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Abstract: 42 

 43 

The immunological synapse allows antigen presenting cells (APC) to convey a wide array of 44 

functionally distinct signals to T cells, which ultimately shape the immune response. The relative 45 

effect of stimulatory and inhibitory signals is influenced by the activation state of the APC, 46 

which is determined by an interplay between signal transduction and metabolic pathways. While 47 

toll-like receptor ligation relies on glycolytic metabolism for the proper expression of 48 

inflammatory mediators, little is known about the metabolic dependencies of other critical 49 

signals such as interferon gamma (IFNg). Using CRISPR-Cas9, we performed a series of 50 

genome-wide knockout screens in macrophages to identify the regulators of IFNg-inducible T 51 

cell stimulatory or inhibitory proteins MHCII, CD40, and PD-L1. Our multi-screen approach 52 

enabled us to identify novel pathways that control these functionally distinct markers. Further 53 

integration of these screening data implicated complex I of the mitochondrial respiratory chain in 54 

the expression of all three markers, and by extension the IFNg signaling pathway. We report that 55 

the IFNg response requires mitochondrial respiration, and APCs are unable to activate T cells 56 

upon genetic or chemical inhibition of complex I. These findings suggest a dichotomous 57 

metabolic dependency between IFNg and toll-like receptor signaling, implicating mitochondrial 58 

function as a fulcrum of innate immunity.  59 

   60 

 61 

 62 

 63 

 64 
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Introduction: 65 

During the initiation of an adaptive immune response, the antigen presenting cell (APC) serves 66 

as an integration point where tissue-derived signals are conveyed to T cells. Myeloid APCs, such 67 

as macrophages and dendritic cells (DCs), are responsible for the display of specific peptides in 68 

complex with MHC molecules, and for the expression of co-signaling factors that tune the T cell 69 

response (1). The expression of stimulatory or inhibitory co-signaling molecules depends on the 70 

local immune environment and activation state of the APC (2). In particular, interferon gamma 71 

(IFNg) stimulates the surface expression of MHC proteins (3-9), co-stimulatory proteins such as 72 

CD40, and the secretion of cytokines like IL-12 and IL-18 (10), to promote T cell activation and 73 

the production of IFNg-producing T-helper type 1 (Th1) effector cells (11-15). In the context of 74 

local inflammation, pattern recognition receptor (PRR) ligands and endogenous immune 75 

activators can collaborate with IFNg to induce the expression of co-inhibitory molecules, like 76 

programmed death-ligand 1 (PD-L1) (16-22), which ligates T cell programmed death receptor 1 77 

(PD1) to limit immune activation and mitigate T cell-mediated tissue damage (23-26).  78 

 79 

IFNg mediates these complex effects via binding to a heterodimeric surface receptor (27-80 

30). The subunits of the complex, IFNGR1 and IFNGR2, assemble once IFNGR1 is bound by its 81 

ligand (31, 32). Complex assembly promotes the phosphorylation of janus kinases 1 and 2 (JAK1 82 

and JAK2) followed by activation of the signal transducer and activation of transcription 1 83 

(STAT1) (33). Phosphorylated STAT1 then dimerizes and translocates to the nucleus to activate 84 

the transcription of genes containing promoters with IFNg-activated sequences (GAS), which 85 

includes other transcription factors such as interferon regulatory factor 1 (Irf1) that amplify the 86 

expression of a large regulon that includes T cell co-signaling molecules (34, 35). The 87 
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importance of this signaling pathway is evident in a variety of diseases including cancer (36-40), 88 

autoimmunity (41, 42), and infection (43). Individuals with inborn deficiencies in IFNg 89 

signaling, including mutations to the receptor (44, 45), suffer from a defect in Th1 immunity that 90 

results in an immunodeficiency termed Mendelian susceptibility to mycobacterial disease 91 

(MSMD) (46-49). Conversely, antagonists of IFNg-inducible inhibitory molecules, such as PD-92 

L1, are the basis for checkpoint inhibitor therapies that effectively promote T cell-mediated 93 

tumor destruction (26, 28, 50-55).  While the obligate components of the IFNg signaling pathway 94 

are well known, characterization of additional regulators of this response promises to identify 95 

both additional causes of immune dysfunction and new therapeutic targets. 96 

 97 

Recent data suggests that cellular metabolism is an important modulator of the APC-T 98 

cell interaction. In particular, microbial stimulation of PRR receptors on the APC induces 99 

glycolytic metabolism and this shift in catabolic activity is essential for cellular activation, 100 

migration, and CD4+ and CD8+ T cell activation (18, 56-70). The metabolic state of the T cell is 101 

also influenced by the local environment and determines both effector function and long-term 102 

differentiation into memory cells (71, 72).  Like PRR signaling, IFNg stimulation has been 103 

reported to stimulate glycolysis and modulate cellular metabolism in macrophages (66, 73).  104 

However, the effects of different metabolic states on IFNg-stimulated APC function remains 105 

unclear.  106 

 107 

To globally understand the cellular pathways that influence IFNg-dependent APC 108 

function, we used a CRISPR-Cas9 knockout library (74) in macrophages to perform a series of 109 

parallel forward-genetic screens for regulators of three IFNg-inducible co-signaling molecules: 110 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.22.393538doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.22.393538
http://creativecommons.org/licenses/by-nd/4.0/


MHCII, CD40, and PD-L1. We identified positive and negative regulators that controlled each 111 

marker, underscoring the complex regulatory networks that influence the interactions between 112 

APCs and T cells. Pooled analysis of the screens uncovered shared regulators that contribute to 113 

the global IFNg response. Prominent among these general regulators was complex I of the 114 

respiratory chain. We report that the activity of the IFNg receptor complex and subsequent 115 

transcriptional activation depends on mitochondrial function in both mouse and human myeloid 116 

cells. Experimental perturbation of respiration inhibits the capacity of both macrophages and 117 

dendritic cells to stimulate T cells, identifying mitochondrial function as a central point where 118 

local signals are integrated to determine APC function.  119 

 120 

Results 121 

 122 

Forward genetic screen identifies regulators of IFNg-inducible MHCII, CD40 and PD-L1 123 

cell surface expression. 124 

 125 

To investigate the diverse regulatory pathways underlying the IFNg response, we 126 

examined the expression of three functionally distinct cell surface markers that are induced by 127 

IFNg. Stimulation of Cas9-expressing immortalized bone marrow-derived macrophages with 128 

IFNg for 24 hours resulted in the upregulation of T cell stimulatory molecules, major 129 

histocompatibility complex class II (MHCII) and CD40, and the inhibitory ligand PD-L1 130 

(Cd274), on the cell surface (Figure 1A). To identify genes that regulate the expression of these 131 

markers, Cas9-expressing macrophages were transduced with a lentiviral genome-wide knockout 132 

(KO) library containing four single guide RNAs (sgRNAs) per protein-coding gene and 1000 133 
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non-targeting control (NTC) sgRNAs (74). The knockout library was then stimulated with IFNg, 134 

and fluorescently activated cell sorting (FACS) was used to select for mutants with high or low 135 

cell surface expression of each individual marker (Figure 1B). For each of the three surface 136 

markers, positive and negative selections were performed in duplicate. The sgRNAs contained in 137 

the input library and each sorted population were amplified and sequenced (Figure 1A,B).  138 

To estimate the strength of selection on individual mutant cells, we specifically assessed 139 

the relative abundance of cells harboring sgRNAs that target each of the surface markers that 140 

were the basis for cell sorting. When the abundances of sgRNAs specific for H2-Ab1 (encoding 141 

the MHCII, H2-I-A beta chain), Cd40, or Cd274 (PD-L1) were compared between high- and 142 

low-expressing cell populations, we found that each of these sgRNAs were significantly depleted 143 

from the cell populations expressing the targeted surface molecule, while each had no consistent 144 

effect on the expression of non-targeted genes (Figure 1C). While not all individual sgRNAs 145 

produced an identical effect, we found that targeting the genes that served as the basis of sorting 146 

altered the mean relative abundance 30-60 fold, demonstrating that all selections efficiently 147 

differentiated responsive from non-responsive cells.  148 

We next tested for statistical enrichment of sgRNAs using MAGeCK-MLE (75), which 149 

employs a generalized linear model to identify genes, and by extension regulatory mechanisms, 150 

controlling the expression of each surface marker. This analysis correctly identified the 151 

differential representation of sgRNAs targeting genes for the respective surface marker in the 152 

sorted populations in each screen, which were found in the top 20 ranked negative selection 153 

scores (Ranks: H2-Ab1 = 20, Cd40 = 1, Cd274 = 3; Table S1). Upon unsupervised clustering of 154 

b scores for the most highly enriched genes in each screen (top 5%, positive or negative) both 155 

common and pathway-specific effects were apparent (Figure 1D; Table S2). A small number of 156 
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genes assigned to Cluster 1, including the IFNg receptor components (Ifngr1 and Ifngr2), were 157 

strongly selected in the non-responsive population in all three selections. However, many 158 

mutations appeared to preferentially affect the expression of individual surface markers, 159 

including a number of known pathway-specific functions. For example, genes previously shown 160 

to specifically control MHCII transcription, such as Ciita, Rfx5, Rfxap, Rfxank, and Creb1 (8, 76-161 

78) were found in Cluster 4 along with several novel regulators that appear to be specifically 162 

required for this pathway. MHCII-specific factors are reported in an accompanying study (79).  163 

Genes specifically required for CD40 expression in Cluster 3 included the heterodimeric 164 

receptor for TNF.  Tnfrsf1a and Tnfrsf1b were the 6th and 50th lowest b scores in the CD40 165 

screen, respectively.  Previous studies suggested that TNF stimulation enhances IFNg-mediated 166 

CD40 expression in hematopoietic progenitors (80), and we confirmed this observation in 167 

macrophages (Figure 1E). We observed a 6-fold higher induction of CD40 in macrophages 168 

stimulated with a combination of IFNg and TNF compared to IFNg alone. This synergy was 169 

specific to CD40 induction, as we did not observe any enhancement of IFNg-induced MHCII 170 

expression by TNF addition.  171 

Several recent studies identified genes that control PD-L1 expression in cancer cell 172 

lines(28, 53, 55, 81-86), and we validated the PD-L1-associated clusters using these candidates. 173 

Our analysis found the previously-described negative regulators, Irf2 (87), Keap1, and Cul3 (88-174 

90) in the PD-L1-related Cluster 7, along with novel putative negative regulators such as the 175 

oligosaccharlytransferase complex subunit Ostc and the transcriptional regulator, Cnbp. We 176 

generated knockout macrophages for each of these novel candidates and confirmed that mutation 177 

of these genes enhances the IFNg-dependent induction of PD-L1 surface levels (Figure 1F). 178 
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Cumulatively, these data delineate the complex regulatory networks that shape the IFNg 179 

response.  180 

 181 

Mitochondrial complex I is a positive regulator of the IFNg response. 182 

To identify global regulators of the IFNg response, we performed a combined analysis, 183 

reasoning that treating each independent selection as a replicate measurement would increase our 184 

power to identify novel pathways. We used MAGeCK to calculate a selection coefficient (b) for 185 

each gene by maximum likelihood estimation (75). By combining the 24 available measurements 186 

for each gene (three different markers, each selection in duplicate, and four sgRNAs per gene), 187 

we found that the resulting selection coefficient reflected the global importance of a gene for the 188 

IFNg response (Table S3). The most important positive regulators corresponded to the proximal 189 

IFNg signaling complex (Figure 2A). Similarly, we identified known negative regulators of IFNg 190 

signaling, including the protein inhibitor of activated Stat1 (Pias1) (91), protein tyrosine 191 

phosphatase non-receptor type 2 (Ptpn2) (84), Mitogen activate protein kinase 1 (Mapk1), and 192 

suppressor of cytokine signaling 1 (Socs1) and 3 (Socs3). 193 

We performed gene set enrichment analysis (GSEA) using a ranked list of positive 194 

regulators from the combined analysis (Table S4) (92). Among the top enriched pathways was a 195 

gene set associated with type II interferon (e.g., IFNg) signaling (normalized enrichment score = 196 

2.45, q-value = 7.98e-5), validating the approach. GSEA identified a similarly robust enrichment 197 

for gene sets related to mitochondrial respiration and oxidative phosphorylation (Figure 2B). In 198 

particular, we found a significant enrichment of gene sets dedicated to the assembly and function 199 

of the NADH:ubiquinone oxidoreductose (hereafter, “complex I”) of the mitochondrial 200 

respiratory chain. Complex I couples electron transport with NADH oxidation and is one of four 201 
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protein complexes that comprise the electron transport chain (ETC) that generates the 202 

electrochemical gradient for ATP biosynthesis. To confirm the GSEA results, we examined the 203 

combined dataset for individual genes that make up each complex of the ETC (Figure 2C). This 204 

analysis demonstrated that sgRNAs targeting components of complexes II, III or IV had minimal 205 

effects on the expression of the IFNg-inducible surface markers tested. In contrast, the disruption 206 

of almost every subunit of complex I impaired the response to IFNg, with the notable exception 207 

of Ndufab1. As this gene is essential for viability (93), we assume that cells carrying Ndufab1 208 

sgRNAs retain functional target protein. 209 

To investigate the contribution of specific complex I components to different IFNg-210 

stimulated phenotypes, we reviewed the surface marker-specific enrichment scores for genes that 211 

contribute to the complex assembly, the electron-accepting N-module, or the electron-donating Q 212 

module (93-98). Of the 48 individual assembly factors or structural subunits of complex I present 213 

in our mutant library, 29 were significantly enriched as positive regulators in the global analysis 214 

and were generally required for the induction of all IFNg-inducible markers (Fig. 2D). The 215 

enrichment for each functional module in non-responsive cells was statistically significant. 216 

However, not all individual complex I components were equally enriched, which could reflect 217 

either differential editing efficiency or distinct impacts on function. To investigate the latter 218 

hypothesis, we compared our genetic data with a previous proteomic study that quantified the 219 

effect of individual complex I subunits on the stability of the largest subcomplex, the N-module 220 

(93). For a given subunit, we found a significant correlation between the magnitude of 221 

enrichment in our genetic screen and its effect on the structural stability of the module (Fig. 2E), 222 

specifically implicating the activity of complex I in the IFNg response.  223 
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To directly test the predictions of the screening data, we used CRISPR to generate 224 

individual macrophage lines that were deficient for complex I subunits. We first validated the 225 

expected metabolic effects of complex I disruption by comparing the intracellular ATP levels in 226 

macrophages carrying non-targeting control sgRNA (sgNTC) with sgNdufa1 and sgNdufa2 lines. 227 

When cultured in media containing the glycolytic substrate, glucose, all cell lines produced 228 

equivalent amounts of ATP (Figure 3A). However, when pyruvate was provided as the sole 229 

carbon source, and ATP generation depends entirely upon flux through ETC and oxidative 230 

phosphorylation (OXPHOS),  both sgNdufa1 and sgNdufa2 macrophages contained decreased 231 

ATP levels compared to sgNTC cells (Figure 3B). To confirm the glycolytic dependency of 232 

complex I mutant macrophages, we grew cells in complete media with glucose and treated with 233 

the ATP synthase (complex V) inhibitor, oligomycin, which blocks ATP generation by 234 

OXPHOS. While oligomycin reduced ATP levels in sgNTC macrophages, this treatment had no 235 

effect in sgNdufa1 and sgNdufa2 cells (Supplementary Figure 1A), confirming that these 236 

complex I-deficient cells rely on glycolysis for energy generation. IFNg treatment slightly 237 

reduced ATP levels in glucose containing media but did not differentially affect cell lines (Figure 238 

3A). Throughout these experiments we found that the sgNdufa1 mutant showed a greater 239 

OXPHOS deficiency than the sgNdufa2 line.  240 

We next compared the response to IFNg in macrophages lacking Ndufa1 and Ndufa2 with 241 

those carrying CRISPR-edited alleles of Ifngr1 or the negative regulator of signaling, Ptpn2. As 242 

CD40 was found to rely on more complex inputs for expression, which include TNF (Figure 1E), 243 

we relied on MHCII and PD-L1 as markers of the IFNg response for subsequent studies. As 244 

expected, and consistent with the genetic screen, we found that the loss of Ifngr1 or Ptpn2 either 245 

abrogated or enhanced the response to IFNg, respectively. Also consistent with predictions, 246 
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mutation of complex I genes significantly reduced the IFNg-dependent induction of MHCII and 247 

PD-L1 compared to sgNTC (Figure 3C-F). The Ndufa1 mutation that abrogates OXPHOS, 248 

reduced MHCII induction to the same level as Ifngr1-deficient cells. To confirm these results 249 

using an orthologous method we treated cells with the complex I inhibitor, rotenone (99). This 250 

treatment caused a dose-dependent inhibition of the IFNg-induced MHCII expression in sgNTC 251 

macrophages (Figure 3G) and had a similar inhibitory effect on the residual IFNg response in 252 

Ndufa2-deficient cells. Together these results confirm that complex I is required for the induction 253 

of immunomodulatory surface molecules in response to IFNg.  254 

To investigate what aspect of mitochondrial respiration contributes to the IFNg response, 255 

we inhibited different components of the ETC. All inhibitors were used at a concentration that 256 

abrogated OXPHOS-dependent ATP generation (Supplementary Figure 1B). The complex V 257 

inhibitor, oligomycin, inhibited the IFNg-induced MHCII expression, albeit to a lesser extent 258 

than direct complex I inhibition with rotenone (Figure 3H). This partial effect could reflect an 259 

inability to dissipate the proton motive force (PMF), which inhibits electron flux throughout the 260 

ETC, including through complex I (100). Carbonyl cyanide m-chlorophenyl hydrazone (CCCP) 261 

disrupts mitochondrial membrane potential and OXPHOS while preserving electron flux. CCCP 262 

had no effect on the IFNg response, indicating that ATP generation is dispensable for 263 

IFNg responsiveness and highlighting a specific role for complex I activity.  264 

 We then altered the media composition to test the sufficiency of mitochondrial respiration 265 

to drive IFNg responses independently from aerobic glycolysis. IFNg was found to stimulate 266 

MHCII expression to a similar degree in macrophages cultured in complete media with glucose 267 

as in media containing only pyruvate or citrate, which must be catabolized via mitochondrial 268 

respiration (Figure 3H). Inhibition of mitochondrial pyruvate import with the chemical inhibitor, 269 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.22.393538doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.22.393538
http://creativecommons.org/licenses/by-nd/4.0/


UK5099 (101), abrogated MHCII induction in cultures grown in pyruvate, but not in citrate, 270 

which is imported via a UK5099-independent mechanism. Taken together these results suggest 271 

that cellular respiration is both necessary and sufficient for maximal expression of the IFNg-272 

inducible surface markers MHCII and PD-L1.    273 

 274 

Mitochondrial function is specifically required IFNg-dependent responses. 275 

The mitochondrial-dependency of the IFNg response contrasted with the known 276 

glycolytic-dependency of Toll-like receptor (TLR) signaling, suggesting that TLR responses 277 

would remain intact when complex I was inhibited. Indeed, not only were TLR responses intact 278 

in sgNdufa1 and sgNdufa2 mutant macrophages, these cells secreted larger amounts of TNF or 279 

IL-6 than sgNTC cells in response to the TLR2 ligand, Pam3CSK4. (Figure 4A).  Thus, the 280 

glycolytic dependency of these cells enhanced the TLR2 response, indicating opposing metabolic 281 

dependencies for IFNg and TLR signaling. 282 

Whether the effects of complex I on macrophage responsiveness was the result of 283 

reduced mitochondrial respiratory function or secondary to cellular stress responses, such as 284 

radical generation, remained unclear. To more directly relate mitochondrial function to these 285 

signaling pathways, we created cell lines with reduced mitochondrial mass. Macrophages were 286 

continuously cultured in linezolid (LZD), an oxazolidinone antibiotic that inhibits the 287 

mitochondrial ribosome (102-104). This treatment produced a cell line with ~50% fewer 288 

mitochondrial genomes per nuclear genome and a corresponding decrease in OXPHOS capacity, 289 

compared to control cells grown in the absence of LZD (Figure 4B,C). Cells were cultured 290 

without LZD for 16 hours and then stimulated with either IFNg or Pam3CSK4. Consistent with 291 

our complex I inhibition studies, we found this reduction in mitochondrial mass nearly abrogated 292 
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the IFNg-dependent induction of MHCII (Figure 4D), while the TLR2-dependent secretion of 293 

TNF and IL-6 was preserved or enhanced (Figure 4E and 4F). Thus, mitochondrial activity, 294 

itself, is necessary for a robust IFNg response.  295 

To further address potential secondary effects of mitochondrial inhibition on the 296 

IFNg response, we investigated the role of known oxygen or nitrogen radical-dependent 297 

regulators (Supplementary Figure 1C-G). Inhibition of ROS generation by replacing glucose 298 

with galactose (66, 100, 105) had no effect on IFNg-induced MHCII induction.  Similarly, 299 

neutralization of cytosolic or mitochondrial radicals with N-acetylcysteine or MitoTempo, 300 

respectively, had no effect on MHCII induction either alone or in combination with ETC 301 

inhibition. The role of the cytosolic redox sensor, HIF1a (106, 107) was addressed by 302 

chemically stabilizing this factor with dimethyloxalylglycine (DMOG). A potential role for nitric 303 

oxide production was addressed with the specific NOS2 inhibitor 1400W (60, 66, 108). Neither 304 

of these treatments affected IFNg-induced MHCII cell surface expression in the presence or 305 

absence of simultaneous Pam3CSK4, further supporting a direct relationship between 306 

mitochondrial respiratory capacity and the IFNg response. 307 

 308 

Complex I is specifically required for IFNg signaling in human cells. 309 

 To understand the function of complex I during IFNg-stimulation in human cells, we used 310 

monocyte-derived macrophages (MDM) from peripheral blood of healthy donors. As in our 311 

mouse studies, we assessed the response of these cells to IFNg or Pam3CSK4 by quantifying the 312 

abundance of IFNg-inducible surface markers or cytokines that were optimized for human cells. 313 

Since HLA-DR is not strongly induced by IFNg, we included ICAM1 in addition to CD40 and 314 

PD-L1 as surface markers. As seen in the murine model, rotenone inhibited the IFNg-mediated 315 
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induction of all three markers (Figure 5A). TLR2 responses were assessed by the production of 316 

TNF and IL-1b. Upon Pam3CSK4 stimulation, rotenone significantly enhanced the secretion of 317 

IL-1b and TNF (Figure 5B). While simultaneous treatment with both IFNg and Pam3CSK4 318 

produced the previously described inhibition of IL-1b (109), rotenone still did not decrease the 319 

production of these TLR2 dependent cytokines. Thus, as we observed in mouse cells, complex I 320 

is specifically required for IFNg signaling in human macrophages.  321 

 322 

Complex I inhibition reduces IFNg receptor activity.  323 

To understand how complex I activity was shaping the IFNg response, we first 324 

determined whether its effect was transcriptional or post-transcriptional by simultaneously 325 

monitoring mRNA and protein abundance over time. Surface expression of PD-L1 was 326 

compared with the gene’s mRNA abundance, while the surface expression of MHCII was 327 

compared with the mRNA abundance of Ciita, the activator of MHCII expression that is initially 328 

induced by IFNg (Figure 6 A,B). In both cases, mRNA induction preceded surface expression of 329 

the respective protein. More importantly, both mRNA and protein expression of each marker was 330 

diminished to a similar degree in sgNdufa1 and sgNdufa2, compared to sgNTC cells. Thus, a 331 

deficit in transcriptional induction could account for the subsequent decrease in surface 332 

expression observed in complex I deficient cells.   333 

IFNg rapidly induces the transcription of a large number of STAT1 target genes, 334 

including IRF1, which amplifies the response. The relative impact of complex I inhibition on the 335 

immediate transcriptional response versus the subsequent IRF1-dependent amplification was 336 

initially assessed by altering the timing of complex I inhibition. As the addition of rotenone was 337 

delayed relative to IFNg stimulation, the ultimate effect on MHCII expression was diminished 338 
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(Figure 6C). If rotenone was added more than 4 hours after IFNg, negligible inhibition was 339 

observed by 24 hours, indicating that early events were preferentially impacted by rotenone. To 340 

more formally test the role of IRF1, this study was performed in macrophages harboring a 341 

CRISPR-edited Irf1 gene. While the level of MHCII induction was reduced in the absence of 342 

IRF1, the relative effect of rotenone addition over time was nearly identical in sgIrf1 and sgNTC 343 

cells.  Thus, mitochondrial function appeared to preferentially impact the initial transcriptional 344 

response to IFNg upstream of IRF1. 345 

Ligand induced assembly of the IFNGR1-IFNGR2 receptor complex results in the 346 

phosphorylation and transactivation of janus kinases 1 and 2 (JAK1, JAK2). 347 

Autophosphorylation of JAK2 at tyrosine residues 1007/1008 positively regulates this cascade 348 

and serves as a marker of JAK2 activation. These activating events at the cytoplasmic domains 349 

of the IFNGR receptor complex facilitate STAT1 docking and phosphorylation at tyrsone-701 350 

(Y701), a prerequisite for the IFNg response. Additional STAT1 phosphorylation at serine-727 351 

can amplify signaling. To determine if complex I is required for these early signal transduction 352 

events, we examined the activation kinetics by immunoblot (Figure 6D). The total abundances of 353 

IFNGR1, STAT1, and JAK2, were constant in sgNTC and sgNdufa1 cells in the presence and 354 

absence IFNg-stimulation. While we detected robust phosphorylation of JAK2 Y1007/8, STAT1-355 

Y701, and STAT1-S727 over time following IFNg treatment in sgNTC cells, phosphorylation at 356 

all three sites was both delayed and reduced across the time-course in sgNdufa1 cells. We 357 

conclude that the loss of complex I function inhibits receptor proximal signal transduction 358 

events. 359 
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 360 

Mitochondrial respiration in antigen presenting cells is required IFNg-dependent T cell 361 

activation. 362 

As respiration affected both stimulatory and inhibitory antigen presenting cell (APC) 363 

functions, we sought to understand the ultimate effect of mitochondrial function on T cell 364 

activation. To this end, we generated myeloid progenitor cell lines from Cas9-expressing 365 

transgenic mice that can be used for genome-edited and differentiated into either macrophages or 366 

dendritic cells using M-CSF or FLT3L, respectively (110, 111). Macrophages differentiated from 367 

these myeloid progenitors demonstrated robust induction of all three markers that were the basis 368 

for the IFNg stimulation screens (Supplementary Figure 2A-C). Further, both the IFNg-mediated 369 

upregulation of these markers and the inhibitory effect of rotenone or oligomycin on their 370 

induction were indistinguishable from wild-type primary bone marrow-derived macrophages 371 

(Supplementary Figure 2D-F). In both macrophages and in dendritic cells (DCs), the induction of 372 

MHCII by IFNg was inhibited by rotenone and oligomycin (Figure 7A). Unlike macrophages, 373 

murine DCs basally express MHCII and these inhibitors only repressed the further induction by 374 

IFNg (Figure 7A,B).  375 

Both macrophages and DCs were used to determine if the inhibition of complex I in 376 

APCs reduces T cell activation. Both types of APCs were stimulated with IFNg overnight with or 377 

without rotenone before washing cells to remove rotenone and ensure T cell metabolism was 378 

unperturbed. APCs were then pulsed with a peptide derived from the Mycobacterium 379 

tuberculosis protein ESAT-6, and co-cultured with ESAT-6-specific CD4+ T cells from a TCR 380 

transgenic mouse (112). T cell activation was assayed by intracellular cytokine staining for IFNg. 381 

In macrophages, T cell stimulation relied on pretreatment of the APC with IFNg, as a 382 
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macrophage line lacking the Ifngr1 gene was unable to support T cell activation. Similarly, 383 

inhibition of complex I in macrophages completely abolished antigen-specific T cell stimulation 384 

(Figure 7C). DCs did not absolutely require IFNg pretreatment to stimulate T cells, likely due to 385 

the basal expression of MHCII by these cells. Regardless, rotenone treatment of DC abrogated 386 

the IFNg-dependent increase in T cell stimulation (Figure 7C).  387 

 To confirm the effects of complex I inhibition on T cell activation using a genetic 388 

approach and confirm that complex I inhibition acted in a cell-autonomous mechanism, we 389 

generated Ndufa1 knockout myeloid progenitors (Hox-sgNdufa1). Following differentiation into 390 

macrophages, Hox-sgNdufa1 demonstrated glycolytic dependence and the inability to generate 391 

ATP by OXPHOS compared to control Hox-sgNTC macrophages (Supplementary Figure 2G). 392 

Having confirmed the expected metabolic effects of Ndufa1 loss, Hox-sgNdufa1 and Hox-393 

sgNTC macrophages were mixed at various ratios. Mixed cultures were then stimulated with 394 

IFNg, peptide pulsed, and co-cultured with antigen-specific CD4+ T cells. In agreement with our 395 

chemical inhibition studies, we found strong correlation between complex I activity in the APC 396 

population and T cell stimulatory activity (Figure 7D-E). Together, these data confirm that the 397 

IFNg-dependent augmentation of T cell stimulatory activity depends on complex I function in 398 

both macrophages and DCs.  399 

 400 

Discussion 401 

IFNg-mediated control of APC function is central to shaping a protective immune 402 

response, and the canonical IFNg signal transduction pathway has been elucidated in exquisite 403 

detail (113). Our study demonstrates that unbiased genetic analyses can reveal a multitude of 404 

unexpected cellular regulators, even for a well-characterized process such as IFNg signaling. By 405 
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independently assessing genetic determinants of stimulatory and inhibitory molecule expression, 406 

we discovered mechanisms of regulation that preferentially affect the induction of different cell 407 

surface proteins. These results begin to explain how a single cytokine can induce functionally 408 

distinct downstream responses in different contexts. These data also suggest new strategies to 409 

modulate individual co-receptors to either stimulate or inhibit T cell activation. Another strength 410 

of our parallel screen approach was the increased power to identify shared mechanisms that 411 

control IFNg-mediated regulation across all screens. Our pooled analysis identified 412 

mitochondrial respiration, and in particular complex I, as essential for IFNg-responses in APCs. 413 

We determined that complex I is required for the IFNg-mediated induction of key immune 414 

molecules and is necessary for antigen presentation and T cell activation. These findings uncover 415 

a new dependency between cellular metabolism and the immune response. 416 

Our genetic and chemical inhibition data demonstrated that mitochondrial respiration is 417 

necessary for early events in signal transduction from the IFNg receptor complex, and complex I 418 

of the respiratory chain is specifically required. While IFNg stimulation has been reported to 419 

mediate a reduction in oxygen consumption and a shift to aerobic glycolysis over time (66), the 420 

requirement of mitochondrial respiration in IFNg responses has not been assessed previously. 421 

Our results indicate that complex I is required for IFNg signaling regardless of these metabolic 422 

shifts. Complex I is a metabolic hub with several core functions that cumulatively recycle 423 

nicotinamide adenine dinucleotide (NAD+), reduce ubiquinol, and initiate the PMF for ATP 424 

generation. While any or all of these physiologic processes could contribute to IFNg signaling, 425 

the differential effects of chemical inhibitors narrow the possibilities. Both rotenone and 426 

oligomycin inhibit the IFNg response, and block electron flux through complex I either directly 427 

or indirectly. In contrast, the ionophore CCCP disrupts the PMF and ATP generation without 428 
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inhibiting electron transfer, and does not affect IFNg signaling. These data indicate that the 429 

reduction state of the quinone pool and ATP generation do not regulate IFNg responses in our 430 

system. Instead, complex I-dependent regeneration of NAD+ is the most likely regulator of IFNg 431 

signaling. Indeed, NAD+ synthesis via either the de novo or salvage pathway is necessary for a 432 

variety of macrophage functions (114-116). Very recent work demonstrates an important role for 433 

NAD+ in STAT1 activation and PD-L1 induction by IFNg in hepatocellular carcinoma cells 434 

(117).  In this setting, inhibition of NAD+ synthesis reduces the abundance of phospho-STAT1 435 

by disrupting a direct interaction with the Ten-eleven translocation methylcytosine dioxygenase 436 

1 (TET1). It remains unclear if a similar interaction occurs in the myeloid cells that are the focus 437 

of our work, as TET1 is expressed at very low levels in macrophages and splenic DC (118). 438 

Regardless, these observations indicate that both NAD+ synthesis and its regeneration via 439 

mitochondrial respiration contribute to the IFNg response in diverse cell types. This recently 440 

revealed interaction between metabolism and immunity could contribute to the observed 441 

association between NAD+ homeostasis and inflammatory diseases (116), as well as the efficacy 442 

of checkpoint inhibitor therapy for cancer (117).   443 

In the APC setting, we found that T cell activation required mitochondrial respiration. 444 

While complex I function, MHCII and CD40 expression all largely correlate with T cell 445 

stimulation, our data indicate that additional IFNg-inducible pathways also contribute to this 446 

activity. For example, unstimulated DCs basally express similar levels of MHCII as IFNg-447 

stimulated macrophages but are unable to productively present antigen to T cells. This 448 

observation suggests that additional aspects of antigen processing, presentation, or co-stimulation 449 

are IFNg- and complex I-dependent. Similarly, MHCI presentation machinery is transcriptionally 450 

induced upon IFNg stimulation (7, 119) and the induction of molecules recognized by donor 451 
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unrestricted T cells, such as MR1 and CD1, might also require additional signals to function. The 452 

specific effects of mitochondrial respiration on the type and quality of the T cell response will 453 

depend on how these diverse antigen-presenting and co-signaling molecules are influenced by 454 

cellular metabolic state.  455 

The observation that IFNg signaling depends on mitochondrial respiration provides a 456 

stark contrast to the well-established glycolytic dependency of many phagocyte functions, such 457 

as TLR signaling. This metabolic dichotomy between proinflammatory TLR signals and the 458 

IFNg response mirrors known regulatory interactions between these pathways. For example, 459 

TLR stimulation has been shown to inhibit subsequent IFNg responses, via a number of target 460 

gene-specific mechanisms (120-124). However, TLR stimulation also results in the disassembly 461 

of the ETC (123, 124), which our observations predict to inhibit STAT1 phosphorylation and 462 

IFNg signaling at the level of the receptor complex. More generally, our work suggests 463 

fundamental metabolic programs contribute to the integration of activation signals by APC and 464 

influence the ultimate priming of an immune response.  465 

 466 

Materials and Methods 467 

Cell culture 468 

Cells were cultured in Dulbecco’s Modified Eagle Medium (Gibco 11965118) supplemented 469 

with 10% fetal bovine serum (Sigma F4135), sodium pyruvate (Gibco 11360119), and HEPES 470 

(15630080). Primary bone marrow-derived macrophages (BMDMs) were generated by culturing 471 

bone marrow in the presence of media supplemented with 20% L929 supernatant for 7 days.  472 

 473 
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Immortalized macrophage cell lines in C57Bl6/J and Cas9-EGFP were established in using J2 474 

retrovirus from supernatant of CREJ2 cells as previously described(125). Briefly, isolated bone 475 

marrow was cultured in the presence of media enriched with 20% L929 supernatant. On day 3, 476 

Cells were transduced with virus and cultured with virus for 2 days. Over the next 8 weeks, L929 477 

media was gradually reduced to establish growth factor independence.  478 

 479 

Conditionally immortalized myeloid progenitor cell lines were generated by retroviral 480 

transduction using an estrogen-dependent Hoxb8 transgene as previously described(110). 481 

Briefly, mononuclear cells were purified from murine bone marrow using Ficoll-Paque Plus (GE 482 

Healthcare 17144002) and cultured in RPMI (Gibco 11875119) containing 10% fetal bovine 483 

serum (Sigma F4135), sodium pyruvate (Gibco 11360119), and HEPES (15630080), IL-6 484 

(10ng/mL; Peprotech #216-16), IL-3 (10ng/mL; Peprotech #213-13), and SCF (10ng/mL; 485 

Peprotech #250-03) for 48 hours. Non-adherent bone marrow cells from C57Bl6/J (Jax 000664), 486 

Cas9-EGFP knockin (Jax 026179), or Ifngr1 knockout (Jax 003288) mice were transduced with 487 

ER-Hoxb8 retrovirus. After transduction cells were cultured in with media supplemented with 488 

supernatant from B16 cells expressing GM-CSF and 10uM estradiol (Sigma E8875) to generate 489 

macrophage progenitor cell lines or in media supplemented with supernatant from B16 cells 490 

expressing FLT3L and 10uM estradiol (Sigma E8875) to generate dendritic cell progenitor lines. 491 

To differentiate macrophages, progenitors were harvested and washed twice with PBS to remove 492 

residual estradiol and cultured in L929 supplemented media as above. To differentiate dendritic 493 

cells(111), progenitors were harvested, washed 2x with PBS, and cultured in FLT3-enriched 494 

complete RPMI for 8-10 days.  495 

 496 
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Human monocyte-derived macrophages (MDM) were differentiated from mononuclear cells of 497 

healthy donors. Briefly, peripheral blood mononuclear cells (PBMCs) were isolated from whole 498 

blood using Ficoll-Paque-PLUS (GE Healthcare 17144002). CD14+ monocytes were purified 499 

using MojoSort™ Human CD14 Nanobeads (Biolegend 480093) according to the manufacturer's 500 

protocol. Cells were cultured in RPMI with 10% FBS, sodium pyruvate, and HEPES and 501 

supplemented with recombinant GM-CSF (50ng/mL, Peprotech 300-03) for 6 days. Thaws were 502 

harvested using Accutase (Gibco A1110501).  503 

 504 

Cell stimulations 505 

Murine IFNg (Peprotech 315-05) and human IFNg (Peprotech 300-02) were used at 10ng/mL 506 

unless otherwise indicated in the figure legends. Murine TNF (315-01A) was used at 25ng/mL. 507 

Pam3CSK4 (Invivogen tlrl-pms) was used at 200ng/mL.  508 

 509 

CRISPR screens 510 

A clonal macrophage cell line stably expressing Cas9 (L3) was established as described 511 

elsewhere(79). A plasmid library of sgRNAs targeting all protein coding genes in the mouse 512 

genome (Brie Knockout library, Addgene 73633) was packaged into lentivirus using HEK293T 513 

cells. HEK293T supernatants were collected and clarified, and virus was titered by quantitative 514 

real-time PCR and by colony counting after transduction of NIH3T3. L3 cells were transduced at 515 

a multiplicity of infection (MOI) of ~0.2 and selected with puromycin 48 hours after 516 

transduction (2.5ug/mL). The library was minimally expanded to avoid skewing mutant 517 

representation and then frozen in aliquots in freezing media (90% FBS 10% DMSO).  518 

 519 
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Two replicate screens for MHCII, CD40, and PD-L1 were performed as follows: 520 

2e8 cells of the knockout (KO) library was stimulated with IFNg (10ng/mL; Peprotech 315-05) 521 

for 24 hours after which cells were harvested by scraping to ensure integrity of cell surface 522 

proteins. Cell were stained with TruStain FcX anti-mouse CD16/32 (Biolegend 101319) and 523 

LIVE/DEAD Fixable Aqua (Invitrogen L34957) per the manufacturer's instructions. For each of 524 

the respective screens, stimulated library was stained for its respective marker with the following 525 

antibody: MHCII (APC anti-mouse I-A/I-E Antibody, Clone M5/114.15.2 Biolegend 107613), 526 

CD40 (APC anti-mouse CD40 Antibody, Clone 3/23 Biolegend 124611), or PD-L1 (APC anti-527 

mouse CD274 (B7-H1, PD-L1) Antibody, Clone 10F.9G2 Biolegend 124311). Each antibody 528 

was titrated for optimal staining using the isogenic L3 macrophage cell line. Following staining, 529 

cells were fixed in 4% paraformaldehyde. High and low expressing populations were isolated by 530 

fluorescence activated cell sorting (FACS) using a BD FACS Aria II Cell Sorter. Bin size was 531 

guided by control cells which were unstimulated and to ensure sufficient library coverage (>25x 532 

unselected library, or >2e6 cells per bin). Following isolation of sorted populations, 533 

paraformaldehyde crosslinks were reversed by incubation in proteinase K (Qiagen) at 55 degrees 534 

for 6-8 hours. Subsequently, genomic DNA was isolated using DNeasy Blood and Tissue Kit 535 

(Qiagen 69504) according to the manufacturer's instructions. Amplification of sgRNAs by PCR 536 

was performed as previously described(74, 126) using Illumina compatible primers from IDT, 537 

and amplicons were sequenced on an Illumina NextSeq500. Sequence reads were trimmed to 538 

remove adapter sequence and to adjust for staggered forward (p5) primer using Cutadapt v2.9. 539 

Raw sgRNA counts for each sorted and unsorted (input library) population was quantified using 540 

bowtie2 via MAGeCK to map reads to the sgRNA library index (no mismatch allowed); a 541 

sgRNAindex was modified to reflect genes transcribed by our macrophage cell line either basally 542 
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or upon stimulation with IFNg as previously published(79). Counts for sgRNAs were median 543 

normalized to account for variable sequencing depth.  544 

 545 

MAGeCK-MLE 546 

We used MAGeCK-MLE to test for gene enrichment. Two separate analyses were performed in 547 

order to: (1) identify regulators of the IFNg response, and (2) identify specific regulators of each 548 

of the screen targets. For both analyses, the baseline samples were the input libraries from each 549 

of the replicate screens in order to account for slight variabilities in library distribution for each 550 

screen. For (1), the generalized linear model was based on a design matrix that was "marker-551 

blind" and only considered the bin of origin (i.e. MHCII-low, CD40-low, PD-L1-low v. MHCII-552 

high, CD40-high, PD-L1-high). For (2), the design matrix was "marker-aware and bin-specific" 553 

to test for marker-specific differences (i.e. MHCII-low v. CD40-low v. PD-L1-low); the analysis 554 

was performed separately for each bin, low or high expressing mutants, to identify marker-555 

specific positive and negative regulators, respectively. For each analysis, b scores (selection co-556 

efficient) for each gene were summed across conditions to allow for simultaneous assessment of 557 

positive and negative regulators across conditions. Data are provided in Supplementary Tables.  558 

 559 

Gene-set enrichment analysis (GSEA) was performed using a ranked gene list as calculated from 560 

MAGeCK-MLE beta scores and false discovery rate (FDR). To facilitate the identification of 561 

positively and negatively enriched gene sets from the high and low expressing populations, the 562 

positive (“pos | beta”) and negative (“neg | beta”) beta scores for each gene were summed as 563 

described above (“beta_sum”). To generate a ranked gene list for GSEA, we employed 564 

Stouffer’s method to sum positive (“pos | z”) and negative (“neg | z”) selection z-scores, which 565 
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were used to re-calculate p-values (“p_sum”) as has been previously described (127-129). Using 566 

these summative metrics, we calculated a gene score as: log10(p_sum) * (beta_sum). Genes were 567 

ranked in descending order and GSEA was performed with standard settings including 568 

“weighted” enrichment statistic and “meandiv” normalization mode. Analysis was inclusive of 569 

gene sets comprising of 10-500 genes that were compiled and made available online by the 570 

Bader lab (130, 131).  571 

 572 

Plasmids and sgRNA cloning 573 

Lentivirus was generated using HEK293T cells using packaging vector psPAX2 574 

(Addgene#12260) and envelope plasmid encoding VSV-G. Transfections used TransIT-293 575 

(MirusBio MIR 2704) and plasmid ratios according to the manufacturer's instructions. For the 576 

generation of retrovirus, pCL-Eco in place of separate packaging and envelope plasmid. 577 

Retrovirus encoding the ER-Hoxb8 transgene was kindly provided by David Sykes.  578 

 579 

sgOpti was a gift from Eric Lander & David Sabatini (Addgene plasmid #85681)(132). 580 

Individual sgRNAs were cloned as previously described. Briefly, annealed oligos containing the 581 

sgRNA targeting sequence were phosphorylated and cloned into a dephosphorylated and BsmBI 582 

(New England Biolabs) digested SgOpti (Addgene#85681) which contains a modified sgRNA 583 

scaffold for improved sgRNA-Cas9 complexing. Use of sgOpti derivatives for delivery of 584 

multiple sgRNAs was performed as detailed elsewhere(79). The sgRNA targeting sequences 585 

used for cloning were as follows: 586 

Name/Target sgRNA sequence 
sgIfngr1_1 TATGTGGAGCATAACCGGAG 
sgIfngr1_2 GGTATTCCCAGCATACGACA 
sgIrf1_1 CTGTAGGTTATACAGATCAG 
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sgIrf1_2 CGGAGCTGGGCCATTCACAC 
sgPtpn2_1 AAGAAGTTACATCTTAACAC 
sgPtpn2_2 TGCAGTGATCCATTGCAGTG 
sgNdufa1_1 TGTACGCAGTGGACACCCCG 
sgNdufa1_2 CGCGTTCCATCAGATACCAC 
sgNdufa2_1 GCAGGGATTTCATCGTGCAA 
sgNdufa2_2 ATTCGCGGATCAGAATGGGC 
sgStat1_1 GGATAGACGCCCAGCCACTG 
sgStat1_2 TGTGATGTTAGATAAACAGA 
sgOstc_1 GCGTACACCGTCATAGCCGA 
sgOstc_2 TCTTACTTCCTCATTACCGG 
sgCnbp_1 AGGTAAAACCACCTCTGCCG 
sgCnbp_2 GTTGAAGCCTGCTATAACTG 

 587 

Flow cytometry 588 

Cells were harvested at the indicated times post-IFNg stimulation by scrapping to ensure intact 589 

surface proteins. Cells were pelleted and washed with PBS before staining with TruStain FcX 590 

anti-mouse CD16/32 (Biolegend 101319) or TruStain FcX anti-human (Biolegend 422301) and 591 

LIVE/DEAD Fixable Aqua (Invitrogen L34957) per the manufacturer's instructions. The 592 

following antibodies were used as indicated in the figure legends: 593 

APC-Fire750 anti-mouse I-A/I-E Antibody, Clone M5/114.15.2 Biolegend 107651 594 

PE anti-mouse CD40 Antibody, Clone 3/23 Biolegend 124609 595 

Brilliant Violet 421™  anti-mouse CD274 (B7-H1, PD-L1) Antibody, Clone 10F.9G2 Biolegend 596 

124315 597 

Alexa Fluor® 647 anti-human CD54 Antibody, Clone HCD54, Biolegned 322718 598 

PE anti-human CD40 Antibody, Clone 5C3, Biolegned 334307 599 

Brilliant Violet 421™ anti-human CD274 (B7-H1, PD-L1) Antibody, Clone 29E.2A3, Biolegend 600 

329713 601 

APC/Fire™ 750 anti-human HLA-DR Antibody, Clone L243, Biolegend 307657 602 
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 603 

For intracellular cytokine staining, cells were treated with brefeldin A (Biolegend 420601) for 5 604 

hours before harvesting. Following staining and fixation, cells were permeabilized (Biolegend 605 

421002) and stained according to the manufacturer's protocol using the following antibodies: 606 

PE anti-mouse IFN-γ Antibody, Biolegend 505807 607 

 608 

Surface protein expression was analyzed on either a MacsQuant Analyzer or Cytek Aurora. All 609 

flow cytometry analysis was done in FlowJo V10 (TreeStar).  610 

 611 

Chemical inhibitors 612 

All chemical inhibitors were used for the duration of cell stimulation unless otherwise stated. 613 

Rotenone (Sigma R8875) was resuspended in DMSO and used at 10uM unless indicated 614 

otherwise in the figure legend. Oligomycin (Cayman 11342) was resuspended in DMSO and 615 

used at 2.5uM unless otherwise indicated. CCCP (Cayman 25458) was resuspended in DMSO 616 

and used at 1.5uM unless indicated otherwise. 1400W hydrochloride (Cayman 81520) was 617 

resuspended in culture media, filter sterilized and used immediately at 25uM unless otherwise 618 

indicated. N-acetyl-L-Cysteine (NAC, Cayman 20261) was resuspended in culture media, filter 619 

sterilized and used immediately at 10mM. DMOG (Cayman 71210) was resuspended in DMSO 620 

and used at 200uM. UK5099 (Cayman 16980) was resuspended in DMSO and used at 20uM. 2-621 

deoxy-D-Glucose (2DG, Cayman 14325) was resuspended in culture media, filter sterilized and 622 

used at 1mM or at the indicated concentrations immediately. MitoTEMPO hydrate (Cayman 623 

16621) was resuspended in DMSO and used at the indicated concentrations.  624 

 625 
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For experiments that used defined minimal media with carbon supplementation, D-galactose, 626 

sodium pyruvate, and D-glucose were used at 10mM in DMEM without any carbon (Gibco 627 

A1443001). For establishment of macrophage cell line with diminished mitochondrial mass, 628 

cells were continuously cultured in linezolid (LZD) (Kind gift from Clifton Barry) for 4 weeks at 629 

50 µg/mL or DMSO control. Both LZD-conditioned and DMSO control lines were 630 

supplemented with uridine at 50 µg/mL. Prior to experimentation, cells were washed with PBS 631 

and cultured without linezolid for at least 12 hours.  632 

 633 

ELISA and nitric oxide quantification 634 

The following kits were purchased from R and D Systems or Biolegend for quantifying protein 635 

for cell supernatants: 636 

Mouse IL-6 DuoSet ELISA (DY406) or Biolegend ELISAmax (431301) 637 

Mouse TNF-alpha DuoSet ELISA (DY410) or Biolegend ELISAmax (430901) 638 

Mouse IFN-gamma DuoSet ELISA (DY485) 639 

Human IL-1 beta/IL-1F2 DuoSet ELISA (DY201) 640 

Human TNF-alpha DuoSet ELISA (DY210) 641 

Nitric oxide was quantified from cell supernatants using the Griess Reagent System according to 642 

the manufacturer’s instructions (Promega G2930). For these experiments, cell culture media 643 

without phenol red (Gibco A1443001 or Gibco 31053028).  644 

 645 

RNA isolation and quantitative real-time PCR 646 

To isolate RNA, cells were lysed in TRIzol (15596026) according to manufacturer's instructions. 647 

Chloroform was added to lysis at ratio of 200uL chloroform per 1mL TRIzol and centrifuged at 648 
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12,000 x g for 20 minutes at 4C. The aqueous layer was separated and added to equal volume of 649 

100% ethanol. RNA was isolated using the Zymo Research Direct-zol RNA extraction kit. 650 

Quantity and purity of the RNA was checked using a NanoDrop and diluted to 5ng/uL in 651 

nuclease-free water before use. Quantitative real-time PCR was performed using NEB Luna® 652 

Universal One-Step RT-qPCR Kit (E3005) or the Quantitect SYBR green RT-PCR kit (204243) 653 

according to the manufacturer's protocol and run on a Viia7 thermocycler or StepOne Plus 654 

Theromocycler. Relative gene expression was determined with ddCT method with beta-Actin 655 

transcript as the reference.  656 

Primer Sequence 

RT_Actb-1F GGCTGTATTCCCCTCCATCG 

RT_Actb-1R CCAGTTGGTAACAATGCCATGT 

RT_Cd274-1F GCTCCAAAGGACTTGTACGTG 

RT_Cd274-1R TGATCTGAAGGGCAGCATTTC 

RT-Ciita-1F AGACCTGGATCGTCTCGT 

RT-Ciita-1R AGTGCATGATTTGAGCGTCTC 

RT-Gapdh-1F TGGCCTTCCGTGTTCCTAC 

RT-Gapdh-1R GAGTTGCTGTTGAAGTCGCA 
 657 

Quantification of mitochondrial genomes 658 

Genomic DNA was isolated from cell pellets using the DNeasy Blood and Tissue Kit (Qiagen 659 

69504). Quantitative PCR was run using NEB Luna® Universal One-Step RT-qPCR without the 660 

RT enzyme mix and run on a Viia7 thermocycler. Relative quantification of mitochondrial 661 

genomes was determined by measuring the relative abundance of mitochondrially encoded gene 662 

Nd1 to the abundance of nuclear encoded Hk2 as has been described elsewhere(133). All primers 663 

are detailed in attached table.  664 

 665 
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Name/Target Sequence 
Mm-Nd1-1F CTAGCAGAAACAAACCGGGC 
Mm-Nd1-1R CCGGCTGCGTATTCTACGTT 
Mm-Hk2-1F GCCAGCCTCTCCTGATTTTAGTGT 
Mm-Hk2-1R GGGAACACAAAAGACCTCTTCTGG 

 666 

Immunoblot 667 

At the indicated times following stimulation, cells were washed with PBS once and lysed in on 668 

ice using the following buffer: 1% Triton X-100, 150mM NaCl, 5mM KCl, 2mM MgCl2, 1mM 669 

EDTA, 0.1% SDS, 0.5% DOC, 25mM Tris-HCl, pH 7.4, with protease and phosphatase inhibitor 670 

(Sigma #11873580001 and Sigma P5726). Lysates were further homogenized using a 25g needle 671 

and cleared by centrifugation before quantification (Pierce™ BCA Protein Assay Kit, 23225). 672 

Parallel blots were run with the same samples, 15ug per well. The following antibodies were 673 

used according to the manufacturer's instructions: 674 

Purified anti-STAT1 Antibody Biolegend Clone A15158C 675 

Purified anti-STAT1 Phospho (Ser727) Antibody, Biolegend Clone A15158B 676 

Phospho-Stat1 (Tyr701) Rabbit mAb, Cell Signaling Technology Clone 58D6 677 

Jak2 XP® Rabbit mAb, Cell Signaling Technology Clone D2E12 678 

Phospho-Jak2 (Tyr1007/1008) Antibody, Cell Signaling Technology #3771S 679 

Anti-mouse β-Actin Antibody, Santa Cruz Biotechnology Clone C4 680 

Biotin anti-mouse CD119 (IFN-γ R α chain) Antibody, Biolegend Clone 2E2 681 

Goat anti-Rabbit IgG (H+L) Secondary Antibody, HRP, Invitrogen 31460 682 

Goat anti-Mouse IgG (H+L) Secondary Antibody, HRP, Invitrogen 31430 683 

HRP-Conjugated Streptavidin, Thermo Scientific N100 684 

 685 
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Bioenergetics Assay 686 

Relative glycolytic and respiratory capacity were determined as has previously been 687 

demonstrated(134). Briefly, cellular ATP levels were determined using CellTiter-Glo® 2.0 Cell 688 

Viability Assay (Promega G9241) according to the manufacturer's protocol. Cells were grown in 689 

the conditions indicated in the figure legends for 4 hours unless stated otherwise. ATP levels 690 

were normalized according to the figure legend.  691 

 692 

T cell activation assay 693 

We used a previously established co-culture system to assess antigen presentation to Ag-specific 694 

T cells. Briefly, C7 CD4+ T cells were isolated from transgenic C7 mice, respectively and 695 

stimulated in vitro with irradiated splenocytes pulsed with the ESAT-61-15 peptide, in complete 696 

media (RPMI with 10% FBS) containing IL-2 and IL-7. After the initial stimulation, the T cells 697 

were split every two days for 3-4 divisions and rested for two to three weeks. After the initial 698 

stimulation, the cells were cultured in complete media containing IL-2 and IL-7. The following 699 

synthetic peptide epitopes were used as antigens from New England Peptide (Gardener, MA): 700 

ESAT-61-15 (MTEQQWNFAGIEAAA).  701 

For use in co-culture assay, T cells were added to peptide-pulsed macrophages as described in 702 

figure legends at an effector to target ratio of 1:1. Following 1 hours of co-culture, brefeldin A 703 

was added for 5 hours before assessing intracellular cytokine production by ICS.  704 

 705 

Quantification of subunit effects on N-module 706 

We used publicly available proteomics data in which the protein abundance of all complex I 707 

subunit was measured when each subunit was genetically deleted(93). As determined empirically 708 
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by the authors, the N-module components included: NDUFA1, NDUFA2, NDUFS1, NDUFV2, 709 

NDUFA6, NDUFS6, NDUFA7, NDUFS4, and NDUFV3. The relative effect of each subunit 710 

(using a knockout of that subunit) on N-module protein stability was calculated as the sum of the 711 

median log2 ratio of each of the above mentioned subunits, minus the median log2 ratio of itself 712 

(since it is knocked out).  713 

  714 

Statistical Analysis and Figures 715 

Statistical analysis was done using Prism Version 8 (GraphPad) as indicated in the figure 716 

legends. Data are presented, unless otherwise indicated, as the mean +/- the standard deviation. 717 

Figures were created in Prism V8 or R (Version 3.6.2). MAGeCK-MLE was used as part of 718 

MAGeCK-FLUTE package v1.8.0. 719 

  720 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.22.393538doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.22.393538
http://creativecommons.org/licenses/by-nd/4.0/


Acknowledgements 721 

We thank all the members of the Sassetti, Behar, and Olive labs for critical feedback and input 722 

throughout the project. A special thank you to Megan K. Proulx, Mario Meza Segura and the 723 

donors for their assistance and expertise to the human macrophage derivation We thank the flow 724 

cytometry core at UMMS for their help in all experiments requiring flow cytometry. This work 725 

was supported by startup funding to AJO provided by Michigan State University, support from 726 

the Arnold O. Beckman Postdoctoral fellowship to AJO and grants from the NIH (AI146504, 727 

AI132130), DOD (W81XWH2010147), and USDA (NIFA HATCH 1019371). All data is being 728 

deposited into the appropriate databases and is available upon request. 729 

 730 

Competing Interests 731 

The authors have no competing interests related to the research described in this manuscript. 732 

  733 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.22.393538doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.22.393538
http://creativecommons.org/licenses/by-nd/4.0/


Figure Legends: 734 

Figure 1. Forward genetic screen to identify regulators of the IFNg response. A) 735 

Representative histograms of the three selected cell surface markers targeted in macrophage 736 

CRISPR screens: MHCII, CD40, and PD-L1. Blue histograms indicate expression of each 737 

marker in unstimulated macrophages and alternatively colored histograms show expression 738 

following 24 hour stimulation with recombinant murine IFNg (10ng/mL). Gates used for sorting 739 

“high” and “low” populations are shown. B) Schematic of CRISPR screens. C) Relative 740 

enrichment of select positive control (points) and all 1000 non-targeting control sgRNAs (gray 741 

distribution) are plotted as a function of their log2 fold enrichment (“high” vs “low” bins). Data 742 

are from both replicate selections for each sgRNA (sgRNA denoted by shape). D) Heatmap of b 743 

scores from CRISPR analysis, ordered according to k-means clustering (k=8) of the 5% most 744 

enriched or depleted genes in each screen. E) Macrophages were stimulated for 24 hours with 745 

TNF (25ng/mL), IFNg (10ng/mL) or both TNF and IFNg. Mean fluorescence intensity (MFI) of 746 

CD40 and MHCII were quantified by flow cytometry. Data are mean ± the standard deviation for 747 

3 biological replicates. Representative scatter plot from two independent experiments is 748 

provided. F) Macrophages transduced with sgRNA targeting Stat1, Ostc, Cnbp, or a NTC control 749 

were cultured with or without IFNg for 24 hours and cell surface expression of PD-L1 (MFI) was 750 

quantified by flow cytometry. For each genotype, data are the mean of cell lines with two 751 

independent sgRNAs ± the standard deviation. Data are representative of three independent 752 

experiments. Statistical testing in panel C was performed with Tukey’s multiple comparisons 753 

test. Within each screen, the sgRNA effects for each gene were compared to the distribution non-754 

targeting control sgRNAs. Statistical testing in panels E and F was performed by one-way 755 
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ANOVA with Holm-Sidak multiple comparisons correction. p values of 0.05, 0.01, 0.001,  and 756 

0.001are indicated by *, **, ***, and **** 757 

 758 

Figure 2. Global analysis of knockout libraries implicates mitochondrial complex I is a 759 

positive regulator of the IFNg response. A) Rank plot of the combined analysis for all genome-760 

wide knockout screens. Gene ranks (x-axis) were determined by maximal likelihood estimation 761 

(MLE). Known positive (left) and negative (right) regulators of IFNg-mediated signaling are 762 

highlighted. The q-value (false discovery rate) for each gene is indicated by dot size (-Log10 763 

FDR). B). Gene set enrichment analysis (GSEA) is based on the ranked list of positive 764 

regulators. Non-redundant pathways with a normalized enrichment score (NES) exceeding 2.0 765 

and a false discovery rate (FDR) below 0.025 are labeled. C) Relative enrichment (log2 fold 766 

change between “high” and “low” bins) of genes which comprise the mitochondrial respirasome 767 

(GeneOntology 0005746) and were targeted in the CRISPR KO library. Respirasome 768 

components are grouped by ETC complex. FDR is based on MAGeCK-MLE. D) Screen-specific 769 

enrichment score is plotted for Complex I structural subunits and assembly factors. The 770 

statistical enrichment of a gene (e.g. Ndufa1) or module (e.g. N) was calculated using a binomial 771 

distribution function to calculate the probability that observed sgRNAs under examination would 772 

be depleted or enriched given the expected median probability. P values of 0.05, 0.01, 0.001, and 773 

0.001are indicated by *, **, ***, and ****.  E) Correlation between the relative effect of each 774 

complex I subunit on the structural integrity of the N-module (x-axis) with the relative 775 

requirement of each complex I subunit for the IFNg-response (y-axis; b score, as in Panel D). 776 

The Pearson correlation coefficient (r) was calculated to be 0.6452 (95% confidence interval 777 

0.3584 to 0.8207; p-value = 0.0002. As Ndufab1 (empty square) is an essential gene, its 778 
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detection in the library indicates editing did not eliminate function; therefore, it was excluded 779 

from correlation analysis.  780 

 781 

Figure 3. Complex I is necessary for IFNg-induced MHCII and PD-L1 expression. 782 

Metabolic phenotypes in macrophage mutants were confirmed using ATP abundance following 783 

culture in media containing only (A) glucose or (B) pyruvate. Values are normalized to the 784 

average respiratory capacity of non-targeting control macrophages (NTC) and are the mean ± the 785 

standard deviation for 4 biological replicates. Statistical testing within each condition (with or 786 

without IFNg for 24h) was performed by one-way ANOVA with Dunnett’s multiple comparisons 787 

correction. (C-F) Non-targeting control (NTC), positive control (sgIfngr1 and sgPtpn2) and 788 

complex I mutant (sgNdufa1 and sgNdufa2) macrophages were stimulated for 24 hours with 789 

recombinant murine IFNg. Plotted values in C and E are the geometric mean fluorescence 790 

intensity (MFI) for a given mutant normalized to an internal control present in each well; for 791 

each gene, the data are the mean for two independent sgRNAs ± the standard deviation. 792 

Representative histograms are provided in D and F. Data are representative of >5 independent 793 

experiments. G) MHCII MFI of macrophages stimulated with IFNg and treated with rotenone at 794 

the indicated concentrations for 24 hours. Mean ± the standard deviation for 2 biological 795 

replicates are shown. Data are representative of four independent experiments.  H) Left: MHCII 796 

MFI on macrophages cultured in complete media (CM) and stimulated with IFNg and the 797 

indicated inhibitors for 24 hours. Right: MHCII MFI on macrophages cultured in CM or media 798 

containing only pyruvate (Pyr) or citrate (Cit) with or without UK5099 and stimulated with 799 

IFNg for 24 hours. Mean  ± standard deviation for 2 or 3 biological replicates is indicated. Data 800 

are representative of four independent experiments. Statistical testing was performed by one-way 801 
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ANOVA with Tukey correction for multiple hypothesis testing. p values of 0.05, 0.01, 0.001,  802 

and 0.001are indicated by *, **, ***, and ****. 803 

 804 

Figure 4. Diminished mitochondrial function specifically limits IFNg-dependent responses. 805 

A) TNF and IL-6 production by NTC or complex I mutant macrophages stimulated with 806 

Pam3CSK4 for 24 hours was determined by ELISA. Statistical testing between mutant and NTC 807 

macrophages from triplicate samples was performed by ANOVA with Dunnett’s correction for 808 

multiple comparisons. Data are representative of two independent experiments.  B) qPCR 809 

determination of relative mitochondrial genomes present per nuclear genome in macrophages 810 

cultured in vehicle (WT) or 50 ug/mL linezolid (LZD). Ct values were normalized to reference 811 

nuclear gene hexokinase 2 (Hk2) and plotted as abundance relative to WT. Data were analyzed 812 

by two-way unpaired t-test. C) ATP abundance in control or LZD-conditioned macrophages 813 

cultured in 10mM glucose, galactose or pyruvate. ATP values normalized to mean of 10mM 814 

glucose and plotted as percent. Mean ± the standard deviation for 2 biological replicates of each 815 

condition. Differences were tested by two-way ANOVA using the Sidak method to correct for 816 

multiple hypothesis testing. D) MFI of MHCII was determined by flow cytometry on control or 817 

LZD-conditioned macrophages following 24 hour stimulation with IFNg. Mean ± the standard 818 

deviation for 2 biological replicates of each condition and representative of two independent 819 

experiments. Differences were tested by two-way ANOVA using the Tukey method to correct 820 

for multiple hypothesis testing. E and F) Secretion of TNF and IL-6 in WT and LZD-conditioned 821 

macrophages following Pam3CSK4 stimulation for 6 hours was quantified by ELISA. Mean ± 822 

the standard deviation for 3 biological replicates of each condition and two independent 823 
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experiments. Data were analyzed by two-way unpaired t-test.  p values of 0.05, 0.01, 0.001,  and 824 

0.001are indicated by *, **, ***, and ****. 825 

 826 
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Figure 5. Complex I is specifically required for IFNg signaling in human cells. A) CD14+ 827 

monocytes from healthy human donors were differentiated into macrophages. MFI of cell 828 

surface markers PD-L1, ICAM1, CD40 and HLA-DR was determined by flow cytometry 829 

following stimulation with IFNg and/or inhibition of complex I with rotenone (10uM) for 24 830 

hours. Data are representative of two independent experiments and values are normalized to 831 

donor-specific unstimulated/vehicle control. Mean ± the standard deviation for 6 biological 832 

replicates of each condition. Differences were tested by two-way ANOVA using the Sidak-Holm 833 

method to correct for multiple hypothesis testing. B and C) Quantification of IL-1B and TNF 834 

production from primary human macrophages, measured by ELISA from cell supernatants 835 

following stimulation. Lines connect values for individual donors treated with vehicle (DMSO, 836 

black squares) or rotenone (empty squares). Differences were tested by repeat-measure two-way 837 

ANOVA using the Sidak-Holm method to correct for multiple hypothesis testing.  p values of 838 

0.05, 0.01, 0.001,  and 0.001are indicated by *, **, ***, and ****. 839 
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Figure 6. Complex I inhibition reduces IFNg receptor activity. A) PD-L1 transcript was 840 

quantified by qRT-PCR using DDCt relative to b-Actin in macrophages of the indicated genotype 841 

after stimulation with 10ng/mL IFNg. PD-L1 MFI was determined at the same time points by 842 

flow cytometry.  B) Ciita transcript was quantified by qRT-PCR using DDCt relative to b-Actin 843 

Gapdh in macrophages of the indicated genotype after stimulation with 10ng/mL IFNg. MHCII 844 

MFI was determined at the same time points by flow cytometry. Data shown are from biological 845 

triplicate samples with technical replicates for RT-PCR experiments and are representative of 846 

two independent experiments. C) sgNTC (left) or sgIrf1 (right) macrophages were cultured for 847 

24 hours with or without IFNg stimulation. At 2 hour intervals post-IFNg stimulation, rotenone 848 

was added. After 24 hours of stimulation, cells were harvested and surface expression of MHCII 849 

(MFI) was quantified by flow cytometry. Data are mean ± the standard deviation for 3 biological 850 

replicates and are representative of two independent experiments. Statistical testing was 851 

performed by one-way ANOVA with Tukey correction for multiple hypothesis testing.  D) 852 

Control (NTC) or sgNdufa1 macrophages were stimulated with IFNg for the indicated times, and 853 

cell lysates analyzed by immunoblot for STAT1 abundance and phosphorylation (Y701 and 854 

S727), JAK2 abundance and phosphorylation (Y1007/8), and IFNGR1. Beta-Actin was used as a 855 

loading control. Data are representative of three independent experiments. Results shown are 856 

from a single experiment analyzed on three parallel blots. p values of 0.05, 0.01, 0.001,  and 857 

0.001are indicated by *, **, ***, and ****. 858 

 859 

Figure 7. Mitochondrial respiration in antigen presenting cells is required IFNg-dependent 860 

T cell activation. A) Cell surface expression of MHCII (MFI) in macrophages (MF) or dendritic 861 

cells (DC) derived from conditionally immortalized progenitor lines. IFNg was added for 24 862 
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hours where indicated. Cells were treated with vehicle (DMSO), rotenone (10uM), oligomycin 863 

(OM, 2.5uM), or CCCP concurrent with IFNg. Data are three biological replicates and are 864 

representative of at least two independent experiments. B) Contour plot of macrophage (top row) 865 

or dendritic cell (bottom row) MHCII expression in the absence of (left column) or following 866 

(right column) stimulation with IFNg for 24 hours. Representative samples were selected from 867 

(A). The percent MHCII positive are indicated for each of the conditions. C) CD4+ T cell 868 

activation as measured by the percent of live cells positive for IFNg by intracellular cytokine 869 

staining. Prior to co-culture with T cells, APCs were stimulated with the indicated combinations 870 

of IFNg (10ng/mL), and/or rotenone (10uM) for 24 hours. After washing and pulsing with 871 

ESAT-61-15 at the indicated concentrations (nm.), T cells were added to APCs at an effector to 872 

target (E:T) ratio of 1:1, and co-cultured for a total of 5 hours. Data are representative of two 873 

independent experiments. Data are mean ± the standard deviation for 3 biological replicates. 874 

Statistical testing was performed by one-way ANOVA with Tukey correction for multiple 875 

hypothesis testing. D and E) sgNdufa1 or NTC macrophages were differentiated from 876 

immortalized progenitors, and mixed at the ratios indicated (labeled as percent of KO cells). 877 

Mixed cultures were stimulated with IFNg for 24 hours, peptide loaded, and co-cultured with 878 

CD4+ T cells (E:T 1:1). Production of IFNg was measured by ICS and quantified as the percent 879 

of cells positive for staining by flow cytometry. Representative contour plots (D) and 880 

quantification (E) of the experiment are shown. Data shown are for biological triplicate samples 881 

and are representative of two independent experiments.  p values of 0.05, 0.01, 0.001,  and 882 

0.001are indicated by *, **, ***, and ****. 883 

 884 
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 885 

Supplementary Figure Legends: 886 

Figure S1, Related to Figure 3.  A) sgNTC, sgNdufa1, sgNdufa2 cells cultured in complete 887 

media and treated with or without oligomycin (2.5µM) for 4 hours. Relative ATP levels were 888 

determined as in Figure 2A B) Intracellular ATP levels quantified as relative light units (RLU) 889 

using CellTiterGlo2.0 (Promega) for macrophages in specified growth conditions for 4 hours. 890 

Concentrations of carbon source and inhibitors are indicated in Materials and Methods. C) 891 

Macrophages were cultured in either glucose or galactose and stimulated with IFNg for 24 hours. 892 

Following stimulation, the proportion of cells with MHCII expression was determined by flow 893 

cytometry. D) Macrophages were cultured in conditions as described in Figure 4H. For each 894 

condition, cells were stimulated with IFNg or IFNg and N-acetylcysteine (NAC) for 24 hours 895 

after which cell surface levels of MHCII were quantified. E) Control or complex I mutant 896 

(sgNdufa2) macrophages were stimulated with IFNg for 24 hours with increasing doses of 897 

mitochondrial reactive oxygen species scavenger MitoTempo. For each concentration, values are 898 

plotted as a fold change relative to no scavenger; Mean ± the standard deviation for 2 biological 899 

replicates of each condition. F) Control or complex I deficient macrophages were stimulated 900 

with IFNg for 24 hours with or without the addition of DMOG or 1400W. Following stimulation, 901 

the proportion of cells with MHCII expression was determined by flow cytometry. G) Nitric 902 

oxide was measured using Griess Reagent System (Promega) from cell supernatants following 903 

stimulation with IFNg and Pam3CSK4 for 24 hours with or without the addition of DMOG or 904 

1400W. Relative nitric oxide levels were calculated as a percent relative to control (IFNg and 905 

Pam3CSK4 with DMSO). All data are representative of at least two independent experiments. 906 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.22.393538doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.22.393538
http://creativecommons.org/licenses/by-nd/4.0/


Statistical testing was performed using one-way ANOVA with Holm-Sidak multiple comparison 907 

correction. p values of 0.05, 0.01, 0.001,  and 0.001are indicated by *, **, ***, and ****. 908 

 909 

 910 

Figure S2, Related to Figure 7. A-C) Myeloid progenitors cells were conditionally 911 

immortalized by transducing murine bone marrow with an estrogen-dependent Hoxb8 transgene 912 

which maintains stem-like properties. Following differentiation of progenitors into macrophages 913 

using M-CSF enriched conditioned media, macrophages were stimulated with IFNg with or 914 

without rotenone. 24 hours after stimulation, cell surface levels of (A) MHCII, (B) CD40, (C) 915 

and PD-L1 were quantified by flow cytometry. Data are representative of 3 independent 916 

experiments and are the mean ± the standard deviation for 2 biological replicates. Statistical 917 

testing was performed by one-way ANOVA with Tukey correction for multiple hypothesis 918 

testing. D-F) As in panels A-C, macrophages from either immortalized macrophage progenitors 919 

or primary bone marrow were stimulated with IFNg with or without rotenone or oligomycin. 24 920 

hours after stimulation, cell surface levels of (D) MHCII, (E) CD40, (F) and PD-L1 were 921 

quantified by flow cytometry. G). Wild-type or DNdufa1 macrophages derived from Hoxb8-922 

immortalized bone marrow progenitors were cultured in the specified media and inhibitor 923 

condition before total intracellular ATP was quantified by CellTiterGlo2.0. For each genotype, 924 

values are relative to “glucose” control. Mean ± the standard deviation for 2 biological replicates 925 

of each condition.  p values of 0.05, 0.01, 0.001,  and 0.001are indicated by *, **, ***, and ****. 926 

 927 

 928 

 929 
  930 
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