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tAbstract

We compare side chain prediction and packing of core and non-core regions of soluble pro-

teins, protein-protein interfaces, and transmembrane proteins. We first identified or created

comparable databases of high-resolution crystal structures of these three protein classes. We

show that the solvent-inaccessible cores of the three classes of proteins are equally densely

packed. As a result, the side chains of core residues at protein-protein interfaces and in the

membrane-exposed regions of transmembrane proteins can be predicted by the hard-sphere

plus stereochemical constraint model with the same high prediction accuracies (> 90%) as

core residues in soluble proteins. We also find that for all three classes of proteins, as one

moves away from the solvent-inaccessible core, the packing fraction decreases as the solvent

accessibility increases. However, the side chain predictability remains high (80% within 30◦)

up to a relative solvent accessibility, rSASA . 0.3, for all three protein classes. Our results

show that ≈ 40% of the interface regions in protein complexes are ‘core’, i.e. densely packed

with side chain conformations that can be accurately predicted using the hard-sphere model.

We propose packing fraction as a metric that can be used to distinguish real protein-protein

interactions from designed, non-binding, decoys. Our results also show that cores of mem-

brane proteins are the same as cores of soluble proteins. Thus, the computational methods

we are developing for the analysis of the effect of hydrophobic core mutations in soluble

proteins will be equally applicable to analyses of mutations in membrane proteins.

1 Introduction

The computational design of protein-protein interfaces [1–9] and the prediction of the struc-

ture of transmembrane proteins [10–12] are still unsolved problems. For example, in a recent

Critical Assessment of Prediction of Interactions (CAPRI) competition [4], researchers were

given a set of models of 21 protein-protein complexes, 20 of which fail to bind in experiments,

and challenged to find the one true protein-protein complex [13]. Only two out of 28 groups

correctly identified the pair that binds in experiments. If we are unable to distinguish true
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tcomplexes from decoys, how can we expect to accurately design new complexes? Several

computational designs have been successful, but these have involved testing many of the

computational designs experimentally before finding one that works or have used methods

that are not effective across different protein design problems [5, 14–18].

Membrane proteins comprise nearly 30% of the proteome. They perform vital functions,

including electron transport, ion conductance, and signal transduction. Nevertheless, we

currently only have a rudimentary understanding of their structure and thermodynamic sta-

bility [19–21]. For example, we do not know whether membrane proteins are fundamentally

different from soluble proteins. Specifically, are membrane proteins less, more, or equally

well-packed as soluble proteins? One conjecture is that to achieve thermodynamic stability,

membrane proteins must be more densely packed than soluble proteins, because the hy-

drophobic effect does not contribute to their stability [22]. Conversely, others have argued

that because many membrane proteins transduce signals across the membrane, they must

be more flexible and loosely packed compared to soluble proteins [23–25]. Clearly, to un-

derstand their structure, much less to design new membrane proteins, we must answer this

question.

We believe that an improved fundamental understanding of protein structure will aid in

the development of predictive computational tools for protein design. A defining feature of

our strategy is that we start with simple models and test their ability to predict features of

protein structure that are seen in high resolution crystal structures. Such predictability is

the key metric of success in protein design. In prior work, we investigated the range and

limits of the predictability of protein side chain conformations for uncharged amino acids,

using a simple repulsive-only hard-sphere plus stereochemical constraint model [26–33]. We

showed that the hard-sphere model, when applied to a dipeptide mimetic (Fig. 1), is able to

predict the side chain dihedral angle distributions observed in natural proteins for most of the

uncharged residues (e.g. Ile, Leu, Val, Thr, Tyr, Trp, Phe, and Cys) [29]. When we consider

both intra- and inter-residue atomic interactions, the hard-sphere model is able to predict

the specific side chain conformation of each of these amino acids in protein cores [30]. We
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thave shown that Met requires additional attractive interactions for the hard-sphere model

predictions to match the observed side chain dihedral angle distributions [32], and that only

about 50% of Ser residues can be predicted using the hard-sphere model alone [30,33]. (We

presume that the absence of hydrogen-bonding interactions explains the limited prediction

accuracy of Ser using the hard-sphere model.)

We have also found that protein cores are as densely packed as jammed packings of

residue-shaped particles with explicit hydrogens, which possess a packing fraction φ ∼

0.55 [34, 35]. With these data as background, we now seek to investigate to what extent

the hard-sphere modeling approach can be applied to contexts other than the cores of solu-

ble proteins–namely non-core residues, protein-protein interfaces, and membrane-embedded

regions of transmembrane proteins.

The high accuracy of the hard-sphere model in predicting side chain conformations in

protein cores stems from the fact that protein cores are densely random-packed [34] and

thus each buried side chain can only exist in a single conformation without having atomic

overlaps [33]. We therefore first investigated how the packing fraction varies with solvent

accessibility (i.e. relative solvent accessible surface area, rSASA), and performed the same

calculations on soluble proteins, protein-protein interfaces (Fig. 2), and the membrane-

embedded regions of transmembrane proteins (Fig. 3).

We find that for all three types of proteins, rSASA is inversely related to the packing

fraction. Importantly, the relationship between packing fraction and rSASA is similar for

soluble proteins, protein-protein interfaces, and the membrane-embedded regions of trans-

membrane proteins. Therefore, we use rSASA as a surrogate for packing fraction. We then

calculate the fraction of residues for which the hard-sphere model is able to predict the side

chain dihedral angles within 30o of the crystal structure values as a function of rSASA. We

find that for soluble proteins, protein-protein interfaces, and membrane proteins, the accu-

racy of the side chain predictions decreases as solvent accessibility increases. The predictions

for soluble proteins, protein-protein interfaces, and transmembrane proteins all show similar

behavior as a function of rSASA.
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tIn this article, we provide strong evidence showing that the hydrophobic cores of soluble

proteins, solvent inaccessible regions of protein-protein interfaces, and buried residues in

the membrane-embedded regions of transmembrane proteins are essentially all the same–i.e.

they are all equally well packed. These results are important because they help us identify

the key variables that control successful protein-protein interaction designs. Moreover, they

show that contrary to the conclusions of several prior studies [22, 23, 36, 37], the buried

residues in the membrane-embedded portions of transmembrane proteins are neither more

nor less well-packed than the cores of soluble proteins and the side chain conformations are

just as predictable as those in soluble proteins using the hard-sphere model.

The remainder of the article is organized into three sections. In the Methods section,

we describe the datasets of protein crystal structures that we investigate in this study and

details of the hard-sphere model that we employ to predict the side chain conformations

of residues. We also explain the methods that we used to calculate the packing fraction

and solvent accessibility. In the Results section, we compare the amino acid composition

of soluble proteins, protein interfaces, and transmembrane proteins for different values of

solvent accessibility. We then show the relationship between packing fraction and solvent

accessibility and the accuracy of the predicted side chain conformations as a function of

rSASA. In the Discussion section, we argue that the packing fraction can be used as a metric

to rank successful computational designs and emphasize that transmembrane proteins possess

core regions that are as densely packed as the cores of soluble proteins, and thus their side

chain conformations are equally predictable using the hard-sphere model.

2 Methods

2.1 Databases of Protein Crystal Structures

For our studies, we employ three datasets of protein crystal structures: one for soluble pro-

teins (Dun1.0), one for protein-protein interfaces (PPI), and one for transmembrane proteins

(TM). The Dunbrack 1.0 Å dataset [38,39] is a collection of 221 high resolution protein crys-
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ttal structures with resolution ≤ 1.0 Å, R-factor ≤ 0.2, side-chain B-factor per residue ≤

30 Å2, and sequence identity between proteins in the dataset ≤ 50%. We removed proteins

with modified residues, leaving 182 structures, which we refer to as the “Dun1.0” dataset.

We created the protein-protein interface dataset (PPI), a collection of 164 homo- and het-

erodimer protein structures from the Protein Data Bank (PDB). Structures were selected

that had exactly 2 chains in the asymmetric and biological unit with no additional ligands

or modified residues, a resolution threshold of ≤ 1.5 Å, and sequence identity ≤ 50%. We

removed structures for which the biological unit was not assigned as a dimer by the author

and for which one chain contained less than five residues, leaving us with 149 structures.

We also created a transmembrane dataset (TM) containing 19 high resolution transmem-

brane proteins. The structures were obtained from the Protein Data Bank of Transmembrane

Proteins [40,41]. The same criteria for the R-factor, B-factor, and sequence identity used to

create the Dun1.0 dataset were applied to select the TM structures. However, since there

are very few high-resolution transmembrane crystal structures, the resolution threshold was

increased to 2.0 Å. In each dataset, if a protein contained two identical chains, both chains

were used when calculating the solvent accessibility, but only one chain was included in all

further analyses to avoid double-counting residues. The PDB codes for each dataset are

included in the Supporting Information.

2.2 The hard-sphere plus stereochemical constraint model

As described in previous work [29,33], the hard-sphere plus stereochemical constraint model

(i.e. the ‘hard-sphere model’) treats each atom i as a sphere that interacts pairwise with all

other non-bonded atoms j via the purely repulsive Lennard-Jones potential:

URLJ(rij) =
ε

72

[
1−

(
σij
rij

)6
]2

Θ(σij − rij), (1)

where rij is the center-to-center separation between atoms i and j, σij = (σi + σj)/2, σi/2 is

the radius of atom i, Θ(σij − rij) is the Heaviside step function, and ε is the strength of the

repulsive interactions. The values for the atomic radii (Csp3, Caromatic: 1.5 Å; CO: 1.3 Å; O:
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t1.4 Å; N: 1.3 Å; HC : 1.10 Å; HO,N : 1.00 Å, and S: 1.75 Å) were obtained in prior work [29]

by minimizing the difference between the side chain dihedral angle distributions predicted

by the hard-sphere dipeptide mimetic model and those observed in protein crystal structures

for a subset of amino acid types. Hydrogen atoms were added using the REDUCE software

program [42, 43], which sets the bond lengths for C-H, N-H and S-H to 1.1, 1.0 and 1.3

Å, respectively, and the bond angles to 109.5o and 120o for angles involving Csp3 and Csp2

atoms, respectively. Additional dihedral angle degrees of freedom involving hydrogen atoms

are chosen to minimize steric clashes [42].

We performed single residue repacking using the hard-sphere model. Predictions of the

side chain conformations of single amino acids are obtained by rotating each of the side

chain dihedral angles, χ1, χ2, . . . , χn (with a fixed backbone conformation [44]), and finding

the lowest energy side chain conformations of the residue, where the energy includes both

intra- and inter-residue steric repulsive interactions.

We then calculate the Boltzmann weight of the lowest energy side chain conformation of a

given residue i, Pi(χ1, ...., χn) ∝ e−U(χ1,...,χn)/kBT , where the small temperature, kBT/ε=10−2,

approximates hard-sphere-like interactions. To sample bond length and angle fluctuations,

we perform side chain dihedral angle rotations with 300 replicas of residue i with different

bond length and bond angle combinations that mimic the distributions observed in protein

crystal structures. We then randomly select 50 bond length and angle variants (j = 1, . . . , 50)

of the 300 replicas sampled, and for each variant find the lowest energy side chain dihedral

angle conformation and corresponding Pij(χ1, ...., χn) values [33]. We average Pij over the

j = 50 variants to obtain 〈Pi(χ1, ...., χn)〉. We repeat this sampling 50 times, producing 50

different 〈Pi〉a distributions with a = 1, . . . , 50. For each 〈Pi〉a distribution, we select the side

chain dihedral angle combination with the highest value as our prediction, giving 50 predicted

side chain conformations for each residue i, {χHS1,a , ..., χ
HS
n,a}, indexed by a = 1, . . . , 50. Each

of these predictions is then compared to the side chain conformation of the crystal structure

{χxtal1 , ..., χxtaln }.

To assess the accuracy of the hard-sphere model in predicting the side chain dihedral
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tangles of residues, we calculated the deviation,

∆χa =
√

(χxtal1 − χHS1,a )2 + . . .+ (χxtaln − χHSn,a )2, (2)

for each set of replicas a for each residue i. We then look at the first ∆χa value (a = 1) for

each instance i of an amino acid type in the dataset and calculate F (∆χa), the fraction of

residues with ∆χa < 30◦. This is repeated for all a = 50 replicas, producing 50 F (∆χa).

We then calculate the mean fraction 〈F (∆χ)〉 and use one standard deviation as a measure

of the error. (Note that if multiple side chain configurations were reported in the PDB for

a given residue, ∆χ was only calculated for the conformation labeled ‘A’.)

We have shown that steric interactions between the side chain of a residue and the rest

of the protein are necessary to accurately predict the side chain dihedral angles of amino

acid residues [30]. However, to obtain a lower bound on the prediction accuracy of the hard-

sphere model, we also predicted the side chain conformations for each amino acid without

the rest of the protein, i.e. each residue modeled as a dipeptide mimetic (Fig. 1).

2.3 Packing fraction, surface identification, and relative solvent

accessible surface area

The packing fraction of each residue in a protein can be calculated using,

φr =

∑
i Vi∑
i V

v
i

, (3)

where Vi is the ‘non-overlapping’ volume of atom i, Vv
i is the volume of the Voronoi poly-

hedron surrounding atom i, and the summations are over all atoms of a particular residue.

Voronoi cells were obtained for each atom using Laguerre tessellation, where the placement

of each Voronoi face is based on the relative radii of neighboring atoms (which is the same

as the location of the plane that separates overlapping atoms) [45]. Vi was calculated by

splitting overlapping atoms by the plane of intersection between the two atoms. To study the

packing fraction of solvent-exposed atoms, an outer boundary is placed around the protein

to terminate some of the Voronoi polyhedra. However, when calculating the packing fraction
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tas a function of rSASA, we only include residues for which the the volumes of the Voronoi

polyhedra are independent of the size and placement of the outer boundary.

To investigate the relationship between packing fraction, side chain prediction accuracy,

and solvent accessibility, we compute the relative solvent accessible surface area,

rSASA =
SASARes
SASADipep

, (4)

where SASARes is the total solvent accessible surface area of the residue (in Å2) in the

context of the protein environment and SASADipep is the solvent accessible surface area of

that residue extracted as a dipeptide mimetic (Fig. 1) with the same bond lengths, bond

angles, and backbone and side chain dihedral angles. We calculate the SASA of protein

structures and dipeptide mimetics using the software program Naccess [46] with a probe

size of 1.4 Å and a z-slice of 10−3 Å. Naccess uses the method first developed by Lee and

Richards [47] to calculate SASA by taking z-slices of the protein, calculating the length of

the solvent exposed contours in the slice, and summing over all z-slices. With our choice of

parameters for Naccess, the error in the rSASA calculation for a given residue is . 10−3, and

thus we define core residues as those with rSASA ≤ 10−3. Similar rSASA values for each

residue are obtained using the software program MSMS, which uses an analytical approach

to calculate SASA [48].

Our calculation of the denominator in the definition of rSASA differs from other methods

for determining rSASA, which set SASADipep to a constant for each amino acid type. Most

methods calculate SASADipep using the tripeptide Gly-X-Gly or Ala-X-Ala, where X is a

given residue type. The conformation for the residue X within the tripeptide varies for

different methods. For example, some methods choose a particular backbone and side chain

dihedral angle conformation across all instances of an amino acid [46,49,50]. This approach

can lead to an apparent rSASA > 1 since each residue possesses different φ, ψ, and χ values

than the reference residue used to calculate SASADipep. Other methods instead explore

all the possible conformations of backbone and side chains of an amino acid and select

the backbone and side chain conformations that yield the maximum SASAdipep [51]. This

method avoids rSASA > 1, but does not allow SASADipep to vary for each instance of a
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tresidue of a given type. We have taken a different approach. We compute the maximum

SASA (SASADipep) for each residue in its particular φ, ψ, and χ conformation. In this

way, we are taking into account both backbone and side chain conformations, leading to

an accurate normalization of the solvent exposure of a residue and providing a consistent

comparison of rSASA between different amino acid types.

2.4 Identification of protein interfaces and transmembrane regions

For the PPI dataset, protein-protein interface residues are identified as those with ∆SASARes ≥

0.1 Å2, where ∆SASARes = SASAmonRes −SASAcomRes , SASAmonRes is the SASA of the residue in

the monomer created by removing the other chain from the crystal structure, and SASAcomRes

is the SASA of the residue in the complex. In Fig. 4, we show the distribution of the number

of interface residues in each complex and ∆SASARes for each complex.

For the TM dataset, many entries contain non-membrane regions. (See Fig. 3.) To en-

sure that our analyses focus on the membrane-embedded region of transmembrane proteins,

residues from the soluble protein domains were not considered. Specifically, only residues

with one or more atoms predicted to be inside the lipid bilayer were included in this study.

The position of the membrane was identified using the Positioning of Proteins in Mem-

branes (PPM) server [52]. The PPM server estimates the location of the lipid bilayer using

an approach based on optimizing the free energy of the protein transfer from water to the

membrane environment. The residues in the transmembrane region of the protein were then

analyzed using the same methods as those for protein-protein interfaces and soluble proteins,

where high rSASA values indicate residues that would be exposed to the lipid bilayer.

3 Results

In our studies, we use three high-resolution, non-redundant structural datasets. The details

of each dataset are specified in Sec. 2.1. Briefly, Dun1.0 is a dataset of soluble proteins; PPI

is a dataset of dimeric protein-protein complexes; and TM is a dataset of transmembrane
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tproteins. For our analyses of the TM dataset, we remove any detergent or lipid molecules

and any portion of the protein that is not in the membrane. For protein-protein interfaces,

we identify interface residues as those with a change in SASA between the monomer and

complex of more than 0.1 Å2 and only include these residues in our analyses. When we

discuss the PPI and TM datasets, we are only referring to the residues at the interface or in

the membrane.

We began by determining the amino acid composition of the PPI and TM databases

and then compared the amino acid compositions with that of soluble proteins (Dun1.0). We

identify the core residues in each dataset (i.e. those with rSASA < 10−3) and calculate the

fraction of core residues that are a given amino acid type. In Fig. 5 A, we show that the cores

of protein-protein interfaces and of membrane proteins have similar amino acid compositions

to that of the cores of soluble proteins. Some differences are seen in the composition of TM

proteins, which have a higher frequency of Ala and Gly in their cores, which is consistent

with the Gly-xxx-Gly motif found in transmembrane helix-helix association [53–59]. Other

papers studying transmembrane proteins have also reported a higher frequency of Ala and

Gly [36,60].

In Fig. 5 B, we investigate the non-core regions of the proteins (i.e. those residues with

rSASA > 0.5) for all three datasets. For TM proteins, where only residues in the membrane

are included, residues with high rSASA are membrane-exposed residues, not solvent-exposed.

For the PPI dataset, non-core residues are residues at the interface with high rSASA values

in the protein complex. We find that proteins in the Dun1.0 and PPI datasets have a similar

distribution of non-core residues, with a large fraction of polar and charged residues, while

the TM dataset has more hydrophobic residues and a small number of charged residues. This

result is further illustrated in Fig. 5 C, where we show the fraction of uncharged residues

(Ala, Gly, Ile, Leu, Met, Phe, Ser, Thr, Trp, Tyr, and Val) in the core and for rSASA > 0.5

in each dataset. The cores of all three datasets are composed almost entirely of these 11

uncharged residues, while the non-core regions of proteins in the Dun1.0 and PPI datasets

only contain ∼40% of these residues. In contrast, the non-core regions of TM proteins are
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thighly non-polar, containing ∼75% of the 11 uncharged residues, because they are exposed

to the membrane, not the aqueous environment.

In earlier studies, other groups have reported similar analyses of amino acid composi-

tions, for different datasets of protein-protein interfaces and membrane proteins [36, 60–66].

We are not reporting any substantial differences from those data. Rather, we performed

this tabulation to have these data for the exact datasets that we are studying. Note that

our dataset of membrane proteins includes only the transmembrane section, not the whole

protein, and our dataset of protein-protein interfaces only considers the interface residues.

In prior work, we demonstrated that one can repack the side chains of residues in protein

cores using only hard-sphere repulsive interactions in the context of a calibrated atomistic

model [30, 33]. In this study, we investigate whether the same approach can predict the

conformations of amino acid side chains at protein-protein interfaces and in transmembrane

proteins. The reason the hard-sphere model can accurately predict side chain conformations

in protein cores is because they are densely packed [34,35]. We therefore first calculated the

packing fraction of the cores of protein-protein interfaces and transmembrane proteins, and

compared these values with the packing fraction of the cores of soluble proteins. Fig. 6 A

clearly shows that the distributions P (φ) of packing fractions of core residues in the Dun1.0,

PPI, and TM datasets are all very similar with mean values, 〈φ〉 = 0.56± 0.02, 0.56± 0.02,

and 0.55± 0.01, respectively. In prior studies, we showed that this packing fraction matches

the value for random close packing of elongated, bumpy particles that match the aspect ratio

and surface roughness of core amino acids [35].

There have been many studies of the structure of protein-protein interfaces [61, 62, 64,

65, 67–72]. A key observation is that the packing fraction in the core region of protein-

protein interfaces is the same as that in the hydrophobic core of soluble proteins, which we

is in agreement with our observations [61, 64, 67]. However, there is currently no consensus

regarding the packing of core residues in transmembrane proteins. Some groups claim tighter

packing in transmembrane proteins than in soluble proteins [22]. embrane proteins even in

the absence In contrast, other groups, using different approaches, report that transmembrane
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tproteins pack less efficiently than the cores of soluble proteins [23,24]. Note that some groups

studying transmembrane proteins do not limit their studies to residues in the transmembrane

region, which makes it difficult to make specific conclusions about transmembrane residues.

The cores of soluble proteins, the cores of protein-protein interfaces, and the cores of

transmembrane proteins all have high packing fraction and near-zero solvent accessibility.

To study the dependence of the prediction accuracy on packing fraction, we first deter-

mined the relationship between packing fraction and solvent accessibility. As anticipated,

the packing fraction is inversely proportional to solvent accessibility, because the empty

space surrounding residues in the proteins is included in the Voronoi polyhedra for non-core

residues, as shown in Fig. 6 B. This relationship allows us to use solvent accessibility as

a surrogate for packing fraction. Solvent accessibility is preferable because it is relatively

straightforward and rapid to calculate, and more importantly, the packing fraction is not well

defined for non-core residues because the sizes of the Voronoi polyhedra are not restricted

by the surrounding atoms.

We next investigate how our ability to predict side chain conformations depends on

solvent accessibility for residues in the Dun1.0, PPI and TM databases. We performed

single residue repacking in the protein environment using the hard-sphere plus stereochemical

constraint model for all core and solvent-exposed uncharged residues in the datasets. As a

‘lower limit’ of the prediction accuracy, we used the hard-sphere dipeptide model to predict

side chain conformations in the absence of neighboring residues. The lower limit represents

the minimum prediction accuracy expected for that residue if it had rSASA = 1, allowing

us to determine how much the surrounding residues contribute to the repacking prediction

accuracy.

In Fig. 7 A, we show the relationship between the prediction accuracy and rSASA for a

representative amino acid, Ile. We find that for Ile residues with zero solvent accessibility

(rSASA < 10−3) we are able to predict over 95% of side chain conformations within 30◦

of the crystal structure values. As the solvent accessibility increases, the packing fraction

decreases and therefore our ability to predict the conformation of the amino acid side chain
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tdecreases towards the dipeptide value. In Fig. 7 B, we compare the prediction accuracy for

core and non-core (0.2 ≤ rSASA < 0.3) uncharged residues in Dun1.0. For all residues, we

find a decrease in the prediction accuracy as rSASA increases, except for Ser, which we have

mentioned previously [32] . The prediction accuracy versus rSASA plots for each amino acid

type are shown in the Supporting Information.

We performed the same calculations for residues in the PPI and TM databases. Data

for all amino acids in the Dun1.0, PPI, and TM databases are shown in Fig. 8. For all

three datasets, the hard-sphere model gives high prediction accuracy for core residues. A

decreased but acceptable predictability (i.e. 80% of residues have ∆χ < 30◦) is observed for

residues with 0.2 ≤ rSASA < 0.3 for all amino acid types (except for Ser and Trp) for all

protein classes.

Thus, we have identified a crucial parameter that controls the side chain conformation

predictability: the packing fraction and its surrogate, solvent accessibility. If the packing

fraction is large (i.e. near 0.55-0.56), rSASA is small (i.e. < 10−3) and the prediction

accuracy is high (> 90%). Conversely, if the packing fraction is small, rSASA is large and

the prediction accuracy decreases towards that for an isolated dipeptide mimetic. Moreover,

when the packing fraction is large and rSASA is small, the high prediction accuracy is the

same in the core of a soluble protein, the core of a protein-protein interface, and the core

of the transmembrane region of a membrane protein. As the packing fraction decreases and

rSASA increases, the decrease of the prediction accuracy for a given amino acid is slightly

different, depending on its protein context. Presumably, this observation implies that forces

other than purely repulsive steric interactions come into play at lower packing fractions in

the different protein environments.

4 Discussion and Conclusions

We have shown that the packing fraction of the cores of soluble proteins and of the cores of

protein-protein interfaces and membrane proteins are the same. We have also studied the
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angles using the hard-sphere model. The side chain dihedral angle prediction accuracy

decreases with decreasing packing fraction (and increasing solvent accessibility).

These results are important for protein-protein interactions because the packing fraction

provides a specific metric to assess designed protein-protein interfaces. One of the frequently

highlighted issues in computational protein-protein interface design is the difficulty in dis-

criminating between natural protein-protein complexes (i.e. benchmarks) and highly-ranked

designed structures that do not bind experimentally. In future studies, we will explore the

use of the packing fraction of interfaces to distinguish between protein-protein interaction

decoys and true protein-protein interaction pairs. Several experimental studies [73–76] have

shown that cavity-forming mutations to protein cores can destabilize proteins. In future

work, we will perform studies to understand how packing fraction and interior voids that are

caused by mutations affect protein stability and the binding affinity of protein-protein inter-

actions. A similar concept has been successful in discriminating between natural proteins

and flawed computational models [77].

In Fig. 9, we show the distribution of the fraction of each interface in the PPI dataset that

is made up of solvent inaccessible residues with rSASA < 0.1. We find that approximately

40% of the surface area of protein-protein interfaces are solvent inaccessible and possess high

packing fraction (φ > 0.54). Thus, we are able to predict with an accuracy of ∼ 90% the

conformations of ∼ 40% of the total number of residues at protein-protein interfaces. This

result holds for protein-protein interfaces ranging in total area up to 6000 Å
2
.

We also showed that the cores of the transmembrane regions of membrane proteins are

as well-packed as the cores of soluble proteins, and thus the hard-sphere model can predict

the side chain conformations of these core residues with high accuracy. With these results,

we can begin to better understand the molecular details of packing in the cores of mem-

brane proteins, and at the interfaces between interacting, membrane embedded regions of

membrane proteins [78–83]. In addition to enhancing our fundamental understanding, such

knowledge is of significant practical biomedical importance. For example, the oncogenic
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ttransformation mediated by the E5 protein of papilloma virus is believed to occur by the

interaction of the transmembrane helix of the E5 oncoprotein with the transmembrane re-

gion of the Platelet-Derived Growth Factor Receptor (PDGFR) [78, 84]. It has also been

demonstrated that certain simple Leu and Ile peptides are also able to activate PDGFR with

the resulting oncogenic transformation. The results we present specify the expectations for

packing at such helix-helix interfaces. Further analyses may thus enable us to distinguish

why some of the Leu/Ile peptides activate PDGFR, whereas others, which may differ by a

single residue, do not.

It has been suggested that regions in the protein core with low packing fraction may give

rise to large internal motions that are related to a protein’s biological function [23–25, 85,

86]. In future studies, we will correlate core residues with low packing fraction to mobile

regions in the protein interior. To do this, we will (1) calculate the vibrational modes for

the hard-sphere plus stereochemical constraint model and (2) investigate the residue root-

mean-square displacement for proteins where multiple crystal structures are available. We

will also calculate the entropy of side chain conformations using the Gibbs entropy. Our

current studies considered fixed backbone φ and ψ dihedral angles. In future studies, we will

investigate whether backbone fluctuations strongly affect the side chain entropy.
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6 Figure Legends

Figure 1: A) The chemical structure of an Ile dipeptide mimetic. The dipeptide mimetic

includes the residue itself (purple), the carboxyl and Cα groups from residue i− 1, and the

amine and Cα groups from residue i + 1. B) Stick representation of Ile 135 from 1Q16 as a

dipeptide mimetic overlaid on a space-filling representation of the atoms in the purple region

of panel A. The atoms are colored beige (carbon), red (oxygen), blue (nitrogen), and white

(hydrogen). C) Ile 135 from 1Q16 in its protein environment (shown in stick and ribbon

representations).

Figure 2: Ribbon representation of a protein-protein complex (PDB identifier: 1DQZ).

The two protein chains are shown in green and blue. The interface residues (displayed in

orange and pink) were identified as those residues with a change in SASA, ∆SASARes >

0.1 Å
2
, between the monomer and the complex.

Figure 3: Ribbon representation of a transmembrane protein (PDB identifier: 1Q16).

The membrane boundary planes (displayed in blue) were obtained from the Positioning of

Proteins in Membranes (PPM) server [52]. The region of the protein that spans the mem-

brane is shown in green, and the portion of the protein that extends beyond the membrane

is shown in orange.

Figure 4: A) Frequency distribution, N(n), of the number of residues n at each protein-

protein interface in the PPI dataset. B) Frequency distribution of the total interface areas

(the sum of ∆SASAres over all interface residues) in the PPI dataset.

Figure 5: Frequency distribution of amino acids with (A) rSASA ≤ 10−3 and (B)

rSASA > 0.5 for residues in the Dun1.0 (grey), PPI (blue), and TM (red) datasets. The

fractions are defined relative to the total number of residues in each rSASA category. (C)

The fractions of core residues (light bars) and non-core residues (rSASA > 0.5, dark bars)
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tamong the 11 non-charged residues (Ala, Gly, Ile, Leu, Met, Phe, Ser, Thr, Trp, Tyr, and

Val).

Figure 6: A) Distribution of packing fractions P (φ) of core residues in the Dun1.0 (black),

PPI (blue), and TM (red) datasets. φ is calculated using Eq. 3, where the summation is over

all atoms of all core residues in each protein. B) Packing fraction φ of residues as a function

of the relative solvent accessibility (rSASA) for the Dun1.0 (black line and squares), PPI

(blue crosses), and TM (red circles) datasets. The error bars indicate the standard deviation

for the Dun1.0 dataset and the blue and red shaded regions indicate the standard deviations

for the PPI and TM datasets, respectively.

Figure 7: A) Fraction of residues predicted within 30◦ (F (∆χ ≤ 30◦)) for Ile residues in

the Dun1.0 database (solid line) and their corresponding dipeptide mimetics (dotted line)

as a function of rSASA values. The dotted line provides lower bounds for the prediction

accuracy for the residues in each rSASA bin. Due to the low frequency of uncharged residues

in the non-core region, we have combined all residues with rSASA > 0.5 into one bin. B)

F (∆χ ≤ 30◦) for non-charged amino acids for rSASA < 10−3 (light grey) and 0.2 < rSASA

≤ 0.3 (dark grey).

Figure 8: F (∆χ ≤ 30◦) for non-charged amino acids for (A) rSASA < 0.1 and (B) 0.2 <

rSASA ≤ 0.3 for the Dun1.0 (grey), PPI (blue) and TM (red) datasets.

Figure 9: Distribution of the fraction of the change in SASA of each interface in the

PPI dataset that is due to core residues ∆SASAcore compared to the change in SASA

from all residues at the interface ∆SASAinterface. Core residues are defined as those with

rSASA < 0.1.
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t7 Figures

A

B

C

Figure 1: A) The chemical structure of an Ile dipeptide mimetic. The dipeptide mimetic

includes the residue itself (purple), the carboxyl and Cα groups from residue i− 1, and the

amine and Cα groups from residue i + 1. B) Stick representation of Ile 135 from 1Q16 as a

dipeptide mimetic overlaid on a space-filling representation of the atoms in the purple region

of panel A. The atoms are colored beige (carbon), red (oxygen), blue (nitrogen), and white

(hydrogen). C) Ile 135 from 1Q16 in its protein environment (shown in stick and ribbon

representations)
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Figure 2: Ribbon representation of a protein-protein complex (PDB identifier: 1DQZ). The

two protein chains are shown in green and blue. The interface residues (displayed in orange

and pink) were identified as those residues with a change in SASA, ∆SASARes > 0.1 Å
2
,

between the monomer and the complex.

Figure 3: Ribbon representation of a transmembrane protein (PDB identifier: 1Q16). The

membrane boundary planes (displayed in blue) were obtained from the Positioning of Pro-

teins in Membranes (PPM) server [52]. The region of the protein that spans the membrane is

shown in green, and the portion of the protein that extends beyond the membrane is shown

in orange.
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Figure 4: A) Frequency distribution, N(n), of the number of residues n at each protein-

protein interface in the PPI dataset. B) Frequency distribution of the total interface areas

(the sum of ∆SASAres over all interface residues) in the PPI dataset.
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Figure 5: Frequency distribution of amino acids with (A) rSASA ≤ 10−3 and (B) rSASA >

0.5 for residues in the Dun1.0 (grey), PPI (blue), and TM (red) datasets. The fractions are

defined relative to the total number of residues in each rSASA category. (C) The fractions

of core residues (light bars) and non-core residues (rSASA > 0.5, dark bars) among the 11

non-charged residues (Ala, Gly, Ile, Leu, Met, Phe, Ser, Thr, Trp, Tyr, and Val).
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Figure 6: A) Distribution of packing fractions P (φ) of core residues in the Dun1.0 (black),

PPI (blue), and TM (red) datasets. φ is calculated using Eq. 3, where the summation is over

all atoms of all core residues in each protein. B) Packing fraction φ of residues as a function

of the relative solvent accessibility (rSASA) for the Dun1.0 (black line and squares), PPI

(blue crosses), and TM (red circles) datasets. The error bars indicate the standard deviation

for the Dun1.0 dataset and the blue and red shaded regions indicate the standard deviations

for the PPI and TM datasets, respectively.
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Figure 7: A) Fraction of residues predicted within 30◦ (F (∆χ ≤ 30◦)) for Ile residues in

the Dun1.0 database (solid line) and their corresponding dipeptide mimetics (dotted line)

as a function of rSASA values. The dotted line provides lower bounds for the prediction

accuracy for the residues in each rSASA bin. Due to the low frequency of uncharged residues

in the non-core region, we have combined all residues with rSASA > 0.5 into one bin. B)

F (∆χ ≤ 30◦) for non-charged amino acids for rSASA < 10−3 (light grey) and 0.2 < rSASA

≤ 0.3 (dark grey).
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Figure 8: F (∆χ ≤ 30◦) for non-charged amino acids for (A) rSASA < 0.1 and (B) 0.2 <

rSASA ≤ 0.3 for the Dun1.0 (grey), PPI (blue) and TM (red) datasets.
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Figure 9: Distribution of the fraction of the change in SASA of each interface in the PPI

dataset that is due to core residues ∆SASAcore compared to the change in SASA from all

residues at the interface ∆SASAinterface. Core residues are defined as those with rSASA <

0.1.
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[80] J. Molnár, G. Szakács, and G.E. Tusnády. Characterization of disease-associated mu-

tations in human transmembrane proteins. PLOS ONE, 11(3):1–13, 03 2016.

[81] A.W. Partridge, A.G. Therien, and C.M. Deber. Missense mutations in transmem-

brane domains of proteins: Phenotypic propensity of polar residues for human disease.

Proteins: Structure, Function, and Bioinformatics, 54(4):648–656, 2004.

[82] T.P. Roosild and C. Senyon. Redesigning an integral membrane k+ channel into a

soluble protein. Protein Eng. Des. Sel., 18:79–84, 2005.

[83] EN Heim, JL Marston, RS Federman, AP Edwards, AG Karabadzhak, LM Petti,

DM Engelman, and D DiMaio. Biologically active LIL proteins built with minimal

chemical diversity. Proc. Natl. Acad. Sci. U.S.A., 112:E4717–E4725, 2015.

[84] D DiMaio and D Mattoon. Mechanisms of cell transformation by papillomavirus E5

proteins. Oncogene, 20:7866–7873, 2001.

34

Page 34 of 35

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics

This article is protected by copyright. All rights reserved.



A
ut

ho
r M

an
us

cr
ip

t[85] N. Chopra, T.E. Wales, R.E. Joseph, S.E. Boyken, J.R. Engen, R.L. Jernigan, and A.H.

Andreotti. Dynamic allostery mediated by a conserved tryptophan in the tec family

kinases. PLOS Computational Biology, 12(3):1–19, 03 2016.

[86] F.M. Richards. The interpretation of protein structures: total volume, group volume

distributions and packing density. J. Mol. Bio.l, 82:1, 1974.

35

Page 35 of 35

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics

This article is protected by copyright. All rights reserved.


