on photosynthetically derived plant material play a major role in such plans. 

However, current processes are mainly based on easily fermentable sugars such as sucrose and 

glucose (derived from hydrolysis of starch) and can’t be scaled up to the enormous volumes required 

without seriously interfering with the human food supply, especially as the world’s population 

increases. Direct production by photosynthetic organisms is possible, but at very large scale is likely 

to compete with land and water requirements for human food production. The other major option is 

deconstruction of non-edible plant-derived materials. Many microorganisms are capable of rapid 

and effective degradation of these materials, especially in warm and wet conditions such as the 

rumen and tropical ecosystems, as well as in bioreactors, but such organisms generally do not 

produce useful products in quantities suitable for commercial processes, and they are currently 

rather difficult to engineer. This review focuses on the alternative strategy, genetically modifying 

industrially useful organisms to allow growth and product formation at the expense of cellulosic 

material. 

Plant cell wall materials: the starting point 

Plant cell wall material generally consists of long fibres of cellulose coated with shorter chains of 

hemicellulose and pectin, in most cases embedded in an amorphous matrix formed of lignin (Figure 

1). Lignin is a three dimensional matrix formed by random polymerization of aromatic subunits. It is 

extremely difficult to degrade, and while it could in principle serve as an excellent renewable source 

of aromatic compounds [2], such processes are currently not economically feasible, and its major 

significance is in the necessity for pre-treatment to disrupt its structure before hemicellulose and 
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cellulose can be attacked. The situation is further complicated by covalent attachments between 

lignin and hemicellulose [3,4]. Hemicelluloses are branched polysaccharides, mainly with D-glucose, 

D-xylose or D-mannose backbones, and including other sugars such as L-arabinose, D-galactose and 

L-rhamnose, in some cases esterified with acetate and other small acid groups [5]. Hemicellulose in 

general is relatively easy to extract, dissolve, and hydrolyse. Pectins are polymers mainly composed 

of uronic acids. The most attractive target is cellulose, an unbranched homopolymer of D-glucose 

linked by β-(1,4)-glycosidic bonds [6](Figure 2a). Sequential glucose units are oriented at 180° to 

each other, giving a repeating unit of cellobiose. Cellulose fibrils consist of long parallel (in native 

cellulose) chains linked by strong intra-chain hydrogen bonds, giving a rigid linear structure, with 

adjacent chains packing tightly together with many inter-chain hydrogen bonds, making cellulose 

insoluble, with a mixture of highly ordered (crystalline) and amorphous regions. 

Acid hydrolysis of cellulose requires extremely aggressive conditions, and commercial processes 

appear to rely mainly on enzymic degradation. The canonical cellulose hydrolysis process is based 

mainly on studies of the fungus Trichoderma reesei (Hypocrea jecorina), which was isolated in New 

Guinea during WWII, and is still a major source of commercial cellulase blends [7,8]. Initially 

endoglucanases (EG, EC3.2.1.4) bind to the surface of cellulose fibres and hydrolyse random bonds, 

generating a free reducing (C1) and non-reducing (C4) end (Figure 2b). Exoglucanases 

(cellobiohydrolases, CBH) attack either the reducing (EC3.2.1.176) or non-reducing (EC3.2.1.91) end; 

often both types are present and act in a complementary way, as in CBHI and CBHII of T. reesei. 

These move processively along the chain, releasing cellobiose, which is then hydrolysed by β-

glucosidases (BG, EC3.2.1.21), to release glucose, which is necessary to relieve product inhibition of 

CBH. Alternatively, short cellodextrins can be degraded by cellodextrin glucohydrolases 

(EC3.2.1.74), releasing glucose [9,10], or cellobiose or cellodextrins can be taken up and 

depolymerized intracellularly by hydrolysis or phosphorolysis [9,11]. Cellulases may be secreted, or 

displayed on the cell surface. For example, cellulolytic Clostridium spp.possess large cell-surface 

complexes known as cellulosomes, which consist of a cell-wall anchored scaffoldin protein (CipA in 

the model organism Clostridium thermocellum) with multiple cohesin domains binding a large 

number of mixed biomass degrading enzymes via dockerin domains [12](Figure 3). Such complexes 

appear to be extremely efficient for biomass degradation, presumably due to co-localization of 

synergistic cellulase activities and co-anchoring to the bacterial cell wall and the insoluble substrate. 

All of these hydrolytic enzymes are classified as Glycosyl Hydrolases (GH) in the CAZY (Carbohydrate-

Active Enzymes) database [13], with different structural families having a variety of related activities. 

For example, the major endoglucanases of T. reesei, EGI (Cel7B) and EGII (Cel5A), belong to family 

GH7 and GH5, and the major exoglucanases, CBHI (Cel7A) and CBHII (Cel6A), belong to GH7 and 

GH6, respectively. The difference between the related GH7 enzymes EGI and CBH1 is instructive; 

EG1 possess a broad active site suitable for attack on an insoluble cellulose microfibril, whereas the 

active site of CBHI is in a tunnel, allowing a single cellulose chain to be inserted [14]. Since they must 

act on an insoluble polymeric substrate, many cellulases possess a Carbohydrate Binding Module 

(CBM) at the N- or C-terminal end, which enhances their activity by allowing binding to the surface 

of the cellulose fibril. These CBM are also classified in a number of different structural families [15] 

and may also contribute to amorphogenesis (conversion of crystalline to amorphous cellulose, 

facilitating enzyme access and hydrolysis) [16]. CBMs may occur at either end of the catalytic 

domain. For example, EGI (Cel7B) and CBHI (Cel7A) have a carbohydrate binding module of family 

CBM1 at the C-terminus, EGII (Cel5A) and CBHI (Cel6A) have a CBM1 module at the N-terminus. 

Current commercial processes based on cellulosic material are dominated by cellulosic ethanol, the 

so-called ‘second generation’ biofuel [17]. While a number of companies operate pilot to medium-



scale plants [18], production is dwarfed by that based on maize starch or sucrose, and production 

costs appear to be much higher. This is further exacerbated by the distributed nature of the biomass 

starting material, especially where readily available materials such as agricultural wastes are used, 

leading to high costs for transportation [19]. Standard processes appear to involve pre-treatment to 

disrupt lignin, followed by enzymic hydrolysis of hemicellulose and cellulose, using commercially 

available cellulase blends which appear to be derived mainly from T. reesei. The resulting sugars are 

then fermented to ethanol, mainly by Saccharomyces cerevisiae, one of very few organisms capable 

of producing ethanol at sufficiently high titres to make distillation commercially viable. Variants of 

the process include SSF (Simultaneous Saccharification and Fermentation), in which hydrolysis and 

fermentation occur simultaneously, reducing product inhibition of cellulases, and SSCF 

(Simultaneous Saccharification and Co-Fermentation), in which both hexoses and pentoses are 

fermented simultaneously by a suitably capable organism. This provides a paradigm for 

development of other commercial processes based on cellulosic materials, but the costs of pre-

treatment and enzymes represent a considerable burden on economic viability [19]. Therefore, a 

great deal of research has gone into engineering microorganisms to produce their own cellulases 

and hemicellulases, and then ferment the resulting hexose and pentose sugars to produce useful 

products. This is called ‘consolidated bioprocessing’ (CBP)[20]. One approach is engineering of 

cellulose-degrading microorganisms to add product-formation pathways; the other is engineering of 

industrial organisms to allow partial or complete degradation and assimilation of cellulosic biomass. 

This review will focus on the latter approach, which is also interesting from a biochemical point of 

view in that it has the potential to test our understanding of the normal process of biomass 

degradation in nature. 

Engineering of non-cellulolytic bacteria for cellulose degradation 

Much early research focused on engineering of E. coli, a tractable model organism easily engineered 

to produce a wide variety of useful products, including ethanol. In addition to glucose, E. coli is 

natively capable of assimilating D-xylose, L-arabinose and most other biomass-derived sugars, thus 

grows well with hemicellulose hydrolysate, but does not normally assimilate cellobiose or 

cellooligosaccharides, though it is straightforward to isolate mutants which can ferment cellobiose 

[21], or to introduce this activity. E. coli expressing a GH3 cellodextrinase intracellularly is able to 

grow well with cellobiose or cello-oligosaccharides as carbon source, indicating a native ability to 

take up cello-oligosaccharides at least as large as cellohexaose (A. Salinas, C.K. Liu and C. French, 

manuscript in preparation). While there is a vast literature on the expression, secretion, and surface 

display of various classes of cellulases in E. coli and other Proteobacteria, there seem to be relatively 

few reports which have the explicit aim of generating a strain capable of degrading cellulose and 

assimilating the resulting sugars. One reason may be that E. coli is relatively poor at secreting 

proteins to the extracellular medium in the large amounts which are required for hydrolysis of 

biomass polysaccharides, although a recent report [22] describes a native cellulolytic E. coli strain 

isolated from a rumen culture; closer examination of the genome of this strain would surely be of 

interest. 

Much of the relevant work in E. coli uses strains engineered for ethanol production by expressing the 

pyruvate decarboxylase and alcohol dehydrogenase of Zymomonas mobilis or Saccharomyces 

cerevisiae. These strains produce ethanol from hemicellulose hydrolysate, though they can’t achieve 

the impressive titres seen in S. cerevisiae, making distillation more costly. For example, an 

ethanologenic strain secreting a multifunctional GH5 endoglucanase/exoglucanase/xylanase derived 

from a rumen metagenomic library was able to produce up to 3 g/l ethanol from CMC or 2 g/l from 

Avicel, though this required co-culture with a β-glucosidase-producing strain [23], or 8 g/l ethanol 



from pretreated plant biomass, as compared to 25 g/l ethanol when a commercial cellulase blend 

was used for saccharification [24]. Other biofuels produced in a similar way include biodiesel and 

terpenoids. E. coli strains expressing a Bacillus endoglucanase, Clostridium endoxylanase (both as 

fusions with E. coli protein OsmY to aid secretion), and Cellvibrio β-xylosidase and β-glucosidase 

were able to grow on plant biomass pre-treated with the ionic liquid 1-ethyl-3-methylimidazolium 

acetate, producing 71 mg/l biodiesel (fatty acid ethyl esters), 28 mg/l n-butanol, or 2 mg/l pinene (a 

terpenoid hydrocarbon) [25]. In a later study, up to 10 mg/l limonene, another terpenoid, was 

produced from cellulosic material pretreated with the same ionic liquid, using a mutant strain 

resistant to the toxic effects of this solvent, expressing a variant cellulase active in this reagent [26]; 

this is interesting, though substantially less than the 550 mg/l for the original strain grown on 

glucose, or 300 mg/l for the mutant growing on glucose in the presence of the ionic liquid. In 

another engineered strain, up to 0.07 g/l of the bioplastic polyhydroxybutyrate (PHB) was produced 

from CMC [27], a very low titre, though the authors point out that this host system was not 

optimized for PHB production. 

Closely related organisms such as Citrobacter freundii have the native ability to assimilate cellobiose, 

and can be engineered using the same vectors and techniques as E. coli; coexpression of an 

endoglucanase and exoglucanase from Cellulomonas fimi in C. freundii resulted in strains capable of 

some degree of growth at the expense of Avicel (microcrystalline cellulose), though a small amount 

of yeast extract was also required [28]. Another potentially interesting organism is Pseudomonas 

putida, which naturally possesses a wide range of metabolic pathways and shows good tolerance to 

many toxic compounds. Generally, P. putida strains assimilate only a limited range of sugars, 

including glucose but not other biomass-derived sugars such as xylose and cellobiose. A recent 

report described engineering of P. putida for simultaneous assimilation of glucose, cellobiose and 

xylose, via co-expression of the E. coli xylose transporter, xylose isomerase and xylulokinase with an 

intracellular Clostridium cellulolyticum β-glucosidase [29]; interestingly, cellobiose was apparently 

taken up via the glucose transporters, so that a dedicated cellobiose uptake system was not 

required. Deletion of glucose dehydrogenase was also required to prevent oxidation of xylose. P. 

putida has also been engineered for surface display of cellulases; three thermophilic cellulases from 

Ruminiclostridium (Clostridium) thermocellum were displayed on the outer membrane of P. putida 

using a system based on autotransporters, with the aim of generating a cost-effective system for 

manufacture of cellulases for standard saccharification processes [30]. The P. putida system was 

found to be superior to E. coli for this purpose [31]. While the aim here was not to develop an 

organism for consolidated bioprocessing, this does show the feasibility of expressing active 

cellulases in P. putida. 

Another target is Bacillus spp, especially B. subtilis. These are used in manufacture of enzymes for 

starch processing and laundry detergents, and are well studied and genetically tractable. In 

particular, B. subtilis is naturally competent and can take up large pieces of DNA and integrate them 

into the chromosome. This forms the basis for DNA assembly techniques such as OGAB (Ordered 

Gene Assembly in Bacillus). Bacillus spp. are also proficient for high level secretion of degradative 

enzymes, though cell-wall associated proteases can cause problems when secreting heterologous 

proteins. Though Bacillus spp. are not normally considered effective cellulolytic organisms, many 

strains do produce various cellulases [32], making them an interesting starting point. In particular, 

being relatives of Clostridium spp., they are an interesting option for reconstruction of cellulosomes. 

For example, a recent report describes use of OGAB to assemble a reduced cellulosome system with 

intact scaffoldin and its cell surface anchor protein, together with 6 assorted cellulosomal biomass 

degradation enzymes, and demonstrated correct assembly, enzyme activity, and degradation of 

grass biomass [33]. While B. subtilis is not well suited to production of cellulosic ethanol, it seems a 



good candidate for engineering of processes for manufacture of other products from cellulosic 

materials. A related organism is Geobacillus, a thermophilic genus capable of assimilation of many 

products of biomass degradation; an engineered ethanol producing strain of G. thermoglucosidasius 

formed the basis of the cellulosic ethanol technology of TMO Renewables [34]. Tools for engineering 

of Geobacillus sp. have been created [35,36], and a recent report [37] describes engineering of G. 

denitrificans to express endoglucanase and exoglucanase, as a first step towards generating a novel 

thermophilic host for consolidated bioprocessing. Considering the potential advantages of 

thermophilic processes, this seems to be an avenue worth pursuing, though engineering of more 

complex product formation pathways than ethanol may be more challenging, since all enzymes will 

need to sourced from thermophilic hosts or engineered for increased thermostability. 

The lactic acid bacteria, Lactococcus and Lactobacillus spp., are also members of the low-GC Gram 

positive group (Phylum Firmicutes) and are used in the large scale manufacture of lactic acid [38]. 

Lactic acid production from cellooligosaccharides up to cellooctaose has been reported [39] using 

Lactococcus lactis strain expressing a clostridial endoglucanase and cellodextrinase; CMC hydrolysis 

was detected, but growth or lactic acid production on cellulose or CMC was not reported. 

Cellulosomes have been assembled on Lactobacillus plantarum, including two endoglucanases and 

two xylanases from Clostridium papyrosolvens, using a combinatorial approach based on ‘adaptor 

scaffoldins’ to increase surface display levels. Saccharification of wheat straw was demonstrated, but 

the amounts of sugars released were apparently insufficient to allow growth of the recombinant 

organisms [40]. Another interesting host is Corynebacterium glutamicum, a high-GC Gram positive 

bacterium used in the manufacture of L-glutamate and other amino acids [41]. Cell surface display of 

a C. thermocellum endoglucanase and β-glucosidase gave some degree of saccharification of 

pretreated biomass (up to 57 mg of reducing sugars per g rape stem biomass)[42]. In another report 

[43] secretion or surface display of a bacterial endoglucanase and β-glucosidase allowed some 

degree of growth with cellobiose or CMC, with production of up to 6 mM L-lysine, far below 

commercially useful levels, but a good starting point. Another high-GC Gram positive bacterium, the 

oil-producing Rhodococcus opacus, has also been engineered for cellulose degradation by expression 

of six cellulases from Cellulomonas fimi and Thermobifida fusca, with different strains each 

expressing 1 to 3 cellulases [44]. A consortium of strains was able to achieve 20% hydrolysis of 

birchwood cellulose over 18 days, yielding 2 g/l cellobiose, after which a further cellobiose-utilizing 

strain was able to grow and produce lipids over 4 days using the resulting supernatant. The authors 

noted that substantial improvements were required for a useful process. 

Overall, it seems clear that engineering of non-cellulolytic bacteria for cellulose breakdown is 

possible, but in essentially all systems reported to date, sugar release is slow and product titres are 

far below those obtained in processes based on soluble sugars, suggesting that major improvements 

will be required if such systems are to be used for commercial processes. This defines the challenge 

for the next stages of this work. 

Engineering of yeasts for cellulose degradation.  

S. cerevisiae is a model eukaryote used on an enormous scale in industry for bread, alcoholic 

beverages, and bioethanol, and has attracted increasing interest from pathway engineers, especially 

when processes are to be scaled up for commercial production [45,46]; for example, isobutanol, 

artemisinin, farnesene, squalene and other compounds have been or are being manufactured at 

commercial scale in engineered strains of S. cerevisiae. S. cerevisiae can natively use glucose, as well 

as maltose, isomaltose, sucrose, and some other saccharides, but not cellobiose, xylose, or 

arabinose. Thus one early target was the generation of strains capable of using these sugars, 

preferably simultaneously with use of glucose, since this can significantly increase production levels 



from enzymically processed biomass. Strains capable of assimilating all of these sugars have been 

developed, though co-utilization of D-xylose and L-arabinose seems to require strain evolution after 

engineering [47,48], perhaps due to regulatory issues as well as metabolic cross-talk [49]. Such 

strains have been exploited in commercial biomass fermentation processes, though there are still 

considerable barriers to large scale implementation [50]. 

The more challenging target is direct hydrolysis of biomass via secretion or surface display of 

polysaccharide degrading enzymes. Secretion is the simplest approach, using either a single strain or 

a consortium, each producing one of the necessary enzymes; however, where the rate of glucose 

release is low, glucose may tend to be used for cell maintenance rather than ethanol production 

[51]. Secretion levels may be increased by multiple gene integration at delta (Ty1 retrotransposon) 

sites and promoter engineering [52], as well as direct engineering of the S. cerevisiae protein 

secretion system [53,54,55,56,57,58,59]. Interestingly, the response to different manipulations is 

frequently reported to be different in different target proteins, suggesting that different factors are 

limiting in each case. Following secretion, enzymes may be released, or displayed on the cell surface 

via ‘anchors’ such as Sed1, a- or α-agglutinin, either directly, or indirectly via cohesin-dockerin 

interactions to a surface-displayed scaffoldin to create a ‘mini-cellulosome’ [60]. Some reports have 

compared surface display to secretion, usually finding a slight advantage for display [61], especially 

where multiple enzymes are displayed on a single cell rather than using a consortium each displaying 

one enzyme [62]. A synthetic cellulosome-like system has also been reported, with enzymes 

immobilized via disulphide bonds, and this was reported to enhance stability [63]. It is also 

important to consider testing in industrially competent hosts rather than only in laboratory strains 

[64,65].  

Results are often reported as the amount of ethanol released from CMC (a soluble cellulose 

derivative), PASC (amorphous cellulose) or Avicel (microcrystalline cellulose) by pre-grown cells. 

Typical values range from 0.8 g/l to 2.9 g/l (Table 1). By contrast, commercial cellulosic ethanol 

processes are reported to generate ethanol at 5% to 7% v/v (39.5 to 55.3 g/l)[19]. Since distillation 

costs are much higher at low ethanol concentraions, this suggests that major improvements are 

needed before such processes can be used commercially. No reports seem to describe production of 

commercially useful levels of ethanol from cellulose without supplemental cellulases. However, a 

number of reports describe improved ethanol production from complex, realistic biomass 

substrates, due to some degree of assimilation of substrates which are normally not used [66], 

and/or reduced requirement for exogenous cellulases [64]. Even small yield increases may be 

economically significant in processes with low profit margins in which the costs of substrate and 

enzymes form a major part of total costs. 

Other yeasts have also been a target of such research. Pichia pastoris (Komagataella phaffii) is a 

widely used host for recombinant protein production, and is capable of secreting heterologous 

proteins at high levels; as such it has often been used to generate recombinant cellulases for 

research and potentially commercial use [67,68] including innovative approaches such as self-

cleaving fusions [69] and minicellulosomes [70]. A few reports describe development of strains 

capable of growth and product formation at the expense of cellulose;. For example, a strain 

secreting a T. reesei endoglucanase together with an endoglucanase and β-glucosidase of Aspergillus 

niger, was able to grow at the expense of cellobiose and CMC, but not Avicel [71]; the authors 

suggest that this opens the way for production of recombinant proteins using cellulose-based media. 

Another report describes construction of a strain able to produce ethanol from pentoses and 

hexoses, expressing a mini-cellulosome including clostridial xylanase and endoglucanase [72]; 

approximately 1.1 g/l ethanol was produced from CMC, and a similar titre from Miscanthus biomass. 



Given its good protein secretion abilities, and the availability of tools for expression of heterologous 

proteins, P. pastoris seems a strong candidate for further work. Another industrially useful species is 

the oil-producing yeast Yarrowia lipolytica. A consortium secreting T. reesei EGII and CBHII and a 

chimeric version of CBHI showed some ability to grow with Avicel as sole carbon source in a minimal 

medium [73], a particularly difficult challenge. A single strain secreting T. reesei EGI, EGII and CBHII 

together with Neurospora CBHI, and overexpressing endogenous β-glucosidases, was able to grow 

with pretreated industrial cellulose pulp, or less successfully with Avicel, as sole carbon source [74], 

though with much lower rates than native cellulolytic organisms. Since this species is already able to 

produce valuable products, this seems a good starting point towards a consolidated bioprocessing 

system. 

Thus, overall, it seems that construction of systems able to ferment native cellulose effectively 

without supplemental cellulases is yet to be achieved. However, current systems are capable of 

reducing the quantities of cellulases required, and of increasing yields of ethanol and other products 

from complex substrates such as food wastes which include a cellulosic component; even quite 

minor improvements have the potential to make large differences in process economics where 

volumes are large and profit margins small. 

New developments 

It has become apparent that a variety of proteins beyond classical cellulases are involved in biomass 

degradation. Expansins are plant proteins related to the GH45 family of cellulases, but lacking a 

critical catalytic residue; they decrease the crystallinity of cellulose and are presumed to act in 

loosening the plant cell wall structure so that new material can be added [75]. Expression of plant 

expansins in bacteria has been problematic, so many studies have used bacterial expansin-like 

proteins such as YoaJ (EXLX1) of Bacillus subtilis, despite their relatively low activities [76]. T. reesei 

also encodes an expansin-like protein, designated swollenin (SWO1), and similar proteins are found 

in many other cellulolytic fungi, suggesting an important role in biomass breakdown. Bacterial 

expansins and swollenins can synergistically enhance sugar release from biomass by commercial 

enzymes [77,78] though in some cases little effect is seen [79]. Thus, they appear to be interesting 

candidates for addition to recombinant systems, with some published results suggesting beneficial 

synergy [80,81](Table 1). 

Perhaps the most interesting and significant development in the last few years has been the 

discovery and characterization of enzymes involved in oxidative depolymerisation of cellulose and 

related polymers such as chitin [82,83]. These were originally believed to be hydrolytic cellulases 

(family GH61, in fungi) or carbohydrate-binding modules (family CBM33, in bacteria), but were 

discovered to be copper-containing enzymes capable of oxidative attack on either C1 or C4 of a β-

1,4-glycosidic bond, followed by spontaneous scission of the chain with release of products bearing 

an oxidized C1 or C4 end (Figure 4). Oxygen and a reducing agent, such as ascorbate, are required for 

activity. Family GH61 was reclassified as AA9, and CBM33 as AA10, and several more families have 

since been discovered [84,85,86]. In the current literature, these enzymes are designated as Lytic 

Polysaccharide Monooxygenases (LPMO), though it is not entirely clear whether this is the most 

accurate depiction of their activity, since it now appears that H2O2 is a preferable substrate to O2. 

Recent reports indicate that the copper centre is first reduced to Cu(I) by the reductant, followed by 

binding of O2, which can be reduced to H2O2 [87](Figure 4). In the absence of a polysaccharide 

substrate, H2O2 is released, but in the presence of substrate, attack on C1 or C4 of a glycosidic bond 

occurs, followed by hydroxylation, giving an intermediate product which spontaneously degrades, 

cleaving the chain. When O2 is used as oxidant, stoichiometric quantities of reductant are required, 

whereas when H2O2 is supplied, only catalytic quantities of reductant are needed [88]. In nature, 



lignin degradation products may act as reductants [89,90], and cytochrome domains of cellobiose 

dehydrogenase (family AA3) can directly donate electrons to the copper centre of LPMO [91,92], as 

can PQQ-dependent pyranose dehydrogenase [93]. LPMO are widely distributed in fungi and 

bacteria, and also appear to occur in some plants [94] and insects [95]; thus they appear to play an 

important and previously unappreciated role in natural biomass degradation. LPMO are reported to 

enhance saccharification in cellulase blends, especially when H2O2 rather than O2 is supplied as 

oxidant [96]. Use of LPMO is this way may be difficult or impossible in standard SSF processes for 

ethanol production, which are operated anaerobically, but this does not preclude their use in 

processes for manufacture of other products. However, so far there seem to be few reports of 

incorporation of LPMO-encoding genes into biomass degrading cassettes for improving in-vivo 

biomass degradation capability. In one report inclusion of an LPMO and cellobiose dehydrogenase in 

pentafunctional minicellulosomes in S. cerevisiae, increased ethanol production from PASC and 

Avicel (Table 1), and cells were also able to grow slowly with PASC as sole carbon source [97]; in Y. 

lipolytica, co-expression of T. reesei swollenin and LPMO, as well as a xylanase, in a previously 

engineered cellulase secreting strain of Y. lipolytica, increased sugar release from, and growth on, 

various cellulosic substrates [98].  

Alternative strategies and complicating factors 

Alternative strategies based on engineering of native cellulolytic organisms may offer advantages 

[16]. However, these systems also have their problems. A different approach is the use of 

thermochemical processing to convert biological materials to syn gas, a mixture of H2, CO and CO2, 

which can then be assimilated by anaerobic organisms such as Clostridium ljungdahlii, or aerobic 

organisms such as Cupriavidus necator (formerly Ralstonia eutropha)[99]. These organisms can be 

genetically modified to produce desirable products [100,101] This method has the potential 

advantage that it can accept a very wide range of input materials, converting them to a simple and 

easily separated product stream which is then fed to the engineered organisms. However, this 

approach does require energy intensive processing and specialized fermenter technology for gas 

feeding [102]. A further complicating factor may arise in the future: sugars obtained from biomass 

may become too valuable to be used for conversion to low value bulk chemicals. Glucose from 

cellulose, in particular, may be converted to starch-like products which could be used as animal feed, 

freeing higher value grain-based materials for human food use. This may become increasingly 

important as the human population rises and becomes wealthier. 

Perspectives 

 Importance: cellulosic biomass represents a huge renewable source of sugars which could 

potentially be used as a feedstock for microbial processes to produce biofuels, feedstock 

chemicals and other valuable products, replacing non-renewable fossil carbon without 

interfering with the human food supply. 

 Current understanding and challenges: engineering industrially useful microorganisms to 

degrade cellulosic material by expression and secretion or surface display of cellulases has 

proven challenging, with sugar yields generally too low and hydrolysis rates too slow to 

maintain good growth or product formation. E. coli and S. cerevisiae, while attractive hosts 

in many ways, do not naturally secrete high levels of extracellular enzymes, and alternative 

hosts should be considered. 

 Future directions: The recent discovery of oxidative depolymerizing enzymes, and more 

detailed knowledge of amorphogenic proteins such as expansins/swollenins, indicates that 

our understanding of natural biomass degradation is still incomplete and requires further 



research. Improved techniques for high throughout DNA assembly, strain generation and 

strain characterization, coupled with more detailed study of natural biomass degradation 

processes, and increasing interest from government and industry, may soon lead to large 

improvements. 
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Table 1. Production of ethanol from cellulosic substrates by pre-grown cells of engineered yeast 

strains: selected recent reports. 

Host Enzymes Method Substrate Ethanol Ref 

S. cerevisiae T. reesei EGII, 
Neosartorya fischeri 
CBH1, Chrysosporium 
lucknowense CBH2, 
Saccharomyces 
fibuligera BGL1 
(consortium; other 
enzymes were tested) 

Secretion Avicel, 20 g/l 4.8 g/l* 51 

S. cerevisiae Clostridium spp. EG 
and CBH (15 
combinations tested), 
Neurospora crassa 
cellodextrin 
transporter and BG 

Surface display 
(minicellulosome); 
BG intracellular 

CMC, 10 g/l 
PASC, 10 g/l 
Avicel, 10 g/l 

1.1 g/l‡ 
1.0 g/l‡ 
0.8 g/l‡ 
 

60 

S. cerevisiae T. reesei EGII, 
Talaromyces emersoni 
CBHI, Aspergillus 
aculeatus BG 

BG surface 
display, others 
secreted 

PASC, 10 g/l 2.6 g/l 61 

S. cerevisiae T. reesei EGII, 
Talaromyces emersoni 
CBHI, Aspergillus 
aculeatus BG 

Surface display 
(Sed1 anchor) 

PASC, 10 g/l 2.9 g/l 61 

S. cerevisiae C. thermocellum 
endoglucanase, T. 
emersoni CBH1, S. 
fibuligera BG (others 
also tested) 

Surface display 
(synthetic 
cellulosome with 
Aga2p/Aga1p) 

PASC, 10 g/l 1.5 g/l 63 

S. cerevisiae T. reesei EGII and 
CBHII, A. aculeatus BG 

Surface display 
(Aga2p/Aga1p) 

PASC, 10 g/l 1.8 g/l 64 

P. pastoris C. thermocellum 
endoglucanase, C. 
cellulovorans xylanase 

Surface display 
(minicellulosome) 

CMC, 10 g/l 1.1 g/l 72 

S. cerevisiae T. reesei EGII and 
CBHII, A. aculeatus BG, 
Aspergillus oryzae 
Expansin-Like Protein 

Surface display PASC, 20 g/l 3.4 g/l 
(2.5 g/l 
without 
ELP) 

81 

S. cerevisiae T. reesei EGII and 
CBHII, A. aculeatus BG, 
Thermoascus 
aurantiacus LPMO, 
Humica insolens CDH 

Surface display 
(minicellulosome) 

PASC, 10 g/l 
Avicel, 10 g/l 

2.7 g/l 
1.8 g/l 
(1.5 g/l, 
1.0 g/l 
without 
LPMO) 

97 

*The system included 2 FPU/g supplemental commercial cellulase blend, insufficient to allow any 

ethanol production from Avicel in wild-type cells. 

‡Data from figure 4c. Higher yields were obtained from CMC in growth and co-fermentation with 20 

g/l galactose, but in this system no ethanol was produced from Avicel. 



Figure Captions 

Figure 1. Major components of non-food plant biomass and biological routes to their utilization 

Figure 2. Cellulose and its enzymic deconstruction. (a) structure of cellulose chains in a microfibril. 

showing intrachain and interchain hydrogen bonds. (b) activity of endoglucanases (EG), 

cellobiohydrolases (CBH) and β-glucosidases (BG). 

Figure 3. Natural and engineered cellulosomes. (a) natural cellulosome structure in Clostridium 

thermocellum, as also expressed in Bacillus subtilis [33] (b,c,d) selected engineered variants 

expressed in Lactobacillus plantarum (b)[40] and Saccharomyces cerevisiae (c,d)[97,60] 

Figure 4. Proposed reaction cycle and products of Lytic Polysaccharide Monooxygenases. Based on 

information in [82,83,87] 

  



 

 

 



 


