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Power series method for solving TASEP-based

models of mRNA translation

S Scott1, J Szavits-Nossan1

1 SUPA, School of Physics and Astronomy, University of Edinburgh, Peter
Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom

E-mail: jszavits@staffmail.ed.ac.uk

Abstract. We develop a method for solving mathematical models of messenger
RNA (mRNA) translation based on the totally asymmetric simple exclusion
process (TASEP). Our main goal is to demonstrate that the method is versatile
and applicable to realistic models of translation. To this end we consider
the TASEP with codon-dependent elongation rates, premature termination due
to ribosome drop-off and translation reinitiation due to circularisation of the
mRNA. We apply the method to the model organism Saccharomyces cerevisiae

under physiological conditions and find excellent agreements with the results of
stochastic simulations. Our findings suggest that the common view on translation
as being rate-limited by initiation is oversimplistic. Instead we find theoretical
evidence for ribosome interference and also theoretical support for the ramp
hypothesis which argues that codons at the beginning of genes have slower
elongation rates in order to reduce ribosome density and jamming.

Keywords : protein synthesis, messenger RNA, translation, exclusion process, TASEP,
steady state, power series
Submitted to: Phys. Biol.
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Power series method for TASEP-based models 2

1. Introduction

Translation of a mRNA sequence into a protein is
central to normal cell function. How is this process
carried out and controlled in the cell is a topic of major
interest not only from the standpoint of understanding
protein function and regulation, but also for the
possibility of making adjustments to the genetic code
that would improve yields of foreign and synthetic
proteins.

5'

start codon

ribosomes

mRNA

stop codon

coding sequence

3'

Figure 1. A schematic picture of mRNA translated by
ribosomes in the 5′ → 3′ direction.

Translation is performed by ribosomes that move
along the mRNA from the 5’ end to the 3’ end
(Figure 1). The process can be split into three main
stages: initiation, elongation and termination. During
initiation, the ribosome assembles on a portion of the
mRNA before the coding sequence and moves to the
start codon where the first amino acid is added to the
ribosome. Elongation begins when the ribosome moves
to the second codon with a newly amino acid attached
to the protein chain. This process is repeated codon
by codon until the ribosome encounters the stop codon
and detaches itself from the mRNA along with a newly
produced protein.

Mathematical modelling of translation has a
long history in mathematics, physics and biology.
Most of the models that are in use today are
based on a model introduced by MacDonald, Gibbs
and Pipkin in 1968 [1, 2] and independently by
Spitzer in 1970 [3]. Spitzer, who was interested
in a much broader class of interacting random
walks, is also responsible for naming the model the
exclusion process due to excluded-volume interactions
between the random walkers. The full name of
the process relevant to mRNA translation is the
totally asymmetric simple exclusion process or TASEP;
“totally asymmetric” means that random walkers
(ribosomes) move unidirectionally on a discrete lattice
(mRNA) and “simple” means that they move one

lattice site (codon) at a time.
In physics, the TASEP is one of the simplest

models belonging to a broad class of driven diffusive

systems [4]. These systems are of great interest because
they do not attain thermal equilibrium, even when
they settle in the steady state. The question of how
to describe nonequilibrium steady states is one of the
biggest open questions in statistical physics. For the
TASEP in which each random walker occupies one
lattice site and moves forward at a constant speed this
problem was solved in full by Derrida, Evans, Hakim
and Pasquier [5] and Schütz and Domany [6], both in
1993. The exact solution described in detail the nature
of phase transitions previously discovered by Krug [7],
which sparked a great interest in the model.

Unfortunately, most TASEP-based models which
are of interest to modelling translation cannot be
solved using techniques developed in Refs. [5, 6].
These models account for the correct ribosome
length (approximately the length of 10 codons) [8],
variable ribosome speed that depends on the codon
being translated [9], elongation consisting of several
intermediate steps [10], nonsensical errors such as
premature termination [11,12], translation reinitiation
due to mRNA circularisation [11, 13–15] and many
more (for a recent review see Ref. [16]).

A fundamental question in molecular biology is
how the mRNA codon sequence affects the translation
process and in particular the rate of protein production
[17, 18]. In the TASEP the rate of protein production
corresponds to the current of ribosomes leaving the
stop codon. If we assume that each of 61 codon types‡
is translated at a different speed, this leaves us with 61
parameters describing elongation and two parameters
describing initiation and termination, and that is only
for the basic model. Using stochastic simulations alone
in order to understand how these parameters affect the
translation process is a difficult, if not a formidable
task. A different approach is needed.

In previous work [19], Szavits-Nossan, Ciandrini
and Romano developed a mathematical method for
solving the TASEP with codon-dependent elongation
that accounted for tRNA delivery and ribosome
translocation [20]. The main idea was to express the
steady-state solution as a power series expansion in the
translation initiation rate.

‡ The remaining three codons are stop codons that do not code
for an amino acid.
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Power series method for TASEP-based models 3

It is a common view in cell biology that translation
initiation is the rate-limiting step in protein production
under nutrient-rich growth conditions. Existing
estimates of translation initiation and elongation rates
in various organisms support this view. For example,
translation initiation rate in Escherichia coli has been
estimated to 1 initiation every 3 seconds [21], compared
to the elongation rates of individual codons that are
in the range of 4 − 40 amino acids per second [22].
Translation initiation rates of Saccharomyces cerevisiae

genes were found to be in the range of 1 initiation every
0.2− 200 seconds with the median value of 1 initiation
every 11 seconds. Hence most of the genes initiate
translation at a much slower rate than the elongation
rates of individual codons, which were estimated to be
in the range of 1− 35 amino acids per second.

These numbers may change significantly under
low-nutrient conditions such as amino acid starvation
leading to much smaller elongation rates, in which case
the power series method may not be applicable. We
will discuss this point in more detail later in the text.

In the present study, we apply the power series
method to the TASEP that accounts for codon-
dependent elongation rates, premature termination
due to ribosome drop-off and translation reinitiation
due to mRNA circularisation. The last two features
of the model were chosen to show that the method is
versatile and practical to use for studying more realistic
models of translation and more features may be added
to this model in the future. We test the method on
the model organism Saccharomyces cerevisiae and find
an excellent agreement with the results of stochastic
simulations.

2. Methods

2.1. The basic TASEP-based model of translation

We model mRNA as one-dimensional lattice consisting
of L codons labelled from 1 (start codon) to L (stop
codon) that code for L − 1 amino acids. We assume
that each ribosome occupies ℓ = 10 codons [25] and
that the ribosome P and A sites are positioned at the
fifth and sixth codon respectively, measured from the
ribosome’s trailing end.

Translation initiation is a multi-step process which
is different in prokaryotic and eukaryotic cells. We
model translation initiation as a one-step process
occurring at rate α in which a new ribosome is
recruited at the start codon so that its P-site and
A-site are positioned at the first and second codon,
respectively. This one-step process thus encompasses
both prokaryotic and eukaryotic translation initiation
mechanisms.

During elongation, a ribosome at codon i receives
an amino acid from the corresponding tRNA and

translocates to the next codon at rate ωi, provided
there is no ribosome at codon i + ℓ. Translation
terminates once a ribosome A-site reaches the stop
codon, releases the polypeptide chain and unbinds from
the mRNA at rate β. For each codon i = 2, . . . , L we
define the corresponding ribosome occupancy number
τi ∈ {0, 1},

τi =











1 if codon i is occupied by a ribosome

A-site

0 otherwise

(1)

These numbers uniquely determine the configuration
of the system which we denote by C = {τ2, . . . , τL}.
Using this notation, kinetic steps in translation can be
summarised as:

(initiation): τ2 = 0
α

−→ 1 if τ2 = . . . = τℓ+1 = 0 (2a)

(elongation): τi, τi+1 = 1, 0
ωi−→ 0, 1 if τi+ℓ = 0

i = 2, . . . , L− 1 (2b)

(termination): τL = 1
β

−→ 0. (2c)

Equations (2a)-(2c) constitute the basic model of
mRNA translation proposed by MacDonald, Gibbs and
Pipkin in 1968 [1].

2.2. More realistic models

In addition to the basic model we also consider
premature termination by ribosome drop-off and
translation reinitiation due to mRNA circularisation.
Ribosome drop-off is a translational error which results
in the ribosome being released from the mRNA along
with a non-functional polypeptide that is targeted for
degradation. We model ribosome drop-off as a one-step
process in which a ribosome at codon i = 2, . . . , L− 1
unbinds from the mRNA at rate µ,

(ribosome drop-off): τi = 1
µ

−→ 0 (2d)

for i = 2, . . . , L − 1. Translation reinitiation is a
mechanism by which the ribosome that just finished
translation may pass directly from the 3’ end to
the 5’ and initiate another round of translation (see
[15] and references therein). This is made possible
by interactions between the two ends of the mRNA
resulting in a mRNA circularisation [26], also known as
the closed-loop model (for a recent review see Ref. [27].
In the lack of more details about the exact translation
reinitiation mechanism, we consider the simplest one-
step process in which a ribosome recognises the stop
codon, releases the polypeptide chain and reinitiates
translation at rate γ,

(translation reinitiation): τ2, τL = 0, 1
γ

−→ 1, 0

if τ2 = . . . τℓ+1 = 0. (2e)

A schematic picture of the steps (2a)-(2e) is presented
in Fig. 2.
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Power series method for TASEP-based models 4

5'

5'

start codon

start codon

(a)

codon i

x

(b)

3'

3'

stop codon

stop codon

(c)

codon i

3'

5'

codon i

(d) (e)

3'

5'

Figure 2. A schematic picture of all the kinetic steps included in the model along with their corresponding rates: (a) initiation
(rate α), (b) elongation (codon-specific rate ωi), (c) termination (rate β), (d) ribosome drop-off (rate µ) and (e) reinitiation (rate
γ).

There are other details that we do not consider
here. For example, we consider translation initiation to
be a one-step process and thus we do not discriminate
between prokaryotic and eukaryotic translation. This
can be corrected by including more steps involved in
translation initiation, which would help to elucidate
determinants of translation initiation rate, for example
its dependence on initiation factors and mRNA
secondary structures upstream of the start codon
[28]. Unfortunately, the rate constants involved in
translation initiation steps are in general not known
and have to be inferred from experiments, which is a
difficult task [29].

Another possible extension of the basic model is
to include more steps involved in the elongation cycle
[30–32]. The power series method is applicable to such
models, which was demonstrated in Ref. [19] on a two-
step elongation cycle that accounts for tRNA delivery
to the ribosome A-site followed by translocation [20,
23]. The method presented in this paper can be also
applied to a recently proposed mechanism of premature
termination caused by ribosome collisions [33,34].

An important detail of mRNA translation that we
do not consider here are mRNA secondary structures
downstream of the start codon. All mRNA secondary
structures must be unfolded by the ribosome, which
can slow or even stop its progress along the mRNA.
Some of these pauses are programmed by ‘slippery’
sequences such as AAAAAAG leading to beneficial
frameshifting [35]. Recent experiments have greatly
elucidated the mechanism by which a ribosome passes
through the mRNA secondary structures [36–38],
which could serve as a basis for building more
realistic models of translation (for an early model
that accounted for translation of mRNA secondary
structures see Ref. [39]). In principle such details
can be studied with the present method but the

calculations may become cumbersome due to large
number of parameters.

2.3. Ribosome current and density

Our goal is to compute the rate of protein synthesis J
and ribosome (A-site) density ρi. The rate of protein
synthesis J is equal to the total current of ribosomes
leaving the stop codon,

J = β〈τL〉+ γ

〈

τL

ℓ+1
∏

i=2

(1− τi)

〉

. (3)

Here the first term is due to termination and the second
term is due to translation reinitiation. Th current J
is not conserved across the coding mRNA (unless we
ignore premature termination) and is different from the
current of ribosomes initiating translation

Jin = α

〈

ℓ+1
∏

i=2

(1− τi)

〉

+ γ

〈

τL

ℓ+1
∏

i=2

(1− τi)

〉

. (4)

For the rest of the codons the ribosome current
(number of ribosomes moving from codon i to codon
i+ 1 per second) is given by

Ji = ωi

〈

τi

i+ℓ
∏

j=i+1

(1− τj)

〉

, i = 2, . . . , L− 1. (5)

Other important observables are the ribosome (A-
site) density ρi at codon i and the average density ρ
defined as

ρi = 〈τi〉, (6)

ρ =
1

L− 1

L
∑

i=2

ρi. (7)

The averaging 〈. . .〉 in Eqs. (3)-(7) is taken with
respect to the steady-state probability P (C) to find the
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Power series method for TASEP-based models 5

Table 1. List of TASEP parameters for S. cerevisiae.

Parameter Variable Value Reference

number of codons L 25–4093 Ref. []
ribosome size ℓ 10 codons Ref. [25]
initiation rate α 0.005–4 s−1 Ref. [23]
elongation rate ωi 1–16 s−1 Ref. [23]
termination rate β 35 s−1 -
drop-off rate µ 1.4 · 10−3 s−1 Ref. [40]
reinitiation rate γ - -
reinitiation efficiency η 0–1 -

system in a configuration C,

〈. . .〉 =
∑

C

(. . .)P (C) = (8)

=
∑

τ2=0,1

. . .
∑

τL+1

(. . .)P (τ2, . . . , τL+1). (9)

The steady-state probability P (C) satisfies a master
equation,

0 =
∑

C′

W (C ′ → C)P (C ′)−
∑

C′

W (C → C ′)P (C),(10)

where W (C → C ′) denotes the rate of transition from
configuration C = {τ2, . . . , τL} to C ′ = {τ ′2, . . . , τ

′
L}.

2.4. Model parameters

In this paper we study S. cerevisiae as a model
organism using model parameters presented in Table
1.

Translation initiation rates were obtained in Ref.
[23] by matching a theoretical prediction for the
total density to the density obtained from polysome
profiling experiments [24]. We note that the TASEP-
based model used to estimate initiation rates in Ref.
[23] is different from the TASEP-based models we
consider here. Because our main goal here is to
assess the applicability of the power series method,
we use the same values for initiation rates as in Ref.
[23], but note that these may be different from the
true (physiological) values. Codon-specific translation
elongation rates ωi were computed according to

ωi =
kirtrans

ki + rtrans
, (11)

where ki is the tRNA delivery rate for the amino acid
corresponding to codon i and rtrans = 35 codons/s is
the rate of ribosome translocation [41]. The values of
ki are assumed to be proportional to tRNA gene copy
numbers and were taken from Ref. [23]. The rate of
termination is assumed to be large and not limiting
for translation; for that purpose we set β = γ = 35
s−1. The rate of ribosome drop-off is assumed to be
the same as for E. coli, whose value was estimated at
1.4 · 10−3 s−1 in Ref. [40]. We are not aware of any

estimates of the reinitiation rate γ in the literature.
Instead we introduce a new parameter 0 ≤ η ≤ 1 that
we call reinitiation efficiency,

η =
γ

γ + β
, γ =

ηβ

1− η
(12)

which measures the value of γ relative to the total
termination rate γ + β. For example, η = 0 and η = 1
correspond to γ = 0 and γ → ∞, respectively.

0.0 0.1 0.2 0.3 0.4 0.5
0

100

200

300
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initiation rate α [1/s]
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e
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o
f
g
e
n
e
s

S. cerevisiae

Figure 3. Distribution of translation initiation rates for the S.

cerevisiae genome taken from Ref. [23]. Vertical dashed lines are
quartile values 0.05578, 0.09037 and 0.13889.

2.5. Power series method

The power series method, previously developed in
Refs. [19, 42], represents P (C) as a power series in the
translation initiation rate α,

P (C) =

∞
∑

n=0

cn(C)αn, (13)

where cn(C) are unknown coefficients that depend on
configuration C and other rates. Here we summarise
the main idea behind this expansion. We first note that
the master equation (10) is a linear system of equations
in which the variables are the steady-state probabilities
P (C),

MP = 0, (14)

where P is a column vector made of all P (C) and M is
a square matrix whose matrix elements M(C,C ′) are
given by

M(C,C ′) =











W (C ′ → C), C 6= C ′

−
∑

C′′ 6=C

W (C → C ′′), C = C ′. (15)

The solution of this system is given by the following
expression

P (C) =
detM (C,C)

∑

C′ detM (C′,C′)
, (16)
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Power series method for TASEP-based models 6

where M (C,C) is a matrix derived from M by removing
the row and the column that correspond to the position
of P (C) in the column vector P. For example, if
P (C) is the second element in the column vector P

for a given C, then we obtain M (C,C) by removing the
second row and the second column from M . Next,
we note that M is made of all the transition rates
α, all ωi, β, γ and δ. Therefore detM (C,C) is a
multivariate polynomial in all these rates and so is
the denominator in (16). This means that P (C) is
a multivariate rational function of all the rates α, all
ωi, β, γ and δ and as such can be expanded around
zero in any of these rates. However, the power series
method will be useful only if the following two criteria
are met: (1) the expansion parameter is small so that
we can approximate the series with the first few terms
and (2) these terms are easy enough to find. We argued
in the Introduction that the translation initiation rate
α is a good candidate for the first criterion, due to a
common view in molecular biology that the translation
initiation is rate-limiting for translation. Later in this
Section we show that the second criterion is also met.

What happens if we expand P (C), for example,
in the drop-off rate δ? This rate is also thought
to be small, and therefore meets the first criterion.
However, it does not meet the second criterion, because
the zero-order term (δ = 0) in the expansion of
P (C) is unknown - it corresponds to the basic model
with codon-dependent elongation and reinitiation but
without premature termination. So although we can
expand P (C) around δ = 0, we cannot compute the
zero-order term and therefore the method is not useful
for finding P (C).

Another possibility is to expand P (C) in one of
the elongation rates, say ωi. For example, if we
starve the cell with an amino acid that corresponds
to the i-th codon, the elongation rate ωi may become
smaller than the initiation rate α. This makes ωi

a better choice for the expansion parameter than α.
However, expanding P (C) in ωi does not meet the
second criterion. The zero-order term (ωi = 0) is easy
to find, which corresponds to a long queue upstream
of the i-th codon. However, finding higher-order terms
turns out to be a difficult problem. Our method is
not applicable to such conditions. In the rest of the
paper we expand P (C) in α and assume that all the
elongation rates k2, . . . , kL−1 and the termination rate
β are larger than the initiation rate α:

(assumption): k2, . . . , kL−1, β < α. (17)

From the fact that all P (C) must sum to 1, we
immediately get that

∑

C

cn(C) =

{

1, n = 0

0 n ≥ 1.
(18)

Assuming the initiation rate α to be small allows us to
approximate series expansion of P (C) by the first K
terms (13)

P (C) ≈ c0(C) + c1(C)α+ . . .+ cK(C)αK . (19)

It needs to be emphasised that keeping only a finite
number of terms may lead to significant errors when
the rate of initiation is high. This in turn may lead
to non-physical values of P (C) < 0 or P (C) > 1. Of
course if that happens the method is not applicable for
that choice of α and one has to compute higher-order
terms.

In order to find cn(C), we insert the power series
(13) back into the master equation (10) and collect all
the terms that contain αn. These terms must all sum to
zero because the left hand side of the stationary master
equation (10) is equal to zero. Before we write down
a general expression for cn(C) we need to distinguish
between W (C → C ′) = α and W (C → C ′) 6= α. For
that purpose we introduce an indicator function IC,C′

defined as

IC,C′ =

{

1 C → C ′ is an initiation event

0 otherwise.
(20)

This allows us to write W (C → C ′) as

W (C → C ′) = αIC,C′ +W (C → C ′)(1− IC,C′)

= αIC,C′ +W0(C → C ′) (21)

where W0(C → C ′) = (1 − IC,C′)W (C → C ′).
Inserting P (C) from (13) into (10) and equating the
sum of all terms containing αn to 0 gives the following
equation for cn(C) for C 6= ∅

cn(C) =
1

e(C)

(

∑

C′

W0(C
′ → C)cn(C

′)

+
∑

C′

cn−1(C
′)IC′,C − cn−1(C)

∑

C′

IC,C′

)

,(22)

where e(C) is the total exit rate from C excluding
initiation

e(C) =
∑

C′

W0(C → C ′). (23)

For C = ∅ we can use Eq. (18) instead which gives

cn(∅) = δn,0 −
∑

C′ 6=∅

cn(C
′). (24)

The equation (22) applies to n ≥ 1. For n = 0 the
equation is simpler and reads

e(C)c0(C) =
∑

C′

W0(C
′ → C)c0(C

′) (25)

Notice that (25) is the same as the original master
equation in which the rate of initiation is set to 0. If
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Power series method for TASEP-based models 7

there is no initiation then c0(C) = 1 if C = ∅ and is 0
otherwise,

c0(C) =

{

1, C = ∅

0, otherwise.
(26)

The power series method can be understood as a
perturbation theory in which translation initiation
events can be seen as a small “perturbation” of the
empty lattice.

An important consequence of (26) is that any
cn(C) for which the index n is smaller than the total
number of ribosomes N(C) in C is equal to zero, or
alternatively

cn(C) 6= 0 only if n ≥ N(C) =

L
∑

i=2

τi. (27)

This result is not obvious but follows from the Markov
chain tree theorem [43] (also known as Schnakenberg
network theory in physics [44]). The theorem states
that the steady-state probability P (C) in Eq. (16)
can be interpreted as a sum over mathematical objects
known as spanning trees. For a given graph G
consisting of vertices connected by directed edges, a
spanning tree rooted at vertex C is a subgraph of
G that contains all the vertices of G but only a
subset of edges such that there is a unique path from
C to any other vertex C ′ of G. For the Markov
jump process described by Eq. (10), the vertices
of G are configurations C and the directed edges
are possible transitions between two configurations C
and C ′, weighted by the corresponding transition rate
W (C → C ′).

According to the Markov chain tree theorem,
P (C) can be written as

P (C) =

∑

T (C) w(T (C))
∑

C′

∑

T (C′) w(T (C
′))

, (28)

where T (C) is a spanning tree of G rooted at
configuration C and w(T (C)) is the product of all the
transition rates corresponding to the directed edges
contained in the spanning tree T (C). Let us now
consider a configuration C and let this configuration
has N ribosomes. We may ask: What spanning
trees T (C) rooted at C contribute to P (C)? By the
definition of T (C) there must be a unique path from
any C ′ to C; we choose C ′ = ∅, which is the empty
mRNA. In order to get from C ′ = to C that has
N ribosomes, we have to make at least N initiation
transitions (we can make more than N initiations
because some ribosome may terminate, either at the
stop codon or prematurely). Consequently, the weight
w(T (C)) cannot have terms with αn where n < N .
In other words, P (C) is of order of αN where N is
the number of ribosomes in C, which is equivalent to
the claim in Eq. (27). For more details we refer the

reader to Ref. [45] in which we proved (27) for the
standard TASEP with particles of size ℓ = 1, but the
same arguments pertain to the models studied in this
paper.

The result in (27) simplifies the calculation of
cn(C) considerably. For n = 1, we only have to
consider configurations with one ribosome (C = 1i
for i = 2, . . . , L) or less (C = ∅). For n = 2,
only configurations with two ribosomes (C = 1i1j ,
i = 2, . . . , L − ℓ, j = i + ℓ, . . . , L) or less (C = 1i
for i = 2, . . . , L and C = ∅) need to be studied and
so on. This simplification is central to the success of
the power series method, allowing us to solve many
TASEP-based models for which no exact solution is
known.

2.5.1. First-order approximation According to (27)
we can ignore all configurations with more than one
ribosome. Using (22) we get

c1(12) =
1

ω2 + µ
+

γ

ω2 + µ
c1(1L) (29a)

c1(1i) =
ωi−1

ωi + µ
c1(1i−1), i = 3, . . . , L− 1 (29b)

c1(1L) =
ωL−1

β + γ
cL−1(1L−1) (29c)

c0(∅) =
L−1
∑

i=2

µc1(1i) + βc1(1L). (29d)

Here we adopted a shorter notation in which 1i denotes
a configuration with ribosome at codon i, and the
rest of the mRNA is empty. First we solve equations
(29b) and (29c) recursively yielding coefficients c1(1i)
for i = 3, . . . , L that depend on c1(12). After that we
insert c1(1L) back into equation (29a) and find c1(12).
Once we have found c1(12) we solve the rest of the
equations recursively. Altogether the solution is

c1(1i) =

∏i
j=2

ωj

ωj+µ

ωi

(

1− γ
β+γ

∏L−1
j=2

ωj

ωj+µ

) , 2 ≤ i ≤ L− 1(30a)

c1(1L) =

∏L−1
j=2

ωj

ωj+µ

(β + γ)
(

1− γ
β+γ

∏L−1
j=2

ωj

ωj+µ

) (30b)

c1(∅) = −
L
∑

i=2

c1(1i). (30c)

In the last expression we used the property in (18)
which says that all first-order coefficients must sum to
zero.

2.5.2. Second-order approximation For the second
order, c2(C) 6= 0 only if C contains at most
two particles. The equations for c2(C) are more
complicated than for c1(C) and must be solved
numerically.
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Power series method for TASEP-based models 8

Before we write the equations, we first introduce
Kronecker delta function δij and unit step function θ[i]
defined as

δij =

{

1 i = j

0 i 6= j
θ[i] =

{

1 i ≥ 0

0 i < 0
. (31)

These two functions allows us to write the equations
for c2(C) in a compact form which reads

c2(1i1j) =
δi,2

e(1i1j)
c1(1j) +

θ[i− 3]ωi−1

e(1i1j)
c2(1i−11j)

+
θ[j − i− ℓ− 1]ωj−1

e(1i1j)
c2(1i1j−1)

+
δi,2θ[L− ℓ− j]γ

e(1i1j)
c2(1j1L), (32)

where e(1i1j) is the total exit rate from configuration
1i1j excluding initiation,

e(1i1j) = θ[j − i− ℓ− 1]ωi + (1− δj,L)ωj + δj,Lβ

+ θ[i− ℓ− 2]δj,Lγ + 2µ. (33)

Without reinitiation (γ = 0), c2(1i1j) depends only
on c2(1i−11j) and c2(1i1j−1), except for i = 2 for
which it also depends on the known coefficient c1(1j).
The equation (32) for γ = 0 can be thus solved
recursively starting from i = 2 and j = 2+ ℓ, for which
c2(121ℓ+2) = c1(1ℓ+2)/(ωℓ+2 + 2µ), and iterating over
i = 2, . . . , L− ℓ and i+ ℓ ≤ j ≤ L.

This procedure cannot be immediately applied to
the model with reinitiation (in which γ > 0), because
c2(121j) also depends on c2(1j1L) for ℓ + 2 ≤ j ≤
L− ℓ. Instead, the idea is to find coefficients c2(1j1L)
independently and insert them back into Eq. (32),
which can be then solved as before.

To this end, we start from i = 2 and j = ℓ + 2
in which case c2(121ℓ+2) is a linear combination of
c1(1ℓ+2) and c2(1ℓ+21L),

c2(121ℓ+2) =
1

e(121ℓ+2)
c1(1ℓ+2)

+
γ

e(121ℓ+2)
c2(121ℓ+2) (34)

Next, we iterate Eq. (32) over ℓ+ 3 ≤ j ≤ L for fixed
i = 2, which can be done explicitly yielding

c2(121j) =

j
∑

m=ℓ+2

[

F
(m)
2,j c2(1m1L) +G

(m)
2,j c1(1m)

]

, (35)

where F
(m)
2,j and G

(m)
2,j are given by

F
(m)
2,j = γθ[L− ℓ−m]G

(m)
2,j , (36a)

G
(ℓ+2)
2,j =

1

e(121ℓ+2)

j−1
∏

k=ℓ+2

Bk (36b)

G
(m)
2,j =

1

e(121m)

∏j−1
k=ℓ+2 Bk

∏m−1
k=ℓ+2 Bk

, m = ℓ+ 3, . . . , L, (36c)

and Bk = ωk/e(121k+1). If we now choose j = L
we get what we were looking for – an equation that
contains coefficients c2(1m1L) and c1(1m). We can
now repeat this procedure for i = 3 by iterating
over j until we get the equation for c2(131L), which
will again contain c2(1m1L) and c1(1m) and so
on. At the end of this procedure we will have a
linear system of L − ℓ − 1 equations for L − ℓ − 1
coefficients c2(121L), . . . , c2(1L−ℓ1L) that can be solved
numerically using standard techniques. Once these
coefficients are computed, we can then proceed to
iterate Eq. (32) as we did before for the model without
reinitiation.

Once all two-particle second order coefficients are
computed, we can easily compute the remaining one-
particle coefficients c2(1i) from the following equations,

c2(12) =
1

ω2 + µ
c1(∅) + βc2(121L) +

γ

ω2 + µ
c2(1L)

+ µ
L−1
∑

j=ℓ+2

c2(121j) (37a)

c2(1i) =
ωi−1

ωi + µ
c2(1i−1) + θ[L− ℓ− i]βc2(1i1L)

+ µ
i−ℓ
∑

j=2

c2(1j1i) + µ
L−1
∑

j=i+ℓ

c2(1i1j)

− θ[i− ℓ− 2]c1(1i), i = 3, . . . , L− 1 (37b)

c2(1L) =
ωL−1

β + γ
cL−1(1L−1)− c1(1L)

+ µ

L−ℓ
∑

j=2

c2(1j1L). (37c)

Finally, we can compute c2(∅) using Eq. (18), which
completes the procedure of finding all second-order
coefficients c2(C).

2.5.3. Higher-order approximations. In principle, we
can use Eq. (22) to compute cn(C) for any order n.
In practice, we are limited by the amount of computer
memory we need for storing these coefficients, which is
the only limitation if we ignore translation reinitiation.
In the model with translation reinitiation, we are
further limited by the size of the linear system that
can be solved numerically. In the present work we
computed ribosome density up to the fourth order in
the model without reinitiation and up to the second
order in the model with reinitiation.

2.6. Monte Carlo simulations

All Monte Carlo simulation were performed using the
Gillespie algorithm. In the first part of the simulation
we checked the total density ρ every 100 · L updates
until the percentage error between two values of the
total density ρ was less than 0.1%. After that we ran
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Power series method for TASEP-based models 9

the simulation for further M = 104 · L updates during
which we computed the time average of ρi defined as

ρi =
1

T

M
∑

k=1

τ
(k)
i ∆t(k+1), (38)

where τ
(k)
i is the value of τi (1 if codon i is occupied by

the ribosome’s A-site and 0 otherwise) at k-th update
in the simulation, ∆t(k) = t(k) − t(k−1), t(k) is the time
of the k-th update, t(0) = 0 and T = t(M).

3. Results

3.1. First-order approximation does not account for

ribosome interference

Using (26) and (30a)-(30b) we can compute ribosome
density ρi and protein synthesis rate J up to the linear
order in α,

ρi ≈
α

ωi

∏i
j=2

ωj

ωj+µ
(

1− γ
β+γ

∏L−1
j=2

ωj

ωj+µ

) , 2 ≤ i ≤ L− 1 (39a)

ρL ≈
α

β + γ

∏L−1
j=2

ωj

ωj+µ
(

1− γ
β+γ

∏L−1
j=2

ωj

ωj+µ

) (39b)

J ≈
α
∏L−1

j=2
ωj

ωj+µ
(

1− γ
β+γ

∏L−1
j=2

ωj

ωj+µ

) . (39c)

These results are similar to the ones obtained by
Gilchrist and Wagner using a deterministic model
of mRNA translation that includes codon-specific
elongation rates, ribosome drop-off and mRNA
circularisation but ignores ribosome interference [11].
This similarity is not a coincidence but comes from the
fact that first order includes configurations with only
one ribosome.

Another interesting prediction from the first order
is that the impact of reinitiation strongly depends on
the rate of premature termination. That is expected
because reinitiation due to mRNA circularisation can
only happen if the ribosome has not terminated
translation prematurely. The strongest effect is thus
when premature termination does not occur, i.e. when
µ = 0. In that case the products in Eqs. (39a)-(39c)
are equal to 1 and the resulting ribosome density and
current read

ρi ≈
α(1 + γ/β)

ωi

, i = 2, . . . , L− 1 (40a)

ρL ≈
α

β
(40b)

J ≈ α

(

1 +
γ

β

)

. (40c)

From here we conclude that in the first-order
approximation reinitiation has the same effect as
increasing initiation rate from α to α(1 + γ/β).

In principle, the first order is a good approxima-
tion of the steady state provided the ribosomes on the
mRNA are well separated, so that the ribosome colli-
sions are negligible. In practice, that means that all
the ratios α/ωi and γ/β are much smaller that 1, so
that the overall ribosome density is small. What also
matters, according to Eq. (48a), is that the ratio of
ki/ki+ℓ is close to 1 or smaller, otherwise there will
be significant contributions to the second order, as we
show later in the paper. This occurs if there is a ‘fast’
codon at site i and a ‘slow’ codon at site i + ℓ caus-
ing a traffic jam, in which case the ribosomes are not
well separated and the first order may not be a good
approximation in that part of the mRNA.

3.2. Second-order approximation accounts for

ribosome interference

In the Methods we described in detail how to find all
second-order coefficients. This allows us to compute
local density ρi and current J up to the second order
in α,

ρi = ρ
(1)
i α+ ρ

(2)
i α2 (41)

J = J (1)α+ J (2)α2, (42)

where linear coefficients ρ
(1)
i and J (1) are given in Eqs.

(39a) and (39c), respectively, and the second-order

coefficients ρ
(2)
i and J (2) read

ρ
(2)
i = c2(1i) +

i−ℓ
∑

j=2

c2(1j1i) +

L
∑

j=i+ℓ

c2(1i1j) (43)

J (2) = (β + γ)c2(1L) + β

L−ℓ
∑

j=2

c2(1j1L)

+ γ

L−ℓ
∑

j=2+ℓ

c2(1j1L). (44)

Figure 4 shows ribosome density (first 50
codons) for two genes of S. cerevisiae, YDR223W
and YDR233C, computed using the model without
reinitiation. These two genes have translation
initiation rate smaller than the first quartile and
larger than the third quartile of all initiation rates,
respectively (see Figure 4). On the left are density
profiles computed using the first order and compared
with the results of Monte Carlo simulations. As
expected, the agreement is worse for the gene that has
a larger value of α. On the right are density profiles
obtained using the second order, which agree well with
the results of Monte Carlo simulations.

In Figure 5 we show ribosome current Ji across the
mRNA, computed from Eq. (5) for the same two genes
as before and using the model without reinitiation.
Unlike the density, the first-order approximation of
the current already shows a significant discrepancy
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Power series method for TASEP-based models 10
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Figure 4. Density profiles (first 50 codons) for S. cerevisiae genes YDR233W and YDR233C. On the left and right are density
profiles computed using the first and second order, respectively, and compared to the results of Monte Carlo (MC) simulations.
Translation initiation rates are 0.02846 for YDR223W and 0.21425 for YDR233C. All results were obtained assuming ribosome
drop-off rate µ = 1.4 · 10−3 s−1 and no translation reinitiation (γ = 0).
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Figure 5. Ribosome current Ji across the mRNA for S. cerevisiae genes YDR233W and YDR233C, computed from Eq. (5). Solid
black line is the result of stochastic simulations, while red and blue dashed lines represent first-order and second-order approximation,
respectively. All results were obtained assuming ribosome drop-off rate µ = 1.4 · 10−3 s−1 and no translation reinitiation (γ = 0).

compared to Monte Carlo simulations for both genes.
As expected, the discrepancy is reduced when using
second-order approximation.

3.3. Effect of ribosome interference on second-order

coefficients

Because the second order must be computed numeri-
cally, how exactly the second-order coefficients are af-
fected by ribosome interference is not immediately ob-
vious. If we imagine a mathematical model in which
ribosome interference is ignored, we would expect P (C)
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Power series method for TASEP-based models 11

to be a product of single-particle weights c1(1i)α

P (C) =
1

ZL

N(C)
∏

j=1

αc1(1X(j))

=
1

ZL

L
∏

i=2

[τic1(1i)α+ (1− τi)] , (45)

where N(C) is the number of particles in C, X(j) is

the position of the j-th particle and ZL =
∏L

i=2(1 +
c1(1i)α) is the normalisation (see Ref. [19] for more
details in which we termed this approximation the
independent particle approximation or IPA). Taking
C = 1i1j and expanding P (C) in α up to the quadratic
order we get

c2(1i1j)
IPA
= c1(1i)c1(1j). (46)

Going back to the model with exclusion, we can
write c2(1i1j) as

c2(1i1j) = c1(1i)c1(1j)g2(1i1j). (47)

where g(1i1j) measures the deviation from the IPA (for
which g(1i1j) = 1), i.e. the effect of exclusion. The
equations for g2(1i1j) for i 6= 2 and j 6= L read

g2(1i1i+ℓ) =
e(1i)

e(1i+ℓ)
g2(1i−11i+ℓ), i 6= 2 (48a)

g2(1i1j) =
e(1i)

e(1i) + e(1j)
g2(1i−11j)

+
e(1j)

e(1i) + e(1j)
g2(1i1j−1), i 6= 2, j 6= L, (48b)

where e(1i) = (1 − δi,L)(ωi + µ) + δi,Lβ. We notice
that Eq. (48b) could be solved by setting all g2 to 1,
however that would violate the initial equation (48a).
On the other hand, both e(1i)/(e(1i) + e(1j)) and
e(1j)/(e(1i) + e(1j)) in Eq. (47) are strictly less than
1, which means that any deviation of g2 from 1 in Eq.
(48a) will be attenuated by subsequent iterations of
Eq. (48b). Therefore we expect to find g2(1i1j) ≈ 1
when codons i and j are far apart, i.e.

c2(1i1j) ≈ c1(1i)c1(1j) for |i− j| ≫ ℓ. (49)

Certainly, the effect of exclusion is strongest when
the ribosomes are next to each other, i.e. for j =
i + ℓ. In that case there is either a magnification
(e(1i) > e(1i+ℓ)) or reduction (e(1i) < e(1i+ℓ)) in
g2(1i1j) compared to the IPA that is carried over to
the surrounding codons.

In Figure 6 we plot g2(1i1j) for YDR233C gene as
a function of j for several values of i. As predicted, the
deviation of g2(1i1j) from 1 is the largest at j = i + ℓ
and eventually decays to 1 as j gets away from i.
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Figure 6. The coefficient g2(1i1)j) for YDR233C as a
function of j for several values of i and assuming no translation
reinitiation.

3.4. High-order approximations are needed for genes

with high initiation rates

As the rate of initiation increases, using the first-
order or second-order approximation may lead to
significant errors. In Figure 7 we demonstrate this
for gene YOR045W, which has a relatively large
value of α = 0.35423 and total ribosome density
ρ = 0.03256 (approximately 33% of the maximum
theoretical density 1/ℓ = 0.1). On the left are density
profiles computed using first-order and second-order
approximation and compared to the results of Monte
Carlo simulations. On the right is the density profile
obtained using the fourth-order approximation, which
agrees well with the results of Monte Carlo simulations.
Similar conclusions can be made for the ribosome
current Ji across the mRNA., see Figure 8.
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Figure 8. Ribosome current Ji across the mRNA for S.

cerevisiae gene YOR045W, computed from Eq. (5). Solid black
line is the result of stochastic simulations, while red, blue, orange
and green dashed lines represent first-order, second-order, third-
order and fourth-order approximation, respectively. All results
were obtained assuming ribosome drop-off rate µ = 1.4 · 10−3

s−1 and no translation reinitiation (γ = 0).
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Figure 7. Ribosome density profiles for S. cerevisiae gene YOR045W. On the left and right are density profiles computed using
the second and fourth order, respectively, and compared to the results of Monte Carlo (MC) simulations. Translation initiation rate
is 0.35423. All results were obtained assuming ribosome drop-off rate µ = 1.4 · 10−3 s−1 and no translation reinitiation (γ = 0).

3.5. Translation reinitiation has the same effect as

increasing initiation rate

In Figure 9 we present density profiles for two genes,
YDR223W and YDR233C, obtained using a model
with translation reinitiation with reinitiation efficiency
set to η = 0.2.

For gene YDR223W, which has a small value
of α, the agreement between the second-order
approximation and results of Monte Carlo simulations
is excellent. On the other hand, there is a visible
discrepancy between the second-order approximation
and results of Monte Carlo simulations for gene
YDR233C, which has a relatively large value of
α. This result is expected because translation
reinitiation increases the number of ribosomes that
initiate translation, which in turn may require more
terms in the series expansion. Therein lies the
problem–computing higher-order terms in the model
with translation reinitiation is not as straightforward
as without reinitiation, because it involves solving a
linear system of equations. For example, to compute
the third order we need to solve a system of roughly
L2 equations for the unknown coefficients c2(1i1j1L).
For a typical gene of L = 300 codons that is 90000
equations. Thus the power series method may not be
a feasible approach for solving TASEP-based models of
translation with reinitiation beyond the second order.

This problem motivates to ask if the model
with translation reinitiation can be replaced with an
effective model without reinitiation but in which the
rate of translation initiation is set to a higher value
αeff > α. This value must be such that

αeff =
Jin

〈

∏ℓ+1
i=2(1− τi)

〉 = α+ γ

〈

τL
∏ℓ+1

i=2(1− τi)
〉

〈

∏ℓ+1
i=2(1− τi)

〉

= α+
J − β〈τL〉

〈

∏ℓ+1
i=2(1− τi)

〉 (50)

where Jin is the total influx of ribosomes initiating
translation, Eq. (4), and the denominator is the
probability that the first ℓ = 10 codons are not
occupied by another ribosome’s A-site. From here we
can express the effective initiation rate αeff in terms of
Jin, J and 〈τL〉 as

αeff =
α

1− (J − β〈τL〉)/Jin
. (51)

We can check that αeff = α when γ = 0 in which case
J = β〈τL〉.

In order to test whether we can replace the
model with reinitiation (γ > 0) with a model without
reinitiation (γ = 0) but with an effective initiation rate
αeff, we first use stochastic simulations to compute
the values of Jin, J and 〈τL〉 for the model with
reinitiation. We then use Eq. (51) to find the effective
initiation rate αeff, and use that rate in stochastic
simulations of the model without reinitiation. So at
this point we are not using the power series method
at any point, we are only testing if we can replace the
original model with a simpler one.

In Figure 10 we present density profiles for genes
YDR233C and YOR045W obtained using Monte Carlo
simulations of the model with reinitiation η = 20%
and the effective model without reinitiation. For both
genes we find an excellent agreement between the two
models. Next, we consider η = 90% for YOR045W
and YKL036C. Both of these two genes have high
initiation rates belonging to the last quartile in Figure
3. In fact, YKL036C has the largest initiation rate
of all S. cerevisiae genes estimated at the value of
α = 4.1 initiations/s, for which the power series
method is inapplicable. In Figure 11 we present density
profiles obtained using Monte Carlo simulations of the
model with reinitiation η = 90% and the effective
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Figure 9. Density profiles (first 50 codons) for S. cerevisiae genes YDR233W and YDR233C. On the left and right are density
profiles computed using the first and second order, respectively, and compared to the results of Monte Carlo (MC) simulations.
Translation initiation rates are 0.02846 for YDR223W and 0.21425 for YDR233C. All results were obtained assuming ribosome
drop-off rate µ = 1.4 · 10−3 s−1 and translation reinitiation with η = 0.2.

model without reinitiation. Again, we find an excellent
agreement between the two models.

This result has two important implications. The
first one is technical–we can apply the power series
method to the effective model (provided the effective
initiation rate αeff is smaller than any of the elongation
and termination rates) and avoid the problem of
solving a linear system of equations. The second one
is biological. In experiments the rates of the model are
typically unknown and have to be inferred from the
data. For example, if we want to estimate the rate
of initiation α by matching theoretical density ρ(α)
to the experimental density from polysome profiling
experiments, as it was done in Ref. [23], we cannot
truly distinguish reinitiation from de novo initiation.
In other words, the evidence for translation reinitiation
may be very difficult to find experimentally because the
effect of translation reinitiation is the same as de novo

initiation at a higher rate.

4. Discussion

Our first main result is that the power series method
is applicable to the TASEP with ribosome drop-

off and translation reinitiation. This complements
previous work in which the method was applied to
the TASEP with multi-step elongation [19]. We
tested the method on Saccharomyces cerevisiae under
physiological conditions and found that the model-
predicted ribosome density and current are faithfully
described by the second-order approximation for most
of the genes. Interestingly, second order is the lowest
order at which ribosome interference occurs, suggesting
that ribosome interference does have an effect on
translation. This is clearly visible for genes with high
initiation rates belonging to the last quartile in Figure
3, for which higher-order approximations are needed
to describe the data. In that sense the statement
often found in biology that initiation is rate-limiting
for translation is true [46], but incomplete–translation
elongation does have an effect on translation.

Our second main result is an iterative algorithm
that computes ribosome density and current up to any
order. This is a significant improvement over previous
work that considered only second order [19]. However,
computing orders beyond the second is limited to the
model without translation reinitiation. The problem
is that reinitiation does not allow for the coefficients
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Figure 10. Density profiles for S. cerevisiae genes YDR233W (first 50 codons) and YDR233C (all codons), obtained using Monte
Carlo simulations of the model with reinitiation (η = 0.2) and the effective model without reinitiation (η = 0). Translation
initiation rates are α = 0.21425 for YDR233C and 0.35423 for YOR045W. All results were obtained assuming ribosome drop-off
rate µ = 1.4 · 10−3 s−1.
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Figure 11. Density profiles for S. cerevisiae genes YOR045W and YKL036C, obtained using Monte Carlo simulations of the model
with reinitiation (η = 0.9) and the effective model without reinitiation (η = 0). Translation initiation rates are α = 0.40965 for
YOR045W and 4.1966 for YKL036C. All results were obtained assuming ribosome drop-off rate µ = 1.4 · 10−3 s−1.

cn(C) in Eq. (13) to be found recursively starting
from a configuration with all ribosomes stacked to the
left, as it is the case in the model without reinitiation.
Instead one must first solve a closed linear system of
equations for the coefficients cn(C) with n-th ribosome
at the last codon site (the stop codon). The number of
such coefficients is of the order of Ln−1, which becomes
too large for n > 2 given a typical gene length in
hundreds of codons. Another serious limitation is that
the number of all configurations contributing to n-th
order is of order of Ln. This is a problem because
the coefficients are computed recursively and need to
be stored during the recursion process in Eq. (22),
which limits how large n and L can be. In practice, we
expect memory shortage for computations beyond the
third order for typical mRNAs consisting of hundreds
of codons. It may be possible to compute high-order
terms for short genes though, such as the fourth order
that we computed for YOR045W (L = 61 codons) in
Figure 7.

As with any perturbation theory in physics, such

as the power series method presented here, computing
high-order terms becomes progressively more difficult.
We can then ask what is the advantage of the power
series method compared to stochastic simulations and
what biological insight we can get from it?

The power series method was developed in Ref.
[19] in order to understand how the protein production
rate depends on the initiation and elongation rates,
which is a long-standing problem in molecular biology,
especially in the context of codon optimisation
[47]. This problem is too difficult to study with
stochastic simulations alone, because there are too
many parameters that can be varied.

When the power series method was applied to the
basic TASEP with two-step elongation in Ref. [19], it
revealed that the protein production rate per mRNA
is predominantly determined by the rate of initiation
and the rate of elongation of the first 10 codons,
which is the size of the ribosome (in codons). In
this paper the power series method further elucidated
how ribosome jamming may occur at codons for which
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the ratio ωi/ωi+ℓ is much larger than 1, i.e. when
a ’slow’ codon is ℓ = 10 codons downstream of a
’fast’ codon. Furthermore, the first-order expression
for the ribosome current in Eq. (40c), J = α(1 + γ/β)
prompted us to replace the model with reinitiation with
a simpler model without an effective initiation rate.

Another useful application of the power series
method is when the model parameters are not known
and thus have to be inferred from the experimental
data. For example, the data can be ribosome density
profiles obtained from ribosome profiling (Ribo-seq)
experiments [25]. The problem is then to match
the density profile of the model to the experimental
data, which amounts to solving a system of L
nonlinear equations. There are nonlinear optimisation
algorithms that are built for this problem, however
what is computationally expensive is to run stochastic
simulations for every iteration of the algorithm.
Instead, even the third-order calculations are fast
(assuming no reinitiation), allowing the optimisation to
finish in a reasonable time. This approach was recently
developed in Ref. [48] and successfully applied to S.

cerevisiae Ribo-seq data.
TASEP-based models of translation are usually

studied using stochastic simulations (generated by the
Gillespie algorithm) or using mathematical approxi-
mations (called mean-field approximations) that ig-
nore correlations between two neighbouring ribosomes
[1,2,8]. Power series method is the only mathematical
method available that can account for these correla-
tions, other that the stochastic simulations. Put differ-
ently, the only approximation in the derivation of P (C)
is that the power series is approximated by a polyno-
mial. This is markedly different from the mean-field
approximations of Refs. [1, 2, 8] that explicitly ignore
correlations between two neighbouring ribosomes (see
Ref. [45] in which this difference was demonstrated for
the TASEP with particles of size ℓ = 1).

In this work we studied the effect of ribosome-
ribosome correlations on the second-order coefficients
c2(1i1j) for the TASEP without translation reinitia-
tion. The strongest correlations were found for ribo-
somes that are next to each other (j = i + ℓ), with
the strength of correlations depending on the ratio
(ωi + µ)/(ωi+ℓ + µ). For (ωi + µ)/(ωi+ℓ + µ) < 1
((ωi + µ)/(ωi+ℓ + µ) > 1), the density at codon i is
smaller (larger) than it would be on a mRNA com-
posed of only one ribosome. Taking this further, if we
could arrange codons in a sequence such that

ω2 < ω3 < . . . < ωL, (52)

then according to the second-order approximation,
the total ribosome density for that sequence would
be minimal compared to the same choice of codons
arranged in a different sequence. Since ribosomes are
highly costly in terms of cellular energy, it makes

sense for the cell to reduce ribosome density and avoid
ribosome queuing. This explanation is also known
as the ramp hypothesis and may explain why the
preference for slower codons is typically found at the
beginning of the mRNA [49–51]. Our hypothetical
arrangement in Eq. (52), which could be considered
as a perfect ramp, is unlikely to occur in real codon
sequences due to other evolutionary factors driving
codon usage. Nevertheless, our findings may provide
the first step in understanding the origin of the ramp
from a mathematical point of view.

5. Conclusions

We have presented a versatile method for studying
TASEP-based models of translation that account for
several mechanistic details of the translation process:
codon-dependent elongation, premature termination
and mRNA circularisation. We have applied
our method to the model organism Saccharomyces

cerevisiae using realistic estimates for the model’s
parameters under physiological conditions (except for
the value of the reinitiation rate which is, to the best
of our knowledge, unknown).

In the model without reinitiation, we find an
excellent agreement for the ribosome density and
current with the results of stochastic simulations using
approximations up to the fourth order of the power
series expansion. In order to obtain these results we
devised an algorithm that can, in principle, compute
any order of the power series expansion. In practice,
the program is limited only by the amount of memory
used for storing the coefficients.

Once the reinitiation is introduced in the model,
the power series method becomes too cumbersome to
do beyond the second order. However, the first order
calculation revealed that the effect of reinitiation is
similar to setting the rate of reinitiation to zero but
increasing the rate of de novo initiation. We tested
this hypothesis for several genes and found that the
simpler model without reinitiation correctly describes
the model with reinitiation. In the biological context
this result suggests that the effect of reinitiation
on translation cannot be easily distinguished from
de novo initiation, for example if the only available
experimental data are ribosome density profiles.

The main advantage of the presented method is
that it is robust, in the sense that it can be applied
to many realistic models of translation. The case of
multi-step elongation was already studied in Ref. [19].
Interactions between ribosomes that are more complex
than the simple exclusion can also be included in the
model, for example premature termination caused by
ribosome collisions [33,34].

There are also general limitations to the power
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series method that we wish to emphasise. The
method is applicable only to the initiation-limited
regime, in which the rate of initiation is smaller than
the elongation rates of individual codons and the
termination rate. In S. cerevisiae under physiological
conditions there are few genes with very high initiation
rates that do not meet this criterion. Our approach
also excludes the case of amino acid starvation that
may cause the elongation rates to be smaller than the
initiation rate. Finally the method is applicable on
to the steady state and thus cannot take into account
finite lifetime of the mRNA.

While the TASEP as a model for translation has
been proposed half a century ago, it has only recently
become a common tool in computational biology. Our
goal for the future is to make the presented method a
standard tool for analysing biological data e.g. from
ribosome profiling experiments, which would give us
a better understanding of the translation process and
allow us to address open questions in the cell biology.
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