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Abstract 13 

The pearl oyster Pinctada imbricata radiata is an iconic species in Qatar, representing an integral part 14 

of the nation’s cultural heritage and one of the main economic foundations upon which the nation 15 

developed. During the early part of the 20th century, nearly half of Qatar population was involved in 16 

the pearl oyster industry. However, the fishery has undergone steady decline since the 1930s, and the 17 

species is now under threat due to multiple confounding pressures. This manuscript presents the first 18 

de novo transcriptome of the Qatari pearl oyster assembled into 30,739 non-redundant coding 19 

sequences and with a BUSCO completeness score of 98.4%. Analysis of the transcriptome reveals the 20 

close evolutionary distance to the conspecific animal Pinctada imbricata fucata but also highlights 21 

differences in immune genes and the presence of distinctive transposon families, suggesting recent 22 

adaptive divergence. This data is made available for all to utilise in future studies on the species.  23 
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Introduction  49 

Qatar is located in the Arabian-Persian Gulf (hereafter referred to as The Gulf), a semi-enclosed sea 50 

characterized by a weak hydrodynamic flushing, high evaporation rates and low rates of discharge 51 

(Sheppard et al, 2010). Due to its naturally arid conditions, the Gulf is a challenging marine 52 

environment (Riegl et al 2012; Camp et al 2018), presenting wide variations in sea temperatures 53 

(annual range of 14-36 °C) and high salinities all year round (reaching 70 psu in the Gulf of Salwah) 54 

(Riegl et al 2012; Sheppard et al 2010). These conditions have produced several distinctive 55 

ecosystems; such as the characteristic Pearl oyster beds generated by the pearl oyster Pinctada 56 

imbricata radiata (Leach, 1814 and e.g. Smyth et al 2016). During the early part of the 20th century, 57 

nearly half of Qatar population was involved in the pearl oyster industry, which at present-day prices 58 

would have been worth an estimated $2.5 billion per annum to the nation’s economy (Carter 2005). 59 

However, as Qatar has prospered and developed there has been a decline in the historical P. i. radiata 60 

oyster beds (Smyth et al 2016). A survey in 2014 showed that only one out of the five studied sites in 61 

Qatar could still be characterised as oyster dominant, even though all five sites previously 62 

corresponded to places of highly productive oyster fishery (Smyth et al 2016). These results 63 

highlighted the overwhelming likelihood that a combination of anthropogenic effects (such as 64 

overfishing, water quality shifts and petrochemical industry operations) have had a negative impact 65 

on the traditional Qatari pearl oyster beds (Smyth et al 2016, Al-Maslamani et al 2018).  66 

 P. i. radiata native range goes from the Indian Ocean to the Western Atlantic, including the 67 

Arabian Gulf and the Red Sea (Cunha et al. 2011). P. i. radiata is found as non-native species in 68 

Australasia and Japan and it is currently classified as one of the most successful invasive species in the 69 

Mediterranean Sea, likely due to the opening of the Suez Canal in 1869 (Hume, 2009), which links the 70 

Red Sea to the Mediterranean Sea. P. i. radiata was first reported in the Mediterranean Sea off the 71 

Egyptian coast in 1874 (Monterosato, 1878), making it one of the earliest Lessepsian invaders. Its 72 

success as an invasive species is in part due to its inherent plasticity, which has been used to cope 73 

against the substantial influence of natural and anthropogenic stressors present in the Qatar peninsula 74 

(Sheppard et al 2010; Ibrahim et al 2018). However, a recent study suggests that overall health of P. i. 75 

radiata beds is currently at a low ebb and not able to  (Smyth et al 2016).  76 

The taxonomic status of the three commercially relevant pearl producing species Pinctada 77 

imbricata, Pinctada fucata, and Pincatada radiata remains unresolved and has become a contentious 78 

issue in the literature (Wada and Tëmkin 2008). Recent studies based on DNA sequence analysis have 79 

shown very low levels of divergence among the three species and, in pair-wise comparison cases, the 80 

levels of divergence were comparable to conspecific individuals of other Pinctada species (Tëmkin 81 
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2010). Based on these data and the lack of diagnostic morphological features, the three species have 82 

been classified as subspecies of the senior synonym P. imbricata (Pinctada imbricata imbricata, P. 83 

imbricata fucata, and P. imbricata radiata) (Tëmkin 2010). This classification is followed in the present 84 

study. 85 

Improvement in next generation sequencing technologies has led to a huge increase in the 86 

availability of genomic information, with large scale genomics and transcriptomics projects becoming 87 

commonplace. P. i. radiata is currently underrepresented in public databases such as NCBI 88 

(https://www.ncbi.nlm.nih.gov). In the present study we have sequenced, analysed, and publicly 89 

released a comprehensive atlas of expressed mRNA from P. i. radiata. This is a new resource available 90 

for detailed functional or comparative analysis of this species. In addition, as examples of the studies 91 

that can be undertaken with this data  we have briefly characterised differences in genes expression 92 

between tissue types and compared genes found in P. i. radiata to other bivalve species.  93 

Methods 94 

Sampling 95 

The Pearl oyster for this study was hand dived from a site at Al Wakra off the Qatar coast on 96 

17/04/2017 (N 25°09.150, E 51°37.072). This is a site with moderate pollution in close proximity to 97 

Doha, the most populous city in Qatar. Live sample was transported directly to the laboratory and 98 

stored in seawater from the sampling site overnight at ambient temperature to allow depuration of 99 

the digestive tract before individual tissues (digestive gland, gill, adductor muscle, gonad, and mantle) 100 

were dissected (Figure 1). The oyster was split in two, with roughly half section stored in RNAlater at 101 

-20 °C until subsequent RNA extraction, and the reaming half section fixed in Davidson’s seawater 102 

fixative for 24 hours, before being changed to 70% ethanol and then processed for formalin fixed 103 

paraffin embedded (FFPE) histological assessment using haematoxylin and eosin staining.  104 

RNA extraction and sequencing  105 

Total RNA was extracted from five P. i. radiata tissues (digestive gland, gills, adductor muscle, gonad, 106 

and mantle) with Ribozol (AMRESCO VWR, USA) using an adapted manufacturer protocol: 50 to 100 107 

mg of individual tissues were homogenised in 1 ml of Ribozol in Lysing Matrix A FastPrep® tubes with 108 

a Fast Prep cell disrupter (1 min at 5 ms−1) (MPBio, UK); samples were centrifuged at 12,000 g for 10 109 

min at 4 °C, supernatant transferred in fresh tube and incubated at room temperature for 5 min. 200 110 

μl of chloroform was added to each sample, vortexed for 15 sec, incubated at room temperature for 111 

2 min, and centrifuged at 12,000 g for 15 min at 4 °C. Aqueous phase was removed and total RNA 112 

precipitated by adding 500 μl of isopropanol, followed by incubation at room temperature for 10 min, 113 
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and centrifugation 12,000 g for 10 min at 4 °C. Pellet was subsequently washed in 1 ml of 75 % ethanol, 114 

centrifuged at 7,500 g for 5 min at 4 °C, air dried for 5 minutes and dissolved in 50 μl RNase free water. 115 

Quality was checked by TapeStation (Agilent, USA) with RINs of 7, 9.3, 8.8, 9.3 and 9.2 recorded for 116 

digestive gland, gill, adductor muscle, gonad, and mantle respectively (note low value for digestive 117 

gland appeared to be due to an elevated concentration of RNA rather than low integrity). Libraries 118 

were prepared and sequenced by the University of Exeter Sequencing Service. Briefly, libraries were 119 

produced with Illumina Truseq stranded mRNA kit (Illumina, USA), QA checked by TapeStation 120 

(Agilent, USA) and Quantus Fluorometer (Promega, UK), pooled in equimolar concentrations, and 121 

sequenced as 125 bp paired-end reads on one lane of an Illumina HiSeq 2500 system in standard 122 

mode.  123 

Bioinformatics 124 

Sequences were trimmed by trim_galore (version 0.4.0) for paired sequences, but with –125 

retain_unparied and –fastqc arguments included, and then used for all subsequent analysis. To 126 

produce the transcriptome, all sequences were pooled and normalised with bbnorm, including the 127 

pre-filter parameter, before being assembled by Trinity (version 2.8.4) with default parameters except 128 

for inclusion of the --no_normalize_reads parameter (Haas et al 2013). The transcriptome was run 129 

against the NCBI nr protein database (07/09/2018) using the blastx feature in diamond (version 0.9.22) 130 

including the –sensitive parameter an e-value cut off of 0.001 and arguments to increase speed on a 131 

high memory server (--index-chunks 1 and --block-size 10). Results visualised in MEGAN (version 132 

6.5.8). Reads identified as metazoan were used for all further analysis, while non-metazoan reads 133 

were discarded. The transcriptome (isoform sequences) was loaded into Blast2GO with associated 134 

Blast results for annotation. The gene expression matrix was calculated by RSEM using the dispersion 135 

index of 0.4, which was deemed most appropriate for no replicate reads. Differential expression was 136 

calculated by edgeR using two different methods. A standard matrix was used for tissue to tissue 137 

comparison, whereas for Gene Set Enrichment Analysis (GSEA), each tissue was analysed in 138 

comparison to all other tissues as replicates. Differentially expressed genes (FDR > 0.01, fold change 139 

>2) were used for GSEA analysis within Blast2GO software. Tissues were furthermore analysed for 140 

uniquely expressed genes; any genes in any tissue with FPKM > 0.25 was selected as expressed, and 141 

visualised within the package VennDiagram (version 1.6.2.0). Transdecoder (version 5.5.0) was used 142 

to identify probable open reading frames and redundancy removed with cd-hit (Version 4.8.1, Li et al 143 

2006, Fu et al 2012) using an identity threshold of 0.9 resulting in 30739 non-redundant coding 144 

sequences (Supplementary Figure 1). These sequences were run against metazoan databases with 145 

benchmarking single-copy orthologs software (BUSCO, version 3.0.2) to check the completeness of 146 

the transcriptome (Waterhouse et al., 2017). 147 
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Orthology analysis  148 

Orthologous gene groups were assigned to P. i. radiata and five other species using OrthoFinder 149 

software (Emms et al., 2015 and 2018). Briefly, total non-redundant protein sequence files for P. i. 150 

fucata (Takeuchi et al., 2016), Crassostrea gigas (Zhang et al., 2012), C. virginica 151 

(https://www.ncbi.nlm.nih.gov), M. yesso (Wang et al., 2017) and Octopus bimaculoides (Albertin et 152 

al., 2015) were downloaded from publically available databases. These sequences were run through 153 

Orthofinder (version 2.3.3), using default parameters, alongside the 30739 non-redundant P. i. radiata 154 

protein sequences output from Transdecoder (see above and Supplementary data 1).  155 

Results  156 

Gross morphology and histopathology 157 

The oyster chosen for sequencing had height of 53 mm (anterior to posterior), a width of 17 mm 158 

(maximum distance from left to right valve) and a total wet-weight of 62 g. No pearls or notable 159 

morphologies were observed. Pathology samples were examined histologically as in previous studies 160 

(Ward et al., 2006; Hines et al., 2007). The oyster individual sequenced was a female, with a developed 161 

gonad. One instance of an unknown trematode with granuloma was observed. No other notable 162 

pathologies were observed. 163 

Sequencing and transcriptome Assembly 164 

After trimming, over 45 Gb of data were available for further analysis (Table 1). The transcriptome 165 

assembled into 179,599 contigs with max, min, and average lengths of 16,371 bp, 201 bp, and 1,119 166 

bp respectively (Table 2). N50 and N90 were 2,013 bp and 430 bp respectively (Table 2). Trinity 167 

assigned these transcripts into 24,676 gene clusters (Table 2). Of the transcripts, 70,114 mapped to a 168 

sequence record associated with a cellular organism in the NCBI nr reference database 169 

(https://www.ncbi.nlm.nih.gov), of these there were sequences for 68,930 Metazoa; 60,285 170 

Protostomia; 58,378 Lophotrochozoa; 55,935 Mollusca and 49,835 Bivalvia. On a species level, most 171 

of the bivalve sequences mapped to rock oysters, for which two species have whole genome 172 

sequences available within the NCBI nr reference database, with just under 2,000 reads mapping to 173 

Pinctada species. Twenty reads mapped to the common molluscan parasite phylum Platyhelminthes. 174 

After removal of redundant ORFs, Transcoder and cd-hit returned 30,739 non-redundant, expressed 175 

sequences, or hypothetical proteins. BUSCO checks on the overall completeness of both redundant 176 

and non-redundant set of coding sequences found 957 complete BUSCOs and 5 fragmented BUSCOs 177 

in both sequence sets, with an overall completeness score of 98.4%.  178 
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Gene expression and gene set enrichment analysis 179 

Gene expression was analysed quantitatively and qualitatively. Expression of 13,657 genes was shared 180 

by all tissues. Each tissue had uniquely expressed genes with the digestive gland having the most 181 

unique transcripts 730, compared to 471 in the mantle, 401 in the gill, 145 in the gonad, and just 80 182 

in the adductor muscle. The pattern of differentially expressed transcripts was distinct, with the 183 

digestive gland having 3,972 differentially expressed transcripts (compared to all other tissues), 184 

adductor muscle 3,649, gill 2,208, gonad 1,835, and mantle 1,466. Gene Set Enrichment Analysis 185 

(GSEA) was performed on these differentially expressed genes from each of the tissue types (assessed 186 

against all other tissues). Table 3 shows how each tissue type was enriched for several gene ontology 187 

(GO) terms which relate to the function of that particular tissue (for example contractile fiber in the 188 

adductor muscle). Digestive gland, which had the highest number of differentially and uniquely 189 

expressed genes, also showed the highest number of enrichment terms. Functions, including 190 

endopeptidase and peptidase inhibitor activity, were enriched in differentially expressed genes, 191 

suggesting function associated with the process of digestion. 192 

OrthoFinder 193 

In brief, 20,870 orthogroups were assigned to the six different species and included 83.5 % of the total 194 

number of genes (Supplementary Data 2). Only 1.6 % of the orthogroups were species-specific. As 195 

expected, the all-gene phylogeny grouped the Pinctada species together and the Crassostrea species 196 

together, with the scallop M. yesso completing the bivalve clade and the cephalopod mollusc O. 197 

bimaculoides being most distance to all other species. The two Crassostrea species and the Pinctada 198 

species each had around 16,000 orthogroups and each genus shared similar numbers of orthogroup 199 

overlaps. As a lone and more distant species, O. bimaculoides only had around 9,000 orthogroups but 200 

shared the majority of these with all other species sequenced. Orthogroups containing at least five 201 

genes in P. i. radiata and zero genes from P. i. fucata (Supplementary data 3) were analysed in 202 

Blast2GO. These 24 gene groups included functional groups such as transposable elements, 203 

transcription factors and immune system receptors (data not shown). 204 

Discussion 205 

All metrics suggest that the overall quality of P. i. radiata transcriptome produced in the present study 206 

is very high, with a similar number of non-redundant expressed sequences close to the highly related 207 

species P. i. fucata (Du et al., 2017), which has had its whole genome sequenced, and with 208 

benchmarking single-copy ortholog (BUSCO) analysis giving a score of 98.4% completeness. The N50 209 

score of 2,013 bp, which is within the region of most complete bivalve transcriptomes (e.g. Ryu et al 210 
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2019, Viricel 2018, Patnaik et al 2016). This sequence data is now available online via public databases 211 

with relevant details available in Table 4.  212 

Orthogroups, representative of groups of homologous genes, are a useful way of inferring and 213 

comparing functional biology of multiple species, and also identifying shared genes with which 214 

multigene phylogenies can be drawn (Figure 2A) (Emms et al 2015). In order to assess the comparative 215 

differences between P. i. radiata and other molluscs, non-redundant protein databases of four other 216 

bivalves (P. i. fucata , C. virginica, C. gigas and M. yesso) and one cephalopod mollusc (O. bimaculoides) 217 

were analysed with OrthoFinder (Emms et al 2015) (Figure 2).  In total circa 20,000 orthogroups were 218 

identified across the five different species, 83.5 % of which spanned across more than one species. As 219 

expected, P. i. radiata groups closely to and shares a high proportion of its orthogroups with P. i. 220 

fucata. Interestingly, the multi-gene phylogeny inferred within OrthoFinder suggests the distance 221 

between P. i. radiata and P. i. fucata is similar to that between C. gigas and C. virginica. In addition, 222 

the two Pinctada species compared in this study share roughly the same number of orthogroups as 223 

the two Crassostrea species (14,801 vs 15,308 respectively). Together, these data suggest a similar 224 

level of phylogenetic relationship between the Pinctada, rather than a conspecific relationship. 225 

However, it should be noted that less than 0.6 % of the Pinctada genes reside in species specific 226 

orthogroups, compared to over 1 % of the Crassostrea genes, suggesting that the two Crassostrea 227 

species have several more divergent orthogroups, in addition to the large number of shared groups. 228 

The cephalopod (O. bimaculoides) only had genes assigned to around 9000 orthogroups, but it shared 229 

the majority of these with all other species sequenced. This finding includes the orthogroups which 230 

are present across mollusca, and likely includes genes with many essential functions, rather than those 231 

evolved for lineage specific functions. It will be interesting to continue repeating this analysis with 232 

more bivalve transcriptomes and genomes as they continue to become available and identify the 233 

groups of genes specific to each class of mollusc, and to further study those genes which allowed such 234 

successful adaptive radiation of the molluscs (Seed 1983).  In order to elucidate some of the functional 235 

differences between P. i. radiata and P. i. fucata genomes, orthogroups which contained at least five 236 

genes from P. i. radiata and none from P. i. fucata were studied in more detail. Among this set of 24 237 

orthogroups were genes with homology to transposable elements, transcription factors and innate 238 

immune signalling. The function of these genes suggests they have evolved in relation to specific 239 

pressures, which may underlie some of the more recent lineage specific adaptations. In general, the 240 

relationship between P. i. radiata and P. i. fucata has proven to be challenging to resolve both from a 241 

morphological and genetic point of view (Tëmkin 2010), with the current taxonomic sub-species 242 

designation being somewhat of a compromise. The analysis presented in this study, however, suggests 243 

that the current designation could someday be re-visited with a thorough genome-wide analysis. 244 
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 In order to demonstrate the potential of this transcriptome for study of functional properties 245 

of the differentially expressed transcripts from each organ, gene set enrichment analysis (GSEA) was 246 

utilised (Table 3). Most organs were enriched for categories highly symbolic of the overall function, 247 

for example the adductor muscle was enriched for myosin complex, contractile fibers, myofibril, 248 

sarcomere and actin cytoskeleton, all of which are associated with muscle contraction. The mantle, 249 

perhaps the most bivalve-specific tissue, was enriched for chitin binding and metabolism, glucosamine 250 

containing processes, aminoglycan and amino sugar metabolic processes. These findings point 251 

towards the key function of shell formation, with chitin metabolism being previously identified as a 252 

basic component of nacre in P. fucata martensii (Du et al., 2017) and the amino glycan and amino 253 

sugar pathways previously identified as enriched protein components in C. gigas shell (Wang et al 254 

2013), likely to be involved in formation of complex matrices. Otherwise, the digestive gland was 255 

enriched for categories associated with peptidase regulation, the gonad, enriched for categories 256 

including nucleoplasm, biosynthesis and protein assembly suggesting active biosynthetic processes, 257 

such as gonadongenesis. Enrichment categories in the gill suggested the process of post-translational 258 

modification via dephosphorylation, which may, for example, play a key role in regulation of ion-259 

transport across the membrane of the gill (Lucena et al., 2017). 260 

 This species has demonstrated an incredible ability to survive a range of challenging conditions, 261 

but it appears that is now reaching the limit of this inherent flexibility. The existence of this high-262 

quality reference transcriptome will now allow for transcriptomic studies into the ability of P. i. radiata 263 

to survive challenging conditions.  264 
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 379 

 380 

Figure 1. Left valve of the pearl oyster, Pinctada imbricata radiata, with tissues utilised in 381 

transcriptomic analysis identified.  382 
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 384 

 385 

 386 

Figure 2. Results of phylogenomic orthology screens using OrthoFinder. A) Phylogeny of species as 387 

defined by all genes. B) Percentage of genes from each species in orthogroups. C) Percentage of 388 

orthogroups containing each species. D) Percentage of genes in species-specific orthogroups. E) 389 

Total number of orthogroups (black) which included genes from this species, and number of those 390 

shared with Pinctada i radiata (grey). 391 
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Table 1. Number and length of reads pre and post trimming via trimmomatic. 392 

Tissue 
Number of 
read pairs 

Average 
length 

Number of 
trimmed pairs 

Average length 

Forward Reverse 

Digestive gland 35,856,234 2x125 35,770,112 114.4 111.6 

Gill 38,123,232 2x125 37,997,395 116.9 112.9 

Adductor muscle 43,089,935 2x125 43,009,382 116.2 112.7 

Gonad 39,136,760 2x125 39,044,852 115.5 112 

Mantle 44,816,064 2x125 44,737,749 114.9 111.3 

 393 

 394 

Table 2. Transcriptome statistics 395 

Descriptive Statistic Summary 

Number of transcripts 179,599 

Number of genes* 24,676 

Total length (bp) 201,029,654 

Shortest transcript length (bp) 201 

Mean transcript length (bp) 1,119.30 

Longest Transcript length (bp) 16,371 

N50 (bp) 2,013 

*gene cluster as identified with Trinity assembler (see methods) 

 396 

 397 

 398 

 399 
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Table 3. Top five (or all) categories for gene set enrichment analysis from each tissue.  400 

Tissue GO ID GO Name GO Category 
Nominal p-
val 

FDR q-val 

Digestive 
Gland 

GO:0004866 endopeptidase inhibitor activity Molecular Function 0 0 

GO:0061135 endopeptidase regulator activity Molecular Function 0 0 

GO:0061134 peptidase regulator activity Molecular Function 0 0 

GO:0004857 enzyme inhibitor activity Molecular Function 0 0 

GO:0004867 serine-type endopeptidase inhibitor activity Molecular Function 0 0 

Gill 

GO:0004721 phosphoprotein phosphatase activity Molecular Function 5.941E-03 7.582E-02 

GO:0004725 protein tyrosine phosphatase activity Molecular Function 7.905E-03 2.096E-01 

GO:0016311 dephosphorylation Biological Process 7.937E-03 1.103E-01 

GO:0006570 tyrosine metabolic process Biological Process 1.504E-02 8.915E-02 

GO:0006470 protein dephosphorylation Biological Process 1.590E-02 7.120E-02 

Adductor 
muscle 

GO:0015629 actin cytoskeleton Cellular Component 0 0 

GO:0016459 myosin complex Cellular Component 0 0 

GO:0043292 contractile fiber Cellular Component 0 0 

GO:0030016 myofibril Cellular Component 0 0 

GO:0030017 sarcomere Cellular Component 0 0 

Gonad 

GO:0034622 cellular protein-containing complex assembly Biological Process 0.000E+00 3.651E-02 

GO:0005654 nucleoplasm Cellular Component 7.937E-03 1.067E-01 

GO:0016053 organic acid biosynthetic process Biological Process 1.235E-02 1.510E-01 

GO:0046394 carboxylic acid biosynthetic process Biological Process 1.594E-02 1.517E-01 

Mantle 

GO:1901071 glucosamine-containing compound metabolic process Biological Process 0 0 

GO:0006030 chitin metabolic process Biological Process 0 0 

GO:0008061 chitin binding Molecular Function 0 0 

GO:0006040 amino sugar metabolic process Biological Process 0 0 

GO:0006022 aminoglycan metabolic process Biological Process 0 0 

401 
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Table 4. MIS specifications of the P. i. radiata transcriptome. 402 

Item Description 

Investigation_type Eukaryote 

Project_name Reference transcriptome of Pinctada imbricata radiata 

Organism Pinctada imbricata radiata 

Classification 
Metazoa (kingdom); Mollusca (phylum); Bivalvia (class); 

Pteriida (order); Pteriidae (family); Pinctada (genus) 

Lat_lon 25°09.150 N 51°37.072 E 

Geo_loc_name Al Wakrah, Qatar 

Collection_date 17/04/2018 

Collector Alexandra Leitão 

Environment (biome) marine benthic biome (ENVO:01000024) 

Environment (feature) sand (ENVO:01000017) 

Environment (material) sea water (ENVO:00002149) 

Env_package Water 

Seq_meth Illumina 

Transcriptome_platform HiSeq 2500 

Assembly_method Trinity v2.8.4 

Submitted_to_INSDC 

Bioproject ID: PRJDB8463 

Biosample ID: SAMD00178207-SAMD00178211 

Short read archive ID: DRA008674 

Accession: ICPG01000001-ICPG01068930 
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