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SUMMARY  
 

The histone chaperone FACT and histone H2B ubiquitination (H2Bub) facilitate RNA 

Polymerase II (RNAPII) passage through chromatin, yet it is not clear how they 

cooperate mechanistically. We used genomics, genetic, biochemical and microscopic 

approaches to dissect their interplay in Schizosaccharomyces pombe. We show that 

FACT and H2Bub globally repress antisense transcripts near the 5’ end of genes and 

inside gene bodies, respectively. The accumulation of these transcripts is 

accompanied by changes at genic nucleosomes and RNAPII redistribution. H2Bub is 

required for FACT activity in genic regions. In the H2Bub mutant, FACT binding to 

chromatin is altered and its association with histones is stabilized, which leads to the 

reduction of genic nucleosomes. Interestingly, FACT depletion globally restores 

nucleosomes in the H2Bub mutant. Moreover, in the absence of Pob3, the FACT 

Spt16 subunit controls the 3’ end of genes. Furthermore, FACT maintains 

nucleosomes in subtelomeric regions, which is crucial for their compaction. 
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INTRODUCTION  

 

Eukaryotic DNA is packed into nucleosomes, which generally consist of 146 base 

pairs of DNA wrapped around an octamer of histone proteins (Karolin Luger, 1997; 

Larochelle et al., 2018). Nucleosomes help ensure the integrity of genome, but also 

constitute a major barrier for enzymes acting on DNA. Consequently, nucleosome 

assembly and the access of enzymes to DNA have to be firmly regulated. Histone 

chaperones are a diverse family of proteins that sequester histones from DNA and 

help deposit or remove them during DNA-based processes, including transcription, 

replication, and DNA repair (Hammond et al., 2017; Mattiroli et al., 2015; Nune et al., 

2019; Warren and Shechter, 2017).  

  

    FACT (Facilitates Chromatin Transcription) is an essential histone chaperone that 

is highly conserved from yeast to humans and is composed of two subunits, Spt16 

and SSRP1/Pob3 (Gurova et al., 2018). Spt16 was first identified as a suppressor of 

Ty elements in S. cerevisiae, while Pob3 was identified by co-purification with DNA 

polymerase I (Clark-Adams and Winston, 1987; Wittmeyer and Formosa, 1997). The 

human FACT complex was identified as a factor essential for RNA Polymerase II to 

transcribe through chromatin (Orphanides et al., 1998; Winkler et al., 2011). Several 

domains of the two subunits of FACT are involved in binding core histones. In 

particular, H2A-H2B dimers are bound by the unstructured C-terminal domains of 

Spt16 and Pob3 which compete with DNA binding to histones (Hondele et al., 2013; 

Kemble et al., 2015). FACT is predominantly associated with gene bodies of actively 

transcribed genes in vivo (Duina et al., 2007; Lee et al., 2017; Mayer et al., 2010).  

 

      FACT is overexpressed in various tumors and stem cells, suggesting a role in the 

maintenance of undifferentiated cell states (Garcia et al., 2011) and has been 
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implicated in genome stability (Herrera-Moyano et al., 2014) and chromosome 

segregation (Lejeune et al., 2007).  

 

     Despite recent progress in our understanding of FACT function, it is still not 

understood how and which genic nucleosomes FACT recognizes, and how its activity 

is modulated in distinct genomic contexts. Further, whether and how the two subunits 

of FACT have distinct functions has not been well studied in a genome-wide context. 

 

    One histone modification suggested to cooperate with FACT during transcription 

elongation is the monoubiquitination of H2B (H2Bub) (Hartzog and Quan, 2008; Pavri 

et al., 2006). Pioneering research has shown that H2Bub together with FACT 

stimulates transcription in vitro on a chromatinized template (Pavri et al., 2006). 

H2Bub is important for nucleosome reassembly after the passage of RNAPII in S. 

cerevisiae (Batta et al., 2011; Fleming et al., 2008; Lee et al., 2012). In some 

chromatin contexts H2Bub contributes to FACT binding or stabilization at chromatin 

(Fleming et al., 2008; Trujillo and Osley, 2012). Further, a recent report showed that 

FACT stimulates deubiquitinase activity of Ubp10 in S. cerevisiae (Nune et al., 2019), 

adding an additional layer of complexity to the interplay between FACT and H2Bub. 

However, it is still not clear how and to which extent FACT and H2Bub cooperate in 

gene transcription and nucleosomal transactions (Nune et al., 2019). Moreover, there 

are contradicting results on the effects of H2Bub on mononucleosome stability in 

vitro, nucleosome fiber decompaction in vitro, and its functions in vivo (Batta et al., 

2011; Chandrasekharan et al., 2009; Debelouchina et al., 2016; Segala et al., 2016). 

Whether H2Bub has a direct role in FACT binding or chaperoning activity, is not 

known.  

     We used the fission yeast Schizosaccharomyces pombe as a powerful model 

organism to study FACT and H2Bub functions in genome organization. One of the 

convenient features of S. pombe is that deletion of the pob3 gene reduces FACT 
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activity without causing lethality as in S. cerevisiae or other model organisms 

(Lejeune et al., 2007). We applied genomics, genetics, biochemistry and high-

resolution microscopy to comprehensively dissect the relationship between FACT 

and H2Bub in S. pombe. Our results show that within gene bodies, FACT and H2Bub 

contribute to the proper maintenance of genic nucleosomes and repression of 

antisense transcription at 5’ and gene bodies, respectively. Analysis of the double 

mutant supported by in vitro assays revealed mechanisms by which FACT and 

H2Bub cooperate at gene bodies. Finally, we show that FACT and H2Bub regulate 

highly compacted knob structures at subtelomeres. In particular, FACT together with 

Set2/H3K36me pathway is important for subtelomere compaction. Altogether, our 

results provide novel insights into FACT and H2Bub cooperativity in the gene bodies 

and suggest a role of FACT in the maintenance of higher order chromatin structure 

outside of euchromatin.  

 

RESULTS  
 

H2Bub or FACT loss leads to global de-repression of antisense transcription 

To address the potential cooperativity between FACT and H2Bub in gene regulation, 

we first compared the effects on gene expression in H2BK119R and pob3 strains, 

in which H2Bub is missing and FACT function is impaired, respectively. We 

performed strand-specific RNA-seq in two highly reproducible biological replicates 

(Figure S1A). Both H2Bub and FACT affect gene activity (Figure 1A and B). There 

were 994 genes significantly up-regulated and 1001 genes down-regulated in the 

FACT mutant and 1418 and 1374 genes up- and down-regulated in the H2BK119R 

mutant, respectively (Figure S1B). Despite the similar number of the misregulated 

genes in both mutants, the correlation between them was relatively low (Figure S2A), 

suggesting that FACT and H2Bub regulated genes overlap only partially. Strikingly, 

both mutants exhibit a global effect on the de-repression of antisense transcription 
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(Figure 1A and 1B). There were 2012 antisense transcripts significantly up-regulated 

in the H2BK119R mutant and 2450 in the pob3 mutant (Figure S1B). There was 

also a positive correlation between antisense transcripts de-repressed in both strains 

(Figure S2B) suggesting a significant overlap between antisense transcripts 

repressed by FACT and H2Bub. Thus, FACT and H2Bub globally repress antisense 

transcription in S. pombe.  

 

H2Bub and FACT repress antisense transcription distinctly 

To investigate whether the de-repressed antisense transcripts effect the 

corresponding sense transcription, we clustered the genes based on the relationship 

between sense and antisense transcription (Figure 1C). Many genes with increased 

antisense RNAs were slightly down-regulated in both strains (Figure 1C, cluster I). 

On the other hand, a similar number of genes were up-regulated, while the antisense 

RNAs were also de-repressed (Figure 1C, cluster II). The cluster with down-

regulated genes and antisense transcripts was relatively small (Figure 1C, cluster III). 

The same applies to the cluster with up-regulated genes and down-regulated 

antisense transcripts (Figure 1C, cluster IV). Thus, a large number of genes might be 

potentially down-regulated due to increased antisense transcription in both 

H2BK119R and pob3 mutants. However, a similar number of genes are up-

regulated, despite having similarly de-repressed antisense transcription. This 

analysis is in accordance with the scatterplots, which did not reveal any correlation 

between sense and antisense transcripts (Figure 1A and 1B).  

     Interestingly, the heatmaps suggested specific patterns of antisense transcripts in 

the FACT and H2Bub mutants (Figure 1C). In order to compare those patterns, we 

scaled the genes and aligned them to the transcription start site (TSS) and 

transcription termination site (TTS; Figure S1C). This analysis revealed that the 

distribution of the antisense transcripts repressed by H2Bub and FACT is distinct 
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(Figure S1C). The metaplot of antisense RNA (Figure 1D) shows that antisense 

transcripts accumulate in the gene bodies of the H2Bub mutant and decline towards 

the 5’ end of genes. In contrast, in the FACT mutant, the antisense transcripts slowly 

increase towards the 5’ end of genes and terminate shortly upstream of TSS (Figure 

1D).  

     Since both FACT and H2Bub are associated with transcription elongation, we 

monitored elongating RNAPIISer2P distribution by ChIP-seq in both mutants. We 

divided the genes based on their expression levels in the wt strain and plotted log2 

Fold Change (log2FC) of RNAPIISer2P ChIP-seq signal between the mutant and the 

wt strain (Figure 1E). RNAPIISer2P in the H2BK119R mutant is reduced at highest 

expressed genes and it shows a distinct peak downstream of TTS at all genes 

(Figure 1E). The 3’ end shift of RNAPII in this strain was reported previously (Sanso 

et al., 2012) and it might be related to the role of RNAPIISer2P in 3’ end processing 

and transcription termination (Larochelle et al., 2018). Thus, in addition to repression 

of genic antisense transcription, H2Bub has likely functions related to transcription 

termination in S. pombe. In the pob3 mutant, RNAPIISer2P signal increases around 

5’ end of genes which correlates with the increase of antisense transcription in this 

strain (Figure 1D and 1E).  

     Together, our results suggest that FACT and H2Bub preferentially repress 

antisense transcripts associated with specific gene regions: TSS and 5’ end or the 

gene bodies, respectively.  

 

Loss of H2B ubiquitination or FACT function alters genic nucleosomes in a 

distinct manner 

Our findings suggest that FACT and H2Bub protect different parts of genes against 

cryptic antisense transcription. We hypothesized that H2Bub controls nucleosomes 

over gene bodies, while FACT controls nucleosomes more proximal to the TSSs. To 

test this, we mapped nucleosomes in the FACT and H2Bub mutants by micrococcal 
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nuclease digestion of chromatin and deep sequencing of the protected DNA (MNase-

seq). To get a better molecular range of the assay and to avoid over-digestion by 

MNase, we used four different concentrations of MNase (Figure S3A), similar to a 

method previously reported (Mieczkowski et al., 2016).  

     First, our analysis shows that distinct nucleosomes in the wild-type strain have a 

different sensitivity to the MNase treatment (Figure S3B). The +1 and the -1 

nucleosomes and the upstream intergenic nucleosomes are most sensitive to the 

digestion, while the nucleosomes starting from the +2 position are relatively resistant 

to the degree of the MNase treatment (Figure S3B).  

     Next, we determined genic nucleosome changes in the H2Bub and FACT 

mutants. We analyzed the samples treated with the lowest MNase concentration, 

where the +1 nucleosome was most intact (Figure S3B). Metaplots of the genic 

nucleosomes centered at the TSS +1 or at the TTS -1 nucleosome show global 

defects in nucleosomal arrays over gene bodies in both strains (Figure 2A and 2B). 

In the H2BK119R mutant, the +1 and the TSS proximal nucleosomes are better 

protected, while the nucleosomes starting from the +2 position progressively lose 

occupancy (Figure 2A). Additionally, we performed H3 ChIP-seq in the H2BK119R 

mutant which did not show a reduction of histone signal in the gene bodies, which 

suggests that the increased sensitivity of the genic nucleosomes to the MNase 

treatment in the absence of H2Bub reflects less stable or improper assembled 

nucleosomes, rather than a histone loss (Figure 2C). This impairment of genic 

nucleosomes is in agreement with the function of H2Bub in the assembly of genic 

nucleosomes during transcription elongation (Batta et al., 2011). The protection of 

the +1 nucleosome in the H2BK119R strain has not been reported before and it 

could explain why the antisense transcripts around the TSS in the H2Bub mutant are 

not increased (Figure 1D).  

     In contrast to previous observations in S. cerevisiae (True et al., 2016), our 

characterization of the pob3 mutant revealed only a minor global decrease of 
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nucleosomes in gene bodies by MNase-seq and H3 ChIP-seq  (Figure 2B and 2C). 

We observed a general defect at +1 and TSS proximal nucleosomes, which appear 

to have lower peaks (Figure 2B). In addition, the genic nucleosomes starting from the 

+2 nucleosome are shifted in the pob3 mutant and the amplitudes of the regions 

between the nucleosomes are lower. This indicates a problem with nucleosome 

phasing and possibly nucleosome positioning in the FACT mutant (Figure 2B and 

S3C middle and right panel). Under higher MNase digestion, the density of genic 

nucleosomes in the FACT mutant is reduced (Figure S3A). Together with the subtle 

changes showed by H3 ChIP-seq, our results indicate the presence of less stable 

nucleosomes in the pob3 strain, rather than overall nucleosome loss.  

     To determine whether changes on the metaplots reflect global changes or only 

changes in a limited group of genes, we generated heatmaps of fold changes in the 

nucleosome dyad densities with all the protein coding genes in which we could call 

the +1 nucleosome in both H2BK119R and pob3 strains. We ordered the heatmaps 

according to the transcription clusters as in Figure 1C. This confirmed, that the 

changes in the genic nucleosomes are global and they occur at the majority of 

protein coding genes (Figure 2D). Thus, both FACT and H2Bub globally control genic 

nucleosomes in S. pombe in a distinct manner. 

      The increased MNase sensitivity of the +1 nucleosome in the FACT mutant might 

be related to the presence of the H2A.Z variant. FACT cannot deposit this histone 

variant into nucleosomes in budding yeast and H2A.Z gets incorporated to ectopic 

sites of the genome in a FACT mutant (Heo et al., 2008; Jeronimo et al., 2015). We 

selected genes with or without H2A.Z peaks from the published ChIP-seq dataset 

(Nissen et al., 2017) and compared their nucleosomal arrays in both mutants. We 

observed better positioned nucleosomes upstream of the TSS on genes with the 

H2A.Z variant in the wild-type strain (Figure S3D), as previously published 

(Guillemette et al., 2005). However, there is a very similar decrease of the +1 
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nucleosome in the pob3 strain in both gene classes (Figure S3D). The same 

applies to the H2BK119R mutant, in which the +1 nucleosome is better protected at 

both classes of the genes. Thus, the +1 nucleosome occupancy changes present in 

the FACT and H2Bub mutants are independent of the presence of H2A.Z.  

 

FACT inactivation suppresses H2Bub mutant nucleosome and transcription 

phenotypes 

Our analysis in the single H2Bub and FACT mutants indicates that FACT and H2Bub 

protect from cryptic antisense transcription by acting at different gene regions. To 

test the functional relationship between these two factors, we repeated our 

experiments in the pob3H2BK119R double mutant. Surprisingly, we observed that 

the double mutant produces phenotypes that strongly resemble the phenotype of the 

single FACT mutant (Figure 3, S2 and S4). First, an inspection of the nucleosomes in 

the genome browser revealed that the decreased genic nucleosomes in the 

H2BK119R mutant are often restored in the double mutant (Figure 3A). Second, the 

metaplot of the density of genic nucleosomes clearly show a global restoration of 

genic nucleosomes in the double pob3H2BK119R mutant (Figure 3B, 3E, S4B and 

S4C).  Finally, the antisense transcription profile mirrors the profile of the single 

mutant (Figure 3C and S4A). Interestingly, pob3 suppresses also RNAPII loss at 

highly expressed genes in the H2BK119R strain but it does not suppress the 3’ end 

shift of RNAPII downstream of TTS, suggesting that the 3’ end function of H2Bub is 

unrelated to FACT (Figure 3D). These data show that FACT inactivation in the 

H2Bub mutant suppresses both the nucleosome reduction and genic antisense 

transcription observed in the single H2BK119R mutant. This result clearly 

demonstrates that pob3 is epistatic to H2BK119R in gene bodies.  
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H2B ubiquitination limits FACT association to gene bodies and facilitates 

histone deposition onto DNA by FACT  

The unexpected suppression of the H2BK119R mutant phenotypes by FACT 

depletion suggests that in the absence of H2Bub, FACT activity is altered. We 

hypothesized that H2Bub may regulate directly the binding of FACT to chromatin, its 

association with histones and/or the chaperoning activity. To test it, we performed 

ChIP-seq of two FACT subunits (Spt16 and Pob3) in the H2BK119R strain. The 

log2FC profiles of FACT binding revealed a decrease of FACT from 5’ gene ends at 

highest expressed genes and a global shift of FACT downstream of TTS at all genes 

(Figure 4A). Strikingly, those profiles resemble RNAPIISer2P profile in the 

H2BK119R strain (Figure 1E), suggesting that FACT might be more directly 

associated with elongating RNAPII.  

     Next, we immunoprecipitated endogenous Flag-tagged histone H2B from wt or 

H2BK119R strains and checked for the association of FACT by western blot (Figure 

4B). Surprisingly, we reproducibly observed around 1.5 - fold more FACT complex 

associated with the bulk of non-ubiquitinated histones compared to a bulk of wild-

type histones (Figure 4C). Importantly, FACT total protein levels are not much 

changed in this mutant (Input in Figure 4B). This result suggests that loss of H2B 

ubiquitination may stabilize FACT association with histones in vivo. To check if this is 

a direct effect, we performed in vitro EMSA experiment where recombinant FACT 

was incubated with increasing amounts of unmodified or ubiquitinated histone dimers 

(Figure 4D). This experiment revealed a small but reproducible reduction of around 

20% of the binding affinity of FACT to H2A-H2B dimers in the presence of 

ubiquitination (Figure 4E). Thus, H2Bub reduces FACT binding to histones both in 

vivo and in vitro.   

     To check whether FACT chaperone activity is affected by H2Bub, we performed 

nucleosome chaperoning assays with recombinant FACT and recombinant histone 

octamers (Figure 4F). We pre-incubated FACT with unmodified or ubiquitinated 
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histone octamers (Figure S5B and S5D) (McGinty et al., 2009). Next, we added DNA 

bearing the Widom 601 positioning sequence in a suboptimal concentration. Under 

these conditions, histones and DNA precipitate and do not enter the gel. Only when a 

histone chaperone is present, the chaperone will bind the histones and promote their 

deposition onto DNA, thus restoring nucleosomes. We monitored the assembled 

products on a native acrylamide gel (Figure 4G). In the presence of FACT, we 

reproducibly observe a higher recovery of ubiquitinated assembly species in 

comparison to the unmodified ones (Figure 4G and 4H). Importantly, the 

ubiquitinated octamers assemble with similar efficiency as wild-type during salt 

gradient assembly (Figure S5E). This result suggests that H2Bub enhances histone 

deposition onto DNA by FACT.  

     Together, our ChIP-seq, Co-IP, in vitro binding experiments and the assembly 

assay indicate that H2Bub is important to maintain proper association of FACT within 

gene bodies and proper assembly activity of FACT. We postulate that H2Bub fine-

tunes the chaperone-histone binding dynamics which facilitates the deposition of 

histones onto DNA during the assembly reaction. These results also explain why 

FACT inactivation suppresses the nucleosome phenotype in the H2BK119R strain. In 

the absence of H2Bub, FACT binding to histones is stabilized and histone deposition 

by FACT is likely weaker. This would lead to the “sequestration” of both FACT and 

histones and the subsequent destabilization of genic nucleosomes. We propose that 

upon FACT depletion the FACT “trapped” histones get released and the genic 

nucleosomes are reassembled in the pob3H2BK119R double mutant.  

 

The Pob3 subunit of FACT regulates the 5’ end of genes 

The different effects of FACT and H2Bub within the 5’-end of genes and gene bodies 

raise the question how their genic functions are separated. Both H2Bub and FACT 

are associated with active genes (Duina et al., 2007; Lee et al., 2017; Mayer et al., 

2010; Van Oss et al., 2016). We mapped H2Bub and FACT subunits in S. pombe by 
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ChIP-seq. As expected, both factors are strongly enriched on highly expressed 

genes and weaker with low expressed genes (Figure 5A and 5B). We generated 

metaplots of H2Bub and FACT subunits on highly expressed genes and aligned 

them to the +1 and -1 nucleosomes (Figure 5A). The data clearly show that H2Bub 

signal increases at TSS and decreases at TTS. FACT signal is slightly shifted 

downstream of H2Bub in relation to the +1 nucleosome. Surprisingly, FACT signal 

continues two nucleosomes downstream of TTS. This extended association of FACT 

downstream of TTS resembles RNAPIISer2P association with gene bodies (Figure 

5A). Thus, the genic profiles of FACT and H2Bub suggest a different order of 

recruitment and dissociation from gene bodies but they do not explain the specific 5’ 

gene changes in the pob3 mutant.  

     The fact that spt16 but not pob3 deletion is lethal in S. pombe suggests that Spt16 

may have separate functions in this organism. To address this possibility, we 

performed ChIP-seq of Spt16 in the pob3 mutant. Despite Spt16 protein levels are 

reduced in the absence of Pob3, we were surprised to detect a significant amount of 

Spt16 bound to the genes in the pob3 background (Figure 5B). Moreover, Spt16 

association with genes is altered in the absence of Pob3. On highly expressed genes 

Spt16 is strongly depleted from 5’ of the genes, while on low and moderately 

expressed genes Sp16 accumulates towards 3’ of the genes (Figure 5B and 5C). 

Next, we plotted log2FC of RNAPIISer2P signals, antisense transcription and 

nucleosomal changes on highly or low/moderately expressed genes in the pob3 

mutant and we compared them with the changes of Spt16 signals (Figure 5C). The 

presence of Spt16 at 3’ of the genes correlates with reduction of antisense 

transcription, reduced increase of RNAPII signals and nucleosomal “fuzziness” 

(Figure 5C). Together, our results suggest that Pob3 has specific functions at the 5’ 

end of genes to repress antisense transcription and assure proper nucleosome 

assembly. Pob3 is also important for correct association of Spt16 within gene bodies. 
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We suggest that the remaining Spt16 subunit bound to 3’ gene ends at both highly 

and low expressed genes likely maintains FACT functions in the absence of Pob3. In 

this context, Spt16 protects those parts of the genes from aberrant antisense 

transcription.  

 

 

Loss of FACT changes subtelomeric gene expression and knob formation 

Subtelomeres are enriched for meiotic and stress-response genes in S. pombe (Mata 

et al., 2002) (Figure 6A). Chromatin perturbation in this region may lead to changes 

in transcription of the subtelomeric genes. We checked whether FACT and H2Bub 

have an effect on the transcription of these genes. RNA-seq analysis along 

chromosomal coordinates revealed increased transcription at both ends of 

chromosome I and the right arm of chromosome II in the FACT mutant (Figure 6B, 

6C, S6A, S6B and S6C).  

     Next, we analyzed the nucleosome density at subtelomeres and compared them 

to the rest of the genome (Figure 6D). The overall subtelomeric nucleosome density 

is significantly decreased in the pob3 mutant (Figure 6D, S6B and S6C). Thus, the 

nucleosome changes in pob3 strain correlate with the transcription changes of the 

subtelomeric genes. Interestingly, the H2BK119R mutant has a small but significant 

increase of the nucleosome density at subtelomeres, while the double mutant has a 

phenotype similar to pob3 in both transcription and nucleosome density at 

subtelomeres (Figure 6C, 6D, S6B and S6C).  

     Subtelomeres in S. pombe are characterized by a presence of a specific 

chromatin domain, depleted of H3K9me and active histone marks (Buchanan et al., 

2009; Matsuda et al., 2015). In addition, those regions are strongly compacted into 

so-called ‘knobs’ (Matsuda et al., 2015). Our results suggest that knobs could be 

affected in the FACT mutant. Thus, we counted knobs in our mutant strains and 
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found that there is a 50% decrease of knobs in the pob3 mutant and in two 

conditional spt16 ts alleles (Figure 6E and S6E). Unexpectedly, in the H2BK119R 

mutant, almost 100% of cells have 1 or 2 knobs and this phenotype is reversed to the 

wt knob number in the double pob3H2BK119R mutant (Figure 6E). Next, we 

checked if H2Bub is present at knobs. We performed high-resolution microscopy on 

the nuclei stained with H2Bub specific antibody. There is a clear co-localization of 

H2Bub mark with knobs suggesting that H2Bub in contrast to other active histone 

marks is not depleted from knobs (Figure S6D). In addition, ChIP-seq with H2Bub 

antibody showed discrete peaks of H2Bub at subtelomeric regions (Figure S6F). Our 

results suggest that H2Bub might be directly involved in knob decompaction. FACT 

depletion likely removes the nucleosome barrier and restores knobs to wt level in the 

absence of H2Bub.  

     Next, we investigated the pathway through which FACT maintains knobs. Set2 

and H3K36me are important for knob regulation (Matsuda et al., 2015). As set2 has 

very little knobs, we used H3K36R mutant background to be able to observe 

synthetic interactions. In the H3K36R mutant there is around 20% reduction of knobs 

as in comparison to the corresponding wt strain (Figure 6F). In the same genetic 

background in the pob3 mutant there is 50% reduction of knobs (Figure 6F). The 

double pob3H3K36R mutant behaves the same as the pob3 mutant clearly 

showing that FACT works in the same pathway as Set2/H3K36me to maintain knobs. 

     Overall our results indicate that FACT contributes to nucleosome maintenance at 

subtelomeres in S. pombe through Set2/H3K36me pathway. Our analysis also 

indicates that FACT and H2Bub have opposite effects on knob maintenance and that 

their functions depend on the genomic context.   

 

DISCUSSION 
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By integrating genomics, genetic, biochemical and microscopic approaches, we have 

comprehensively dissected the relationship between FACT and H2Bub and their 

functions in chromatin integrity. We show that by impairing FACT or H2Bub in S. 

pombe, different classes of genic antisense RNAs are de-repressed globally. Pob3 

subunit of FACT controls antisense transcripts enriched towards the 5’ ends of 

genes, while H2Bub represses antisense transcription within gene bodies (Figure 7). 

Transcriptional alterations correlate with nucleosome density changes in the pob3 

and H2BK119R mutants (Figure 7). Our data underpin the mechanisms by which 

FACT and H2Bub control different regions of a gene in fission yeast.  

     Despite several previous studies, it has not been clear how FACT and H2Bub 

cooperate during transcription. It has been suggested that H2Bub helps FACT to 

displace H2A-H2B dimer and thus stimulates in vitro transcription on a chromatinized 

template (Pavri et al., 2006). In addition, H2Bub might stabilize FACT association 

with chromatin in S. cerevisiae (Fleming et al., 2008; Trujillo and Osley, 2012). Here 

we show that in accordance with previous reports in budding yeast and in higher 

eukaryotes (Batta et al., 2011; Kolundzic et al., 2018; True et al., 2016), a similar 

number of genes are misregulated in H2Bub and FACT mutants. Additionally, there 

is a global up-regulation of specific genic antisense transcripts in both mutants. 

FACT predominantly represses antisense transcripts enriched near 5’ proximal 

regions of the coding genes. The observed 5’ antisense transcription in the pob3 

mutant correlates with an increased signal for RNAPII Ser2P and decreased 

occupancy of the +1 nucleosome in this strain. Unexpectedly, we find that the Spt16 

subunit of FACT is still associated with genes in the absence of Pob3. However, its 

localization is altered. Spt16 is depleted from the 5’ end of genes, but not the 3’ end 

of highly expressed genes and it accumulates towards the 3’ end at low and 

moderately expressed genes. Our results suggest that 3’-end associated Spt16 

maintains some of the FACT activity and protects 3’ gene ends from antisense 
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transcription. Previously, SSRP1 was shown to have Spt16-independent roles in 

transcription of only a small subset of genes and in DNA repair (Dinant et al., 2013; 

Li et al., 2007). Intriguingly, our results reveal a separation of functions for the two 

FACT subunits within gene bodies on a genome-wide scale. Our observations likely 

establish a rationale for the fact that the deletion of pob3 in S. pombe is not lethal.  

     RNAPII transcribing the antisense strand in the pob3 mutant may lead to the 

instability of the +1 nucleosome. Indeed, it was suggested that the ongoing cryptic 

transcription in the spt16 mutant leads to histone loss in S. cerevisiae (Feng et al., 

2016). Our results cannot exclude the possibility that the +1 nucleosome has an 

antisense barrier function (McCullough et al., 2019) and that FACT is important for 

the establishment of this barrier.   

     We find that the H2Bub mutant accumulates antisense transcripts evenly 

distributed across the gene bodies, which terminate before the TSS. The different 

pattern of antisense transcription towards the 5’ end of genes in the H2BK119 mutant 

is likely associated with the effect of H2Bub on the +1 nucleosome. In the H2Bub 

mutant, the TSS proximal nucleosomes are better protected against MNase 

digestion. Our data suggest a role for H2Bub in the disassembly of the TSS proximal 

nucleosomes.   

     Furthermore, we demonstrated that H2Bub plays several roles in FACT 

regulation. First, in the absence of H2Bub, FACT is redistributed downstream of TTS. 

Strikingly, FACT chromatin association changes in the H2BK119R mutant resemble 

RNAPIISer2P alterations in this strain. This suggests that FACT association with 

genes might be partially dependent on elongating RNAPII. Second, we propose that 

H2Bub increases histone-chaperone dynamics, which in turn is important to facilitate 

histone deposition on DNA and subsequent nucleosome assembly. Several 

observations support our hypothesis. Co-IPs from cell extracts show more FACT 

associated with H2B in the H2BK119R mutant. Further, EMSAs with recombinant 

proteins show a decrease of binding affinity of FACT to ubiquitinated dimers. In 
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addition, more assembly products are recovered in the chaperone assay in the 

presence of H2Bub. Furthermore, deletion of pob3 suppresses nucleosome 

occupancy and genic antisense transcription in the H2BK119R mutant likely through 

a release of FACT-bound histones.  

     How can H2Bub reduce FACT binding to H2A-H2B dimers? One possibility is that 

ubiquitin masks certain FACT binding epitopes on histones and thus reduces its 

binding. The acidic patch residues are important for the activity of chromatin 

remodelers and for FACT binding to histones (Dann et al., 2017; Hodges et al., 

2017). A recent cryo-EM structure of CHD1 with ubiquitinated nucleosome revealed 

that ubiquitin may regulate access to the nucleosomal acidic patch (Sundaramoorthy 

et al., 2018). Thus, by blocking access to the acidic patch, H2Bub could decrease the 

affinity of FACT for histones. Future work will establish the exact molecular 

mechanism of H2Bub on the FACT activity.  

     Additionally, our results indicate that FACT might control higher order structure of 

subtelomeric knobs. First, the subtelomeric genes are up-regulated in the FACT 

mutant. Second, there is a reduction of the nucleosome density in subtelomeric 

regions in the pob3 strain and finally, knobs are impaired to around 50% in the 

FACT mutants. Our genetic analysis shows that FACT works together with H3K36 

methylation pathway to maintain knobs. The Set2/H3K36me3 pathway is important 

for knob formation, transcriptional silencing of subtelomeres and post-transcriptional 

silencing of heterochromatin in S. pombe (Matsuda et al., 2015; Suzuki et al., 2016). 

Our results suggest that FACT and H3K36me likely affect nucleosome assembly or 

the stability of nucleosomes at subtelomeric regions. Correctly assembled 

nucleosomes might be important for binding of other factors, which in turn assure 

proper knob compaction. In line with this, histone H2A phosphorylation is crucial for 

the recruitment of shugoshin, a protein essential for knob organization (Tashiro et al., 

2016).  
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     The persistent presence of knobs in the H2BK119R mutant is less clear. H2Bub 

was shown to protect euchromatin from uncontrolled spreading of heterochromatin 

(Flury et al., 2017). It is possible that in the absence of H2Bub, subtelomeric 

heterochromatin spreads into knobs affecting their decompaction. However, we did 

not observe subtelomeric heterochromatin spreading in the H2BK119R strain (Figure 

S6F). Several lines of evidence argue that H2Bub might be directly involved in knob 

decompaction. First, H2Bub is not excluded from knobs as other active histone 

marks. Second, subtelomeric nucleosomes are better protected from MNase digest 

in the H2BK119R strain. Finally, deletion of pob3, which reduces subtelomeric 

nucleosomes, restores knob number to the wild-type levels in the H2Bub mutant. 

Together, we suggest that H2Bub is important for knob decompaction in S. pombe. 

This would be in line with the role of H2Bub in the decompaction of nucleosomal 

arrays in vitro (Debelouchina et al., 2016).   

     In conclusion, our work discovered novel and genome context-specific 

relationships between FACT and H2Bub in S. pombe. The effects of FACT on 

nucleosome maintenance and knob formation allows us to speculate that FACT 

might help to safeguard specific chromatin states outside of canonical euchromatin 

domains. As both H2Bub and FACT functions are misregulated in human cancers, it 

will also be interesting to investigate how our results might be applicable to cancer 

cells.  
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Figure 1. Loss of H2B ubiquitylation or loss of FACT subunit pob3 leads to global 

increase of anti-sense transcription at gene bodies or at TSS proximal regions, 

respectively.  

A) Density colored scatterplots comparing RNA-seq log2 Fold Change (log2FC) of 

sense (x-axis) and antisense (y-axis) transcripts between H2BK119R and wild-type 

(WT) strains or B) between pob3 and wild-type (WT) strains. Quadrants are labeled 

by roman numbers (I: sense < 0 – antisense > 0; II: sense > 0 – antisense > 0; III: 

sense < 0 – antisense < 0, IV: sense > 0 – antisense < 0). All protein coding genes 

are considered (total = 5069). Average of 2 biological replicates is shown. 

C) Heatmaps of RNA-seq log2FC aligned to transcription start (TSS). Left: 

H2BK119R vs. wild-type (WT) (sense and antisense) and right: pob3 vs. wild-type 

(WT) (sense and antisense). Heatmaps include genomic regions 1 kb upstream and 

5 kb downstream to TSS. Genes are ordered by length and grouped based on in 

which quadrant (I-IV) they are in 1A or 1B, respectively (total = 5069). 

D) Metaplots of RNA-seq log2FC aligned and scaled to transcription start (TSS) and 

termination sites (TTS). Left panel: sense; right panel: antisense. Colors: orange – 

H2BK119R vs. wild-type (WT); blue – pob3 vs. wild-type (WT). The plot represents 

the same genes as in C. 

E) Metaplots of log2FC between mutant vs. wild-type of RNAPIISer2P ChIP-seq 

aligned and scaled to TSS and TTS. Genes were divided into 4 quantiles based on 

their expression level in the wt strain. The darker the color shade, the higher 

expression level. Colors: orange – H2BK119R vs. wild-type (WT); blue – pob3 vs. 

wild-type (WT). Average of 2 biological replicates is shown. 

 

Figure 2. Loss of H2B ubiquitylation or loss of pob3 alters nucleosome structure in a 

different manner.  
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A-B) Metaplots of normalized nucleosome density (MNase-seq) centered at the TSS 

+1 nucleosome (left) or at the TTS -1 nucleosome (right). The plots include a +/- 1 kb 

region surrounding the center. Gene body nucleosome positions are marked with 

dashed vertical lines. Colors: grey – wild-type (WT); orange – H2BK119R; blue – 

pob3. Protein coding genes with called TSS +1 nucleosome (total = 4524) or with 

TTS -1 nucleosome (total = 3794) are considered. Nucleosomes were called in the 

wild-type strain. Average of 2 biological replicates is shown. 

C) Metaplots of log2FC between mutant vs. wild-type of H3 ChIP-seq centered at the 

TSS +1 nucleosome (left) or at the TTS -1 nucleosome (right). Genes were divided 

into 4 quantiles based on their expression level in the wt strain. The darker the color 

shade, the higher expression level. Colors: orange – H2BK119R vs. wild-type (WT); 

blue – pob3D vs. wild-type (WT). 

D) Heatmaps of Fold Change between mutant vs. wild-type nucleosome density 

centered at the TSS +1 nucleosome. Left: H2BK119R vs. wild-type (WT) and right: 

pob3 vs. wild-type (WT). The plots represent the same genes as in A-B, and genes 

are grouped (I-IV) by RNA-seq the same way as in Figure 1A-C. Gene body 

nucleosome positions are marked with dashed vertical lines. 

 

Figure 3. FACT deletion suppresses nucleosome and transcription defects of the 

H2Bub mutant at genic regions.  

A) Example regions of nucleosome density on chromosome I (left) and on 

chromosome II (right). Colors: grey – wild-type (WT); orange – H2BK119R; blue – 

pob3; magenta – pob3 H2BK119R. Two biological replicates are shown. 

B) Metaplot of nucleosome density (MNase-seq) centered at the TSS +1 

nucleosome. The plot includes a +/- 1 kb region surrounding the center. Gene body 

nucleosome positions are marked with dashed vertical lines. Average of 2 biological 

replicates is shown. Colors: same as in A).  
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C) Metaplot of RNA-seq antisense log2 Fold Change between mutant vs. wild-type 

aligned and scaled to TSS and TTS. Colors: same as in B. 

D) Metaplots of log2FC between pob3H2BK119R vs. wild-type (WT) of 

RNAPIISer2P and E) H3 ChIP-seq aligned and scaled to TSS and TTS. Genes were 

divided into 4 quantiles based on their expression level in the wt strain. The darker 

the color shade, the higher expression level. 

 

Figure 4. H2Bub reduces FACT binding to histones in vivo and facilitates histone 

deposition on DNA by FACT in vitro.  

A) Metaplots of log2FC between H2BK119R vs. wild-type (WT) of Pob3 and Spt16 

ChIP-seq aligned and scaled to TSS and TTS. Genes were divided into 4 quantiles 

based on their expression level in the wt strain. The darker the color shade, the 

higher expression level. Average of 2 biological replicates is shown. 

B) Benzonase treated WCE from the wild-type or H2BK119R strains were 

immunoprecipitated to pulldown Flag-tagged H2B. IPs were washed with the 

indicated salt concentrations. Association of FACT subunits with the Flag-H2B or 

Flag-H2BK119R was monitored by western blot. Input represents 10% of the initial 

material.  

C) Quantification of FACT association with the wild-type or H2BK119R histone. The 

experiment was performed as in Figure 4B with the difference that washes were 

done in 250 mM NaCl. The associated FACT signal was normalized to the 

immunoprecipitated histone signal and normalized to 1 for the wild-type strain. The 

average of 3 - 4 independent experiments is shown, error bars represent SEM, p 

values (two-tailed Student’s t test) are shown.  

D) EMSA of FACT and histone dimer binding. Recombinant FACT (0.8 M) was 

incubated with increasing amounts of H2A-H2B or H2A-H2Bub dimers. The products 



 24 

were resolved on the 5.5% native PAA gel and stained with Coomassie Blue. A 

representative gel is shown.  

E) Quantification of 3 independent EMSA experiments. Error bars represent SDEV, 

apparent Kd is shown in nM.   

F) Schematic of the histone chaperoning assay.   

G) Histone chaperoning assay. 46.3 nM of wild type or ubiquitinated histone 

octamers were pre-incubated with 150 nM of FACT as indicated. 11.2 nM of Cy3 

labeled 601 DNA fragment was added to the histone-FACT complexes and further 

incubated for 30 min at 37C. The samples were spun-down and the supernatants 

were resolved on the 6% native PAA gel. Gel was scanned with Typhoon FLA9500. 

The positions of free DNA and assembly products are indicated on the right. A 

representative gel is shown.  

H) Quantification of the recovered products from chaperoning assays performed as 

in Figure 4G. The quantification represents average from 3 independent 

experiments, error bars indicate SDEV, p value (two-tailed Student’s t test) is shown.  

 

Figure 5. Pob3 subunit of FACT regulates 5’ of the genes 

A) Metaplots of H2Bub (green), Pob3 (orange), Spt16 (brown) and RNAPIISer2P 

(pink) ChIP-seq enrichment [log2(ChIP/Input)] aligned to the TSS +1 (left) or TTS -1 

(right) nucleosome in wild-type strain. Scaled nucleosome density (wild-type) is 

plotted as grey shading. Highly expressed genes are considered (n = 1117 for 

TSS+1 and n = 917 for TTS-1). Average of 2 biological replicates is shown. 

B) Example regions of Spt16 ChIP-seq profiles [log2(ChIP/Input)] at highly expressed 

genes (first and second) or at low-moderately expressed genes (third and fourth). 

Colors: grey – wild-type (WT); blue – pob3. Two biological replicates are shown. 

C) Metaplots of log2FC between pob3 vs. wild-type of Spt16 (brown) and 

RNAPIISer2P (pink) ChIP-seq, antisense transcripts from RNA-seq (red) and 
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nucleosome density (grey) aligned to the TSS +1 or TTS -1 nucleosome. Left: highly 

expressed genes (n = 1117 for TSS+1 and n = 917 for TTS-1); right: low-moderately 

expressed genes (n = 1132 for TSS+1 and n = 976 for TTS-1). Gene body 

nucleosome positions are marked with dashed vertical lines.  

 

Figure 6. FACT regulates subtelomeric gene silencing, density of subtelomeric 

nucleosomes and knob formation.   

A) Schematic representation of S. pombe chromosomes. Tel – subtelomeric 

heterochromatin, subTEL – knob regions, cen – centromere, rDNA – ribosomal DNA.  

B) Scatterplots of RNA-seq log2FC (sense) between pob3 and wild-type for genes 

along chromosomal coordinates. Red line is calculated by ‘loess’ fitting. 

C) Boxplots of RNA-seq log2FC (sense) between mutant vs. wild-type for genes in 

subtelomeric (n = 152) or nonsubtelomeric regions (n = 4917). Dotted horizontal line 

indicates no difference. Colors: orange – H2BK119R vs. wild-type (WT); blue – 

pob3 vs. wild-type (WT); magenta – pob3 H2BK119R vs. wild-type (WT). 

D) Boxplots of Fold Change between mutant vs. wild-type nucleosome density 

averaged in a 150 bp window surrounding nucleosome center positions in 

subtelomeric (n = 2500) or nonsubtelomeric regions (n = 69154). Dotted horizontal 

line indicates no difference. Colors are same as in C. 

E) Fraction of nuclei with 0, 1, 2 or 3 knobs (increasing grey colors) comparing wild-

type to H2BK119R, pob3 and pob3H2BK119R mutants. Knobs were calculated 

from three independent experiments (n=6 for WT) from several hundreds of nuclei. 

Error bars represent SEM.   

F) Fraction of nuclei with 0, 1, 2 or 3 knobs comparing wild-type (H3K36) to H3K36R, 

pob3H3K36 and pob3H3K36R mutants. Knobs were calculated from three 

independent experiments from several hundreds of nuclei. Error bars represent SEM.   
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Figure 7. A model of FACT and H2Bub cooperativity within gene bodies  

In the wt strain, H2Bub facilitates histone deposition on DNA by FACT. In the pob3 

strain, 5’ antisense transcription (AS trxn) is de-repressed, the +1 nucleosome is 

destabilized, Spt16 maintains nucleosomes closer to 3’ gene ends. In the H2BK119R 

mutant, FACT binds stronger histones and it is shifted downstream of TTS, the genic 

nucleosomes are less stable and genic AS trxn is de-repressed. Stabilization of the 

+1 nucleosome likely blocks AS trxn around 5’ of the genes. In the double mutant, 

FACT bound histones are released and nucleosomes are correctly assembled 

suppressing genic AS trxn. A glow around nucleosomes depicts their dynamics; 

dashed lane around nucleosomes represents their reduced stability in a given 

mutant; orange oval - H2A-H2B dimer, yellow shape - ubiquitin.   

 

 

STAR METHOD  

LEAD CONTACT AND MATERIALS AVAILABILITY 

Further information and requests for resources and reagents should be directed to 

and will be fulfilled by the Lead Contact, Andreas Ladurner 

(andreas.ladurner@bmc.med.lmu.de).  

 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Strains used in this study are listed in Table S1. All strains were generated using 

standard procedures using yeast transformation and validated by PCR. All strains 

were grown in rich media (YES) at 30C. For temperature sensitive alleles, strains 

were grown at 26C overnight and then they were shifted to 36C for 1.5-2 hours.  

 

METHOD DETAILS 
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RNA extraction  

RT-QPCR was done as described in (Barrales et al., 2016). Briefly, 50 ml of yeast 

culture at OD600 ~0.5-0.8 was spun down at RT and the pellet frozen in liquid 

nitrogen. Cells were thawed on ice and resuspended in 1 ml of TRIzol. 250 ul of 

zirconia beads were added and cells were broken with Precyllis 24 (Peqlab) for 3x30 

s with 5 min rest on ice. The extract was spun down at 13500 rpm at 4C for 10 min. 

The cleared lysate was extracted twice with chloroform and spun at 13500 rpm at 

4C for 10 min. The aqueous phase was taken and RNA was precipitated with 

isopropanol. The pellet was washed twice with 75% EtOH, air dried and resuspended 

in 50 l of RNAse free dH20. The RNA concentration and purity was determined by 

Nano-drop.  

 

cDNA synthesis  

RT-QPCR was done as described in (Barrales et al., 2016). Briefly, 20 g of RNA 

was treated with 1 l of TURBO DNase I (Ambion) for 1 hr at 37C. The reaction was 

inactivated by adding 6 l of DNase inactivation reagent followed by the 

manufacturer instructions. For cDNA synthesis 5 g of total DNase-treated RNA was 

reverse transcribed with 1l of oligo-(dT)20 primers (50 M) and 0.25 l of 

SuperscriptIII (Invitrogen) according to the manufacturer instructions.  

RT-QPCR  

RT-QPCR was done as described in (Barrales et al., 2016). Briefly, 

immunoprecipitated DNA and cDNAs were quantified by qPCR using Fast SYBR 

Green Master mix (Life Technologies) and a 7500 Fast real-time PCR system 

(Applied Biosystems). cDNA was analyzed by qPCR using gene specific primers 

(Table S2). Amplifications were performed in at least 3 biological replicates. The 

quantification was based on a standard curve method obtained with QuantStudioTM 

Design and Analysis Software. Sheared S. pombe genomic DNA was used as a 
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standard. For gene expression the samples were normalized to act1 gene. The 

normalized data sets were shown as relative to the mean value of the wild type strain 

which was set to 1, errors bars were calculated as SEM and displayed accordingly.  

 

RNA-seq library preparation  

RNA for RNA-seq was prepared as described above. 1 g of RNA was treated with 

NEBNext®Poly(A) mRNA Magnetic Isolation Module to enrich for poly-adenylated 

transcripts. The libraries were prepared with NEBNext®Ultra™Directional RNA 

Library Prep Kit for Illumina® according to the manual instructions. The libraries were 

barcoded and sequenced at LAFUGA at the Gene Center.  

 

RNA-seq analysis  

RNA-seq 50 bp single reads were aligned to the reference genome 

(Schizosaccharomyces pombe ASM294v2) using STAR (version 2.5.3a). Uniquely 

mapped reads were counted per genes in sense or antisense orientation with STAR -

-quantMode GeneCounts using the annotation ASM294v2.37. Both sense and 

antisense read counts were normalized to the sense read counts using DESeq2 R 

package (version 1.18.1). Differential expression analysis was also performed by 

DESeq2 functions. Coverage vectors were generated from the BAM files (from STAR 

alignment) using Bioconductor packages and normalized to the total coverage. TSS 

aligned or gene body scaled matrices were calculated from the coverage vectors at 

protein coding genes. Further analysis was performed using R and graphs were 

plotted by R base graphics. 

 

MNase-seq library preparation 

500 ml of S. pombe cells were grown overnight at 30°C to OD600 ~ 0,5. Cells were 

crosslinked with 0.5% formaldehyde for 20 min at RT. The crosslinking was stopped 

with 125 mM Glycine. Cells were spun, washed with dH2O and the pellet was 
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resuspended in 20 ml of ice cold Preincubation solution (19.7 mM Na2HPO4, 109 mM 

citric acid, 40 mM EDTA, 28.6 mM b-Mercaptoethanol). The cells were incubated at 

30°C with vigorous shaking for 10 min. Cells were harvested at 4000 rpm for 5 min at 

4°C and the pellet was resuspended in 10 ml Sorbitol/Tris buffer (1M sorbitol, 50 mM 

Tris pH 7.4). 10 mg of Zymolyase 100T was added and the spheroplasts were 

incubated at 30°C for 30 min with vigorous shaking followed by centrifugation at 400 

rpm for 5 min at 4°C. The spheroplasts were washed once with 40 ml Sorbitol/Tris 

buffer (ice cold, without b-Mercaptoethanol) and the pellet was resuspended in 7.5 ml 

of NP buffer (ice cold) with 1 mM b-Mercaptoethanol and 500 µM spermidine. 

Samples were split into 1 ml aliquots and various amounts of MNase (Sigma, 0.6 

U/ml) were added (2,4,6,8,10 and 12 ul) and the samples were incubated at 37°C for 

20 min. The reaction was stopped with 138 ul of Stop Buffer (5% SDS, 100 mM 

EDTA). Samples were digested with 40 ul of RNAse A (10mg/ml) at 37°C for 45 min. 

50 ul of Proteinase K (20 mg/ml) was added and the samples were incubated O/N at 

65°C.  360 ul of 3 M potassium acetate pH 5.5 was added to each sample, incubated 

on ice for 10 min and spun down at 14000 rpm, 4°C for10 min. Next, the samples 

were phenol/chloroform extracted and DNA was precipitated with 0.2M NaCl and 

Isopropanol, 1 ul of glycogen (20 mg/ml) was added as a carrier. After precipitation 

nucleosomal DNA was washed with 70% Ethanol, air dried and resuspended in 50 ul 

of TE.  Samples were loaded on a 1.5% agarose gel (Biozym ME agarose) in 1 x 

TAE and resolved. Mononucleosmal DNA was cut out and DNA was recovered with 

Freeze N’ Squeeze gel extraction columns (BioRad). DNA was precipitated with 

isopropanol in the presence of glycogen and the pellet was resuspended in 20 µl TE. 

DNA was kept at -20C until library preparation. The libraries were prepared with 50 

ng of S. pombe mononucleoosmal DNA. All enzymes, buffers and primer sets were 

from NEB. Shortly, first DNA was end-repaired, followed by AMPure bead 

purification. DNA was then dA-tailed and purified with AMPure beads. Finally, the 

adaptor ligation was performed O/N at 16C. The reaction was treated with USER 
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enzyme and purified with AMPure beads. Finally, the multiplexing PCR reaction was 

performed with a Phiusion polymerase. Usually 8 PCR cycles were performed to 

avoid the library over-amplification. PCR product was purified on a native 5% 

polyacrylamide gel and extracted in 400 l of Gel Extraction Buffer (300 mM NaCl, 10 

mM Tris pH 8.0, 1 mM EDTA) O/N at 4C. Extracted DNA was further precipitated 

with isopropanol and the final library was resuspended in 15 ul of 0.1 TE. DNA was 

measured by Qubit DNA HS (Invitrogen) and the quality of the library was further 

verified by Bioanalyzer. The libraries were paired-end sequenced by LAFUGA 

(LMU).   

 

MNase-seq analysis  

MNase-seq 50 bp paired-end reads were aligned to the reference 

(Schizosaccharomyces pombe ASM294v2) using bowtie2 (version 2.2.9). Reads 

were filtered by samtools with -q 2 parameter (version 1.3.1). BAM alignments were 

converted to BEDPE format using bedtools2 (version 2.26.0), from which fragment 

coordinates were extracted and the number of fragments were subsampled to 6 

million.  Dyad coverages were calculated using the bed2dyad function from the 

tsTools R package (https://github.com/musikutiv/tsTools) with the width parameter 50 

(version 0.1.0). Dyad coverages were normalized by the total coverage and 

multiplied by a million.Nucleosome reference positions were defined by DANPOS 

(version 2.2.2)(Chen et al., 2015) for each condition (i.e. genotype, MNase digestion 

degree) independently. Dyad coverages were aligned to wild type nucleosome 

positions that are within a 150 bp window downstream of TSS (TSS +1) or upstream 

of TTS (TTS -1). Orientation was determined by the strand of the underlying gene. 

For the H2AZ analysis, genes were subset by the overlap with H2AZ peaks, which 

were called by the Homer software package (Heinz et al., 2010) findPeaks command 

with paramters “-style histone -F 2” (H2AZ data source: GSE97984). Sub-telomeric 
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genes were defined by their localization to the following regions: chrI:30000-150000; 

chrI:5430000-5560000; chrII:30000-150000 and chrII:4390000-4500000. Further 

analysis was performed using R and graphs were plotted by R base graphics. 

 

ChIP-seq  

100 ml yeast cultures were grown to mid-log phase to OD600=0.6. The cultures were 

cooled down at RT for 10 min and fixed with 1% FA for 20 min at RT on the shaker. 

Cross-linking was stopped with 150 mM Glycine for 10 min at RT on the shaker. 

Cells were spun down 2 min at 3000 rpm at 4C, washed 2x with 30 ml cold dH2O, 

the pellet wash immediately frozen down in liquid nitrogen and kept at -80C until 

further processing.  Pellets were resuspended in 1 ml FA(1) buffer (50 mM Hepes-

KOH, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100 (v/v) , 0,1% 

NaDeoxycholate (w/v) , 0,1% SDS (w/v)0 supplemented with Roche protease 

inhibitors and phosSTOP (Roche). Cells were broken in a bead beater (Precellys): 

9x30s. After centrifugation, the supernatant and the pellet were sonicated for 15 min 

at 4C. Chromatin extracts were spun down for 10 min at 14000 rpm at 4C. Different 

amount of chromatin was used for different antibodies: 100 ul chromatin (for H3, 

Spt16, Pob3 ChIP) or 500 ul chromatin (for RNAPIISer2, H3K9me2, H2Bub ChIP). 

The antibodies used for ChIP are listed in Key Resources Table. Samples were 

incubated with antibodies O/N at 4C on the wheel. 25 ul of FA(1) buffer washed 

Dynabeads were added to each sample and they were incubated for 2 hours at 4C 

on the wheel. Samples were then washed 3x for 5 min at RT with FA(1) buffer, FA(2) 

buffer (FA(1) buffer with 500 mM NaCl), once with LiCl buffer (10 mM TrisHCl, pH 

8.0, 0.25 M LiCl, 1 mM EDTA, 0,5% NP-40 (v/v) , 0,5% NaDeoxycholate (w/v)) and 

once with TE buffer. DNA was eluted from the antibodies with ChIP Elution buffer (50 

mM Tris HCl, pH 7.5, 10 mM EDTA, 1% SDS) for 15 min at 65C in a thermomixer 

set to 1300 rpm. DNA was treated with RNAseA (Thermo Fisher) for 1 hr at 37C, 
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followed by Proteinase K digestion and de-crosslinking O/N at 65C. DNA was 

purified with Zymo Research ChIP DNA Clean and Concentrator kit according to the 

manual instructions. To obtain enough material for the library preparation usually 3 

technical IP replicates were pulled. The ChIP-seq libraries were prepared with 2 ng 

of DNA with NEBNext®Ultra™ II DNA Library Prep Kit for Illumina® according to the 

manual instructions. The libraries were barcoded and sequenced at LAFUGA at the 

Gene Center (LMU).  

 

ChIP-seq analysis  

ChIP-seq 50 bp single-end reads were aligned to the reference 

(Schizosaccharomyces pombe ASM294v2) using bowtie2 (version 2.2.9). Reads 

were processed using the Homer software package (Heinz et al., 2010). Tag 

directories were created with the parameter -mapq 1 and bedgraph coverages were 

generated and normalized to the total number of reads and to the corresponding 

input using the makeUCSCfile command. Normalized coverages were aligned to 

gene bodies (similar to RNA-seq) or to TSS +1, TTS -1 nucleosome positions (similar 

to MNase-seq). Further analysis was performed using R and graphs were plotted by 

R base graphics. 

 

Whole cell extracts (WCE) 

50 ml yeast cultures were grown to mid-log phase (OD600 0.5-0.8). The cultures were 

spun down and washed once with cold dH20. Cell pellets were resuspended in 500 l 

of Workman Extract Buffer (40mM HEPEs pH7.4, 250mM NaCl, 0.1% NP40, 10% 

Glycerol, 1 mM PMSF, Roche proteinase inhibitors). 250 l of glass beads were 

added and cells were lysed with Peqlab precellys homogenizator (3x30 sec with 2 

min on ice incubation in between). The extracts were shortly spun down at 2500 rpm 

at 4C for 3 min. The supernatant and the pellet were treated with benzonase in the 
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presence of 2mM MgCl2 for 30 min on ice and spun down at the maximum speed for 

10 min at 4C. The extracts were frozen down in liquid nitrogen and kept at -80C or 

immediately used for immunoprecipitation. Protein concentration was measured with 

Bradford reagent (BioRad).  

 

Immunoprecipitation  

500 g of WCE was incubated with 7.5 l Flag beads (Sigma) for 2 hours at 4C. The 

beads were washed three times for 5 min with Workman Extract Buffer with the 

indicated salt concentrations. Precipitated proteins were eluted for 30 min on ice with 

20 l of 250 g/ml 3xFlag peptide (Sigma) in Elution Buffer (40mM HEPEs pH7.4, 

100mM NaCl, 0.1% NP40, 10% Glycerol, 1 mM PMSF, Roche proteinase inhibitors).  

 

Western Blot  

Proteins were separated with SDS–polyacrylamide gel electrophoresis (SDS–PAGE) 

and electroblotted onto methanol activated polyvinylidene difluoride (PVDF) 

membranes in Blotting Buffer (20 mM Tris, 192 mM glycin, 20% methanol) for 1hr at 

400 mA at 4°C. Membranes were then incubated in Blocking Buffer (TBS, 0.1% 

Tween 20, 5% non-fat dry milk) for 40 min - 1hr at room temperature followed by an 

incubation in the Blocking Buffer with an appropriate primary antibody for 1hr at RT. 

Membranes were washed three times for 5 min in Washing Buffer - TBST (TBS, 

0.1% Tween 20) and then incubated in Blocking Buffer containing the appropriate 

secondary antibody for 40 min at room temperature followed by 3 times washing in 

TBST for 5 min. Western blot signals were visualized by chemiluminescence using 

the Immobilon Western Chemiluminescence HRP substrate (Millipore, WBKLS0500) 

on X-ray films (Fujix Super RX 13x18). For quantification of Western blots 

fluorescently labeled secondary antibodies were used and the membranes were 
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scanned with LiCor Imaging System. The scans were analyzed with Image Studio 

Lite software.  

 

Super-resolution microscopy  

S. pombe cells were cultured in liquid minimum medium with supplements (EMM2 

5S) at 26 ˚C with shaking to the early logarithmic phase. Alternatively, for heat shock 

experiments, cells were cultured in liquid YES medium at 26 ˚C over night and 

shifted to 36 ˚C for 1.5-2 hours. Cells were pelleted by gentle centrifugation, and 

chemically fixed by re-suspending in a buffer containing 4 % formaldehyde 

(Polysciences, Inc., USA), 80 mM HEPES-K, 35 mM HEPES-Na, 2 mM EDTA, 0.5 

mM EGTA, 0.5 mM spermidine, 0.2 mM spermine and 15 mM 2-mercaptethanol, pH 

7.0. After fixation for 10 min at room temperature, cells were washed with PEMS 

(100 mM PIPES, 1 mM EGTA, 1 mM MgSO4, 1.2 M sorbitol pH 6.9) three times, 

then, digested with 0.6 mg ml-1 zymolyase 100T (Nacalai Tesque, Japan) in PEMS at 

36 ˚C for 5 min for DAPI staining and 60 min for immunostaining. Next, cells were 

treated with 0.1% triton X-100 in PEMS for 5 min, and washed three times thereafter 

with PEMS. For DAPI staining, cells were incubated with 0.2 µg ml-1 DAPI in PEMS 

for 10 min, and then cells were resuspended with nPG-Glycerol (100 % glycerol for 

absorptionmetric-analysis (Wako, Japan) with 4 % n-propyl gallate, pH 7.0) and 

mounted on a clean 18x18 mm coverslip of thickness 0.16-0.19 mm (Matsunami, 

Japan). For immunostaining, cells were incubated with 1% BSA, 0.1 % NaN3, 100 

mM L-lysine monohydrochloride in PEMS (PEMSBAL) for 30 min, and the solution 

was replaced with H2BK120ub antibody (Active Motif) diluted to 1/1,000 in 

PEMSBAL and incubated for 1 h. Cells were washed with PEMSBAL three times 

then anti-mouse IgG antibody with Alexa Fluor 488 (Thermo Fisher Scientific, USA) 

diluted to 1/500 in PEMSBAL was added. Afterwards, the cells were washed, 

counter-stained with DAPI and suspended in mounting medium (nPG-Glycerol, see 

above). The slides were analyzed with 3D-SIM using a DeltaVision|OMX SR 
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microscope (GE Healthcare, UK) equipped with a 60x PlanApoN NA1.42 oil 

immersion objective lens (Olympus, Japan). Reconstruction of 3D-SIM was 

performed by softWoRx (GE Healthcare) with Wiener filter constants of 0.002 using a 

homemade optical transfer function. Conspicuously condensed, DAPI-stained bodies 

were counted as knobs by visually inspecting each optical section of 3D-SIM images. 

Chromatic shift of multicolor images was measured by Chromagnon v0.80 (Matsuda 

et al., 2018) using image stacks of cells stained with DAPI and H2Bub, and the 

global alignment parameters thus obtained were applied to the original image stacks. 

 

 

Chaperoning assay  

A typical reaction was performed in 10 ul volume. Recombinant human FACT (150 

nM) was pre-incubated with wild type or ubiquitinated histone octamers (46.3 nM) in 

an assembly buffer (20 mM Tris-HCl pH 8.0, 0.1 mM EDTA, 1 mM DTT, 10% 

glycerol) for 30 min at 37C. 601 DNA with 30 bp overhangs (11.2 nM) was added in 

suboptimal concentration (1:4 molar DNA:histone ratio) and the reaction was 

incubated further for 30 min at 37C. The samples were spun down at a maximum 

speed for 15 seconds and the supernatant was loaded on 6% native PAA gel. The 

electrophoresis was performed in 0.4xTAE buffer. The gel was pre-run for minimum 

30 min and the samples were resolved for 70 min at 100 V at RT using XCell 

SureLockMiniCell system (Invitrogen). The gel was scanned with Typhoon FLA 

9500 with Cy3 filter. The signals were analyzed with Image Studio Lite software. 

Each assay was performed independently three times, each sample was run in three 

technical replicates within the assay.  

 

Recombinant FACT purification  
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Recombinant human FACT was purified similarly as published before (Tsunaka et 

al., 2016) with some modifications (Figure S5F). Briefly, His-tagged SSRP1 and 

Flag-tagged Spt16 were coexpressed in SF21 cells. A pellet from 2.5 - 5 liters of 

SF21 cells was resuspended in Lysis Buffer (300 mM NaCl, 20 mM Hepes pH 7.4, 

30 mM imidazole, 10% glycerol, supplemented with Roche inhibitors, PMSF and 0.5 

mM TCEP). Cells were lysed by 3 cycles of freeze and thaw in liquid nitrogen. The 

extract was briefly sonicated (4x10 seconds) and spun down 40 min at 25.000 rpm in 

the Beckman centrifuge. The extract was loaded on the HisTrap HP Column and 

washed with High Salt Wash Buffer (1M NaCl, 20 mM Hepes pH 7.4, 30 mM 

imidazole, 10% glycerol, 0.5 mM TCEP) and eluted with Elution Buffer (300 mM 

NaCl, 20 mM Hepes pH 7.4, 500 mM imidazole, 10% glycerol, 0.5 mM TCEP). 

Fractions containing hFACT were pooled and treated with 100 U of Antarctic 

Phosphatase for 1hr on ice. The salt was diluted in the extract to 150 mM NaCl and 

the extract was loaded on the Resource Q column. The column was eluted with a 0-

75% gradient by mixing 150 mM with 1M NaCl buffer. The fractions containing 

hFACT were frozen in liquid nitrogen and the next day they were concentrated on the 

Amicon 10K and loaded on the preparative size exclusion column (HiLoad 26/60 

Superdex 200) in the Size Exclusion buffer (250 mM NaCl, 20 mM Hepes pH 7.4, 

10% glycerol, 0.5 mM TCEP). Fractions containing hFACT were pooled, 

concentrated, aliquoted and stored at -80C. 

 

Histone purification and modification 

Human histones H2A, H2B and H2B K120C were purified essentially as described 

(Dyer et al, 2004 methods enzymology, Wilson and Benlekbir Nature 2016). Briefly, 

histones were expressed in BL-21(DE3) RIL cells and expressed histones purified 

from insoluble inclusion bodies on a HiTrap SP XL column (GE Healthcare). Histone 

fractions were pooled and dialyzed extensively against 1 mM acetic acid solution 

prior to lyophilization. Mutant human Histone H2B engineered with a single cross-
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linkable cysteine (H2B K120C) was chemically ubiquitylated essentially as described 

(Long et al., 2014; Wilson et al., 2016). Briefly, an alkylation reaction was assembled 

with H2B K120C (700 uM), His-TEV-ubiquitin G76C (700 uM) and 1,3-

dibromoacetone (4.2 mM, Santa Cruz) in 250 mM Tris-Cl pH 8.6, 8 M urea and 5 mM 

TCEP and the reaction was allowed to proceed for 16 hours on ice. The reaction was 

quenched by the addition of 10 mM β-mercaptoethanol and pH adjusted to 7.5. 

chemically ubiquitylated H2B (H2B Kc120ub) was purified using a HiTrap SP HP 

column (GE Healthcare) and HisTEV-H2AKc120ub containing fractions were pooled 

and enriched over a HiTrap chelating column (GE Healthcare) pre-loaded with Ni2+ 

ions. The 6xHis tag was removed by TEV cleavage and subsequent Ni2+ column 

subtraction. The resulting flow-through was dialysed against a 2 mM β-

mercaptoethanol/dH20 solution and lyophilized. Lyophilized H2A and H2B or H2B 

K120ub were resuspended at roughly 5mg/ml in 7 M Guanidine hydrochloride, 20 

mM Tris pH 7.5, 5mM DTT. Histones were mixed at equimolar ratios, diluted to 

roughly 2 mg/ml and extensively dialyzed in 2M NaCl, 20 mM Tris pH 7.5, 5 mM β-

mercaptoethanol, 2 mM EDTA. Dimers were purified by Size exclusion 

chromatography using a Superdex 200 Increase 10/300 column and fractions 

corresponding to H2A/H2B dimers pooled and concentrated using Amicon Ultra 

10kDa MWCO spin concentrators (Millipore). Dimers were diluted 1:1 (v/v) with 

100% glycerol for storage at -20C (Figure S5C). 

 

EMSA  

0.8 M FACT complex was incubated with increased amounts of unmodified or 

ubiquitinated histone H2A-H2B dimers in the binding buffer (20 mM Hepes pH 7.4, 

145 mM NaCl, 10% glycerol, 1 mM DTT) for 1 hour at 37C. Samples were loaded 

on pre-run 5.5% 0.4xTBE native PAA gel and the gel was run at 100V for 70 min at 

RT in 0.4xTBE running buffer. Gels were stained with InstantBlueTM (Expedeon) for 
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30 min, rinsed in dH20 and scanned with Labscan. The unbound FACT bands were 

quantified with Image StudioTM Lite software and a dose-response curve was 

generated using GraphPad Prism V8.1.2 (Nonlinear fit, Agonist vs. response, 

variable slope (four parameters) from 3 independent experiments. Error shows 

SDEV.  

 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Quantification and statistical tests employed for each experiment are described in the 

figure legends or in the method section. For RNA-seq, MNase-seq and ChIP-seq 

experiments, two biological replicates were sequenced for each condition.  

 

DATA AND CODE AVAILABILITY 

All raw sequencing datasets were deposited to NCBI GEO with the accession 

number: GSE124092. R code for data analysis is available upon request. Raw image 

data are available at Mendeley: http://dx.doi.org/10.17632/jvb77prdgv.1 
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