

Edinburgh Research Explorer

High level programming abstractions for leveraging hierarchical
memories with micro-core architectures

Citation for published version:
Jamieson, M & Brown, N 2020, 'High level programming abstractions for leveraging hierarchical memories
with micro-core architectures', Journal of Parallel and Distributed Computing, vol. 138, pp. 128-138.
https://doi.org/10.1016/j.jpdc.2019.11.011

Digital Object Identifier (DOI):
10.1016/j.jpdc.2019.11.011

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Parallel and Distributed Computing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 04. Jan. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/363992327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/nicholas-brown(d0fe7a8b-6e4f-409f-a5b2-cb1cfe31ce36).html
https://www.research.ed.ac.uk/portal/en/publications/high-level-programming-abstractions-for-leveraging-hierarchical-memories-with-microcore-architectures(669388db-cb2a-4b8c-8b2d-4b383344d3b8).html
https://www.research.ed.ac.uk/portal/en/publications/high-level-programming-abstractions-for-leveraging-hierarchical-memories-with-microcore-architectures(669388db-cb2a-4b8c-8b2d-4b383344d3b8).html
https://doi.org/10.1016/j.jpdc.2019.11.011
https://doi.org/10.1016/j.jpdc.2019.11.011
https://www.research.ed.ac.uk/portal/en/publications/high-level-programming-abstractions-for-leveraging-hierarchical-memories-with-microcore-architectures(669388db-cb2a-4b8c-8b2d-4b383344d3b8).html

High level programming abstractions for leveraging

hierarchical memories with micro-core architectures

Maurice Jamiesona, Nick Browna

aEPCC, The Bayes Centre, 47 Potterrow, Edinburgh

Email addresses: maurice.jamieson@ed.ac.uk (Maurice Jamieson),
n.brown@epcc.ed.ac.uk (Nick Brown)

Preprint submitted to Journal of Parallel and Distributed Computing November 26, 2019

Abstract

Micro-core architectures combine many low memory, low power computing

cores together in a single package. These are attractive for use as accelerators

but due to limited on-chip memory and multiple levels of memory hierarchy,

the way in which programmers offload kernels needs to be carefully consid-

ered. In this paper we use Python as a vehicle for exploring the semantics and

abstractions of higher level programming languages to support the offloading

of computational kernels to these devices. By moving to a pass by reference

model, along with leveraging memory kinds, we demonstrate the ability to

easily and efficiently take advantage of multiple levels in the memory hier-

archy, even ones that are not directly accessible to the micro-cores. Using

a machine learning benchmark, we perform experiments on both Epiphany-

III and MicroBlaze based micro-cores, demonstrating the ability to compute

with data sets of arbitrarily large size. To provide context of our results, we

explore the performance and power efficiency of these technologies, demon-

strating that whilst these two micro-core technologies are competitive within

their own embedded class of hardware, there is still a way to go to reach

HPC class GPUs.

Keywords: Parallel programming languages ; Interpreters ; Runtime

environments ; Hardware accelerators ; Neural networks

2

1. Introduction

Micro-core architectures combine many simple, low power, cores on a

single processor package. Their low power and low cost makes them attrac-

tive for multiple domains and we are seeing the embedded and HPC worlds

converging. The embedded world which has always focused on power effi-

ciency is now interested in parallelism, and the HPC community having to

consider power efficiency in order to facilitate realistic future exa-scale ma-

chines. These micro-core architectures, providing significant parallelism and

performance for low power are therefore of great interest to both communi-

ties and have been at the heart of the top machine in the Green 500 until

March 2019 [1].

Very often machines built around micro-core architectures exhibit multi-

ple levels of memory hierarchy, from the small and fast on-core scratch pad

memory expanding out to slower but larger memory spaces. Knowing where

about to place their data in the memory hierarchy and then retrospectively

changing this if it is not optimal adds significantly to the burden placed upon

the programmer. This problem is magnified by micro-core architectures due

to the immaturity of programming tools and the fact that the hierarchy is of-

ten deep and memory spaces comprise of KBs of manually controlled memory

close to the core rather than automatic caches of many MBs. Hence, with

micro-cores, not only does the programmer need to correctly control data

placement for performance, but they also need to get this right for their code

to even run in the first place.

The severely constrained nature of micro-cores makes the challenge of

data placement and transfer a difficult one. In this paper we ues Python

3

as a vehicle for presenting and demonstrating our abstractions for offloading

kernels to micro-core accelerators such that the programmer can process

arbitrarily large data sets on micro-cores and control data placement in the

memory hierarchies without having to deal with the low level, complex, nitty-

gritty details of how data is physically moved. In short the contributions of

this paper are:

• Demonstration that a pass by reference model, similar to CUDA’s uni-

fied virtual addressing, is mandatory for enabling micro-core to process

arbitrarily large data-sets. We explore the performance characteristics

of this approach and role that pre-fetching plays in optimising data

transfer.

• Demonstration that, for micro-cores, memory kinds enable the pro-

grammer to concisely express where in the memory hierarchy their data

is located, with the runtime and kinds themselves then responsible for

low level data transfer.

• A general performance and power efficiency comparison of micro-cores

against embedded and HPC class hardware technologies.

This paper is laid out as follows, after describing general background,

specifics of the hardware used and related work in Section 2, Section 3 then

focuses on the abstractions we have developed to enable the programmer to

seamlessly leverage memory hierarchies in their code. Section 4 then dis-

cusses some of the implementation challenges that had to be addressed to

adopt these new extensions. In Section 5 we use a machine learning code

for detecting lung cancer in 3D CT scans as a benchmark, run on both the

4

Epiphany-III and MicroBlaze based micro-cores. These experiments are used

to illustrate the performance of our approach and general power efficiency of

micro-cores, comparing that against characteristics of other common tech-

nologies. We then draw conclusions in Section 6 and discuss further work.

2. Background and related work

There are numerous micro-core architectures such as the PEZY-SC2 [2]

which powered the top Green 500 machine until it was decommissioned in

March 2019, although at the time of writing at 17.6 GFLOPS/Watt is still

more energy efficient than the current number one GPU-based machine [1].

The Kalray Boston [3], the Celerity [4], and numerous soft cores are other

examples of micro-cores, and these technologies are at varying levels of avail-

ability, maturity and cost. The work and experiments described in this paper

focuses on two very different types of micro-core, the Epiphany [5] and Mi-

croBlaze [6]. The Epiphany is arguably one of the most ubiquitous of these

micro-cores, developed by Adapteva and packaged as a single physical chip

comprising of low power cores. On the Epiphany-III each of these cores con-

sists of a RISC CPU, 32KB high bandwidth on-core local memory, DMA

engine and network interface. Whereas the Epiphany is a physical chip, Xil-

inx’s MicroBlaze is instead a semiconductor intellectual property core, known

as an IP block, and used in conjunction with interconnection IP blocks, to

configure a Field Programmable Gate Array (FPGA) to present itself as a

multi-core MicroBlaze CPU. Known as a soft-core, from the end program-

mer’s perspective this chip looks like a CPU, but crucially this approach is

much cheaper than physical cores as there is no need for expensive manu-

5

facturing, and significantly more flexibility in configuration than a physical

CPU. Out of the numerous soft-cores available, the MicroBlaze is amongst

the most ubiquitous, not least because it is developed by Xilinx, arguably

the world leading FPGA vendor. Irrespective of whether the implementation

is a physical or soft CPU, these technologies contain many cores, each with

very limited amounts of memory, and the reason for picking these two tech-

nologies in our experiments is both their ubiquity, and also representation of

a specific class of micro-cores.

The micro-core architecture is applicable to a wide range of problem do-

mains and performance levels close to 2 GFLOPs per core have been demon-

strated [7] in the field of signal processing on the Epiphany chip. The major

advantage of this technology is the power efficiency, for instance the most

common Epiphany is the 16 core version 3 (Epiphany-III), manufactured at

a process size of 65nm, delivers 32 GFLOPs and draws a maximum of 2 Watts

(16 GFLOPs/Watt.) There have been studies comparing the performance

and power efficiency benefits of FPGAs against GPUs [8] and the Zynq-7020

(28nm process size) used in this paper has a theoretical peak performance

of 180 GFLOPs and 72 GFLOPs/Watt [8]. Specifications regarding the Mi-

croBlaze are more difficult because it also depends on the physical FPGA

that is being used, although it has been claimed that soft-cores retain many

of the power efficiency benefits of FPGAs [9].

In addition to the micro-core, one also requires a board to mount this chip

and expose it to the outside world. In this paper we use two such boards, one

for each technology. For the Epiphany, the same company also developed the

Parallella [10] single board computer (SBC). This machine combines a host

6

dual core ARM A9 CPU, with 1 GB of RAM and the 16 core Epiphany-III.

Due to limitations in the Parallella, whilst the theoretical off-chip bandwidth

of the Epiphany III is 600 MB/s, the maximum obtainable in practice is 150

MB/s [11]. For MicroBlaze experiments we use the Pynq-II SBC, mounting

a Xilinx Zynx-7020 and 512 MB RAM. Zynq-7020 FPGAs, with an off-chip

bandwidth of 131.25 MB/s, contains both a dual core ARM A9 CPU and re-

configurable FPGA fabric on the same physical package. This specific FPGA

comprises of 53,200 programmable Look-Up Tables (LUTs), and around 627

KBs of block RAM (BRAM) [12]. This means that we can fit a maximum of

eight 64KB MicroBlaze CPUs, and supporting infrastructure IP blocks, onto

the Zynq, which is the configuration used throughout this paper. Whilst we

have picked these technologies due to their availability and popularity, in our

opinion the MicroBlaze is the more interesting target due to the significant

commitment by Xilinx, and active development of many micro-core style

soft-cores, including implementations of the RISC-V architecture [13] [14].

The programming of these micro-cores is technically challenging, with

both technologies supporting C via the GCC tool chain. Whilst some ap-

proaches beyond using C with the low level hardware specific library, such

as OpenCL [15], BSP [16], OpenMP [17] and MPI [18] have been developed,

these are at different levels of maturity and still require the programmer to

explicitly program the chip using C at a very low level. Indeed, Xilinx’s

Pynq-II board has been designed around ease of use, loading up a default

configuration of three MicroBlaze cores, and presenting a Python interface

via the Jupyter notebook. However, Python only runs on the host ARM

CPU of the Pynq-II and the programmer must still write C code to execute

7

Figure 1: Epiphany and MicroBlaze memory hierarchy

directly on each MicroBlaze and interface it appropriately with the host code.

This programmability challenge is made more severe when one considers

the tiny 32KB of memory per core on the Epiphany and 64KB on the Mi-

croBlaze. Whilst some of the board’s main memory is directly addressable by

the micro-cores, there is a significant performance penalty in accessing this

and programmers have to either keep their programs and data within the

micro-core memory limits or design their codes to pre-fetch for reasonable

performance. Regardless, this adds considerable additional complexity to

any non-trivial codes. Figure 1 illustrates the memory hierarchy for both the

Epiphany-III running on the Parallella and multi-core MicroBlaze running

on the Pynq-II. The only difference between the two is that the Epiphany/-

Parallela combination contains a top-level that is not directly accessible to

the micro-core whereas the main memory of the MicroBlaze/Pynq-II is all

directly accessible by the MicroBlaze cores.

2.1. Existing accelerators offload approaches

There are numerous offloading approaches that target accelerators in gen-

eral, and specifically GPUs, but none of these technologies currently support

micro-cores due to the memory limit. CUDA [19] and OpenCL [20] are ar-

guably the most popular approaches, and OpenCL even supports FPGAs

8

[21]. With both these technologies, the programmer decorates specific ker-

nels in their code to run on the device and they also have available to them a

host based library of functionality which enables interaction with the device.

The sort of functionality supported from the host is the copying of data,

activation of specific kernels, or queuing up of kernels.

CUDA has supported Unified Virtual Addressing (UVA) since CUDA 4,

which enables the programmer to view GPU and CPU memory as one large

address space. If pointers on the GPU point to some memory held on the

CPU then transfer happens transparently, although there might be some

performance penalty. This corresponds to the Addressable external DRAM

level and below in the memory hierarchy of Figure 1. A limitation of UVA is

that the implementation of this is fairly basic and if the GPU is repeatedly

accessing CPU memory, then a significant performance penalty could be in-

curred. Pascal architectures and later, supported by CUDA 6, implement

Unified Memory (UM). This provides UVA’s virtual address space and addi-

tional support to transparently move memory to the GPU, treating the GPU

memory more like a large cache. The simplest memory movement strategy

moves memory on a page fault, but there are more advanced functionalities

such as pre-fetching to minimise the overhead of data migration. In exper-

imentation [22] it has been shown that UVA’s explicit copying of memory

to a pre-allocated buffer on the GPU is the still fastest, but this is compa-

rable with the pre-fetching performance of UM. Both of these approaches

are significantly faster than non-prefetched UM, due to the overhead of page

migration. However, other experiments of [23] report more limited success

of UM pre-fetching, especially with irregular data patterns.

9

An important aspect of UVA and UM is that the hardware must provide

support for these technologies which adds extra complexity to the chip, espe-

cially UM [24]. Both the micro-core systems used in this paper support some

degree of UVA, which itself required some addition to the micro-core chip and

target machine software. For instance, in the case of the MicroBlaze running

on the Pynq-II, UVA is facilitated by the existing Zynq IP block at the FPGA

level, and Xilinx libraries running on the host ARM. But micro-cores can ap-

ply to a variety of different target machines, and as such hardware level UVA

can not always be assumed, nor can direct memory access to higher levels of

the memory hierarchy in Figure 1 be guaranteed.

A downside of CUDA and OpenCL is that is can require explicit, and

sometimes fairly low level, user code to perform actions such as allocating and

data movement. Pragmas are an alternative approach for limiting the amount

of host level support code, with the programmer decorating specific parts of

their code with directives which then instruct the compiler to extract these as

kernels, and execute them on the appropriate device. Common approaches

include OpenACC [25] and OpenMP 4.0 [26], and, for instance, the target

directive of OpenMP 4.0 marks a region of code to execute on a device

and a mapping between the device and host memory can be specified. The

declare target directive can be used to declare global variables on the target

device and kernels can execute concurrently by wrapping them as an OpenMP

task. Numba [27] is an annotation driven approach for offloading Python

kernels to GPUs. The programmer decorates specific functions in their code

and these will be executed on the GPU and perform all data movement

necessary. However, Numba requires on-device memory significantly in excess

10

of that provided by micro-cores and doesn’t provide any significant support

for hierarchies of memory.

2.2. ePython

ePython [28] is an implementation of Python, initially developed for the

Epiphany, and now ported to other micro-core architectures including the

MicroBlaze. The primary purpose of ePython was initially educational, but

it is also applicable as a research vehicle for understanding how best to pro-

gram these architectures and prototyping applications on them. Due to the

memory limitations of these architectures, the ePython interpreter (written

in C) fits into 24KB of memory, with the remaining memory used for user

byte code, the stack, heap and communications. It is possible for byte code,

the stack and heap to overflow into shared memory but there is a performance

impact of this. ePython also supports a rich set of message passing primi-

tives such as point to point messages, reductions and broadcasts between the

cores.

At 24KB ePython is by far the smallest implementation of Python and

specially designed for highly parallel systems. MicroPython [29] is another

implementation of Python designed for micro controllers but crucially Mi-

croPython is hundreds of KBs, and whilst this is small in comparison to

many Python interpreters such as CPython, it is still significantly above the

in-core memory limitations of micro-core architectures such as the Epiphany

and MicroBlaze. The other big difference between MicroPython and ePython

is that of parallelism. Whilst there is multi-threading in MicroPython, the

programmer is not able to write distributed memory style parallel codes

in MicroPython running over a multiple cores concurrently, which ePython

11

trivially supports.

A major aim of ePython was to allow the programmer to view the micro-

cores as an accelerator and offload kernels from a host CPU to these compu-

tational engines. In addition to being able to execute Python codes directly

on the micro-cores, an abstraction for offloading kernels from large scale,

existing codes running on the CPU to the micro-cores has been developed

[30]. There are three major components to ePython, the 24KB ePython

Virtual Machine (VM) running on each micro-core comprising of an inter-

preter and runtime, general supporting functionality running as a process

on the host CPU, and thirdly an ePython module which is imported into a

user’s Python code running under any Python interpreter such as CPython

on the host. Previously the ePython module running on the host did not

directly communicate with the micro-cores and instead communication was

marshalled via the host ePython process.

Listing 1 illustrates an example code, run under any Python interpreter

such as CPython, on the host. A function, in this case mykernel, is decorated

with the offload directive (located in the ePython module) at line 11. When

such an offloaded function is called, such as is the case at line 20, the kernel

and associated arguments are transparently transferred onto the micro-cores

which will then execute the kernel with associated data on the cores using

the ePython VM as an engine. Any return values will then be copied back

from the micro-core to the users code on the host. In this example two lists of

numbers, nums1 and nums2 are filled with 1000 random numbers on the host

(lines 7 to 9.) These are then copied onto the micro-cores as arguments when

the mykernel function is invoked at line 20. On the micro-cores each element

12

of the first list is summed with the corresponding element of the second list

and the result returned. By default kernel execution is blocking and runs

on every micro-core, for instance with the Epiphany-III, sixteen copies of

the kernel will all run concurrently with the arguments independently passed

to each core. Hence, in this case, sixteen identical results, one from each

micro-core, are copied back in a list, each element representing the return

value(s) of the kernel executing on the corresponding core. ePython provides

numerous options that the programmer can pass to the offload directive

that will further specialise this kernel, such as running on a subset of cores,

running asynchronously and policies of scheduling the kernel.

1 from epython import offload
2 import random
3
4 nums1 =[0] * 1000
5 nums2 =[0] * 1000
6
7 for i in range (1000):
8 nums1.append(random.randrange (0,100,1))
9 nums2.append(random.randrange (0,100,1))

10
11 @offload
12 def mykernel(a, b):
13 ret_data =[0] * len(a)
14 i=0
15 while i < len(a):
16 ret_data[i]=a[i] + b[i]
17 i+=1
18 return ret_data
19
20 print mykernel(nums1 , nums2)

Listing 1: Python offload example for summing two lists of numbers

The problem with the code illustrated in listing 1 is that of memory

requirements for lists a, b and ret data. Each of these lists is approximately

4KB and the micro-cores are so seriously memory constrained that, combined

13

with the 24KB ePython interpreter and byte code, it is likely one or more

of these won’t fit in the Epiphany memory, being forced to reside in the

much slower main board shared memory. In this case there isn’t really much

the programmer can do, and the situation becomes more serious when the

programmer wishes to process larger amounts of data that do not even fit in

the shared part of main memory. This limitation has been a significant issue

for the ePython offload approach and one in which, until the work of this

paper, meant that only small data sizes could be tackled by the technology.

It is also possible to use a device resident data approach, a technique

commonly used with GPUs, where variables are allocated directly on the

device and the programmer explicitly controls when values are copied on and

off. These values don’t then need to be transferred on every kernel invocation,

which can be especially useful when kernels are executing multiple times on

same data. In ePython a define on device API call is provided which the

programmer can call from their host code to allocate a variable on the device,

data can then be copied on and off using copy to device and copy from device

API calls respectively.

3. Modifying the offload behaviour for micro-cores

In this section we describe the two major aspects of our work that enable

micro-cores to run kernels handling arbitrarily large amounts of data. The

first is a change to the behaviour of function offloading, where instead of

eagerly copying the entirety of argument data to the micro-cores on kernel

invocation, a reference to this data is passed to the micro-cores and data

retrieved on demand. Our second contribution is the use of memory kinds

14

to control where in the memory hierarchy data should reside and these kinds

contain functionality to enable transparent accessed by the programmer.

3.1. Passing kernel data by reference to micro-cores

The semantics of Python, and many similar dynamic languages, is pass by

reference where the reference, or pointer, of an object is passed to a function

rather than the data itself. This is important because, if the programmer

modifies the data during function execution, then it is not the function’s copy

of the data but the original data itself that is modified. However as described

in Section 2.1, technologies for offloading kernels to accelerators commonly

pass by value instead, explicitly copying the entire kernel data and even UM

migrates pages of memory on demand. This eager copying of data, whether it

be the entire kernel’s data before execution, or a page of data before access,

makes a lot of sense for GPUs. However it relies on the assumption that

there is sufficient memory available on the accelerator to hold this data, and

the kernel or data access can not start until transfer has completed. These

two factors, and most critically the memory requirement for holding all the

data, are significantly limitations when applied to micro-core architectures.

Coupled with the fact that no micro-core architectures support hardware

level memory migration, as required with UM, then a programming and/or

runtime level solution must be found.

In our approach we have modified the behaviour of kernel invocation

such that instead of copying the entire data over to the micro-cores (such

as all of nums1 and nums2 in listing 1), instead a memory reference is sent

from the host CPU to the micro-cores. Furthermore, the original data might

not be in a memory space that is directly accessible by the device, unlike

15

the assumptions made in GPU UVA. Whenever a micro-core reads from the

variable, behind the scenes, the ePython interpreter will retrieve this value

from the variable’s location in the memory hierarchy, whether it be on the

micro-cores or the host CPU. Likewise, if the programmer writes to such a

variable then data transfer is transparently performed by ePython to where

that variable is physically located. In all these cases, by default, the core will

block for data transfer, either reading or writing, to complete.

Whilst it might seem that explicit fetching data from source on every

access is slow, and indeed it can be, there is little choice if one is to write

kernels that process large data-sets on the micro-cores. Effectively this can

be thought of as a software level UM approach, but also spanning mem-

ory locations that may or may not be directly accessible by the micro-core.

Driven by lessons learnt in [22], for optimisation purposes we have introduced

pre-fetching, where non-blocking data transfers are performed ahead of time

with the intention that data transfer will have completed by the time the code

needs to access a specific piece of data. Listing 2 illustrates the same kernel

function signature as Listing 1, but with the programmer adding an optional

prefetch argument to the offload decorator to pre-fetch data retrieval from

the host to the micro-cores. In this case both arguments a and b to the myk-

ernel function are pre-fetched. This additional pre-fetching argument does

not impact the correctness of the code, the result of computation is identical

with and without pre-fetching.

1 @offload(prefetch ={a, 10, 2, 10, "readonly"}, {b,
10, 2, 10, "readonly"})

2 def mykernel(a, b):
3

Listing 2: Pre-fetching example by annotating the offload decorator

16

The API signature of the prefetch argument, is prefetch={variable name,

buffer size, elements per pre-fetch, distance, access modifier} where variable

name is the name of the kernel variable argument that this pre-fetching ap-

plies to. The buffer size argument is the number of data elements reserved in

the micro-core local memory for the variable (which pre-fetching will fill up),

for instance in listing 2, 10 integers (40 bytes) will be reserved. The elements

per pre-fetch is the number of elements to fetch on each variable access and

in Listing 2 two elements will be transferred to or from the stored data per

access. The distance argument determines when data transfer should take

place, for instance in our example data will be pre-fetched 10 elements ahead.

Lastly, the access modifier argument is a further optimisation provided by

the programmer which describes whether the data is mutable (potentially

needs to be copied back from the micro-cores) or read only (so no copy back

is required.) In the case of mutable data, we guarantee that writes complete

atomically and from a single core will be performed in order. When it comes

to different cores writing to the same location, whilst the atomic property is

maintained there are no guarantees around the ordering constraints imposed.

A by product of pre-fetching is that it retrieves multiple pieces of data (the

elements per pre-fetch) on each access which enables the overall number of

data accesses is to be significantly lower than the single fetch on-demand

approach, and for each of these pre-fetch requests to contain larger parcels

of data.

Passing by reference to the device, rather than eagerly copying the entire

data is driven by necessity due to the limited scratch-pad fast memory on

the micro-cores. A cost of pre-fetching is the memory overhead on the micro-

17

cores where, for instance in the example of Listing 2, 40 bytes are required for

each function argument. By making these settings explicit to the programmer

they themselves can set sensible values and experiment with the most suitable

settings for their application.

3.2. Kinds for hierarchical memory

In addition to passing arguments by reference we leverage memory kinds

[31] to denote which memory space in the hierarchy variables are allocated

in. A reference to this data in the specific memory space is passed to the

micro-core kernel when it is invoked and data is then passed seamlessly to

and from this specific location in the memory hierarchy.

1 from epython import offload , memkind
2 import random
3
4 nums1=memkind.Host(types.int , 1000)
5 nums2=memkind.Host(types.int , 1000)
6
7 for i in range (1000):
8 nums1.append(random.randrange (0,100,1))
9 nums2.append(random.randrange (0,100,1))

10
11 @offload
12 def mykernel(a, b):
13
14
15 print mykernel(nums1 , nums2)

Listing 3: Python offload using memory kinds to control where in the hierarchy data is
located

Listing 3 illustrates the same example code as Listing 1 but explicitly

providing a level in the memory hierarchy for variables nums1 and nums2.

The API for this is found in the memkind sub-package and this example uses

the Host memory kind initialised with the type of data it will hold (which

are constants provided in the ePython module) and number of elements of

18

this type to be allocated. We have created numerous kinds, including Host

which allocates the data in the large host memory (not accessible directly by

the micro-cores), Shared which places data in the memory which is accessible

by both the host and micro-cores, and Microcore which allocates the data

in the local memory of each micro-core. Currently these kinds must reside

in the host side code and are themselves are Python objects, implementing

methods to copy data to and from their memory space. From the program-

mer’s perspective, to change where in the hierarchy a variable is allocated,

simply requires a single change in their code by swapping out the existing

memory kind and replacing it with a different one. The underlying library

and memory kind handles the low level details of this. Irrespective of where

a variable is allocated, it is the reference that is passed to the micro-cores

and the kinds interpret this into loads and stores. To create a kind repre-

senting a new level in the memory hierarchy requires a new Python class,

inheriting from the Kind class, with all details about that level of hierarchy

encapsulated inside the kind and everything else remains unchanged.

It is still perfectly acceptable to declare variables in normal Python style

without using memory kinds, as per Listing 1, and in such cases the variable

belongs to the level of memory hierarchy that is currently in scope. Likewise,

these memory kinds also abstract the declare on device, copy to device and

copy from device calls for managing device resident data. If a variable is allo-

cated in the memory of the micro-cores (via the Microcore kind), then reads

and writes to these variables on the host are, under the covers, translated

into copying data to or from the micro-cores using the same mechanism as

the explicit calls.

19

3.3. Memory model

Python itself does not have a standard memory model and individual

implementations are free to adopt whichever memory model they wish. For

instance, CPython adopts a strong memory model, relying on the global

interpreter lock to enforce memory access ordering. In contrast ePython

adopts a weaker memory model to optimise multi-core performance.

Whether it be the eager or pre-fetching of data, whenever a micro-core

attempts to accesses a scalar variable or index of an array, held elsewhere

in the memory hierarchy, preference is given to any local copy held on that

micro-core. If there is no local copy, then a data transfer will be performed.

For instance, with the statement a = a * a, ePython will check whether a is

held locally and if not will retrieve the corresponding data. This local copy

will then be used for all the reads (i.e. a * a) and the write occurs both to

the local copy of a and is also written back to the variable’s location on the

host. Due to memory limits of the micro-cores, it might be that locally held

copies of data elsewhere in the memory hierarchy are freed. This is especially

the case with the eager fetching approach which, unlike pre-fetching, does

not allocate any user defined buffer space and instead uses a central storage

pool. Access to data, whether it be a scalar or array element, held in memory

locations outside the core will always first check whether there is a copy held

locally, and if not perform the explicit data movement required.

For the two statements tmp = a; a = tmp * a, on each access of a

ePython will check whether a copy of the data is held locally, and if not

perform necessary data movement. Based on these two statements side by

side, it is highly likely that the copy of a from the first statement will still

20

be resident for the access in the second statement. The write of a in this

example will update both the local copy and also the variable held in the

memory hierarchy.

Therefore, within a core, updates to data are in-order and atomic. Be-

tween the cores the model is weaker for performance reasons and the ability

to reuse data held locally rather than explicitly fetch each time. This provides

a simple and consistent model, requiring limited support from the hardware

and runtime software. The programmer should be aware of this because, if

two kernels are working with the same data and both reading and writing

to this, then ePython only imposes the atomicity of these updates. There

is no guarantee around the order in which accesses from different cores will

complete, or when kernels will see the data written by kernels on other cores.

This is a somewhat different than that adopted by many multi-core CPUs,

which tend to only write data on cache flush but do support a stronger

memory model, often via directory based cache coherence.

4. Implementation

As outlined in Section 3, passing kernel arguments by reference and the

addition of memory kinds extends the approach of offloading kernels and

interacting with device resident data. These changes not only impact the

behaviour of the language, but also require extensions to the ePython inter-

preter. The purpose of this section is not to examine all the low level changes

required, but instead provide a high level view of how we implemented these

new features as we believe this is also applicable to other dynamic languages.

Given the very limited on-core memory, adding support for pass by reference

21

Figure 2: ePython reference communications architecture

and memory kinds resulted in a significant challenge as the approach had to

be both usable by the programmer and also implementable given the memory

constraints.

The first step in supporting this new behaviour was the underlying data

transfer code, connecting the host CPU with the micro-cores. Figure 2 il-

lustrates our approach where the host’s shared memory is used to provide

a direct link between Python running on the CPU and the ePython VM on

each micro-core. A number of channels are constructed, one per core, and

each channel contains thirty two 1KB cells. This enables up to thirty two

concurrent transfers between the host CPU and each micro-core.

Each ePython interpreter running on a micro-core maintains it’s own

symbol table which, for each variable, contains some metadata and a pointer

to the physical data in either the stack or heap. We extended the symbol

table metadata to add an extra external flag indicating whether the pointer

references directly accessible or external, non-directly accessible, data. When

passing kernel arguments by reference to the micro-cores, the variable’s exter-

nal flag in the symbol table and pointer to this reference are set appropriately.

Whenever Python code running on the micro-cores accesses a variable it will

first check this external flag in the symbol table. If the flag is zero then a

22

direct access is issued as per normal, but if it is one then the corresponding

data is held externally and extra calls are required by the interpreter.

Extra calls for interacting with external data have been added to the

ePython runtime, which the interpreter calls when external access is required.

These additional functions can be thought of as blocking and non-blocking

primitive data communication calls, which the programmer themselves never

sees. The blocking calls, to copy data on or off the device are the simplest, and

code execution on the micro-core will block until data access has completed.

Pre-fetching requires non-blocking data transfer calls, where the core will

request data ahead of time, continue working and then have some way of

tracking whether the access has completed when the data is required. Non-

blocking external data access functions, again in the runtime, return a handle

which corresponds to a specific data transfer cell in the micro-core’s channel.

A ready function is provided by the runtime to test for completion.

The modifications described here; changes to the symbol table and extra

runtime support are the only extensions required in the ePython interpreter

and runtime running on the micro-cores. All other aspects of our abstrac-

tion are resident on the host CPU, which is not memory constrained, and

effectively translate into these lower level primitives. This is important due

to the memory limits of the micro-cores and the extensions discussed here

require an extra 1.2KB of memory on the micro-core for the interpreter and

runtime. Bearing in mind this enables the programmer to, for the first time

in ePython, work with arbitrarily large amounts of data held anywhere in

the memory hierarchy we believe it is a price worth paying.

The host CPU side must be able to identify what each reference corre-

23

sponds to, and then decode this and perform physical memory access. In

reality, the reference itself isn’t a physical memory location but instead a

unique identifier which is used to look up the corresponding variable and

memory kind it belongs to. This information is then passed to the asso-

ciated memory kind which decodes the reference and performs appropriate

action(s). Lookup on the host side has been designed this way for further ex-

tensibility, where the memory kinds could perform some functionality other

than memory access, such as communicating with remote memory spaces or

IO.

5. Results and evaluation

The data science bowl [32] is a prominent data science competition with

significant social impact. In 2017 the challenge was held around the develop-

ment of lung cancer detection algorithms, with the National Cancer Institute

(NCI) making available thousands of high-resolution 3D lung scans. The aim

is to develop techniques and approaches for determining whether lesions are

cancerous or not, as the current generation of detection technology is plagued

with false positives. This paper is using the NCI’s data differently to the com-

petition and asking a separate question. Instead of being concerned with the

absolute accuracy of prediction, we are instead evaluating whether micro-

core architectures and the parallelism that they provide can benefit the area

of machine learning. Accuracy of detection is the primary concern for the

competition, but the execution of these algorithms also needs to be realistic.

Not only does this involve training the model in a timely fashion, but also

employing an architecture which is affordable and utilises a minimal amount

24

of power, which is where micro-core architectures are of main interest.

In [30] we developed a simple neural network with one hidden layer of

100 neurons which splits the 3D CT lung scans into two groups, 70% for

training and 30% for testing. In this approach the input pixels of the image

are distributed amongst the micro-cores which are used for accelerating the

linear algebra involved in training and model and the back-prop. Parallelism

comes from the fact that each micro-core is operating on a separate part of

the overall image and previously each image was copied on to the micro-cores

on kernel invocation. Our new offload behaviour mean that these images now

remain in host memory and instead a reference to them is passed to the micro-

cores on kernel invocation. Our previous eager copy approach was shown to

perform competitively against Python and native implementations, but the

limited memory of micro-cores meant that images had to be interpolated

down from a maximum on-disk size of over 100MB to a size that the input

data and neural network could fit within the shared chunk of main memory

(e.g. 32MB on the Epiphany/Parallella configuration). In this paper we are

using this same code as a benchmark but crucially the modified behaviour

of kernel invocation as described in Section 3 means that we can run the full

sized images for the first time. In our opinion this moves micro-cores and

ePython from being an interesting research technology, to becoming more

mature and a more serious contender for these real world applications.

5.1. Experimentation results

Figure 3 illustrates performance results for ePython with our new offload

behaviour for both on-demand and pre-fetching, against the previous eager

data copying on kernel invocation under ePython. Also included are runs on

25

the ARM host using CPython for the kernels and a native implementation

which calls into Numpy for the kernels, which has been compiled with GCC

at optimistion level 3. There is also an implementation via CPython on

Broadwell, where each ARM and Broadwell result is based on execution on

a single core. For each configuration, there are three results; feed forward is

the time taken to do a forward pass of the neural network, combine gradients

is the time taken to calculate gradients for a batch of training data and model

update is the time taken to update the model with gradients for the batch.

The results in Figure 3 represent the scaled down, interpolated, images as

per experiments in [30] running on both the Epiphany and MicroBlaze. For

these experiments we have 3600 input pixels distributed amongst the micro-

cores, with a hidden layer of 100 neurons. There are two key data structures,

a matrix of input-hidden layer weights distributed among the micro-cores and

a vector of hidden layer-output neuron weights. Each small image, passed

for kernel invocations is 14.4KB. Forward feed involves a dot product on the

weight matrix with the image, and a second dot product on the resulting

values with the hidden layer-output neuron weight vector. Combining gradi-

ents, done for each image (but we don’t update the model weights until after

the batch) involves a dot product and an outer product. For these small

images each kernel involves around 45000 floating point operations.

It can be seen that the original ePython kernel invocation version, ePython

eager data copy, compares favourably against CPython for both the Epiphany

and MicroBlaze, and native versions on the ARM host which is due to the

parallelism provided by the Epiphany. The ePython on-demand versions rep-

resent the benchmark relying on the modified behaviour described in Section

26

3, with accesses done on-demand and not taking advantage of pre-fetching.

The ePython pre-fetch results represent a version of the code using our mod-

ified behaviour and pre-fetching optimisation.

Figure 3: Machine learning benchmark results for small, interpolated, images

For both the Epiphany and MicroBlaze, the on-demand version of this

benchmark is significantly slower than the existing, eager data copy, be-

haviour of ePython. This is because the micro-cores retrieve individual ele-

ments of data, one at a time, and for each of these it must block until the

transfer has completed. In contrast the pre-fetch version of the benchmark

provides up to 1.3 times better performance for the calculation of gradients

on the Epiphany than the existing eager data copy ePython implementation

and is around 25 times faster than the on-demand data copy approach for

the Epiphany. The pattern is similar for the MicroBlaze, although the dif-

ferences are less. There is no change in the model update runtimes because

27

this does not rely on data transfer. The performance improvement of pre-

fetching over eager data copying is due to two factors, firstly the kernel can

start as soon as the single reference is copied across rather than the entire

data, and secondly our new data transfer mechanism enables the ePython

module running in CPython to communicate directly with the ePython VM

on the micro-cores rather than having to go via the ePython host process.

Figure 4: ePython machine learning benchmark results (full sized images)

Before the work of this paper it was impossible for these Python kernels

to process the full sized images on the micro-cores. Figure 4 illustrates the

performance of the machine learning benchmark for a forward pass through

the neural network (feed forward) and calculation of gradients (combine gra-

dients) on the Epiphany and MicroBlaze micro-cores when running with

the full sized images (again both on-demand and pre-fetch versions) and

CPython on the ARM host using the same sized hidden layer as previously.

28

Similarly to the small images, enabling the pre-fetching of data is much faster

than the on-demand approach, especially for the Epiphany where it is around

21 times faster. The full sized images are, on average, around 7 million pix-

els which is 1966 times larger than the small, interpolated, images of 3600

pixels. The average, single precision, input data that must be transferred to

the micro-cores for each kernel is around 30 MB.

Technology MFLOPs Watts GFLOPs/Watt

Epiphany III 1508.16 0.90 1.676

MicroBlaze 0.96 0.19 0.005

MicroBlaze + FPU 47.20 0.18 0.262

Cortex A-9 33.20 0.60 0.055

Table 1: Performance and power consumption for LINPACK benchmark

ePython is an interpreter, therefore to explore performance and power

efficiency in more detail, and avoid noise due to the interpreted nature of

ePython, we modified the C LINPACK benchmark [33] to run on the micro-

cores. We measured the voltage and amperage of the board using two UNI-

T UT60E multimeters and this power usage, along with the benchmark’s

measured floating point performance (in MFLOPs) for both technologies,

plus an embedded class ARM Cortex-A9 for comparison, are detailed in Table

1. We have included results for the integer-only and hardware floating point

(FPU) MicroBlaze soft-cores to highlight the significant impact of software

floating point emulation on kernels such as LINPACK. It can be seen that

the Epiphany provides a much greater FLOP rate, 31 times, that of the

MicroBlaze with FPU. This is, in part, due to fact that the Epiphany contains

sixteen cores running at 600Mhz, verses eight MicroBlaze cores at 100Mhz.

If we normalise the core count and clock rates, the Epiphany is still about 3

29

times faster per core than the MicroBlaze with FPU.

For comparison, a recent study [11] illustrated that performance per Watt

on the Pascal GPU is 42 GFLOPs/Watt and on the Maxwell 23 GFLOP-

s/Watt for a similar machine learning problem. Whilst these results are sig-

nificantly higher than those achieved in the micro-core LINPACK benchmark,

crucially these two HPC grade GPUs draw a maximum of 250 Watts, whereas

the power draw of the micro-cores used in our experiments was 0.90 Watts

for the Epiphany and 0.18 Watts for the MicroBlaze. This much smaller

power draw is very important because it means that they are highly appli-

cable to high performance embedded devices, where absolute power draw is

very important. Bearing in mind that the Pascal is a smaller process size,

16nm, than both the Epiphany and Zynq-7020 used here, this newer hard-

ware will inevitably exhibit some power benefits. When one considers that

the Maxwell is based on 28nm technology and the Epiphany on 68nm, the

performance per Watt differences between these two technologies becomes

more understandable. The Zynq-7020 FPGA alone has a theoretical per-

formance per Watt of 72 GFLOPs/Watt [8], and even though achieving the

theoretical peak is not realistic, our results for the LINPACK benchmark

indicate that the use of soft-cores sacrifices this power efficiency significantly,

which aligns with the work done in [34]. It is our feeling that the perfor-

mance of the soft-cores, not least the fact that they are running at 100Mhz

in our experiments, is the main limit here and if this can be increased, for

instance by using more advanced FPGAs, redesigning the block layout or

by customising the soft-core designs for specific applications [35] using tech-

niques such as warp processors [36], then this will benefit the performance

30

per Watt metric too.

Another recent study [37] considered performance and power efficiency

of other technologies more commonly found in embedded computing and

hence closer to micro-cores. They used a benchmark based on LINPACK

and NVIDIA’s Jetson TX1 (with a Tegra X1 GPU) achieved 16 GFLOPs,

drawing a maximum of 15.3 Watt and performance per Watt of 1.2 GFLOP-

s/Watt. ARM’s quad core Cortex A53 CPU achieved 4.43 GFLOPs, drawing

a maximum of 5.1 Watts and achieving 1.07 GFLOPs/Watt. For compari-

son, a sixteen core Haswell CPU achieved 47.7 GFLOPs, drawing 29.1 Watts

and delivering 1.64 GFLOPs/Watt. When considered against the results for

these technologies, especially the Jetson TX1 and ARM designed for embed-

ded systems, the results obtained for the Epiphany and MicroBlaze are more

respectable.

When comparing power consumption (Watts) of the micro-cores running

LINPACK, we find that the Epiphany requires five times as much power as

the MicroBlaze with FPU, and about twice the power of the ARM Cortex

A-9. However, when we consider the power consumption / performance ratio

(GFLOPs/Watt), the situation is reversed, with the Epiphany being about 6

times more efficient than the 8-core MicroBlaze and about 30 times more effi-

cient than the Cortex-A9. The micro-core LINPACK benchmark results are

only impacted by the time it takes for the device kernels to respond to execu-

tion requests and the acknowledgement of completion. Therefore, the results

in Table 1 are not impacted by communications link bandwidth restrictions.

This is why we see a greater difference in results between the Epiphany

and MicroBlaze for LINPACK than for the Machine Learning benchmark,

31

where there is a significant amount of data transfer. Quite simply, the band-

width to the Epiphany chip is significantly less than the Zynq-7020 and

this explains why, in Figures 3 and 4, even though the MicroBlaze’s com-

putational performance is far more limited due to the lower clock rate, the

performance it delivers is still competitive with the Epiphany. This also ex-

plains why, in Figure 4, the on-demand version for the Epiphany is so much

slower than the MicroBlaze version. From experimentation we found that, on

the Epiphany/Parallella configuration the maximum bandwidth we could get

with our benchmark was 88 MB/s but this frequently dropped to as low as

16 MB/s (theoretical peak is 150MB/s), whereas on the MicroBlaze/Pynq-II

we consistently achieved around 100 MB/s (theoretical peak is 131 MB/s).

Whether it be running on the Epiphany or the MicroBlaze, there is a

significant performance difference between the on-demand and pre-fetch ap-

proaches. To help understand the reasons behind this, and also explore how

the size of data transfer impacts the overall load time, a synthetic benchmark

was written to accurately measure the message load time on the micro-cores.

This benchmark measures the time that the micro-core is stalled whilst data

is copied from the host onto the micro-core.

128B

on-demand

128B

pre-fetch

1KB

on-demand

1KB

pre-fetch

8KB

on-demand

8KB

pre-fetch

Min 0.099 0.098 0.759 0.758 6.396 7.215

Max 0.112 0.111 0.955 0.913 11.801 9.452

Mean 0.104 0.103 0.816 0.804 7.882 8.537

Table 2: Synthetic benchmark micro-core stall time for different data sizes (msecs)

Table 2 illustrates the results from this benchmark, with minimum (best

case), maximum (worst case) and mean timings against the data size and

32

access configuration. The reader can imagine the data size here representing

one (very large) element of data for the on-demand approach and for pre-

fetching it represents the size of the chunk of data (the elements per pre-fetch

of Section 3.1) retrieved on each access. The major reason for variation in

timings for a specific configuration (the minimum and maximum) is that a

dedicated thread on the host CPU needs to pick up a request and handle it,

with other activities on the same CPU this response time can vary.

Until 8KB, the average and maximum load time for the on-demand ap-

proach is higher than that of the pre-fetched approach. At the largest data

size of 8KB, the maximum time is still largest for on-demand but the mean

time is lower for on-demand in contrast to pre-fetched, as is the minimum

time. Given the performance results for the machine learning benchmark this

was unexpected and is due to the extra overhead of pre-fetching. Because of

the size of the data, transfer takes longer, and the core runs out of work and-

so must block for much of the time. The more complex pre-fetch protocol,

where the interpreter continually calls into the ready function of the runtime

to check for data, adds much of this additional overhead when compared to

the on-demand approach where the is blocking behaviour is simpler.

This benchmark only measures stall time for a single load, and it can

be seen that there is only a small difference between on-demand and pre-

fetching, not the 21 to 25 times difference that was seen with the machine

learning benchmark. Instead, the reason for poor performance of the on-

demand machine learning benchmark was that this makes individual requests

for each element of data which swamps the communication channels and

keeps the host CPU very busy, continually responding to these requests. In

33

contrast, the pre-fetch approach retrieves data in chunks and the fact that

there are significantly fewer requests made is most important for perfor-

mance. In terms of the optimal data transfer size (elements per pre-fetch

specified by the programmer for pre-fetching) this depends heavily on the

application. For the benchmark, load time is significantly less for smaller

data sizes, but for a real world application larger data sizes will reduce the

number of requests the host must service. This will likely be especially im-

portant if the host is also required to run some part of the code whilst the

micro-cores are active.

5.2. Programmability concerns

So far we have considered the performance of our benchmark on the

Epiphany and MicroBlaze micro-core architectures. The programmability

of this code should also be considered, and specifically the qualitative dif-

ferences writing code in other programming technologies that target these

micro-cores. For both these architectures, the most obvious approach would

be to use C and interact with the shared memory directly. From a program-

ming perspective this is a very significant challenge because, whilst these

cores can directly access some part of the host shared memory, similar to

NVIDIA UVA, placing the data in this shared location and using it directly

incurs significant performance penalty due to limited off chip bandwidth as

we have shown in Section 5.1. Therefore, to get good performance necessi-

tates the programmer writes explicit code to perform data copying to core

local memory and piping it in ahead of time. Further challenges here are the

weak hardware memory model of the micro-cores and on the Epiphany, only

32MB of main memory is directly accessible to the micro-core which even a

34

single, full sized image, does not fit into. This is all possible to be developed,

but requires significant programming expertise, is often bespoke to a specific

code, error prone, and involves the programmer spending significant time on

the tricky, low level aspects rather than their application logic.

Whilst other higher level approaches, such as OpenCL, have been devel-

oped for the Epiphany, this still requires fairly significant modifications on

the host side and the full range of OpenCL features is unavailable due to the

limited on-device memory. Instead, using our approach, the programmer is

far more abstracted from the mechanics of how data transfer occurs, more

like a software implementation of NVIDIA’s UM but with more control over

exactly where in the memory hierarchy we are located using memory kinds,

with minimal code level changes required. It is also important to highlight

that the programmer has significant flexibility to experiment with concerns of

data placement where, just by changing the memory kind, they can move the

location of their data with the kinds themselves handling how this happens.

6. Conclusions

In this paper we have described the abstractions required for enabling

micro-core architectures to handle arbitrary large amounts of data held in

different memory spaces. By changing the behaviour of kernel invocation

to a pass by reference model, and combining this with memory kinds, the

programmer can manage their data locality and movement whilst still being

abstracted from the lower level details. With a single change in memory kind

the programmer is able to trivially experiment with placing data in different

levels of the memory hierarchy.

35

Using a machine learning benchmark, we have demonstrated that these

concepts open up the possibility of running kernels on micro-cores with ar-

bitrarily large data sets and the more constrained the off-chip bandwidth, in

the case of the Epiphany/Parallella combination, the more important the pre-

fetching optimisation becomes. Whilst we have used Python, the Epiphany,

and the MicroBlaze as vehicles for developing and testing our ideas, crucially

the work described in this paper is not just limited to these technologies and

defines offloading semantics for the entire class of micro-core architectures

which are becoming more and more widespread. As we argued in Section

2.1, the design of micro-cores is fundamentally different from that of other

accelerators and as such how programming technologies offload kernels, and

specifically deal with data, must be handled differently.

We have seen that, when moving from an eager copy to pass by reference

model, it is important to use pre-fetching in order to obtain best performance.

Interestingly a significant aspect of pre-fetching, in addition to data transfer

occurring whilst the core is busy and hence avoid the micro-core stalling,

is that pre-fetching retrieves data in chunks rather than single individual

elements that the default on-demand approach requires, which is broadly

in line with experiences of UVA and UM memory movement strategies as

described in [22] and [23].

We have considered power efficiency, with the Epiphany delivering up

to 1.7 GFLOPs/Watt and the MicroBlaze 0.262 GFLOPs/Watt. Whilst

power efficiency is competitive with technologies designed for the embed-

ded space, both in terms of performance per Watt and power draw, when

compared against latest generation HPC grade GPUs we can see that these

36

other technologies provide much greater performance per Watt at the cost of

significantly higher overall power draw. Generation wise, the closest compar-

ison is the Maxwell GPU against the Zynq-7020 running our MicroBlazes,

as these are both 28nm technology. It is our feeling that the MicroBlaze

soft-core on the Zynq-7020 is significantly under-performing, and whilst it

is beyond the scope this being one of our focus on hierarchical memories, it

would be a very interesting to explore alternative soft-cores such as RISC-V

to understand whether this same behaviour holds.

The reader might wonder why we did not make the pre-fetching optimi-

sation the default option and indeed the results of this paper indicate that it

would be sensible to do so. However pre-fetching can be difficult to do cor-

rectly as it adds memory transfer and instruction level overhead [38]. Indeed

[38] argues that auto-tuning for CPU cache pre-fetching is crucially impor-

tant and, we believe going forwards a similar auto tuning approach would be

useful here. Especially as our optimal pre-fetching arguments, which were

found empirically, were different between large and small image benchmark

runs, and micro-core technologies.

Whilst this paper has focused on micro-cores we also believe that the work

here has a wider applicability. The recently announced European Processor

Initiative will combine many ARM cores together on the CPU and utilise

the RISC-V architecture as a basis for accelerators [39]. There are numerous

soft-core RISC-V implementations, many of which follow a similar pattern

of large numbers of cores each with small amounts of memory. OpenMP has

been suggested as an approach to programming such a future machine and

the ideas discussed in this paper will likely be applicable.

37

[1] W. Feng, T. Scogland, The green 500, https://www.top500.org/

green500/, 2018. Accessed: 2018-07-25.

[2] T. Ishii, Introduction to pezy-sc, http://accc.riken.jp/wp-content/

uploads/2015/09/ishii.pdf, 2015. Accessed: 2018-07-25.

[3] B. de Dinechin, Kalray mppa: Massively parallel processor array: Re-

visiting dsp acceleration with the kalray mppa manycore processor, in:

Hot Chips 27 Symposium (HCS), 2015 IEEE, IEEE, pp. 1–27.

[4] T. Ajayi, K. Al-Hawaj, A. Amarnath, S. Dai, S. Davidson, P. Gao,

G. Liu, A. Lotfi, J. Puscar, A. Rao, Celerity: An open-source risc-v

tiered accelerator fabric.

[5] A. Olofsson, A manycore coprocessor architecture for heterogeneous

computing, in: Los Alamos Computer Science Symposium (LACSS)

2009.

[6] Xilinx, Microblaze processor reference guide, https://www.

xilinx.com/support/documentation/sw_manuals/xilinx2018_

2/ug984-vivado-microblaze-ref.pdf, 2018. Accessed: 2019-03-25.

[7] Adapteva, Epiphany architecture reference, http://www.adapteva.

com/docs/epiphany_arch_ref.pdf, 2013. Accessed: 2018-07-25.

[8] B. DSP, Gpu vs fpga performance comparison, Whitepaper,

2016. http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_

FPGA_Performance_Comparison_v1.0.pdf Accessed: 2019-02-16.

38

https://www.top500.org/green500/
https://www.top500.org/green500/
http://accc.riken.jp/wp-content/uploads/2015/09/ishii.pdf
http://accc.riken.jp/wp-content/uploads/2015/09/ishii.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf
http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf

[9] D. Castells-Rufas, A. Saa-Garriga, J. Carrabina, Energy efficiency of

many-soft-core processors, arXiv preprint arXiv:1601.07133 (2016).

[10] Adapteva, Parallella-1.x reference manual, http://www.parallella.

org/docs/parallella_manual.pdf, 2013. Accessed: 2018-07-25.

[11] F. M. Castro, N. Guil, M. J. Maŕın-Jiménez, J. Pérez-Serrano,

M. Ujaldón, Energy-based tuning of convolutional neural networks on

multi-gpus, Concurrency and Computation: Practice and Experience

(2018) e4786.

[12] Xilinx, Zynq-7000 soc data sheet: Overview, https:

//www.xilinx.com/support/documentation/data_sheets/

ds190-Zynq-7000-Overview.pdf, 2018. Accessed: 2019-02-16.

[13] C. Celio, P.-F. Chiu, B. Nikolic, D. A. Patterson, K. Asanovi, Boomv2:

an open-source out-of-order risc-v core, in: First Workshop on Computer

Architecture Research with RISC-V (CARRV).

[14] C. Wolf, Picorv32 - a size-optimized risc-v cpu, Github, 2019. https:

//github.com/cliffordwolf/picorv32/ Accessed: 2019-02-16.

[15] D. Richie, Coprthr api reference (2013). Accessed: 2018-07-25.

[16] J. Buurlage, T. Bannink, A. Wits, Bulk-synchronous pseudo-streaming

algorithms for many-core accelerators, CoRR abs/1608.07200 (2016).

[17] S. Agathos, A. Papadogiannakis, V. Dimakopoulos, Targeting the Par-

allella, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 662–674.

39

http://www.parallella.org/docs/parallella_manual.pdf
http://www.parallella.org/docs/parallella_manual.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://github.com/cliffordwolf/picorv32/
https://github.com/cliffordwolf/picorv32/

[18] J. Ross, D. Richie, S. Park, D. Shires, Parallel programming model

for the epiphany many-core coprocessor using threaded MPI, CoRR

abs/1506.05442 (2015).

[19] J. Nickolls, I. Buck, M. Garland, Scalable parallel programming, in:

2008 IEEE Hot Chips 20 Symposium (HCS), IEEE, pp. 40–53.

[20] J. E. Stone, D. Gohara, G. Shi, Opencl: A parallel programming stan-

dard for heterogeneous computing systems, Computing in science &

engineering 12 (2010) 66.

[21] F. B. Muslim, L. Ma, M. Roozmeh, L. Lavagno, Efficient fpga implemen-

tation of opencl high-performance computing applications via high-level

synthesis, IEEE Access 5 (2017) 2747–2762.

[22] N. Sakharnykh, Maximizing unified memory per-

formance in cuda, https://devblogs.nvidia.com/

maximizing-unified-memory-performance-cuda/, 2017. Accessed:

2019-02-16.

[23] R. Landaverde, T. Zhang, A. K. Coskun, M. Herbordt, An investigation

of unified memory access performance in cuda, in: 2014 IEEE High

Performance Extreme Computing Conference (HPEC), IEEE, pp. 1–6.

[24] N. Agarwal, D. Nellans, E. Ebrahimi, T. F. Wenisch, J. Danskin, S. W.

Keckler, Selective gpu caches to eliminate cpu-gpu hw cache coher-

ence, in: 2016 IEEE International Symposium on High Performance

Computer Architecture (HPCA), IEEE, pp. 494–506.

40

https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/
https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/

[25] O. Forum, The openacc application programming interface ver-

sion 2.5, http://www.openacc.org/sites/default/files/OpenACC_

2pt5.pdf, 2015. Accessed: 2018-07-25.

[26] O. A. R. Board, Openmp application program interface version 4.0,

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf, 2013. Ac-

cessed: 2018-07-25.

[27] S. Lam, A. Pitrou, S. Seibert, Numba: A llvm-based python jit com-

piler, in: Proceedings of the Second Workshop on the LLVM Compiler

Infrastructure in HPC, LLVM ’15, ACM, New York, NY, USA, 2015,

pp. 7:1–7:6.

[28] N. Brown, epython: An implementation of python for the many-

core epiphany coprocessor, in: Proceedings of the 6th Workshop on

Python for High-Performance and Scientific Computing, PyHPC ’16,

IEEE Press, Piscataway, NJ, USA, 2016, pp. 59–66.

[29] D. George, P. Sokolovsk, The micropython language, http://docs.

micropython.org/en/latest/pyboard/reference/index.html,

2018. Accessed: 2018-07-25.

[30] N.Brown, Offloading python kernels to micro-core architectures,

http://sc17.supercomputing.org/SC17Archive/tech_poster/

poster_files/post180s2-file3.pdf, 2017. Accessed: 2018-07-25.

[31] C. Cantalupo, V. Venkatesan, J. Hammond, K. Czurlyo, S. Hammond,

memkind: An Extensible Heap Memory Manager for Heterogeneous

41

http://www.openacc.org/sites/default/files/OpenACC_2pt5.pdf
http://www.openacc.org/sites/default/files/OpenACC_2pt5.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://docs.micropython.org/en/latest/pyboard/reference/index.html
http://docs.micropython.org/en/latest/pyboard/reference/index.html
http://sc17.supercomputing.org/SC17 Archive/tech_poster/poster_files/post180s2-file3.pdf
http://sc17.supercomputing.org/SC17 Archive/tech_poster/poster_files/post180s2-file3.pdf

Memory Platforms and Mixed Memory Policies., Technical Report, San-

dia National Lab.(SNL-NM), Albuquerque, NM (United States), 2015.

[32] Kaggle, Data science bowl 2017, https://www.kaggle.com/c/

data-science-bowl-2017, 2017. Accessed: 2018-07-25.

[33] J. J. Dongarra, P. Luszczek, A. Petitet, The linpack benchmark: past,

present and future, Concurrency and Computation: practice and expe-

rience 15 (2003) 803–820.

[34] R. Lysecky, F. Vahid, A study of the speedups and competitiveness of

fpga soft processor cores using dynamic hardware/software partitioning,

in: Design, Automation and Test in Europe, IEEE, pp. 18–23.

[35] M. A. Kadi, B. Janssen, J. Yudi, M. Huebner, General-purpose com-

puting with soft gpus on fpgas, ACM Transactions on Reconfigurable

Technology and Systems (TRETS) 11 (2018) 5.

[36] R. Lysecky, G. Stitt, F. Vahid, Warp processors, in: ACM Transactions

on Design Automation of Electronic Systems (TODAES), volume 11,

ACM, pp. 659–681.

[37] T. W. C. E. R. G. at the Univerity of Maine, The gflops/w of machines in

the vmw research group, Online, 2018. http://web.eece.maine.edu/

~vweaver/group/green_machines.html Accessed: 2019-03-16.

[38] I. Hadade, T. M. Jones, F. Wang, L. di Mare, Software prefetching for

unstructured mesh applications (2018).

42

https://www.kaggle.com/c/data-science-bowl-2017
https://www.kaggle.com/c/data-science-bowl-2017
http://web.eece.maine.edu/~vweaver/group/green_machines.html
http://web.eece.maine.edu/~vweaver/group/green_machines.html

[39] M. Valero, European processor initiative and risc-v, in: Proceedings of

the RISC-V Workshop.

43

	Introduction
	Background and related work
	Existing accelerators offload approaches
	ePython

	Modifying the offload behaviour for micro-cores
	Passing kernel data by reference to micro-cores
	Kinds for hierarchical memory
	Memory model

	Implementation
	Results and evaluation
	Experimentation results
	Programmability concerns

	Conclusions

