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ABSTRACT

A numerical framework is developed to perform multi-scale (hinge-to valve-scale) flow simu-

lation and quantify the thrombogenic performance of prosthetic heart valves. This aim is achieved

by 1) developing a parallel dynamic overset grid and combining it with the curvilinear immersed

boundary (overset-CURVIB) method to reduce the computational cost, and 2) developing a frame-

work for evaluating the thrombogenic performance of heart valves in terms of platelet activation.

The dynamic overset grids are used to locally increase the grid resolution near immersed bodies,

which are handled using a sharp interface immersed boundary method, undergoing large move-

ments as well as arbitrary relative motions. The new framework extends the previous overset-

CURVIB method with fixed overset grids and a sequential grid assembly to moving overset grids

with an efficient parallel grid assembly. In addition, a new method for the interpolation of variables

at the grid boundaries is developed which can drastically decrease the execution time and increase

the parallel efficiency. This overset grid framework is integrated with a framework to quantify the

platelet activation which is developed using a Eulerian frame of reference which calculates the acti-

vation over the whole computational domain (contrary to Largrangian methods which use a limited

number of particles). The new framework is verified and validated against experimental data, and

analytical/benchmark solutions. This framework is used to compare the role of the systole phase

in the poor performance of bileaflet mechanical heart (BMHV) valve by using the bioprothtetic

heart valve as a control. The results show that the activation in the bulk flow during the systole

phase might play an essential role in the poor hemodynamic performance of BMHVs. In addition,

the contribution of bulk and hinge flow to the activation of platelets in BMHVs is quantified for

the first time by performing simulations of the flow through a BMHV and resolving the hinge by

overset grids. The total activation by the bulk flow is found to be several folds higher than that

by the hinge/leakage flow. This is mainly due to the higher flow rate of the bulk flow which ex-

poses many more platelets to shear stress than the leakage flow. For future work, this framework

is going to be applied for thrombogenic optimization of new designs of mechanical heart valves

ii



including trileaflet ones as well as patient-specific hemodynamic analysis of heart valves using

fluid-structure interaction in more realistic geometries extracted from the medical images such as

echocardiography.
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1. INTRODUCTION AND MOTIVATION*

Heart valves play an important role in blood circulation in humans. Because higher blood

pressure is exerting on the valves in the left ventricle (LV) the valvular diseases are more common

for the valves in the LV, i.e., mitral and aortic valves. The function of valves is to ensure that the

blood flows in the forward direction during the systole and minimizing the backflow from the aorta

to the LV during diastole. The opening and closing of valves repeat more than 102, 000 times each

day in which the valves undergo mechanical as well as flow-induced stresses. These stresses play

an important role in the valve’s leaflets failure in the long term. In addition, infection, rheumatic

fever, calcification, etc. can also contribute to heart valve diseases (e.g., stenosis and regurgitation).

These diseases can interfere with the functionality of the heart and result in death in some cases.

The available treatments for heart valve diseases are either to repair or replace the native heart valve

with an artificial one through surgery. It is estimated that about 2.5% of the U.S. population suffer

from heart valve defects ([8]) which leads to approximately 67, 500 valve replacement surgeries

each year ([9]).

1.1 Artificial heat valves

The ideal prosthetic valve should have the same characteristics as the native valve in terms of

hemodynamics, durability, and good implantability. Currently, two major types of valves are avail-

able: mechanical heart valves (MHV), which account for approximately 30% of implantation [10],

and bioprosthetic heart valves (BHV). Despite the improvement in the design of prosthetic valves

and surgical procedures during the past decades, these valves are far from ideal, e.g., MHVs are

highly thrombogenic and require life-long anticoagulant therapy. BHVs do not require life-long

anticoagulant therapy because of better hemodynamics performance but deteriorate after 10 to 15

years. Different designs for mechanical and bioprosthetic heart valves have been introduced in the

*Part of this chapter is reprinted with permission from “Platelet activation of mechanical versus bioprosthetic heart
valves during systole” by M. Hedayat et al., 2017, Journal of biomechanics, 56, 111-116, Copyright 2017 by Elsevier
Ltd.
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market during the past decades. However, each of these models has its limitations.

1.1.1 Mechanical heart valves

Four major different types of mechanical heart valves are available. Figure 1.1 shows the design

of each type of MHVs.

• Caged Ball valves

The caged Ball valve is the first artificial heart valve introduced in the market. It is consists

of a ball in a cage formed by 3 metal arches and a circular sewing ring (Fig.1.1-a). The

ball is pushed against the cage during the systole and allows the blood to flow through the

aorta. While during the diastole the pressure drop inside the LV moves the ball back toward

the sewing ring. This valve was discontinued by Edwards at 2007, however, thousands of

patients still have this valve.

• Monoleaflet valves

Monoleaflet valves are composed of a single graphite disc coated with pyrolite carbon (Fig.1.1-

b). The disc tilts between two struts of the housing with the angle from 60◦ to 80◦ relative

to the valve annulus. Some versions of this valve were prone to fracture of one of the re-

taining struts which resulted in releasing of the disc. The Monoleaflet valves are still being

implanted but the manufacturing has been stopped by some of the manufacturers such as

Bjork-Shiley.

• Bileaflet valves

Bileaflet valves are made of two semicircular leaflets attached to the valve’s ring using two

hinges (Fig.1.1-c). The leaflets open with the angle from 75◦ to 90◦ relative to the valve

annulus which create one central and two peripheral orifices. The St. Jude medical bileaflet

mechanical heart valve (BMHV) was introduced in 1977. More than 600, 000 of this valve

have been produced and implanted. BMHVs are the most common type of MHVs which is

currently being used in clinical surgeries around the world [11].
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• Trileaflet Valve

Trileaflet valves have three leaflets instead of two leaflets in BMHVs. These valves are more

similar to the native valves in terms of hemodynamics. Thus, they combine the hemody-

namic superiority of the trileaflet native or bioprosthetic aortic valves with the durability of

mechanical ones. The computational and experimental studies show that these valves have

better hemodynamics compared to the conventional BMHVs [12].

1.1.2 Bioprosthetic heat valves

Bioprosthetic heart valves (BHVs) are constructed from porcine heart valves or bovine peri-

cardium preserved with glutaraldehyde. These valves typically provide better hemodynamic per-

formance compared to the mechanical heart valves, however, the structural valve deterioration may

occur after 10-15 years. Thus, most of the annual valve replacements using these valves are car-

ried out in elderly patients in developed countries [13]. The most common types of BHVs are

introduced below.

• Xenograft or Heterograft

These valves are made of animal tissues, usually porcine aortic valve followed by calf peri-

cardium (Fig.1.1-d). The valve tissue is sewn on to a fabric-covered metal wire stent [14].

These valves last for 10–15 years.

• Bovine bioprosthetic valves

These valves are similar in design to porcine valves in the leaflets but they are made from

bovine pericardium mounted on a stented frame (Fig.1.1-e). The experiments show that

these valves provide significantly better hemodynamics with lower valve gradients and larger

aortic valve areas than porcine valves [15]. Due to these experimental results most of the

newer design of the bioprosthetic heart valves are typically contain bovine tissue leaflets.

• Transcatheter valves

These valves (Fig.1.1-f) are used for a minimally invasive surgery that repairs the valve

3



Figure 1.1: Different types of artificial valves. (a) caged ball; (b) monoleaflet mechanical; (c)
bileaflet mechanical; (d) porcine bioprosthetic; (e) Bovine bioprosthetic; (f) Transcatheter bio-
prosthetic; (g) Sutureless bioprosthetic

without removing the old one. Compared to the other valves for which the native aortic

valve needs to be removed, using this procedure the transcatheter valves are placed into the

aortic valve’s place without removing it. These valves are typically used for the elderly

patients, however, the low invasiveness and faster recovery for these procedure makes these

valves favorable for young patients too [15].

• Sutureless valves

The same as transcatheter valves, Sutureless valves (Fig.1.1-g) have been designed to pro-

vide a minimally invasive procedure by simplifying the surgical implantation and reducing

operative time. In addition, the cost of the procedure is reduced considerably compared to

the conventional prosthetic valves.

4



Table 1.1: Hemodynamic property of different type of MHVs

MHV type property
caged ball generates high pressure plus high level of shear stress drop [16]

prone to thrombus growth about the cage struts [17]
monoleaflet causes energy loss and generates turbulence flow [18]

in some cases struts disruption due to fatigue and fracture [18]

1.1.3 Hemodynamics of available heart valves

During the past couple of decades, a lot of effort has been made to improve the design of

prosthetic heart valves in terms of durability, and hemodynamic performance (which are the major

concerns for designing a new prosthetic heart valve). Specifically, several designs of MHVs are

available among which BMHVs are the most popular ones [11]. The problems and hemodynamic

deficiency associated with other types of MHVs (e.g., caged ball valves and Monoleaflet valves)

are mentioned in the table 1.1.

BMHVs have the best hemodynamic performance among the MHVs [11], however, even these

valves are associated with a high risk of platelet activation and clot formation in the valvular re-

gion [19]. Several studies have shown that the hemodynamic factor plays an important role in

the thrombogenicity of prosthetic heart valves which is believed to be initiated by platelet activa-

tion [20]. The platelet activation in BMHVs can be due to the elevated shear stress, flow separation,

vortex shedding from the leaflets, and recirculation zones due to the non-physiological flow pattern

in the wake of the leaflets in the bulk flow [21]. A recirculation region can be generated due to

the sharp edges of the MHVs which usually can be observed in the sinus area [22]. This non-

physiological pattern can make the platelets undergo high shear stress and long resistance time

which can result in platelet activation and aggregation [5]. In addition, the leaflets in MHVs are

attached to the housing by a hinge. This hinge has a small gap size of around 100µm [7]. This

gap will be subject to leakage during the diastole phase of the cardiac cycle [7]. This leakage jet

generates a high velocity with high shear stress and thereby increases the risk of platelet activation
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and consequently blood clot formation [3]. The role of each of these sources of platelet activation

is yet to be investigated.

Other than the above sources of platelet activation, cavitation can also play an important role in

the platelet activation and blood clotting [23, 24]. The fast closing of the leaflets and the rebound

happens due to that can extremely drop the pressure near the leaflets for a few milliseconds [25].

This low pressure can be below the vapor pressure which results in cavitation and generation of

bubbles in the blood [12]. Investigating all these parameters for a new design of heart valves re-

quires a robust, accurate, and highly efficient numerical method. The details, as well as advantages

and disadvantages of available numerical methods for simulation of the prosthetic heart valves, are

explained in section 1.2.

1.2 Numerical methods for simulation of artificial heart valves

Several in-vivo and in-vitro studies have been conducted to investigate the flow patterns and

hemodynamic performance of BMHVs using state-of-the-art image velocitometry (PIV) [26, 25,

27, 28]. However, the experimental measurements can only provide 2D cross-section of the flow

while the flow through the BMHVs is very complicated involving 3D vortical structures. In ad-

dition, 3D velocity measurements are very challenging and typically suffer from a lack of spa-

tio/temporal resolution. On the other hand, computational fluid dynamic provides (CFD) emerged

as a powerful tool for simulation of flow in different applications [29, 30, 31, 32, 33, 34, 35, 36],

especially, to quantify the hemodynamic of BMHVs with the detail and the resolution needed

for evaluating the performance of BMHVs in terms of leaflet motions and thrombogenicity [37].

However, performing a simulation under the physiological condition and complex geometries with

high spatio/temporal resolution where the flow is dominated by fluid-structure interaction (FSI),

the pulsatile flow effects, and undergo a transition to turbulence can be very challenging even for

the most advanced computational techniques available today.

The early simulations of BMHVs were performed using 2D grids [38, 39]. These simulations

showed the complex flow pattern in the MHVs during the systole. However, due to the 3D nature of

the flow in these valves, 2D simulations can only provide a limited amount of information. The first
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3D simulations of MHVs were performed under the fixed inflow with fixed leaflet positions [40,

41, 42]. These simulations showed that the vortex shedding from the leaflets can break down

the symmetric flow to small scale vortical structures. Later, several 2D studies were conducted

to perform 2D fluid-structure interaction simulation through MHVs [43, 44, 45]. Borazjani et

al. [46] and later Tullio et al. [47] performed the three-dimensional of BMHVs. These simulations

showed the break down of the organized flow into chaotic small scale structures can happen before

the peak systole. Since then several numerical simulations have been performed under different

conditions (different geometries, boundary conditions etc.) [48, 49, 50, 51]. The simulation of

flow through MHVs can be divided into two main categories based on the region of interest, i.e.,

bulk flow [52, 53] or hinge region [3, 54, 55, 56]. Due to the difference in the scale of bulk flow

and hinge region, the computational method required for the flow simulation of each category is

different. The available method for simulating the flow through the MHVs are presented below.

1.2.1 Numerical methods for problems with moving boundaries

The governing equations for the blood flow through mechanical heart valves are the 3D, un-

steady incompressible continuity and Navier–Stokes equations where the blood has been assumed

to be Newtonian. The valve leaflets are pivoting around their hinge and can open and close in re-

sponse to the cardiac flow pulse. Thus, the Navier-stokes equations are solved in a domain enclosed

by a moving boundary that contains moving immersed boundaries undergoing arbitrarily large de-

formations. Simulations of unsteady flows with moving/deforming bodies remain challenging due

to the constraints and difficulties in mesh generation and boundary condition implementation. For

handling moving boundaries inside a fluid domain generally two categories are available 1) moving

grids 2) fixed grids which are explained in detail below.

1.2.1.1 Moving grid methods

Moving grid methods are methods in which the computational grid is fitted to and moves/deforms

with the moving boundary. The movement of the grid is taken into account by using the arbi-

trary Lagrangian-Eulerian (ALE) formulation of the governing equations [57]. Although con-
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forming grids [58, 59, 60, 61, 62] have been used for simulating flows around moving bodies,

for large displacements such as for simulation of flow through mechanical heart valves in some

studies [45, 63] ALE methods can result in poor grid quality that decreases the accuracy of cal-

culations. For example, Cheng et al. [63] interpolated the mesh between two previous generated

meshes to obtain the intermediate mesh and apply an elliptic solver to smooth out the mesh for

each angle of leaflet during the simulation. Thus obtaining smooth computational meshes at ev-

ery time step of the simulation is not very trivial using the ALE technique. Therefore, using

the ALE method is not the best choice for the simulation of mechanical heart valves. For large

deformations, consequently, remeshing methods (e.g., global remeshing [64, 65] or refinement

methods [66, 67, 68, 69]) are required to rediscretize the whole computational domain or part of

it in such a way that the grid is conformal to the structure and the quality of the fluid mesh is

preserved as much as possible. However, re-meshing suffers from the loss of accuracy during time

evolution due to solution interpolation from the old domain to the new one [70]. In addition, this

method can increase the computational cost of simulations significantly especially for complicated

geometries. Furthermore, the efficient parallelization of a solver in re-meshing techniques is not

straightforward. On the other hand, non-boundary conforming methods, e.g., immersed boundary

method (IBM) [46, 71, 72, 73, 74], or fictitious domain method [75, 76], among others, can handle

large body deformation but they may decrease the solution’s accuracy near the fluid-solid interface

due to interpolation errors. In addition, non-boundary conforming methods require high grid reso-

lution in the regions where the boundary movement occurs which can increase the number of grids

points relative to ALE methods.

1.2.1.2 Fixed-grid methods

Fixed-grid methods in which the grid is fixed during the simulations can also be used for

handling the moving bodies in the domain. The example of fixed grid methods are cut-cell meth-

ods [77], fictitious domain [78], and immersed boundary methods [79, 80]. In cut-cell methods,

[77] the background is cut by the solid body and the cells at the interface are modified based

on the intersections with the underlying Cartesian grid and the boundary conditions are imposed
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along the intersecting surface. Several numerical challenges are associated with cut-cell schemes.

The fictitious domain is a diffused boundary approach where fluid and solid nodes are treated the

same and the boundary conditions are locally forced on the solid interface [81]. Thus the mesh

is adaptation is not required contrary to the cut-cell methods. Immersed boundary methods can

be categorized into diffuse methods [82] and sharp interface methods [80]. The diffuse methods

provide a diffused solid/fluid interface (the same as the fictitious methods) while sharp interface

methods explicitly account for the interface [81].

Among the above methods, immersed boundary methods have emerged as a powerful tool to

efficiently study complicated real-life flow problems which involve arbitrarily complex bodies/flow

domains [83, 84, 85]. These methods are inherently capable of handling problems involving large

structural displacement such as mechanical heart valves. In these methods, the computational

domain is discretized with a single, fixed, non-boundary conforming mesh system which can be

curvilinear or Cartesian. Immersed boundary methods have been successfully used for simula-

tions of cardiovascular flows [86, 47, 87, 37, 88, 89], aquatic swimming [90, 91], vortex gen-

eration/control [92, 93, 94], etc. Peskin is a pioneer of using immersed boundary method for

simulation of heart valves [86]. Later several researchers used different approaches of immersed

boundary method for simulation of prosthetic heart valves [3, 95, 96, 97, 98]. Nevertheless, de-

spite many attractive features of the immersed boundary methods, they suffer from a major lim-

itation which raises from the fact that the background grid stays the same and there is no ability

for clustering the grid nodes in the boundary layer of moving bodies during a simulation. This

limitation makes the application of the immersed boundary method very challenging for flows in

which an immersed body undergoes an arbitrary large displacement or rotation, such as aquatic

swimmers [99], wind turbines [100], or flapping wings [101]. In such simulations, the entire back-

ground grid should be discretized with a fine grid to resolve the boundary layer near the immersed

bodies which increases the computational cost drastically. Although solving Navier-stokes equa-

tions in a non-inertial frame of reference can overcome this problem for a single body, the problem

still remains for multiple bodies in arbitrary relative motions.
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To address the above issue for moving bodies, a few strategies have been proposed which

provide high grid resolution near an immersed body while the grid is coarsened away from the

body. Among those are the adaptive mesh refinement (AMR) and overset grids. THE hierarchical

AMR technique for Cartesian grids was pioneered by [102]. Since then this technique has been

applied and developed by many researchers [103, 104, 105, 106]. Local mesh refinement methods

have been used for simulation of heart valves [107, 108, 109]. However, the application of these

techniques for simulation of MHVs remains limited in the literature. Although AMR method is

accurate and efficient for steady problems [110, 111, 112] several drawbacks are associated with

this method for unsteady flows [113, 70, 114, 106]. The most important problem is the latency

between the mesh and flow solution. A few remedies have been proposed in the past few years to

overcome this problem. Some work adjusts the mesh every n time step and thus the mesh is lagging

behind the unsteady solution. However, there is no guarantee that features of interest remain in the

refined area in this method [115]. Other strategies such as local adaptive re-meshing [116, 117]

adjust the mesh more frequently. However, errors due to solution interpolation from the old mesh to

the new one can generate unquantified errors [70]. In addition, developing a robust algorithm and

data structure for the AMR method is usually not straightforward [106]. Finally, the parallelization

of AMR solver with high efficiency is very challenging because the load (number of grid points)

on each computing core is dynamically changing.

1.2.1.3 Overset grids

Overset or Chimera grids provide an elegant solution for the issue of large displacement in

simulations by discretizing a complex flow domain into a set of simpler, overlapping sub-domains

which can move relative to each other. The problem of overset grids was first proposed dur-

ing the 1970s for the solution of the elliptical and hyperbolic partial differential equations for

the inviscid shallow-water equations using two-dimensional domains and a non-moving overset

grid [118, 119, 120]. Steger and Benek [121] and later Meakin and Suhs [122] adopted the idea

to tackle more complicated problems of simulating compressible flows around multiple complex

geometries. Since then several attempts have been conducted to develop an overset grid framework
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to handle an arbitrary number of overlapping grids for both compressible and incompressible flows

using staggered [123, 124, 125, 126], non-staggered grids [127, 128], and hybrid staggered/non-

staggered grids [1]. This method has been used for simulation of heart valves in a few stud-

ies [129, 130, 131, 1, 132] to either provide the ability to handle complex geometries related to

the cardiovascular system or provide high grid resolution near the valve leaflets. However, these

simulations remained limited to large scale simulation of MHVs. The only simulation which uses

overset grids for multi-scale simulation of MHVs is performed by Hedayat et al. [3] which per-

formed an FSI simulation to capture the flow features of bulk flow and flow through the hinge

region simultaneously in their simulations. The restriction of using overset grids for FSI simula-

tion of heart valves is typically due to the computation cost associated with using this approach

especially for the grid assembly part needed in this method. To reduce the computational cost

required for performing overset grids simulation developing an efficient grid assembly kernel is

essential. The operation involved in grid assembly function and the challenges associated with

developing it especially in parallel are mentioned as follows.

In overset grid solvers, the governing equations are solved independently in each sub-domain

and the connection between different sub-domains is achieved by interpolating the flow vari-

ables at the interface of overlapped domains. The connection between different overlapping do-

mains is established via a grid assembly process. The main tasks in this process are 1) Hole-

cutting; 2) donor search, and 3) variable interpolation. While performing these tasks using a sin-

gle processor may be trivial, the problem can be very challenging in parallel considering that

each grid is partitioned and distributed among several processors. Several grid-assembly pack-

ages have been developed in recent years [133, 134, 135]. All these codes have their advan-

tages and disadvantages. Some of these packages are dedicated assembly codes which provide a

general overset grid assembly capability and need a mechanism for integrating with an existing

flow-solver [136, 137, 138, 139] while others are developed for a specific flow solver and directly

added to that solver [140, 141, 142, 143, 144, 1]. Most of dedicated grid assembly packages use

out-of-core algorithms to be linked to an existing flow-solver, e.g. through an Input/Output (I/O)
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file [145], which suffer from a high overhead especially for moving overset grids.

In addition, some codes are not implemented in parallel [1]. Because the overset grid assem-

bly should be performed at each time-step as the grids are moving during a simulation, parallel

implementation of grid assembly is essential for parallel solvers. However, the scalability of a par-

allel grid assembly code can be limited due to the inherent algorithmic complexity and difficulty

of efficiently distributing the computations between available processors. Several strategies are

available for handling the grid-assembly task in parallel. Some codes maintain the entire meshes

in all processors [146] while others use a partitioning scheme for overset grid assembly which is

different from the partitioning used for the flow solver [147, 148]. However, this requires a merge-

and-repartition for the entire grid data at each time step of the simulation which can drastically

increase the execution time due to memory latency and the algorithm overhead especially in the

unsteady flow simulations where these tasks need to be performed at each time step. To overcome

the above weaknesses, an algorithm with the capability to handle an already distributed composite

grid is required.

Some attempts have been conducted to address the above problems in recent years [133, 149,

150]. Zagaris et al. [133] developed an in-core parallel grid assembly to tackle the distributed

assembly problem. However, the scalability of their method was not satisfying. Roget and Sitara-

man [149] implemented a dynamic load balancing algorithm for PUNDIT [139]. Although they

achieved very good scalability for a large number of processors, this method is originally de-

veloped for unstructured grids and is not suitable for structure grids [151]. Martin et al. [150]

developed a grid decomposition method for the overset grid assembly problem which leads to a

scalable computation for very large simulations of moving bodies as well as a reduction in memory

requirement while the method has some limitations in terms of overlap minimization and optimal

donor selection. More recently,Horne and Mahesh [152] developed a massively-parallel overset

grid assembly for a PR-DNS of particle-laden turbulent channel flows to simulating large numbers

of moving bodies with exceptional parallel scalability. However, this method is not readily appli-

cable to general curvilinear problems and multi-connected geometries such as the cardiovascular
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system. In addition, the above packages are not easily accessible to a third party and the task of

efficiently integrating the existing grid assembly codes to a specific flow solver is problematic.

Here, we developed a new computational framework to extend our previous overset grid code [1]

to perform the grid assembly tasks for moving overset grids fully in parallel. The grid assembly

is integrated with our sharp-interface CURVIB solver in a general non-inertial frame of reference

with a conservative formulation [46, 1] which provides us the ability to tackle high-resolution,

fluid-structure interaction (FSI) simulations of complex real-life problems. To achieve this goal

a number of major algorithmic developments have been presented in this paper compared to the

previous work [1] which include: 1) developing a new donor search algorithm which enables us

to perform the search fully in parallel compared to our previous work which could only run on

a single processor; 2) developing a new walking strategy to identify the donor compared to the

previous work which utilized a brute force approach; 3) developing a new parallel interpolation

method which can drastically reduce the execution time compared to the previous work; 4) di-

rectly integrating the grid assembly kernel to the flow solver to maximize the overlap between

computations and data communication compared to the previous work which used an out-of-core

method through an I/O file; 5) adding the ability to handle moving overset grids to our CURVIB

solver which uses a non-inertial frame of reference for moving girds and an inertial frame of refer-

ence for non-moving ones versus our previous work in which all grids were solved either in inertial

or non-inertial frame of reference. Our framework has been validated against several experimental

and numerical test cases and its versatility is demonstrated by applying it to simulate a challenging

FSI simulation of fish swimming in a school.

1.2.2 Multi-scale computational analysis

An overview of the literature on numerical simulation of artificial heart valves up to now shows

that major advancements have been made on the FSI simulation of heart valves including realistic

geometries, material properties, and physiological boundary conditions. Most of these studies are

validated against experimental measurements which shows the power of numerical simulation for

simulation of heart valves. However, multi-scale simulation of heart valves remains a challenge due
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to wide disparity in the length scale. As an example in the diameter of the mechanical heart valves

typically varies from 21 to 25 mm where the leaflet can undergo large displacement of the same

dimension. On the other hand, the hinge gap sizes in BMHVs as an example mechanical heart valve

has a dimension of around 100µm. In addition, the red blood cells and platelets in human blood

which are the components of interest in investigating the hemodynamic performance of MHVs

have a dimension in the order of micrometers. In addition, the change in platelet activation and

thrombus ac occur in order of microseconds. Therefore, to accurately simulate the flow through

the prosthetic heart valves a multi-scale (both temporal and spatial) approach is needed.

Therefore, performing a multiscale flow simulation through the heart valves can be very chal-

lenging. While using overset grids can help to the multi-scale simulation of the BMHVs by provid-

ing a higher grid resolution near the hinge region, considering the dimension and a huge number

of the platelets available in the blood treating platelets as particles with mass is not possible due to

the high computational cost and limitation in computational resources. Thus, platelets are either

considered as massless particles through Lagrangian or continuum field through the Eulerian ap-

proach. Based on this fact, the platelet activation which can happen due to the strain and stresses

on the surface of the platelets should be modeled using the empirical methods which are explained

in detail in section 1.2.3.

1.2.3 Platelet activation

Thrombosis is a major concern in the recipient of mechanical heart valves [153]. Several

factors can trigger thrombosis formation in patients including red blood cell damage (hemolysis)

or platelet activation. red blood cells have flexible membranes which can resistance under a high

level of shear stress [154]. On the other hand, platelets are usually found near the wall where the

shear stress is higher. It is shown that a shear stress of 1500−2500 dyne/secwith an exposure time

of 102 sec is required for hemolysis ([155, 156, 157]) while the platelets can be activated with a

shear stress of as low as 100−300 dyne/sec ([158]). Since the threshold of 1500−2500 dyne/sec

is considerably higher than the shear stress reported in the mechanical heart valves [3] it is mainly

believed that platelet activation is the underlying mechanism for thrombus formation not hemolysis
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through the red blood cell damage.

Several mechanical and chemical agonists can play a role in platelet activation. Among those

flow-induced shear stress is playing a major role in the activation of the platelets in MHVs. Several

studies investigated the platelet activation in terms of shear stress and exposure time ([158, 159]).

Hellums et al. [159] suggested the shear-induced platelet activation happens due to a combination

of shear stress and the exposure time. Since then several mathematical models for platelet acti-

vation are proposed. Blackshear et al [160] made the first attempt to propose a formula to relate

blood damage/hemolysis with shear stress and exposure time. They proposed the power-law model

based on their experiments for constant shear stress

P (t) = Cταtβ (1.1)

where P (t) is the level of damage, τ is the level of shear stress, t is the exposure time, C, α, and β

are the model coefficients. Wurzinger et al. [161] performed an experiment in which they measured

the hemolysis of red blood cells as well as platelet lysis for constant exposure of blood to constant

levels of shear stress. Giersiepen et al. [162] later suggested a power-law model with α = 3.075

and β = 0.77 based on these experiments which showed good agreement with the experimental

results. Since then several mathematical models have been suggested for hemolysis and platelet

activation. Each of these models is good for a specific application and a special range of shear

level and exposure time. Hellums [163] suggested linear level of activation (power-law model

with α = 1 and β = 1) for platelet activation for platelets undergoing constant shear in which

the activation was assumed to be activated if the value of P (t) = τ t is higher than a threshold

otherwise not activated. Later, Grigioni et al. [164] developed a modified version of the power-law

model to account for piecewise constant shear stress during the exposure time. In order to account

for the dynamic nature of the flow in which the platelets can undergo dynamic shear stress Alemu

and Bluestein [165] suggested a platelet damage model based on the theory of damage proposed

by yeleswarapu et al. [166]. Where the model accounts for damage history, shear stress loading

history, and loading rate. However, the models based on the power-law model are not suitable
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for highly dynamic flow condition which is typically is observed in the MHVs. To overcome this

limitation Soares et al. [4] proposed a novel model for highly dynamic flow conditions arising

from pathological flow patterns. This formulation quantifies the rate of activation of platelets

as a function of their current activation state which accounts for dynamic shear stress, platelet

sensitization, shear rate.

These activation models can be treated based on Lagrangian and Eulerian approaches. using the

Eulerian approach the activation is quantified over the whole computational domain. However, in

the Lagrangian one, the activation is integrated over the pathlines of many particles. Considering

the normal range of platelets in artery vessels, which is 150, 000 to 400, 000 per cubic millime-

ter ([167]), millions of particles need to be calculated in Lagrangian approach to get statistically

significant results. Handling millions of particles is computationally quite expensive. Thus using a

Eulerian approach is more realistic for quantifying the platelet activation in measurements which

will be discussed in detail in section 2.4.
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2. NUMERICAL METHOD *

This chapter is organized as follows: In section 2.1 we present the governing equations used to

solve the flow in a non-inertial frame of reference is presented in general curvilinear coordinates.

In section 2.2 we describe the grid assembly problem and the method that s needed the for grid as-

sembly method. Section 2.2.1 shows the domain decomposition strategy that is used in for the grid

Assembly kernel developed in this work. Section 2.2.2 provides the technique that is used for the

hole-cutting which is needed for handling the overlapping grids. Later, in section 2.2.3 the method

for identifying the potential nodes, for which interpolation is needed, is explained. To reduce the

overhead associated with the parallel algorithm of grid assembly in a distributed environment a

data packing strategy is used which is explained in section 2.2.4. Section 2.2.5 describes the tech-

niques which are used for donor cell identification. The efficient algorithm that is developed in this

work for the velocity interpolation is presented in section 2.2.6. Later, the integration of this grid

assembly kernel with the CURVIB flow solver for performing FSI simulations as well as the meth-

ods used for the treatment of special cases in which several immersed bodies or overset grids can

intersect (which can happen when dealing with overset grids in arbitrary movements) is explained

in section 2.3. Finally, the framework which is developed for quantifying the platelet activation for

flow through heart valves using a Eulerian frame of reference is presented in section 2.4.

2.1 Overview of the overset-CURVIB

We developed a new parallel dynamic overset-CURVIB framework by extending the previous

overset-CURVIB method [1] for fixed overset grids and a sequential grid assembly to moving over-

set grids with an efficient parallel grid assembly[168]. Our new framework utilizes a non-inertial

frame of reference to solve the moving/rotating overset grids to avoid recalculating the curvilinear

metrics of transformation while the background/stationary grids are solved in the inertial frame. In

*Part of this chapter is reprinted with permission from “Comparison of platelet activation through hinge vs bulk
flow in bileaflet mechanical heart valves” by M. Hedayat and I. Borazjani, 2019, Journal of biomechanics, 83, 280-290,
Copyright 2019 by Elsevier Ltd.
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addition, a sharp-interface curvilinear immersed boundary method, as well as an strong-coupling

FSI method, are used to handle solid immersed bodies in the domain in the context of our CURVIB

flow solver. The framework enables us to perform high-resolution fluid-structure interaction sim-

ulations of real-life complex flows, which could not be handled with our previous strategy. Using

dynamic overset grids allows us to increase the grid resolution locally around moving immersed

bodies without drastically increasing the total number of grid points in simulations.

Major developments of this work compared to the previous method [1] are: 1) developing a

new grid assembly algorithm for partitioned grids (parallel distributed environment); 2) using a

new walking strategy for donor search; 3) developing a new algorithm for variable interpolation

by forming an interpolation matrix; 4) directly integrating the grid assembly kernel into the flow

solver instead of using an out-of-core strategy; 5) extending our previous framework to handle

moving overset grids in a non-inertial frame of reference while stationary ones in an inertial frame.

The major challenge in developing a parallel dynamic overset framework is the need for an ef-

ficient parallel communication strategy to transfer information between subdomains for a domain

decomposition in which all grids are distributed to all processors (optimal domain decomposition

for our flow solver). Several steps have been made to increase the scalability and decrease the com-

putational/communication cost of our framework including 1) using OBBs to decrease the search

space; 2) using the control cells to accelerate the donor search; 3) data packing to combine multiple

messages into a single message which results in decreasing the total number of communications

and consequently decreases the overhead associated with it; 4) using non-blocking data transfer

to reduce the overhead and maximize the communication/computation overlap, and 5) developing

a vectorized implementation for data interpolation in parallel which can drastically decrease the

interpolation time.

2.1.1 Governing equations in a general non-inertial frame of reference in General Curvi-

linear coordinate

The three-dimensional unsteady incompressible continuity and Navier-Stokes equations are

the governing equation in the fluid domain and are solved using the curvilinear/immersed bound-
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ary (CURVIB) solver. The CURVIB and fixed overset methods are extensively described and vali-

dated in our previous works [1, 169, 46, 95, 170]. Thus, just a brief overview is presented here. A

fully-curvilinear formulation based on the hybrid staggered/non-staggered approach [169] is used

which eliminates the need for evaluation of the Christoffel symbols. A sharp-interface immersed

boundary method is used to handle the 3D, arbitrary complex moving bodies inside the curvilin-

ear background domain which utilizes an efficient ray-tracing algorithm for immersed/fluid node

classification [46]. The boundary conditions are reconstructed on the fluid nodes in the immediate

vicinity of the immersed bodies along the normal to the body surface [80]. The solver has been

shown to be second-order accurate [1, 171].

In this study, a conservative form of Navier-stokes equations in a non-inertial frame of refer-

ence for a curvilinear coordinate is employed which was previously developed by [1] based on

the work by [172] and [173]. Fig. 2.1 illustrates the position and orientation of inertial and non-

inertial coordinates relative to each other. Using a general arbitrarily moving non-inertial frame of

reference allows us to enhance the versatility and efficiency of our numerical framework for prob-

lems involving rigid body motions of an immersed body. Furthermore, using a non-inertial frame

of reference for dynamic overset grids enables us to avoid recomputing the metrics of curvilinear

transformation at each iteration of the momentum solver where the grid position and orientation

change with respect to the inertial frame of reference which can reduce the computational cost

drastically. In addition, when a non-deforming immersed body is present in the fluid domain, us-

ing a non-inertial frame can prevent the use of a ray-tracing algorithm for the background grid

node classification at each time step which also reduces the computational costs especially if a

large number of immersed bodies are present in the fluid domain.

The momentum equations in a non-inertial frame of reference is formulated as follows in tensor

notation [1]:

J
∂

∂ξr
(U r) = 0 (2.1)
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Figure 2.1: schematic position and orientation of non-inertial frame relative inertial frame where
xint, xnon−int and xctr are the coordinate vectors in inertial frame, non-inertial frame and origin of
non-inertial frame in inertial coordinate.
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ξrq
J

(∂uq
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ξrq
J

(
− C1(uq)− C2(wq)−Gq(p) +

1

Re
D(uq)

)
(2.2)

where ξr = ξr(x1, x2, x3), r = 1, 2, 3 are the curvilinear transformation of the Cartesian coordi-

nates (x1, x2, x3) based on the hybrid staggered/non-staggered approach [169]. C1, C2, G, and D

are the convective, gradient, and viscous operators in curvilinear coordinates

C1(∗) = J
∂

∂ξr

[(
U r − V r

)
∗
]

(2.3)

C2(∗) = J
∂

∂ξr

[
U r ∗

]
(2.4)

Gq(∗) = J
∂

∂ξr

(ξrq
J
∗
)

(2.5)

D(∗) = J
∂

∂ξr

(grm
J

∂

∂ξm
∗
)

(2.6)
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J is the determinant of the Jacobian of the transformation, J = |∂(ξ1, ξ2, ξ3)/∂(x1, x2, x3)|, ξrq =

∂ξr

∂xq
, grm is the contravariant metric tensor, grm = ξrqξ

m
q , U q and V q are the contravariant velocity

components, which are correlated with the Cartesian velocity components as follows:

U r = uq
ξrq
J
, and V r = vq

ξrq
J

(2.7)

and

uq = Qqru
int
r (2.8)

vq = wq + uctrq (2.9)

wq = εqlmΩlX
int
m (2.10)

uctrq = uctrq (t) and Ωq = Ωq(t) are the translational and rotational velocity of the non-inertial frame,

respectively, relative to the inertial frame. Qqr, (q, r = 1, 2, 3) is the orthogonal rotation tensor that

rotates the non-inertial frame to the inertial frame orientation. X int
q is a component of the position

vectors in the inertial reference frame (for more detail readers can refer to [1]).

The above governing equations are advanced in time using a fractional step method on curvi-

linear grids [169, 1]. The momentum equations (Eqs. 2.1 and 2.2) are discretized in time in a fully

implicit manner using a second-order backward difference scheme (Italic variables are scalar while

the Boldface variables are vectors):

3U (∗) − 4U (n) + U (n−1)

2∆t
= RHS(U (∗),u(∗), p(n)) (2.11)

where U , u, and p are the contravariant velocity, Cartesian velocity, and pressure, respectively. n

denotes the time level and RHS is the right-hand side of Eq. 2.2. Eq. 2.11 is solved implicitly

using a Newton-Krylov method to obtain the intermediate fluxes U (∗). These steps are followed

by solving Poisson equation for the pressure correction which is solved using flexible GMRES

with multigrid as a preconditioner to obtain divergence-free solution [169]. The solver is fully
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parallelized using MPI and PETSc libraries [174].

2.2 Grid assembly for moving overset grids

The problem of overset grids refers to the use of multiple disconnected grids that are arbitrarily

overlapped to discretize a complex flow domain. The whole domain is partitioned and distributed

to every available processor in a way that each processor has a portion of the mesh form all blocks.

Figure 2.3 shows the schematic of an arbitrary overset grid with three blocks (sub-grids) bi = 1 to

bi = 3 and the distribution of each grid on different processors in our framework at a given time

instant. To solve the governing equations on each overset grid, boundary conditions on the nodes

at the interface of each block (e.g., Γ0,..., Γ3) need to be interpolated from another grid. If a block

is enclosed by another one (e.g., in Fig. 2.3 bi = 1 is completely inside bi = 2), some nodes from

the outer block (here, bi = 2) in the overlapping region are blanked out to transfer the information

from the inner block to the outer block (Γ4) by interpolating the solution from the inner domain to

several grid points inside the interface of the blanked region. The interpolation on a layer of nodes

inside the blanked region, called the buffer layer, is needed to maintain a similar discretization

stencil on the fluid node in the immediate vicinity of the blanked region as can be observed from

Fig. 2.4. The nodes at the interface and/or the blanked region on which the interpolation occurs

are known as the query points.

To construct the boundary conditions on the query points, the flow variables are interpolated

from the solution of source points known as donors (from another grid), which may lie in any par-

tition (each grid can be decomposed in different partitions; in this work, a one-to-one correspon-

dence is present between processors and partitions, e.g. see Fig. 2.3) of that grid. For example, the

interface for block bi = 0, i.e., Γ0 needs to be interpolated from bi = 1 and bi = 2 grids while

the interfaces of bi = 1, i.e. Γ1, needs to be interpolated from bi = 2 and bi = 0 grids. Finally,

the interface for block bi = 2, i.e. Γ2 needs to be interpolated from block bi = 0. While perform-

ing these operations using a single processor seems trivial, the challenge arises when these tasks

are performed in a distributed parallel environments in which data exchange between different

domains and different processors/partitions is necessary at each time step.
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To achieve reasonable parallel performance, a new parallel algorithm is developed and imple-

mented which is outlined in Fig. 2.2 and will be explained in detail in this section. As can be seen

in Fig. 2.2, the main steps of our grid assembly method are: 1) domain decomposition which is

partitioning and distributing the computational domains to different processors (section 2.2.1); 2)

hole-cutting (yellow box) which is identifying the grid points that are inside of an immersed body

or another grid that need to be blanked out (section 2.2.2); 3) query point identification (orange

box) which is performed to identify the points on which the solution needs to be interpolated from

another grids/partition (section 2.2.3) as well as identifying the communication map between pro-

cessors/partitions and eventually transferring data between different processors (section 2.2.4); 4)

donor search and donor selection (green box and section 2.2.5); and 5) forming the interpolation

matrix (blue box) which is a parallel matrix assembled using the interpolation coefficients obtained

during the donor search to interpolate the variables (velocities) form the donor points to the query

points (section 2.2.6). The detail of each part is provided in sections below.

2.2.1 Domain decomposition strategy

Several factors play a role in the parallel performance of an overset grid solver in terms of

both memory and run-time including 1) the scalability of flow solver, 2) the scalability of the

grid assembly method, and 3) the communication between flow and grid assembly solvers. These

tasks need to be performed at every time step for a simulation involving moving overset grids in

a parallel environment. In this work, message passing interface (MPI) is used for interprocessor

communication required for the overset grid assembly. To reach acceptable scalability in the flow

solver, the workload and, consequently, grid points should be evenly partitioned and distributed

among all available processors such that every processor will be involved in solving the flow during

the time that the flow solver is running using either implicit and explicit overset coupling. To

achieve this goal, the mesh in every block is distributed to all available processors (e.g. mesh=

[block
rank={0...m}
1 ... block

rank={0...m}
n ] where m + 1 = number of processors, and n= number of

blocks) as illustrated in Fig. 2.3.

To understand the effect of this decomposition on the grid-assembly method, it worth knowing
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Figure 2.3: Schematic overset Domain decomposition and domain distribution in different proces-
sors for using 9 processors (p). Every block is distributed over all available processors.

that the most time-consuming parts of the grid assembly are hole-cutting and the overhead asso-

ciated with grid assembly (due to communication/data transfer). This decomposition can increase

the performance of the hole-cutting process which works based on the parallel ray-tracing algo-

rithm presented in [46] as every processor can separately do the hole-cutting within its partition of

each domain. However, it is easy to see that this type of decomposition can drastically increase

the number of communications needed between different processors from different blocks in the

process of domain assembly (in the worst-case scenario the number communications can reach to

C(n, 2)×P (m, 2), where C and P are the combination and permutations in Algebra). Two reme-

dies are considered in our framework to treat this problem which can result in decreasing the total

number of communication, and, consequently, reducing the total overhead associated with paral-

lelism as well as increasing the overlap between communication and donor search computations.

These steps are 1) data packing, and 2) non-blocking data transfer which is explained later in the

section 2.2.4.
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Figure 2.4: Overset grid layout for the Taylor-Green vortex. The inner domain and blanking region
boundaries are shown by thick red and green lines, respectively.

2.2.2 Hole-cutting

The first step of the overset grid assembly framework is to identify the blanked (hole) points

in the fluid domain. Hole points (blanked regions) are the points that will be eliminated from the

domain, i.e., the flow will not be solved on these points but interpolated from the inner domain, to

transfer information from the inner (typically higher-resolution) domain to the outer one (Fig. 2.4).

Currently, two types of hole-cutting algorithm are available: 1) explicit hole-cutting method [175,

176, 1] in which the user specifies the hole points through the inputs to the algorithm, e.g., user-

defined surfaces which are needed for utilizing the ray-tracing algorithm, or 2) implicit hole-cutting

methods [177, 178, 179, 180] in which no user-defined input other than the flow solver’s boundary

conditions are needed. The implicit hole cutting methods work based on an iterative approach

for comparing volume grid information and flow boundary conditions to find the best resolution
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grid. Although implicit hole-cutting methods remove the user-defined inputs to the code, it has ap-

proximately an order of magnitude higher computations compared to the explicit one. Therefore,

explicit hole-cutting can be more suitable for dynamic overset grids where hole-cutting should be

performed at every time step of the flow solver as well as for all strong-coupling iterations within

fluid-structure interaction problems [46]. Hence, in this work, an efficient ray-tracing algorithm

similar to the one used for identifying grid nodes located within an immersed boundary in the

CURVIB method [1, 46] is used to perform the hole-cutting in the overlapping regions based on

the user-defined surface provided to the code as an input.

2.2.3 Identification of query points

The next step after hole-cutting is to identify the query points on which the variables are needed

to be interpolated from another domain. The functions involved in identifying the query points are

briefly explained below:

1. Generate the list of potential query-points: a list of potential query points is formed on every

processor, which include the boundary of blank region (buffer layer in Fig. 2.4) as well as the

boundaries of each moving overset grid (points on i = 0, Imax, j = 0, Jmax, and k = 0, Kmax

where i, j, k are the grid numbering in curvilinear ξ1, ξ2, and ξ3 directions, respectively).

2. Generate an oriented bounding-box around each processor: To facilitate faster donor search

and decreasing the communication time among different processors when dealing with a

distributed parallel environment, minimizing the number of query points is essential. There-

fore, an oriented bounding box (OBB) which approximately provides the optimal minimum

bounding box is generated around the portion of the distributed grid in each processor as

follows:

OBB =
{
ctr +

3∑
n=1

Anxn
∣∣ |xn| < |an|, n = [1,2,3] for IR3 space

}
(2.12)

and where ctr is the center of the grid points,Ai are right-handed orthonormal axes which are
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AABB

OBB

Figure 2.5: Comparison between an OBB around a swimmer and an AABB which clearly shows
OBB provides a much tighter bounding-box around the an object.

calculated as eigenvectors of the covariance matrix of the ghost points (x[min, max], y[min,

max], z[min, max]) in each processor, and an is the dimension of OBB in Ai direction.

Figure 2.5 compares the axis-aligned bounding box (AABB), which will be discussed in

section 2.2.5, and OBB around a sample swimmer. As can be seen in Fig. 2.5, an OBB can

provide a tighter bounding box compared to AABB which minimizes the search space for

identifying the query points.

3. Broadcast the information of OBB of each processor: Since each domain is distributed to all

available processors, every block has its own OBB on each processor (total number of OBBs

= number of blocks × number of processors). The information of the bounding-boxes is

then shared between all the processors. Thus, each processor has access to the information

of the bounding-box of every other processor in different blocks.

4. Check OBB intersections for all processors: After having all the bounding-box information,

a test will be performed to identify the possible intersection of each processor with any

other processor. A geometric separation test, explained in [181], is performed to identify
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the potential intersection of bounding-boxes. Due to our domain decomposition strategy, a

total number of C(n, 2) × P (m, 2), where m and n are number of processors and blocks,

respectively, tests should be performed to find the intersection of different processors.

5. Generate the final list of query points from one processor to the other: After the OBB inter-

section tests for all the processors, if two processors have intersection with each other the

query points should be sent from one processor to the other and vice versa. However, not

all the potential query points formed in step 1 need to be sent to the other processor since

none of the potential query points identified in step 1 may lie inside the other processor’s

OBB (even if OBB of two processors can intersects). Thus, to further minimize the number

of query points, a point inside OBB test [181] is performed (to check if the potential query

point from one processor lies inside the OBB of another processor) to form the final query

points list in one processor that needs to be transferred to and be interpolated from another

processor. This step helps to reduce the interprocessor communications in the grid assembly

method.

6. Data exchange: Following the above steps, the final communication map between all the

processors is generated (if the number of query points in the final list from the previous

step is not zero then a communication should be performed otherwise no communication

is needed). To transfer data, transfer packets which consist of a list of coordinates of all

potential receiver points that need to be interpolated are generated. Then, these packets are

exchanged between all the processors based on the final communication map.

After a successful data transfer, every processor will have a list of points for which it needs to

perform a donor search. Algorithm 1 summarizes the query point identification and transfer in our

framework.

2.2.4 Data packing strategy

The schematic of the data packing strategy implemented in this work is outlined in Algorithm 2.

The data is packed in a way that if the OBB of each two random processors intersects (section
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Algorithm 1 Algorithm for identifying the query points
NP=Number of processors, NB=number of blocks, rank= processor’s ID, NQ= number of query
points
for bi = 0 to bi = NB do

for P = 0 to P = NP do
for sb = 0 to sb = NB do

if (sb!=bi & rank!=P & (OBB(rank) intersects with OBB(P))) then
potential query points: identify the boundary points in rank
run point (from rank) inside OBB (of processor P ) test
if (point (from rank) inside OBB (of processor P )) then

add point to query points
end if
NQ= calculate number of query points
generate transfer packet (send-packetrank[P][QP])
copy query points to send-packetrank[P][QP]
transfer send-packetrank[P][QP]

end if
end for

end for
end for

2.2.3), the data (here, Cartesian coordinates of the receptors) is appended to the transfer buffer

regardless of their block number. For the case presented in Fig. 2.3, for example, to interpolate on

the boundary interface of processor P = 0 from block bi = 1 the data should be sent to processor

P = 6 (to be interpolated from bi = 0 and bi = 2). Without packing the data, this process should be

performed separately, i.e., the information will be sent from Processor P = 0 to Processor P = 6

to do the donor search (section 2.2.5) for block bi = 0 and then sent again to do the same process

for block bi = 2. However, the communication from processor P = 0 to P = 6 will be performed

one time by packing the data for both blocks (bi=0, 2). Such data packing helps to reduce the

maximum number of the communications to n × P (m, 2) instead of C(n, 2) × P (m, 2) for the

worst-case scenario which can reduce the overhead related to parallelism (e.g. communications

in MPI transfer). In addition, by using a non-blocking communication in data transfer between

processors, it allows the algorithm to overlap some of the computations regarding the donor search

with communication. In addition, to increase the performance of our framework, the grid assembly
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is directly linked to the flow solver rather than using any I/O file to exchange the information (will

be explained in section 2.2.6) which are needed for velocity interpolation on the query points from

grid assembly to the flow solver.

Algorithm 2 Algorithm for packing data for intercommunication data transfer
NP=Number of processors, QP=Number of query points, NB=number of blocks
exchange processors’ oriented bounding box
create communication map
for bi = 0 to bi = NB do

for P = 0 to P = NP do
for sb = 0 to sb = NB do

if (sb!=bi & rank!=P & (OBB(rank) intersects with OBB(P))) then
append data to send-packetrank[P][QP]

end if
end for

end for
send/receive send-packetrank[P][QP]

end for

2.2.5 Donor search

After receiving the list of query points from all other processors, each processor starts to search

for a potential donor. To facilitate the search, localizing the donor is the first step. Hence, an axis-

aligned bonding box (AABB) is generated around the grid partition in each processor to perform

a control cell strategy for localization [46, 1] in which an auxiliary grid aligned with Cartesian

coordinate is generated around each processor and then divided into several Cartesian boxes, i.e.,

control cells. The choice of AABB instead of OBB (Fig. 2.5) is made due to easy implementation

and avoiding extra computation required for using OBB. After the localization of the donor by

finding the proper control cell, the search for the donor cell will start. The donor cell is identified

using the point-in-the-box test [1] where the points are the cell corners of each recipient grid while

the boxes are the grid cells from the cell centers of the donor grid (Fig. 2.6). A point is inside the
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box if the following inequality is satisfied:

dκ = (p− pκmid).n̂ > 0 (2.13)

where pκmid is the surface center of the κth each face of the box and n̂ represents the inward unit

normal vector to the face which can be computed as n̂ =
rκ1×rκ2
rκ1 .r

κ
2

in which rκ1 and rκ2 are vectors

formed by opposite surface corners of this face as can be seen in Fig. 2.6.

In order to increase the speed of the donor search by avoiding a brute force search in each

control cell to find a proper donor, a walking search strategy is used. Walking search performs the

point-in-the-box test to check if the point is inside the cell and it also utilizes the sign of dκ in the

above formula to choose the walking direction, e.g. if dκ < 0 it will check the cell in the direction

of opposite to the inward normal of nκ and vice versa as outlined below in algorithm 3.

Although the walking search works fine if the receptor point lies inside the boundaries of

the donor grid (Fig. 2.7-a), it will be stuck if the point is outside the boundaries of the donor

grid (Fig. 2.7-b, point 1) or if the boundaries of the donor grid have a very high curvature inside

32



Algorithm 3 Algorithm for donor search
find=0
Stuck=0
Locate the control cell (ix, iy, iz) where point p is located:
i = I(ix, iy, iz), j = J(ix, iy, iz), k = K(ix, iy, iz)
while (find< 1) do

for (κ = 0 to κ = 6) do
if (d1 < 0 & d2 > 0) then

i = i− 1
else if (d1 > 0 & d2 < 0) then

i = i+ 1
end if
do the same for other directions

end for
if i = iold &j = jold &k = kold then

Stuck++
end if
if (Stuck> 0) then

goto nxtp
end if

end while
nxtp: search the control cell using brute force search
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Figure 2.7: Schematic of search strategies used in this work. a) compares the brute force search
(filled blue cells) with walking search (red cross) b) shows the scenario where the walking search
will stuck and thus a brute force search need to be performed.

a control cell (Fig. 2.7-b, point 2). The last scenario (Fig. 2.7-b, point 2) can be prevented by

changing the size of the control cell. To overcome this problem in practice, if the location provided

by the walking strategy is the same as the previous location, i.e, it is stuck in a cell, the algorithm

will break and a brute force search will be performed instead. Using this walking strategy, the cost

of donor search reduces from O(3) in brute force search to O(1) in the walking strategy. After

finding all the donor cells in the donor processor, the communication map between processors gen-

erated in section 2.2.3 is reversed and the data buffers (interpolation coefficients and index (i,j,k)

of the donor) are exchanged back between donor and receiver processors through inter-processor

communication.
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2.2.6 Interpolation

Followed by the donor identification, the interpolation coefficients are computed for a trilinear

interpolation of flow fields from one domain to the other as follows:

qp = a1a2a3qi,j,k + (a1 − 1)a2a3qi+1,j,k + a1(a2 − 1)a3qi,j+1,k+

(a1 − 1)(a2 − 1)a3qi+1,j+1,k + a1a2(a3 − 1)qi,j,k+1 + (a1 − 1)a2(a3 − 1)qi+1,j,k+1

+a1(a2 − 1)(a3 − 1)qi,j+1,k+1 + (a1 − 1)(a2 − 1)(a3 − 1)qi+1,j+1,k+1

(2.14)

Where qp is the interpolated flow variable at a query point and ai are the trilinear interpolation

coefficients that are obtained from the distances to the sides (Fig. 2.6) as follows:

a1 =
d1

d1 + d2
(2.15)

a2 =
d3

d3 + d4
(2.16)

a3 =
d5

d5 + d6
(2.17)

After computing the interpolation coefficients two options are available: 1) directly calculating the

interpolated velocities at the donor processor and just return the calculated values (3 components

of velocity); 2) return the interpolation coefficients ([a1, a2, a3]) as well as the index (i, j, k) of

the donor and form an interpolation matrix. Using the fist option only 3 real numbers (24 byte

for each point) need to be returned while in case of forming an interpolation matrix, 3 real num-

bers ([a1, a2, a3]) as well as 3 integers (i, j, k of the donor) should be transferred which will

be a total of 36 bytes of data. Although for forming an interpolation matrix more data needs to

be transferred, the matrix formation needs to be performed only once before the iterations of the

Newton-Krylov method for momentum equation (Eq. 2.11) begins. In addition, by using an in-

terpolation matrix and using available toolkits, e.g., PETSc [174], which utilizes highly optimized

libraries and parallel algorithms for matrix multiplication, the interpolated values are obtained by

performing a matrix-vector multiplication and thus will be very robust. Furthermore, the inter-
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polation method will be general and can also be easily used for any flow variable, e.g. scalar

concentration, etc. Therefore, the interpolation matrix is used in this work, which has also been

more efficient based on our numerical tests. Compared to our previous method [1] in which the

domain connectivity information was calculated using a single processor and then the information

was broadcast to all other processors (which obviously is not efficient and thus not suitable for

large scale problems), our current interpolation method is quite faster and more efficient for a large

number of grid points.

In this work, PETSc toolkit [174] is used for parallel matrix assembly and matrix-vector mul-

tiplication. The final interpolation matrix is stored in a compressed sparse row format to minimize

memory storage. However, forming a parallel interpolation matrix efficiently is not a very straight-

forward task. The first step to allocate the interpolation matrix is to define a local and a global

index for the points in all domains and processors. Fig. 2.8 shows the architecture of the allocated

matrix and the parallel vector of flow variables. As it can be seen in the parallel distributed vector

of the flow variables (Fig. 2.8), each processor packs the variables in that processor for different

blocks one after the other based on their block number (bi), e.g. processor zero (P = 0) packs all

the velocity vectors up=0 = {ubi=0, ..., ubi=n}. Based on this strategy the local index (L_indexbiP )

in each processor P for block bi can be defined as follows:

L_indexbiP (i, j, k) =
(
I0
x + Ix× I0

y + I0
x× I0

y × I0
z

)0

P
+ ...+

(
i+ Ibix × j+ Ibix × Ibiy ×k

)bi
P

(2.18)

where (i, j, k) are the index of the point and [Ix, Iy, Iz] are dimensions of distributed grid in pro-

cessor P in x, y, z directions, respectively. Since the donor cell can be in any processor and any

block, to be able to define a global index (G_indexbiP (i, j, k)), it is necessary for all the processors

to know the domain decomposition pattern for every domain. Since we are using a structured grid,

the starting and end grid numbers for all curvilinear coordinates in every processor will be enough

36



to define the global index as follows:

G_indexbiP (i, j, k) =
P−1∑
proc=0

n∑
block=0

L_indexblockProc + L_indexbiP (i, j, k) (2.19)

where P and n are the processor’s number and the number of blocks, respectively. After the

indexing is done, each processor will form a portion of the interpolation matrix related to its grid

point and then the whole matrix will be assembled. The Algorithm 4 outlines the process for the

parallel interpolation matrix assembly.

Algorithm 4 Algorithm for interpolation matrix assembly
get donor-index and interpolation coefficients
NQ=Number of query points
for i = 0 to i = NQ do

if (donor is available) then
identify ID of the donor processor
column-index= global index for the corners of the donor cell
row-index= global index for the receptor point in processor rank

end if
end for
Creates a sparse parallel interpolation matrix in AIJ format

2.3 Moving overset-CURVIB flow solver

The above grid assembly is directly integrated into our CURVIB flow solver. Fig. 2.9 illus-

trates the flow-chart for the flow solver and how the grid assembly and the interpolation kernels

are integrated into our CURVIB flow solver. At the beginning of each simulation, the location

of immersed bodies and the flow is initialized. Then for dynamic overset grids, the overset grid

over each immersed body is moved based on the motion of that immersed body, i.e., the overset

grids are moved with the center of mass of that immersed bodies. This movement can be either

prescribed or calculated based on hydrodynamic forces applied to each immersed body for FSI

simulations. After each grid movement, the grid assembly task (section 2.2) is performed because
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of the relative position of the grids and, consequently, the donors and interpolation coefficients

have changed. After performing the grid assembly and obtaining the query points, donors, and

interpolation coefficients, the velocities are interpolated and the fluxes are reconstructed on the

query points as will be explained in section 2.3.1. Since a non-inertial frame of reference is used

for solving the flow in this work, the velocities cannot be interpolated directly from one domain

to the other, thus, a transformation from the reference of one domain to the other is needed (see

section 2.3.1). Having the fluxes at the interfaces and the buffer layer, the flow is solved using the

CURVIB method (section 2.1.1). Since an implicit method using a Newton-Krylov solver is used

for solving the momentum equation in this work, the interpolation needs to be performed in each it-

eration of the Newton-Krylov solver. After solving the momentum equation, the mass conservation

should explicitly be satisfied on the query points (see section 2.3.3), and then the Poisson equa-

tion for the correction step is solved to enforce continuity. Furthermore, for strong-coupling FSI

simulations, all the above steps should be performed in every sub-iteration of the strong-coupling

iterations until the desired convergence for criteria in the structure solver is satisfied [46].

2.3.1 Flux reconstruction and velocity transformation between inertial and non-inertial

frames

Following the interpolation process, the interpolated velocities will be available in each proces-

sor. Because a non-inertial frame of reference is used for solving the momentum equations in each

block of the domain, however, the interpolated velocities will be in a non-inertial frame and can-

not be used directly in another domain since based on Eq. 2.20 the non-inertial velocity is related

to inertial velocity by an orthogonal rotation tensor. Using the communication map generated in

section 2.2.3, the donor and receiver blocks are known and the velocities from one domain to the

other can be converted using the following formula:

{
unon−intp

}
(bi=m)

=
(
Qbi=m
pr

)(
Qbi=n
qr

)−1{
unon−intq

}
(bi=n)

(2.20)
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Figure 2.9: Integrating grid assembly kernel to CURVIB flow solver for FSI simulations
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where
{
unon−intp

}
(bi)

is the non-inertial velocity in block bi and Qm
pr is an orthogonal rotation

matrix (note,
(
Qn
qr

)−1

= Qn
rq) which relates coordinates of block bi = m to inertial coordinates.

Finally, the flux U r for each recipient cell surface is obtained by Eq. 2.7 using the scheme discussed

in [1].

2.3.2 Handling special cases: Overlap of overset boundaries with immersed boundaries or

other overset grids

To be able to apply the above algorithm (Fig. 2.9) when multiple overset grids or immersed

boundaries overlap after grid motion, some special cases should be considered. These considera-

tions are as follows:

1. Donor selection: In the case of multiple overlap grids in the simulation, there may be mul-

tiple donors available for a query point. There are several ways to select the donor in these

situations. In this study, the query points for each blanked region of the background grid

will be interpolated from a specified moving overset which will be provided to the code as

an input, whereas the interface of a moving grid inside the background grids is either in-

terpolated from other moving grids or the background grid. To interpolate the interface of

a moving grid, the priority is given to the background grid, but it will be interpolated from

other available overset grids if a suitable donor does not exist in the background grid, e.g.,

the donor in the background grid is a blanked node.

2. Interpolation near solid wall boundaries: Another case happens when the interface of one

grid crosses/intersects a solid body or a wall boundary condition. Fig. 2.10 illustrates this

situation where the interface of the red and blue grids are crossing/intersecting immersed

bodies. Therefore, some of the nodes of the donor cell (Fig. 2.6) might be inside the im-

mersed body, i.e., a velocity inside the immersed boundary is needed for interpolating onto

the interface of the moving grid. Since the flow is inside the solid body is not available,

two options are possible: 1) assigning an approximate velocity to solid nodes inside the

immersed body based on the velocity of the body; or 2) blanking the region around the im-
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blank

blank

Γ

Γ1

2

Figure 2.10: Illustrates the position of overset grids and blanked regions of the background do-
main for a simulation with bodies in relative motion (here, circular cylinders) and the way the
conservation of mass is satisfied. Here, the blanked region in the red grid intersects with one in the
blue grid. In this situation, the mass is conserved over Γ1 which is the boundary of the combined
blanked region of red and blue grids. However, in the situation without intersection, e.g., Γ1 and
Γ2, the mass is conserved on each blanked region separately.

mersed body in the other domain (Fig. 2.11). Assigning an approximate velocity to solid

nodes will reduce the accuracy of simulations especially in FSI simulations. Hence, the area

near the immersed boundary is blanked out and the boundaries of this region are interpolated

from the other moving grid (Fig. 2.11). Fig. 2.10 shows the position of the blanked region of

the background grid while Fig. 2.11 shows the position of the blanked region of the moving

overset grid.
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2.3.3 Mass conservation

For incompressible flows, the flux over any closed, non-deforming surface Γ within the fluid

should be zero: ∫
Γ

u.n̂dΓ = 0 (2.21)

where n̂ is the outward normal to the boundary. Therefore, the flux over blanked regions (Fig. 2.10)

or the interface of overset grids needs to be zero (Fig. 2.11). However, the flux on the interfaces

is reconstructed using the most recent solution of the donor domain based on the intermediate

velocities (u∗) in the projection method (Eqn. 2.11). Since the u∗ does not satisfy the continuity

equation and a trilinear interpolation is not a conservative scheme, the global conservation of mass

is not satisfied at the overset grid interfaces (for more details refer to [1]). The mass conservation is

enforced by adding a correction to the flux, which is calculated by setting the summation of fluxes

at the interfaces of each domain and over the blanked region to zero similar to the non-moving

overset grids [1]. For multiple body collisions (Fig. 2.10), the summation of fluxes at all the blanks

together are forced to be zero, e.g., the flux over Γ1 and Γ2 are forced to be zero in the background

grid (Fig. 2.10) while the flux over Γ3 and Γ4 which are the boundaries of overset grids are forced

to be zero separately (Fig. 2.11).

2.4 Quantifying platelet activation in Eulerian framework

In this section, the numerical method used for quantifying platelet activation including the

activation models formulations, scalar viscous shear stress calculation, Eulerian implementation,

and the integration of activation in the fluid domains is explained.

2.4.1 Platelet activation models

Several mathematical models for platelet activation have been proposed in the literature ([158,

159, 182, 183, 184, 4]). To show that the results are not dependent on a specific model, two

different activation models are used: 1) linear level of activation and 2) Soares model. Linear level

of activation is developed for quantifying the activation under constant shear stress. However,
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Figure 2.11: Demonstrates the the strategy chosen for the multiple bodies in relative motion where
the interface of overset grid intersects with a solid body. The area around the body is blanked
out from the other overset grid, e.g. the area around the res body is blanked out from the blue
overset grid, which prevents intersection of interface with solid body. For each interface the mass
is conserved separately, e.g. mass conservation is satisfied on Γ1 and Γ2 separately.
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due to the simplicity, it has been widely used to investigate thromboembolic performance of heart

valves ([5, 56, 185]). In this model, the activation is modeled as the summation of shear stress

times the exposure time over the platelet path ([186]).

P (t) = t× τ (2.22)

where P (t) is activation, t is the exposure time and τ is the scalar shear stress. According to the

Hellums criterion, using the linear model, platelets are considered as activated when the P (t) value

exceeds 35 dyne.s/cm2.

The second model is the Damage accumulation model that quantifies the platelet activation ([165])

based on the theory of damage previously developed for red blood cell by [166], which is defined

as follows

P (t) = (
τ(t)

τ0

)
r
(

1

(1− P (t))k

)
(2.23)

where P (t) is cumulative damage due to shear stress at time t which can vary from 0 for non-

activated platelets to 1 for fully activated ones. Where r and k are constants with value of −1 and

5, respectively. This model can deal with cumulative effect of stress history as well as considering

the effect of past damage.

Soares model has been developed based on the Platelet Activation State (PAS) by [4]. This

model is defined as follows

dP (t)

dt
= K0

[
P (t), τ t(s)

]
(1− P (t)) (2.24)

where

K0

[
P (t), τ t(s)

]
= S(P (t), Hτ ) + F (P (t), τ) +G(P (t), τ̇) (2.25)

and

Hτ =

∫ t

0

τ(s)ds (2.26)
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Sr C α β Cr γ δ

1.5701× 10−7 1.4854× 10−7 1.4854 1.4401 1.3889× 10−4 0.572 0.5125

Table 2.1: Constants of Soares et al. model from ([4])

Hτ is the history of scalar shear stress accumulation up to time t which is similar to linear level

of activation. In addition, S(P (t), Hτ ) is a term which accounts for platelet sensitization and, is a

function of shear stress accumulation and level of activation

S(P (t), Hτ ) = SrP (t)Hτ (2.27)

F (P (t), τ) and G(P (t), τ̇) are the nonlinear terms of platelet activation which account for shear

and rate of shear , respectively as follows

F (P (t), τ) = C
1
β βP (t)

β−1
β τ

α
β (2.28)

G(P (t), τ̇) = Cr
1
δP (t)

δ−1
δ |τ̇ |

γ
δ (2.29)

the value of constants for this model are shown in Table 2.1.

Here P (t) is platelet activation state at time t which can vary from 0 to 1. P (t) = 0 measures

non-activated platelets while the upper bound, (P (t) = 1) is assigned to fully activated platelets.

This model accounts for the platelet sensitization as well as the shear stress rate.

2.4.2 Scalar shear stress calculation

Based on the work by [187], viscous shear stress is the mechanical force experienced by

platelets in a turbulent flow field and Reynolds shear stress is a statistical quantity, not an ac-

tual physical force. In addition, we used Direct Numerical Simulations (DNS) in this work which

can resolve the unsteady time history of the viscous shear. Therefore, just the effect of viscous

shear stress is considered in this work which for Newtonian fluid can be written in tensor notation
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as follows

σij = µ (
∂uj
∂xi

+
∂ui
∂xj

), (i, j = 1 to 3) (2.30)

where σij is viscous shear stress, µ is the molecular viscosity, and ui is the ith component of the

cartesian velocities.

The shear stress tensor is reduced to a scalar quantity τ , according to the formulation performed

by [188]

τ(t) = [
1

6

3∑
i,j=1

(σii − σjj)(σii − σjj) + σijσij]
1/2 (2.31)

2.4.3 Platelet activation quantification

The activation models can be treated based on Lagrangian and Eulerian approaches. In the

Eulerian approach, the activation is quantified over the whole computational domain. However, in

the Lagrangian one, the activation is integrated over the pathlines of many particles. Considering

the normal range of platelets in artery vessels, which is 150,000 to 400,000 per cubic millime-

ter ([167]), millions of particles need to be calculated in the Lagrangian approach to get statistically

significant results. Handling millions of particles is computationally quite expensive. Therefore,

a Eulerian approach is used in this work. Using the definition of the total derivative ([189]), the

activation can be quantified in Eulerian frame as follow

∂p

∂t
+∇.(p~u) = Ṗ (2.32)

where ~u is the velocity of the flow field, p = p(~x, t) is the activation level in the Eulerian form, and

Ṗ (P (t) = P (t, τ(t))) is the activation rate based on the above activation models in the Lagrangian

form, i.e., p(~x, t) = P (t) for a particle at location ~x. The strang operator splitting ([190]) along

with a second-order MUSCL scheme ([191]) for spatial discretization and a second-order TVD

Runge Kutta scheme ([192]) for time discretization is used to solve the above equation.

In order to compare the total activation of platelets generated in bulk flow and hinge do-

mains (Fig. 5 in the paper), the integral form of Eqn. 2.32 , i.e., the Reynolds transport theorem for
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the conservation of scalar (activation) ([189]), is considered over the domain

d

dt
(total activation)sys =

∂

∂t

∫
CV

p(~x, t) dV +

∫
CS

p(~x, t) ~u . ~n dA (2.33)

where CV is the control volume, sys is the system, CS is the control surface and ~n is the unit

outward normal to the control surface. By integrating over time, the total activation from t = 0 to

t = T can be calculated as

total activation
∣∣∣T
0

=

(∫
V

p(~x, t) dV

) ∣∣∣T
0

+

∫ T

0

( ∫
A

p(~x, t) ~u . ~n dA

)
dt (2.34)

The normalization is performed to compare the total activation in the bulk flow and hinge

region with different gap sizes and interpolation methods. In order to normalize the activation in

all domains the total activation in the bulk flow at the end of the cardiac cycle is calculated using the

above formula (Eqn. 2.32) and this value is used as a reference for normalizing the total activation

in the hinge region for all cases:

Normalized Activation(%) =
total activation in the domain

total activation in bulk flow at the end of the cycle
× 100 (2.35)

48



3. VALIDATION, VERIFICATION AND PARALLEL PERFORMANCE*

This chapter is organized as follows: In section 3.1 several test cases have been performed

for the validation of the overset-CURVIB framework. This framework is validated against the

analytical solution of Taylor-Green vortex in section 3.1.1 in which the simulations show second-

order accuracy both in time and space. Then, the results of the overset grid are validated against

the results of a single grid for a rotationally oscillating cylinder in an infinite flow at rest in sec-

tion 3.1.2. The results of the overset grid compare to the single grid and experimental results for

a forced inline oscillation of a cylinder in a fluid initially at rest in section 3.1.3. Later, to validate

the framework for FSI simulations the results of the overset grid and single grid are compared to

each other for the free fall of Single cylinder 3.1.4.1 and Multiple cylinders 3.1.4.2 under gravity.

To show the capability of the framework to handle complex simulations multiple mackerels in the

diamond arrangement are simulated in section 3.1.5. The parallel performance of our framework

is investigated for multiple mackerels simulation in section 3.2. Finally, the platelet activation

framework is validated against experimental results in section 3.3

3.1 Flow solver validation

In this chapter, the new overset-CURVIB framework is verified and validated against experi-

mental data, the analytical solution of Taylor-Green vortex, and other benchmark solutions and the

capability of the new framework is shown by performing multiple circular cylinders in a free fall

under gravity in a fluid domain as well as a school of swimmers in a diamond shape. Using overset

grids reduced the total number of grid points from 500 to 30 million while preserving the same

resolution in the self-propelled fish school. This new framework enables us to tackle challeng-

ing real-world problems that cannot be handled without moving overset grids. later, the parallel

scalability of our solver is tested for different parts of our framework for the school of swimmers

*Part of this chapter is reprinted with permission from “Comparison of platelet activation through hinge vs bulk
flow in bileaflet mechanical heart valves” by M. Hedayat and I. Borazjani, 2019, Journal of biomechanics, 83, 280-290,
Copyright 2019 by Elsevier Ltd.
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test case (section 3.2). While good scalability is achieved for our flow solver for up to 560 pro-

cessors, the scalability of grid assembly kernel drops off for more than 140 processors due to the

load-imbalance related to the partitioning strategy used in this work (as discussed in section 3.2).

A better initial partitioning strategy that takes the communications costs of the overset grids into

account in the future can help to enhance the scalability of the grid assembly kernel. Nevertheless,

the time required for the grid assembly is less than 7% of the total simulation time even at the

highest number of CPUs tested (560 cores). Finally, the platelet activation framework is validated

against the experimental results for shear-induced platelet activation in the laminar Taylor-Couette

flow in section 3.3.

3.1.1 Taylor-Green vortex

The Taylor-Green vortex problem is adopted to investigate the performance and accuracy of

the dynamic overset-CURVIB framework. Two-dimensional Taylor-Green vortex is an unsteady

flow of a decaying vortex with periodic boundary conditions in two directions (here, x and y)

and symmetric in the other direction (here, z). The existence of an exact analytical solution that

satisfies the 2D incompressible Navier-Stokes equations makes Taylor-Green vortex a suitable

benchmark to examine the precision of the computational results. The initial condition is the

analytical solution at t = 0 in all the domains for all the simulations. The background domain with

the size of 2π× 2π in periodic directions (x and y) is discretized uniformly with 201× 201 nodes.

A square overset grid with the dimension of 2.2 centered at the center of coordinates at the initial

condition is discretized uniformly with 121 × 121 nodes. In addition, a square blank region with

a size of 1.5 on each side is used to blank out the nodes inside the background region. To test the

accuracy of our framework for a moving overset grid, two test cases, one for an overset grid with

translational movement and the other one with rotational moving are tested. For the translationally

moving overset grid, the overset grid is moving with time using a constant translational velocity of

V = π/4 in x direction. In the rotating case, the overset grid is rotating with a constant rotational

velocity of ωc = π/4 around z axis. Figure 3.1 show the contour of velocity and the streamline

at a cross-section of the computational domain at t=1 (∆t = 2.5 × 10−4) in the simulation with
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(a) (b)

Figure 3.1: Taylor-Green vortex problem at t = 1 and Re = 10: (a) the contour of velocity
magnitude for a moving overset with translational speed of V = PI/4 b) the contour of veloc-
ity magnitude for a rotating overset with rotational speed of ωc = PI/4. It also compares the
streamline contours for both overset grid (black) and background grid (white)

Reynolds number (Re) equal to 10. As can be observed in Fig. 3.1 the contour of streamlines

in the overset domain and the background domain almost exactly match with each other for both

rotational and translational moving overset.

The accuracy of the solver in time and space is calculated by computing the error of the numer-

ical results compared to the analytical solution for five simulations with grid size of (size of larger

domain × size of smaller domain) of 51 × 31, 81 × 49, 81 × 49, 101 × 61, 161 × 98, 201 × 121

and time-steps of ∆t = 1× 10−2, 6.29× 10−3, 5× 10−3, 3.16× 10−3, 2.5× 10−3 for the largest to

smallest grids, respectively. The standard error is used to calculate the error in the computational

domain as follows:

Standard Error =
b=2∑
b=1

1

N b
xN

b
y

√√√√i=Nb
x∑

i=1

i=Nb
y∑

i=1

(ub(i,j) − uexact(i,j) )2 + (vb(i,j) − vexact(i,j) )2 (3.1)

whereN b
x andN b

y are the number of grid points in i and j direction, respectively, ub(i,j) and vb(i,j) are

51



0.25 0.316 0.5 0.6296 1
10

-5

10
-4

10
-3

S
ta

n
d
a
rd

 E
rr

o
r

2
nd

 order accuracy

translating overset

rotating overset

Figure 3.2: Standard error for Taylor-Green vortex flow as a function of the grid spacing/time-step
in log–log scale at t = 1 andRe = 10. CFL is kept the same for all test cases, i.e., ∆t

∆tmax
= ∆x

∆xmax
.

The error shows about 2nd order reduction with mesh refinement.

the numerical solutions of velocities on the (i, j) grid point of each sub-grid (b) of the overset grid,

and uexact(i,j) and vexact(i,j) are the analytical solutions. Figure 3.2 plots the error against grid spacing and

time step for both rotational and transitional overset in Taylor-Green vortex problem at t = 1 and

Re = 10 in log-log scale and demonstrates that the error reduces with about second order accuracy

with grid/time refinement.
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3.1.2 Rotationally oscillating cylinder

To test the ability of overset-CURVIB for rotational immersed bodies, we simulate a rotation-

ally oscillating cylinder in an initially stagnant fluid. The simulations are performed in the inertial

frame of reference for the background grid and the non-inertial frame of reference attached to the

cylinder for the overset grid. The cylinder is rotating with a rotational motion prescribed by a

harmonic oscillation as follows:

ωc(t) = Amsin(2πft) (3.2)

where ωc(t), Am, and f are the angular velocity of the cylinder, amplitude, and frequency of the

oscillation, respectively. Consequently, the Reynolds number can be defined as Re = UmD/ν,

where Um = AmD/2, D is the diameter of the cylinder, and ν is the kinematic viscosity. In

this study, all the parameters including the flow parameters, domain size, boundary conditions are

chosen similar to [193]. The size of the background domain is 50D < xr < 50D and 50D < yr <

50D. The Reynolds number is defined as Re = UmD/ν, where Um = AmD/2, D is the diameter

of the cylinder, and ν is the kinematic viscosity. The simulations are performed for Re = 300 and

f = 0.1. An overset grid with the dimension of 2D × 2D discretized by 201 grid points in both

x and y directions is used around the cylinder. In addition, a square region at the center of the

overset grid with a size of 1.6D × 1.6D is blanked on the background grid. The background grid

is fixed, however, the overset grid is fixed to the center of the cylinder and rotates with its motion.

Dirichlet boundary condition is used for all outer boundaries of the background domain similar

to [193] where the velocities are equal to zero on the boundaries, and the boundary condition for

the overset grid are interpolated from the background grid using the Eq. 2.8 as

uoverset = Qubackgroundinterpolate (3.3)

Figure 3.3 shows the torque coefficient defined as CT = T/(0.5ρmU
2D2/2) during the time,

where T is the torque and ρm is the density of the fluid. In order to compare the numerical results,

a simulation using a single grid with the same dimension as the background in overset simulation
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Figure 3.3: Time histories of the torque coefficient for the flow around a rotationally oscillating
cylinder at Re = 300.

is performed in a non-inertial frame of reference. The single grid is discretized using 401 grid point

in both x and y directions which provides a grid resolution of 0.01D near the cylinder. Fig. 3.3

compares the results of the overset grid with a single grid for eight cycles. The result of the torque

coefficient using the overset grid and single are in good agreement with each other and also they

are in good agreement with the results of [1] and slightly lower than the result of [193].
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3.1.3 Forced inline oscillations of a cylinder in a fluid initially at rest

The developed framework is validated for the case of a circular cylinder starting to oscillate in

the horizontal direction in a fluid initially at rest. The translational motion of the cylinder is given

by a harmonic oscillation:

xc(t) = −Amsin(2πft), (3.4)

where xc is the location of the center of the cylinder, f is the oscillation frequency, and Am is the

oscillation amplitude which result in two non-dimensional flow parameters, i.e., Reynolds number

and Kuelegan-Carpenter number as follows:

Re =
Um D

ν
, KC =

Um
f D

(3.5)

where Um is the maximum oscillation velocity, D is the diameter of the cylinder, and ν is the

kinematic viscosity of the fluid. The simulation is performed forKC = 5 andRe = 100, for which

the experimental results have been reported by [2]. The size of the background grid is 100D×100D

which is discretized using 301 × 301 nodes, and 100 × 100 nodes are distributed uniformly in a

3D × 3D box which contains the cylinder during the oscillations. 201 × 201 grid nodes are

uniformly distributed in the smaller domain with the size of 2.4D×2.4D aligned and moving with

the center of the cylinder (xc(t)). In addition, a blank region with a size of 2.1D× 2.1D is used to

blank out the nodes in the background grid. The non-dimensional time-step of ∆t = 0.0167 is used

for this simulation in both domains. The far-field boundary condition is applied to the boundaries

of the background grid while the boundaries of the small grid are interpolated from the background

domain. In addition, to compare the overset results with the results obtained using a single grid, a

grid with the same dimension as the background grid explained above (100D×100D) is discretized

using 401 × 401 grid nodes which provides a grid resolution of 0.01D near the cylinder is used.

The simulation for the single grid is performed in a non-inertial frame of reference. Fig. 3.4-

a shows the position of the overset grid as well as the velocity contours for three the different

angles in the overset and background grids. The comparison between the inline velocity profiles
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Figure 3.4: Results of numerical simulation for oscillatory cylinder a) contour of velocity for
three different phase angles b) Comparison of the inline velocity component (u) profile at position
x1 = −0.6D for three different phase angles between numerical results (overset: - -, single grid:
−) and the experimental measurements (o) of Dutsch et al. [2].

at x1 = 0.6D for three different phase angles (φ = 2πft) calculated by our framework and

experimental measurements by [2] is presented in Fig. 3.4-b. Our numerical results show good

agreement with the experimental data.
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3.1.4 Freely falling circular cylinder

In this test case, we consider freely falling of circular cylinder under gravity using fluid-

structure interaction in which the cylinder falls due to the gravitational and fluid forces. Assuming

that the wake behind the cylinder is two dimensional and the cylinder is moving in an infinite fluid

the numerical simulations are performed using a two-dimensional grid with symmetric boundary

condition in two-dimensional direction (z) and far-field boundary conditions for all the boundary

points in x and y direction. The acceleration of the body due to the gravitational and Buoyancy

forces is (ρs/ρf−1)g, where g is the gravitational acceleration, and ρs and ρf are the density of the

cylinder and fluid, respectively. The Reynolds number is considered to be the same as the Galileo

number defined as

Re =
(|ρs/ρf − 1|g)1/2D3/2

ν
(3.6)

where (|(ρs/ρf − 1)gD|)1/2 is the characteristic velocity, ν is the dynamic viscosity of water and

D is the diameter of the cylinder. Neglecting the body rotation, the equation of motion for the

cylinder in the inertial frame of reference can be obtained using the two-dimensional Newton’s

equations of motion for a rigid body as

M
du

dt
= Ff − (ρs − ρf )V g (3.7)

where M = ρsπD
2/4 is the mass of cylinder, V is the cylinder’s volume, and Ff is the force

exerted on the body by fluid in the non-inertial reference frame. The above equation can be written

in non-dimensional form as
π

4

ρs
ρf

du∗

dt∗
= F ∗f −

π

4
(3.8)

where u∗, t∗, and F ∗f are the non-dimensional velocity, time, and fluid force, respectively. Con-

sidering density ratio of solid to fluid ρs/ρf = 2.5, ν = 8 × 10−4N.s/m2, and D = 0.05m leads

to Re = 53.61 in this simulations. Both the fluid and the cylinder are initially at rest and the

cylinder starts the free-fall abruptly after start of the simulations. Two test cases, one with a single
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cylinder (section 3.1.4.1) and the other with multiple cylinder (section 3.1.4.2), are performed for

verifying our framework.

3.1.4.1 Single cylinder

A circular cylinder is placed in the domain similar to the schematic setup presented in Fig. 3.6,

for particle number 1 (the bodies and overset grids for particle 2 and particle 3 are not included

in this simulation). The background grid with the size of 60D in x and 100D in y-direction is

discretized using 301 and 801 grid points, respectively. The grid points for the background grid

are distributed such that the spatial resolution is 0.06D around the overset grid during the whole

simulation. For the overset domain with the dimension of 4D× 4D, 201 grid points are uniformly

distributed in both x and y directions which provide the grid resolution of 0.02D. In addition, a

blank region with a size of 3.4D × 3.4D is used to blank out the nodes in the background grid.

The flow in the overset grid is solved using a non-inertial frame of reference attached to the center

of the cylinder which moves with the cylinder as it falls, whereas the equations for the background

grid are solved in the inertial frame of reference. The simulation using the overset grid framework

is compared with the numerical results of a single grid with the same dimension as the background

grid in the overset simulation, which was performed in a non-inertial frame of reference. For the

single grid, 801 and 1931 grid points were distributed in x and y directions, respectively, which

provides the spatial resolution of 0.02D around the cylinder. Fig. 3.5 compares the time histories

of the velocity of the cylinder in the gravitational direction for the overset grid and the single grid

simulations. In both cases, the cylinder accelerates monotonically and almost reaches its terminal

velocity around tuc/D = 50. As can be observed in Fig. 3.5 the results for the overset grid and the

single grid are in good agreement with each other and the difference in the translational velocity

of the cylinder using a single grid and the overset grid at time tuc/D = 50 is around 0.2%.
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Figure 3.5: (a) Time histories of the velocity of the cylinder in the gravitational direction for the
overset (−) and the single (−) grid simulations (b) contour of velocity magnitude at tuc/D = 50
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3.1.4.2 Multiple cylinders

To test our framework for multiple overset grids, the simulation for free fall of multiple cylin-

ders in an infinite flow is performed. Fig. 3.6 shows the schematic setup used in this simulation.

Three cylinders centered at (0, 0), (3D, 5D), and (−2D, 5D) are placed in the flow domain. An

overset grid is generated around each cylinder with the dimension of 4D × 4D and the center are

aligned with the center of each cylinder as showed in Fig. 3.6. The grid dimension and the number

of grid points are the same as the overset simulation of single cylinder (overset grids are discretized

uniformly using 201 grid points in each direction, and the background grid is discretized using 301

and 801 grid points distributed the same as the previous section). In order to verify the result of

the overset grid the same simulation is performed using a single grid in an inertial frame of refer-

ence (since a non-inertial frame of reference cannot be used for this simulation due to existence

of multiple particles with different velocities). The computational domain is discretized the same

as the single grid used in the previous section (801 and 1931 grid points are distributed in the

60D × 100D domain which guarantees the spatial resolution of 0.02D through the trajectory of

the cylinder at all times). The simulations are performed using a strong-coupling fluid-structure

interaction for both overset and single grid cases [46]. Figure 3.7 compares the time history of

the translational velocity of cylinders in the gravitational direction for a single grid versus overset

grids. The results of the overset grids and single grid are in good agreement with each other con-

sidering that different methods and grid are used for each simulation. The maximum difference in

translational velocity of cylinders using a single grid compared to the overset grid is observed for

cylinder number 3 which is around 4%. Fig. 3.8 shows the position of the overset grids relative to

each other as well as the background grid at several time instants. In addition, the special scenarios

discussed in section 2.3.2 regarding the overlap of overset boundaries with immersed boundaries

or other overset grids can be observed in this figure.
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free fall of multiple circular cylinders under gravitational force.
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Figure 3.8: Contour of velocity magnitude for overset simulation of multiple circular cylinders at
time a) tuc/D = 4.4 b) tuc/D = 12 c) tuc/D = 15.6 d) tuc/D = 22 during the simulation.
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3.1.5 Multiple mackerels in diamond arrangement

To show the capability of our numerical framework in handling complex biological flows,

a simulation with multiple self-propelled mackerels swimming in the diamond arrangement is

performed. The swimmers can move in the background domain, thus, a high-resolution grid would

be required in the path of the swimmers. While using a single grid can drastically increase the

computations due to a huge number of grid points required, the overset method can provide a high-

resolution grid locally around the swimmers without considerably increasing the total number of

grid points.

The geometry of the mackerels used in this study is exactly the same as the previous simulations

by [194] and [1]. The kinematic motion of the mackerels is approximated by a backward traveling

wave with the largest wave amplitude at the fish tail. The lateral undulations of the swimmers’

body in non-dimensional form (all lengths are non-dimensionalized with the fish length L) can be

described as

h(z, t) = a(z)sin(2πz/λ− 2πft) (3.9)

where z is the axial direction measured along the fish axis from the tip of the fish head; h(z, t) is

the lateral excursion of the body at time t; a(z) is the amplitude envelope of lateral motion as a

function of z; λ is the wavelength, and f is the frequency of the backward traveling wave. The

amplitude envelop for a typical mackerel can be approximated by a quadratic curve [195]

a(z) = a0 + a1z + a2z
2 (3.10)

where a0, a1, and a2 are chosen to be 0.02, 0.08, and 0.16, respectively, to match the experimental

curve of [196] obtained for a typical mackerel. The maximum displacement of mackerel occurs

at its tail hmax = 0.1L. The non-dimensional wavelength is chosen to be λ/L = 0.95 based on

the experimental data by [196]. The simulations are discretized using 240 time steps per a tail beat

period, which corresponds to a non-dimensional time step of ∆t = 1.39 × 10−3. The Strouhal

number (St) = fL/U and Reynolds number are chosen to be 0.6, and 4000, respectively, which

63



has been shown to result in the final non-dimensional average velocity (Ut/L) close to 1 during a

a self-propelled steady-state simulation of a mackerel [195].

The side swimmers are placed 0.45L and 1.45L laterally and posteriorly, respectively, relative

to the front swimmer (where L is the fish length) and the last swimmer is placed 2.9L behind the

front swimmer. The background grid is a cuboid with dimensions of 4.2L×L× 14L (in, x,y and z

directions, respectively), and the overset grids are also cuboids with dimensions of 0.8L× 0.5L×

1.5L. Each fish is placed at the center of its corresponding overset grid. A region with dimensions

of 0.6L×0.3L×1.3L inside each overset grid is blanked from the background grid, whose solution

is interpolated from the inner overset grids. The background grid is discretized by 9.7 million grid

nodes using a uniform mesh with constant spacing ∆x = 0.0187L. Each overset grid is discretized

with a uniform mesh with spacing ∆x = 0.005L in all directions with 161×101×301 nodes results

in 4.9 million grid nodes. Therefore, the total number of grid points in this simulation is about 29

million while a single grid with a similar resolution would require at least 470 million grid points

which is impractical for strong-coupling FSI simulations.

The Naiver-stokes equations are solved in a non-inertial frame of reference for moving overset

grids where the reference frame is attached to the center of mass of the fish, however, the back-

ground grid is solved in an inertial frame of reference. Slip wall boundary condition is applied to

the boundaries of the background grid and the boundaries of overset grids are interpolated from the

background grid. The body motion of fish relative to the center of mass is prescribed as mentioned

in Eq. 3.9 and there is no phase difference between the backward traveling waves of different

swimmers. The velocity of the frame for each grid (center of mass for each fish) was calculated

based on the fluid forces on the body of the fish with two degrees of freedom, in x and z directions,

using a strongly-coupled fluid-structure interaction strategy [46].

Figure 3.9 shows the out of plan vorticity contours on the midplane of the fish as well as the

position of overset grids compared to each other and background grid. As can be seen in this

figure the solution is consistent over the overset grids and the background grid and the vortical

structures are advected and from one domain to the other. It can be observed that the wake of
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each mackerel bifurcates into two rows of vortices (double row structure), which is expected for

the Strouhal number of 0.6 based on the work by [195], and interact with downstream immersed

bodies and their wakes. Fig. 3.9 and Fig. 3.8 show that our parallel framework (regardless of

parallel grid distribution) is capable of handling different scenarios regarding the relative position

of overset grids and blank regions compared to each other including multiple grid overlapping,

overset interface intersection with interface/blank as well as immersed bodies.

Figure 3.10 shows the 3D flow field visualization using the iso-surface of Q-criteria generated

by the swimmers. The wake of each swimmer bifurcates into two rows of vertices and interact with

the wake of downstream fish. The swimmers can move relative to each other with two degrees of

freedom in the lateral and axial directions and thus they can have different velocities in these

directions. Fig. 3.11 compares the axial and lateral velocity for all the swimmers during the time.

As can be observed the leading swimmer has the highest axial velocity among all while the last

swimmer has the lowest one. However, swimmers on the side (swimmers 2 and 3) have a higher

lateral velocity compared to the swimmer 1 and 4 which have almost the same lateral velocities.
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Figure 3.9: Contours of vorticity in the midplane of the four fish swimming in the diamond ar-
rangements. a) initial position of overset grids b) position of overset grids at t/T = 8.8 .contour
of each overset grid and background grid are consistent. vortical structures are are advected from
one domain to the other. Thick black lines represent the boundaries of the overset grids and thick
red lines shows the blank region.
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Figure 3.10: The 3D vortical structures visualized by the iso-surfaces of Q-criteria for four fish
swimming in diamond arrangement.
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Wall-clock time (sec)
No. of cores flow solver grid assembly interpolation
1 4053 53.2 8.9× 10−1

8 440.3 5.1 1.1× 10−1

84 41.5 0.54 2.7× 10−2

112 32.3 0.45 2.1× 10−2

140 28.1 0.40 1.8× 10−2

280 14.4 0.43 9.8× 10−3

420 11.2 0.58 7.6× 10−3

560 8.2 0.58 5.1× 10−3

Table 3.1: Wall-clock time of different parts of the CURVIB-overset solver for different number
of processors

3.2 Parallel performance

In this section, the swimming simulation is used to investigate the speedup for different parts

of our solver. The total number of grid points in this simulation is about 30 million grid points and

approximately 1.2 million query points. The simulations are run using 560 core on Terra cluster

at Texas A&M University, which contains 320 computing nodes, each node contains 2 Intel Xeon

E5-2680 v4 2.40GHz 14-core each, and uses Intel Omni-Path as the cluster-interconnect. The code

was compiled using MPICC compiler with −O3 optimization level. Table 3.1 represent the wall-

clock time for the CURVIB flow solver, grid assembly task, and interpolation for 1 up to 560 cores.

As can be seen from this table, the computational time required for the grid assembly is relatively

very small compared to the computational time needed for the flow solver. The grid assembly

time decreases for up to 140 cores while after that the time does not show a significant change.

However, even using 560 the time required for the grid assembly is about 7% of the flow solver.

In addition, comparing the interpolation time and the flow solver time shows the efficiency of our

interpolation method, where using all number of cores, it is less than 0.1% of the flow solver time.

Figure 3.12 shows the strong scalability for wall-clock time for a different part of our overset-

CURVIB solver. As can be observed our flow solver shows good speedup for the maximum number
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Figure 3.12: Wall-clock time speedup versus the number of processors for the fish schooling using
560 processors.

of processors used in this work (560 processors). The grid assembly kernel has a speedup close to

ideal for up to 140 processors while after that the scalability drops. The reason for speedup drop-off

using more than 140 processors is the load-imbalance for grid assembly method using our available

grid partitioning strategy in which all the grids are distributed to all the available processors. As

previously mentioned, this partitioning strategy results in the best speedup for the flow solver while

it can increase the communication cost and overhead for the grid assembly. However, by comparing

the time required for flow solver to the time of the grid assembly kernel (Table 3.1), optimizing the

grid partitioning for flow solver is more reasonable. Using another partitioning strategy for load

balancing, depending on the problem, in the future to balance the number of query points in each

processor can help to improve the speedup for more processors. However, load balancing is out of

the scope of this work. Finally, the speedup for interpolation is also presented in Fig. 3.12. The

interpolation’s speedup is not close to ideal, however, considering the small computational time

required to interpolation this speedup is not unexpected.
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3.3 Platelet activation framework validation and sensitivity studies

In this section, We validate our numerical simulations with the exact or closest available exper-

iments for the hinge region, bulk flow, and platelet activation in the literature.

3.3.1 Shear-induced platelet activation in laminar Taylor-Couette flow

A rotating Couette flow with rotating inner cylinder which is similar to the Couette device

used in measuring the platelet activation or blood damage is simulated using our framework by

considering the inner cylinder as an immersed object and outer cylinder as the wall boundary

condition. The schematic setup for this simulation is presented in Fig. 3.13. This setup can expose

the platelets to uniform shear stress. The rotating Couette flow assumes to be laminar which is

valid for Taylor numbers T less than the critical Taylor number, Tcr

Tcr =
Ωrm(b− a)

ν
(3.11)

where rm = (a + b)/2, Ω is the rotational velocity of the inner cylinder, a is inner radius, b is the

outer radius, and ν is the dynamic viscosity. The critical Taylor number with a narrow gap annulus

and a stationary outer cylinder is 41.19. Here, a and b are assumed to be 2 µm and 1.975 µm,

respectively. Rotational velocity (Ω) can vary to generate different shear stresses and the dynamic

viscosity of the fluid is assumed to be 0.01 cP . The exact solution for Navier-Stokes equations

reduce to following equations

uθ = C1r +
C2

r
(3.12)

C1 =
−Ωb2

b2 − a2
+

Ω(a2b2)

b2 − a2
(3.13)

τ = µ
r∂(uθ/r)

∂r
= 2µ

Ωa2b2

b2 − a2

1

r
(3.14)
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a

b

Figure 3.13: Schematic setup of rotating Couette flow which used for validation of platelet activa-
tion. Reprinted from [3].

The simulations are performed for three different shear stresses: 30 dyne/cm2, 50 dyne/cm2,

70 dyne/cm2 which resulted from angular speed of 3.75 rad/s, 6.25 rad/s and 8.75 rad/s, re-

spectively. The predicted platelet activation by our numerical framework using the Soares model is

compared to the experimental results reported by [4] in Fig. 3.14. This figure shows the evaluation

of platelet activation in response to different viscous shear stresses as a result of different angu-

lar velocities in Taylor-Couette flow. In these simulations, the inner cylinder is rotating for up to

2mins which exposes the platelets to almost constant shear stress and after that, the inner cylinder

stops suddenly which results in small shear stress around zero. As can be seen the results of our

numerical framework matches well with the experimental observation for different shear stresses.

Figure. 3.14 also shows that the Soares model accounts for the effect of platelet sensitization since

even after 2 min where the shear stress is zero, the PAS still increases.
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Figure 3.14: Comparison of platelet activation using our framework with the experimental re-
sults [4]. Reprinted from [3].
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4. COMPARISON BETWEEN PLATELET ACTIVATION IN BILEAFLET MECHANICAL

AND BIO-PROSTHETIC HEART VALVES*

The thrombus formation is initiated by the platelet activation which is thought to be mainly

generated in MHVs by the flow through the hinge and the leakage flow during the diastole [25,

197]. In this chapter, we investigate the importance of the systole phase on the poor performance

of BMHVs by comparing the thrombogenic performance of a MHV and a BHV (as control) in

terms of shear-induced platelet activation under the same conditions. This chapter is organized as

follows: Section 4.1 provides a background on the source of platelet activation in BMHVs and

available methods for quantifying the platelet activation in terms of shear stress and exposure time

and why a control case is needed. In Section 5.2 a brief overview of the method is provided. In

Section 4.3 the platelet activation of MHV and BHV (as a control case) during systole are compared

using three different models. Finally, the findings are summarized in Section 5.6.

4.1 Background

The prosthetic heart valves are far from ideal, e.g., MHVs are highly thrombogenic and require

life-long anticoagulant therapy. BHVs do not require life-long anticoagulant therapy because of

better hemodynamics performance but deteriorate after 10 to 15 years. There are many mechanical

and chemical agonists involved in thrombus formation, but it is believed that it is initiated by the

platelet activation ([198, 199]). The platelet activation in MHVs is thought to be mainly created

by the non-physiologic leakage flow through the hinge and the small gap between the leaflets dur-

ing diastole ([200, 201, 202, 7, 44]) because the thrombus formation typically starts from these

regions [203]. However, thrombus formation does not directly translate to platelet activation. Cur-

rently, two major hypotheses are available regarding the source of platelet activation in BMHVs.

First, platelets can be activated by non-physiologic shear stresses in the bulk flow and second, the

high velocity and shear stress in the hinge region during the diastole phase causes the platelet acti-

*Reprinted with permission from “Platelet activation of mechanical versus bioprosthetic heart valves during sys-
tole” by M. Hedayat et al., 2017, Journal of biomechanics, 56, 111-116, Copyright 2017 by Elsevier Ltd.
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vation. Therefore, understanding the underlying reason of platelet activation in BMHVs is essential

to optimize the thrombogenic performance of BMHVs. The aim of this section is to investigate

the importance of bulk flow during the systole phase in the platelet activation in BMHVs using the

empirical models available for quantifying the platelet activation.

Several studies investigated the platelet activation in terms of shear stress and exposure time ([158,

159]). Hellum et al. [163] conducted experiments under constant shear stress and obtained a thresh-

old based on locus of points on the shear stress and exposure time plane [182]. Later, several

models were proposed based on the power-law formulation for platelet stimulation and platelet

lysis ([204, 205]). Bluestein et al. [186] proposed linear level of activation formulations as an

approximation for platelet activation. Alemu and Bluestein [165] developed a platelet activation

model based on the previous work of Yeleswarapu et al. [166] for red blood cell damage. More

recently, Nobili et al. [183], Sheriff et al. [184] and Soares et al. [4] proposed different models

based on the Platelet Activation State (PAS) using modified prothrombinase method introduced by

Jesty and Bluestein [206]. The PAS is the non-dimensional level of platelet activation within the

interval of [0, 1] in which 0 and 1 corresponds to non-activated and fully activated platelets.

Because each model of the blood damage is tuned for a specific experiment, as explained

by Grigioni et al. [207] and Sheriff et al. [184], the model coefficients are not universal and change

from experiment to experiment. Consequently, the absolute values for platelet activation, cal-

culated in a simulation based on a model, depending on the model. Previous works on platelet

activation of the MHVs ([202, 185, 20, 208, 209, 210]), therefore, are subjective and their results

depend on the model used. To overcome this subjectivity and dependence on the model, the ac-

tivation in the BHV is taken as a control in this work, i.e., the platelet activation in MHV based

on a specific model is compared against the activation in the BHV based on the same model, due

to the good hemodynamic performance of BHV [211]. Therefore, we compare the activation of

a MHV against BHV under exactly the same initial hemodynamic and boundary conditions, i.e.,

against a control case for the first time. In addition, we use three different activation models to test

if different models provide consistent/similar conclusions.
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4.2 Method and Materials

Here, the hemodynamic performances of a MHV and a BHV are investigated in terms of

shear-induced platelet activation in a Eulerian framework which is explained in section 2. The

simulations are performed based on the previous flow simulations through MHVs and BHVs using

strong coupling fluid-structure interaction under the same physiological condition during the sys-

tole phase of a cardiac cycle ([95, 46]). The valves have been placed in an idealized axisymmetric

aorta geometry with a sudden expansion of the aortic sinus region ([46, 6]). The results of platelet

activation through the MHV and BHV are compared against each other for each platelet activation

model as discussed in the 4.3.

Three different platelet activation models are tested to investigate the dependence of the results

on the activation models: (1) the linear level of activation which was originally developed to quan-

tify the platelet activation under constant shear stress; (2) the damage accumulation model [165],

which accounts for the transient nature of the flow and senescence but needs collaboration for each

test case; and (3) the Soares model [4], which considers the effect of loading rate and sensitiza-

tion for platelets under highly dynamic shear stress. The details of these models are explained in

section 2.

4.3 Results and Discussion

The results of platelet activation using a linear level of activation in the MHV and BHV are

presented in Fig. 4.1 for various time instants within the systole phase. Fig. 4.2 and 4.3 show

the results for the platelet activation using damage accumulation [165] and Soares [4] models,

respectively. The background level of 1% is used for the Soares model since it requires a non-zero

initial activation level. However, for the rest of the simulations, this value is assumed to be zero.

Although there are some differences in the prediction of platelet activation using different models,

all the models show that the platelet activation for the MHV is considerably higher than the BHV

after peak systole near the leaflets and in the sinus area (Figs. 4.1-4.3 (c) and (d)).

The integration of platelet activation in the whole domain (Eq. 2.34) with different activation
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Figure 4.1: Platelet activation for the MHV and BHV in a straight aorta during the systole phase
using the linear level of activation model at time t=(a) 52, (b) 93, (c) 200, and (d) 273 ms within
the cardiac cycle. Reprinted from [5].
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Figure 4.2: Platelet activation for the MHV and BHV in a straight aorta during the systole phase
using the damage accumulation model at time t=(a) 52, (b) 93, (c) 200, and (d) 273 ms within a
cardiac cycle. Reprinted from [5].
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models for both the BHV and MHV is shown in Fig. 4.4. The platelet activations of the MHV

and BHV for each model are normalized by the total platelet activation in the BHV at the end of

systole (the normalized BHV activation is 1 at the end of the systole regardless of the activation

model used). As it can be observed in this figure, the total platelet activation by the linear level of

activation in the MHV at the end of the systole is 1.41 times more than the BHV. This ratio is 5.12

and 2.81 for the damage accumulation and Soares models, respectively.

Figure 4.3: Platelet activation (∆PAS) for the MHV and BHV in a straight aorta during the systole
phase using Soares model at time t=(a) 52, (b) 93, (c) 200, and (d) 273 ms within a cardiac cycle.
Reprinted from [5].
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The difference in the above ratios is due to the difference in the activation models, which

are developed using different assays under different experimental conditions. The linear level of

activation model shows the smallest ratio among all activation models. As it has been previously

discussed ([4, 184, 164]), this model may not be adequate for predicting the activation under highly

dynamic stress condition since it does not address the transient nature of the flow, which can have

a significant effect on platelet activation ([184, 212]). The damage accumulation model [165] ac-

counts for the damage history and the transient nature of the flow and shows the highest activation

rate among all models. It might be due to the fact that although this model shows good agreement

with experiments for red blood cell damage under constant shear stress [166], in order to use it

for platelet activation it needs empirical calibration of several coefficients [165]. Based on the

results, while the linear level of activation underestimates and damage accumulation overestimates

the platelet activation in the MHV in comparison to the BHV (due to their limitations), the Soares

model seems to be the most adequate model to compare the thrombogenic performance of these

prosthetics heart valves.

The above differences, notwithstanding, Fig. 4.4 shows that the activation in MHV is several

folds higher than the BHV for all tested models. Platelet activation mainly depends on stress

history, the shear stress (including loading rate for models considering the effect of dynamic shear)

and the time of exposure to shear stress. To explain why platelet activation in MHV is several

folds higher than BHV, here we focus on platelet activation due to the shear stress and the time

of exposure. We start by the scalar shear stress generated in the MHV and BHV which is shown

in Fig. 4.5 for different time instants. As it can be observed in Fig. 4.5, the flow field in the

MHV is considerably different from the BHV. In the MHV the platelets are activated mainly due

to shear layers of three jet structures (two side jets between the leaflets and the valve’s housing and

a central jet between the leaflets). Nevertheless, since there are no side jets in BHV, the platelets

are activated by the central jet. As previously discussed in ([95, 6]), during the beginning of the

systole phase, the vortical structures are well organized in the MHV. In contrast, the shear layer

in the BHV becomes unstable sooner than MHV due to slower opening [46]. This results in the

80



Figure 4.4: The Integration of platelet activation over the whole domain for a MHV and BHV in a
straight aorta during the systole phase using different models (the normalized BHV activation is 1
at the end of the systole regardless of the activation model used). Reprinted from [5].
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breakdown of the threefold symmetry in the BHV at the beginning of the systole, while the flow

is still organized in MHV [95]. This flow pattern can create regions of high shear stress near

the BHV at early systole. Therefore, platelet activation in the BHV is slightly higher by 10% in

comparison to the MHV at the beginning of the systole. This trend is reversed just before the peak

systole (t ≈ 0.175s in Fig. 4.4). This is because the vortical structures in the MHV break down into

small-scale disorganized vortices just before peak systole (as seen in the previous simulations [46]

and experiments [6], whereas no vortex breakdown is happening in the BHV. Such flow pattern

generates high shear stress regions that activate platelets near the valve and sinus area for the

MHV, whereas almost no shear stress, and consequently very small activation is produced in these

areas for the BHV.

In addition to the differences between shear stress applied on platelets, the exposure time of

platelets to the elevated shear stress in the BHV and MHV are different. Platelets can be en-

trapped in the wake and recirculation regions produced near the leaflets and the sinus area in the

MHV (Figs. 4.1-4.3 (c) and (d)). These platelets undergo elevated shear stress along with high

exposure time which increases the risk of free emboli formation and eventually the clot formation

in the MHVs [213]. In contrast, since there is no side jets and the shear layer of the central jet is far

from the sinus area, almost no shear stress and circulation zones are generated near the leaflets and

housing in the BHV. Hence, the platelets are exposed to elevated shear stresses only during early

systole because the platelets are washed away from the valve area to the low shear stress region

for the rest of the systole phase. Therefore, the platelets passing through the BHV experience the

short exposure time to elevated shear stress in comparison to the MHV.

4.4 Comparison to previous work

The platelet activation thresholds proposed for the linear level of activation model based on the

work by Hellums et al. [163] is 35 dyne.s/cm2 and higher thresholds have been proposed based on

the in vitro experiments ([158, 214]). The absolute value of activation using the linear level of ac-

tivation during the systole phase for one cardiac cycle is shown in Fig. 1 in the paper. Other papers

have reported almost the same maximum value for linear level of activation (≈ 0.7(dyne.s/cm2))
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Figure 4.5: The scalar viscous shear stress for the MHV and BHV in a straight aorta during the
systole phase at time t=(a) 52, (b) 93, (c) 200, and (d) 273 ms within a cardiac cycle. Reprinted
from [5].
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in MHV [215]).

Fig. 3 in the paper, shows the absolute value of newly platelet activation (∆PAS) during the

systole phase for one cardiac cycle which is in the range of the activation in previous work by

morbiducci et al. [20]. Previous in vitro experiments by Yin et al. ([216, 217]) reported the platelet

activation rate (the slope of the thrombin generation in the PAS assay) of 6 × 10−4/min and

8.114 × 10−4/min for a 27mm St. Jude Medical bileaflet and a 27mm Carbomedics bileaflet

mechanical heart valve, respectively. Yin et al. [217] also measured platelet activation rate of

1.2 × 10−3/min for a 21mm St. Jude porcine bioprosthetic tissue valve. In our simulation, the

platelet activation rate using Soares et al. model for the MHV and BHV was 1.33×10−3/min and

4.73× 10−4/min, respectively. The difference in the platelet activation rate in this study with the

in vitro measurements might be due to the differences in the size of the valves (the orifice area)

used in our study in comparison to the previous in vitro measurements. In addition, the in vivo

measurements by Yin et al. [218] also showed that MHVs increase the risk of thromboembolism

in comparison to native heart valves which is in accordance with our results.

4.5 Summary

The platelet activation in the MHVs can be due to non-physiological flow during the systole

phase, the flow through the hinge, the leakage flow during diastole, or maybe a combination of all.

Most of the previous studies have investigated the high shear stress through the hinge region during

the diastole phase as the primary cause of the platelet activation in the MHVs ([200, 201, 202, 7,

44]). Although several studies have been conducted to investigate the platelet activation during the

systole phase ([20, 210, 165, 219]), none of them compared the activation against a control case to

show the significance of the systole phase in platelet activation. Our results indicate that the role of

the systole phase in the activation of platelets is considerable. In fact, our results show that while

at the beginning of the systole phase the activation for the BHV is slightly higher than the MHV,

the activation in the MHV is several folds higher at the end of the systole phase. This is because

the organized flow in the MHV breaks into small vortical structures right before peak systole, and

stay within the sinus region until the next cycle. In contrast, the flow in the BHV becomes unstable
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earlier than the MHV in the mid-acceleration phase, but the vortices do not stay in the sinus region

after the peak systole because they are washed away by the strong jet flow through the BHV. As a

consequence, platelets undergo higher shear stress and exposure time in a MHV relative to a BHV

during the systole phase. Our results using different activation models are consistent and show the

same trend.
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5. COMPARISON OF PLATELET ACTIVATION THROUGH HINGE VS BULK FLOW IN

BILEAFLET MECHANICAL HEART VALVES*

Bileaflet mechanical heart valves (BMHVs) are prone to thromboembolic complications which

are believed to be initiated by platelet activation. Platelets are activated by non-physiologic shear

stresses in the bulk flow or the leakage/hinge flow, whose contributions have yet to be quantified.

Here, the contribution of bulk and hinge flow to the activation of platelets in BMHVs is quantified

for the first time by performing simulations of the flow through a BMHV and resolving the hinge by

overset grids (one grid for the bulk flow and two for the hinge regions coupled together using one-

way and two-way interpolation). The section is organized as follows: in section 5.1 a background

about the available hypothesis about the platelet activation in BMHVs and a literature review about

the efforts have been made to address this issue is presented. Section 5.2 provides the detail of

the computational setup, overset grids, and the numerical methods that have been used in this

study. Section 5.3.1 investigates the effect of the interpolation method (one-way or two-way) on

the numerical results. The effect of the hinge gap size on the flow velocity and the maximum

shear stress through the hinge is discussed in section 5.3.2. The comparison of platelet activation

which is generated through the bulk flow and hinge region is presented in section 5.3.3. Later, the

validation and sensitivity studies are presented in section 5.4.2. Finally, the conclusion is discussed

in section 5.6.

5.1 Background

It is believed that thrombus formation is initiated by platelet activation due to the non-physiological

flow field and consequently elevated shear stress generated in BMHVs. This non-physiological

flow is either generated by the hinge/leakage flow or the disorganized bulk flow by the leaflets/housing

of BMHVs. Nevertheless, the contribution of hinge/leakage and bulk flows to platelet activation

*Reprinted with permission from “Comparison of platelet activation through hinge vs bulk flow in bileaflet me-
chanical heart valves” by M. Hedayat and I. Borazjani, 2019, Journal of biomechanics, 83, 280-290, Copyright 2019
by Elsevier Ltd.
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has yet to be quantified.

The importance of hinge design in BMHVs was first noticed because of the high throm-

bus formation rate in the Medtronic Parallel BMHVs [201]. Since then several in vitro experi-

ments have been conducted to characterize the flow and address the thromboembolic potentials in

BMHVs ([202, 220, 221, 222, 223, 7, 25, 224, 225]). Travis et al. [226] and fallon et al. [227]

showed considerable difference in change or markers of platelet damage for different gap sizes.

Leo et al. [220] reported the gap size has a significant effect on the Reynolds shear stress (RSS)

and strength of the leakage jet. In addition, they found that the regular gap size is less prone to

thrombus formation in comparison to smaller or larger ones. Jun et al. [7] showed that the gap

size has a significant influence on shear stress and washout potential of BMHVs. However, due

to the small temporal and spatial scales and complex nature of the flow in the hinge region, these

experiments provided limited information on the flow field in this region.

To compensate for the above shortcomings and obtain further understanding of the flow field

and platelet activation in the hinge region, numerical simulations have been performed ([215, 228,

210, 229]). Simon et al. [200] investigated the importance of gap size on the flow field (washout

ability and shear stress) in BMHVs. Later, Simon et al. [185] compared the thrombogenic perfor-

mance (in terms of red blood cell damage) of three different hinge designs using one-way interpo-

lation of velocities form a large scale simulation [46]. Yun et al. [56] extended the work by Simon

et al. [185] to model the platelets more realistically using a particle-based method. Although these

simulations provided a better understanding of the thromboembolic potential in the hinge region,

they were focused on the hinge flow and did not compare the activation with the one from the bulk

flow.

Several studies addressed the importance of the systole phase on blood damage and platelet

activation ([230, 165, 20, 219, 210]). These papers showed that the wake and vortical structures

generated near the BMHV leaflets and housing can expose blood elements to dynamic and elevated

shear stress. However, the activation in systole was not compared against a control case to show

its significance. Hedayat et al. [5] showed that the activation by the bulk flow in BMHVs during
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systole is significant (several folds higher) relative to a bio-prosthetic heart valve as the control,

but it was not compared against the activation by the hinge/leakage flow during diastole. Lamson

et al. [231] compared red blood cell damage (hemolysis) in an MHV during different phases of a

cardiac cycle by running forward flow through an open valve and backward flow through a closed

valve. They found the contribution of backward flow to hemolysis to be comparable with that of

the forward flow. However, hemolysis does not directly translate to platelet activation ([216, 157]).

[44] and later Xenos et al. [208] evaluated platelet activation through two different BMHVs using

the linear activation model during the systole and regurgitation flow phase by releasing particles

separately in systole and diastole. None of them explicitly compared the total amount of platelet

activation in each phase, but their results imply that the mean value of activation for platelet re-

leased during the forward phase is higher than the diastole. Nevertheless, the hinge area was not

resolved in these simulations and the gap region was simulated by scaling down the valve geometry

[44, 208].

In this chapter, we address the open question of whether the bulk of the hinge flow plays a more

important role in the poor thrombogenic performance of BMHVs in terms of shear-induced platelet

activation using a well-validated numerical framework (section 5.2). Shear-induced platelet acti-

vation is quantified using two well established activation models, i.e., the linear level of activation

[186] and Soares models [4], to show the consistency of the results to different activation mod-

els (section 5.2). In order to address this multi-scale (aortic diameter ≈ 25.4 mm vs. the hinge

gap ≈ 150 µm) problem during the whole cardiac cycle, an overset grid (one grid for the bulk

flow and two grids for the hinge regions) method is used. The significance of using two-way over

one-way (which was the main strategy in previous works) coupling interpolation for the boundary

condition for the hinge domain in an overset method is investigated (section 5.3.1). In addition,

the effect of hinge gap width on the hemodynamic performance of hinge geometry and the platelet

activation in MHVs is tested for two different gap sizes (250 and 150 µm) (section 5.3.2). Finally,

the platelet activation in the bulk flow domain and the hinge region are quantified and compared in

section 5.3.3. In the end, the conclusion and limitations are stated.
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5.2 Methods and Materials

An overset method ([1]) is used to provide a high spatial resolution (with the grid size of

15µm in the hinge recess) near the hinge regions (Fig. 5.1). The boundary conditions on overset

grid boundaries are obtained using both two-way and one-way coupling interpolation. In one-way

interpolation, the boundary conditions of the hinge domains are interpolated form the velocities

in the large-scale simulation ([46]) but the flow in the hinge domain does not affect the flow in

the large-scale domain. In two-way interpolation, the boundary conditions in the hinge domains

are interpolated from the large-scale domain while the region close to the hinge and leaflet gaps is

blanked in the large-scale domain (Fig. 5.1) (this region is not solved in the large-scale domain but

is solved in the hinge domain). The velocities for this blank region are interpolated from the hinge

domains and given to the large-scale domain as boundary conditions.

The valves are placed as an immersed boundary in an idealized axisymmetric aorta geometry

under a physiological flow condition ([46, 6, 7]). The hinge geometry is modeled approximately

based on a 23 mm St. Jude Medical BMHV. The model has two semicircular leaflet ears which

pivot in butterfly-shaped hinge recesses (Fig. 5.1). Two gap sizes of 250 µm (large gap) and

150 µm (regular gap) are used in this study for the hinge region while the b-datum gap is kept

constant (200µm) in all simulations. In addition, the gap between valve leaflets and housing is

neglected in this study. The placement and the angle of leaflets and housing are exactly the same

as previous bulk-flow simulations [46] and experiments [6, 7]. The simulations are carried out for

one cycle and validated against experimental results.

5.2.1 Platelet activation

Because each model of platelet activation is tuned for a specific experiment, as explained by

Grigioni et al. [207] and sheriff et al. [184], the model coefficients are not universal and change

from experiment to experiment. To make sure that the conclusions are independent of the model,

two activation models (the linear activation [186] and Soares model [4]) are used in this work.

The linear activation model is simple and widely used but does not consider dynamic shear.
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Figure 5.1: (a) large scale domain for over-set numerical simulation (b) flat level is chosen as the
plane of reference (c) position of hinge domains and blank regions relative to hinge recess (d) hinge
model with butterfly hinge recess. Reprinted from [3].
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Soares model [4], which is based on the Platelet Activation State (PAS) [206] for dynamic shear

stress ([183, 184, 4]), accounts for the transient nature of flow as well as loading rate and sensiti-

zation on platelet activation.

In this work a Eulerian framework [5] is utilized which considers activation as a continuum

quantity. Since the Soares model requires a non-zero initial activation level, a background level of

1% is used for this model.

5.3 Results and Discussion

In section 5.3.1, the influence of the interpolation method (one-way and two-way coupling) is

investigated on the numerical results compared to the experimental ones. In section 5.3.2, the effect

of the hinge gap size is investigated on the flow characteristics and platelet activation in the hinge

region. Finally, the platelet activation in the bulk flow is compared to the activation in the smaller

hinge gap size (150 µm) using Soares and linear level of activation models (section 5.3.3). The flat

level (the plane where the semicircular hinge recess reaches the flat surface of housing) as well as

the plane 300 µm above it for the hinge domain (Fig. 5.1), and mid-plane normal to x − axis for

the bulk flow are selected to visualize the results similar to previous experiments ([222, 7]). Since

both activation models show the same trend, only the results of the Soares model are shown here.

5.3.1 The interpolation method and comparison with experiments

Considering the small gap size of the hinge region and due to limitations in currently available

computational resources, using an overset grid (larger grid size for bulk flow and smaller mesh

size for near the hinge region) seems inevitable (to keep good spatial and temporal resolutions) to

perform a simulation through BMHVs in order to simultaneously capture the large and small-scale

flow features. In previous works ([56, 185, 200]), some simplifications were assumed for obtain-

ing the boundary conditions of the domains near the hinge region. They extracted the velocity

boundary conditions of small domains using one-way coupling interpolation from a large scale

simulation [46] during the systole phase; while, for the diastole phase, they used a plug flow in

a way to assure the pressure gradient of 80 mmHg across the valves at mid-diastole. As will be
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shown later, the one-way coupling interpolation for velocities can lead to acceptable results during

the systole phase. However, due to the disorganized nature of the flow during the diastole phase

assuming a plug backflow for the hinge domain is not that realistic.

Our results show that during the systole phase the scalar shear profile (Fig. 5.2 and Fig. 5.3)

and the maximum magnitude of velocities on the flat plane (Fig. 5.4) are almost the same for

both interpolations. However, the difference in velocity magnitude (through the hinge) due to

interpolation is clearly visible during the diastole phase (Fig. 5.5-a and Fig. 5.5-c). Using one-way

interpolation, at the mid-diastole the maximum velocity reaches 4.8 m/s and 3.6 m/s on the flat

and 300 µm planes, respectively, in 150 µm hinge gap size. While using two-way interpolation,

the maximum velocities of 2.4 m/s and 2.8 m/s are observed on the flat and 300 µm planes,

respectively. The shear stress also changes drastically with the choice of interpolation during

diastole. Figure 5.2-a shows the maximum shear stress observed using one-way interpolation is

approximately two times higher than two-way interpolation (Fig .5.3-a). Although the results of

one-way interpolation (both maximum magnitude and glyph of velocity) are more close to the

results of previous numerical simulations by Simon et al. [200], the maximum velocity (4.8 m/s)

is very different from the maximum velocity observed in experiments by Simon et al. [222] and

Simon et al. [7] which is from 1.67 m/s to 3.1 m/s for different gap sizes. However, using two-

way interpolation the maximum (2.8 m/s) and the velocity vectors are more close to the results of

the above experiments (see Fig.8 of [7] and also Table 5.1).

Similarly, one-way interpolation overestimates the maximum shear stress (Table 5.1) and ob-

viously the flux through the hinge region which can drastically affect the prediction of platelet

activation in BMHVs. Figure 5.6 compares the total activation, defined as the total amount of

activation generated in the domain which is computed by the sum (integral) of platelet activation

in the domain generated by the hinge region and b-datum gap during a cardiac cycle using Soares

and linear models. The activation values in the figure are normalized by the total activation of the

bulk flow at the end of the cardiac cycle in the bulk flow.

As was mentioned during the systole phase the one-way interpolation provides reasonable re-
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Figure 5.2: Scalar shear stress for hinge domain using one-way interpolation for gap size of 150 µm
for different plane of view (a) mid-diastole and (b) systole. Reprinted from [3].
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Figure 5.3: Scalar shear stress for hinge domain using two-way interpolation for gap size of
150 µm for different plane of view (a) mid-diastole and (b) systole. Reprinted from [3].
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Figure 5.4: Velocity contours and vectors in the hinge domain with different interpolation methods
at peak systole for the flat level and the plane of 300 µm using (a) one-way interpolation and (b)
two-way interpolations. Reprinted from [3].
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Figure 5.5: Velocity contour and vectors for hinge domain at mid-diastole for different plane of
view (a) one-way interpolation gap size of 150 µm (b) one-way interpolation gap size of 250 µm
(c) two-way interpolation gap size of 150 µm (d) two-way interpolation gap size of 250 µm.
Reprinted from [3].
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Table 5.1: Comparison of velocity and viscous shear stress at mid diastole using different interpola-
tion methods for current study to the previous experiments for 23mm St. Jude Medical mechanical
heart valve. Reprinted from [3].

Source method Gap (µm) Plane (µm) Max velocity (m/s) Max shear stress (dyne/cm2)

simon et al. [222] 100 flat 1.75 -
100 390 2.27 -

jun et al. [7] 100 flat 2.57 > 300
100 390 2.52 > 300
200 flat 2.26 > 300
200 390 2.91 > 300

jun et al. [25] clinical flat 2.62 ≈ 600
clinical 390 3.24 ≈ 600

Current study two-way 150 flat 2.38 1120
150 300 2.85 1260
250 flat 2.65 1170
250 300 2.78 1230

one-way 150 flat 4.83 1840
150 300 2.63 1120
250 flat 3.9 1560
250 300 2.71 1130
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Figure 5.6: Comparison of total platelet activation for the bulk and the hinge (for difference gap
sizes and interpolation models) flows using linear and Soares activation model within a cardiac
cycle. The total activation is normalize by total total activation of the bulk flow at the end of cycle
for each model. The leaflet angles and the flow rates are also plotted. 1w and 2w denote one-way
and two interpolation, respectively. 150 and 250 denote the gap size of the hinge region. Linear
and Soares denote the platelet activation model. Reprinted from [3].
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sults in the hinge region. Thus, the total activation of one-way coupling is the same as the two-way

one during systole in the hinge area. During diastole, however, the one-way interpolation generates

much higher activation (more than two times) than the two-way interpolation for all gap sizes us-

ing both activation models. In addition, in one-way interpolation, the total platelet activation of the

smaller (150 µm) gap is higher than the larger one by approximately 50% and 35% (Fig. 5.6) using

Soares and linear models, respectively, whereas two-way interpolation shows the opposite trend,

i.e., the total activation the larger gap size is higher than the smaller one by 8% and 12% (Fig. 5.6)

using Soares and linear activation models, respectively. The trend for the two-way interpolation is

consistent with the experimental results of Travis et al. [226] and Leo et al. [223] showing lower

activation is associated with regular gap size (100µm) compared to a larger one (200µm). Because

of the overestimation of velocities, shear stress, and the total activation of the one-way coupling

relative to the experiments, the one-way coupling is inadequate to obtain quantitative measures for

activation in the hinge region. Therefore, we only discuss two-way coupling, whose results are

close to previous experiments (Table 5.1 and Table 5.2).

5.3.2 Hinge flow and the gap size

The hinge gap width of BMHVs can vary due to manufacturing tolerance, or displacement of

the leaflets, which can affect the flow in the hinge area. Our results show that the hinge gap size

has a limited effect on the flow through the hinge during the systole phase, but it has a significant

effect during the diastole in terms of velocity magnitudes which are directly related to washout

ability in the hinge area (Fig. 5.5-c,d). The maximum magnitude of the velocity on the flat level

in the smaller gap is less (2.4 m/s) than the larger gap size (2.8 m/s). However, the magnitude

of the b-datum jet does not change considerably for different gap sizes (∼ 2.8 m/s). The change

of hinge gap size mainly influences the flow in the ventricle corner. The maximum velocity in the

ventricle corner reduces from 2.1 m/s in the larger gap size to 1.05 m/s in the smaller one. This

smaller velocity suggests that the 150 µm gap size will have a weaker washout potential compared

to the larger gap. The maximum shear stress observed in both gap sizes is in the same order of

magnitude with slightly higher shear stress in the larger gap size (1170 dyne/cm2) in comparison
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to the smaller gap (1120 dyne/cm2). The above trend for the shear stress and velocity magnitudes

with change in gap size is similar to the recent experiments of Jun et al. [7].

The results of platelet activation calculated using the Soares model for larger and smaller gap

sizes during the diastole phase are shown in Fig. 5.7. The maximum magnitude of platelet activa-

tion in both gaps is observed in ventricle corners. Furthermore, the activation contours show lower

levels for the smaller gap than the larger one (Fig. 5.7). However, the activation due to the b-datum

jet for different gap sizes shows no significant difference in the 300 µm plane.

Comparing the total activation for different gap sizes by the two-way coupling in Fig. 5.6

shows that the total activation in the larger gap size is higher than the smaller one by 8% and 12%

at the end of the cycle for linear and Soares models, respectively. This indicates that the larger gap

size activates more platelets, which is consistent with the observation in the previous experiments

([226].

5.3.3 Platelet activation in bulk versus hinge flow

To compare the impact of the bulk and hinge flow on the performance of BMHVs in terms of

platelet activation, the total activation generated in each phase of the cardiac cycle is calculated.

Figure 5.6 compares the total platelet activation (activation production) caused by the hinge region

and b-datum gap to the activation generated by the bulk flow during a cardiac cycle using Soares

and linear activation models. As mentioned in the previous sections, the activation values in the

figure are normalized by the total activation in the bulk flow at the end of the cycle. Figure 5.6

shows that the total activation at the end of the cycle generated by the bulk flow is several folds

higher than the activation by the hinge region. In fact, the total activation of the hinge/leakage flow

is only about 10% of the bulk flow for different gap sizes and the activation models. The reason

for the higher total activation by the bulk flow will be closely examined below.

The trend of activation in Fig. 5.6 can be explained by the mechanics of activation. For the bulk

flow, the total activation before mid-acceleration phase (t = 100 ms) is almost negligible because

the vortical structures are well organized and symmetric (Fig. 5.8 which results in low shear stress

(Fig. 5.9a) and platelet activation in the bulk flow (Fig. 5.10a). The rate of activation (slope of the
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Figure 5.7: Platelet activation of hinge domain using Soares model and two-way interpolation for
both gap sizes At mid-diastole for different plane of view (a) gap size 150 µm and (b) gap size
250 µm. Reprinted from [3].
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Figure 5.8: Comparison of out of plan vorticity using two-way coupling simulation with PIV
measurements of Dasi et al [6] at four different time instants within a cardiac cycle. Reprinted
from [3].
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line in Fig. 5.6) reaches its maximum at the peak systole (t = 200 ms) and this trend continues

during the deceleration phase until the end of systole (t = 360 ms). The rate of total activation

during the deceleration phase is higher (1.5 times) than the acceleration phase because the vortical

structures in the BMHV break down into small-scale disorganized vortices right before the peak

systole (Fig. 5.8) similar to previous simulations and experiments [6, 46, 5], which consequently

generates regions of high shear stress (Fig. 5.9 b-c) that activate platelets (Fig. 5.10 b-c) during the

deceleration phase. The activation in the bulk flow mainly happens during the systole phase, but

platelet activation still occurs with a slower rate until t = 550 ms (Fig. 5.6) because of the small

vortical structures remain in the flow (Fig. 5.9 d, 5.10 d) that slowly dissipate. Due to the dissipa-

tion of vortical structures in the bulk flow, after t = 550 ms the shear stress and consequently the

activation production is negligible, i.e., total activation remains constant (Fig. 5.6).

For the hinge and b-datum gap at the beginning (t <80 ms when the valves are opening) and

the rest of systole the total activation is negligible (Fig. 5.6). This is interesting because the shear

stress was not negligible during systole (Fig. 5.3) as discussed in the previous section. In fact,

during the systole platelet activates due to the flow diving into the leaflet earings and the hinge

recess as shown by streamlines in Fig. 5.11-b. The streamlines enter the hinge recess through the

ventricular corner (from the gap between the leaflet flat surface and housing) and exit through the

adjacent and aortic corner. Two regions of high shear stress near the ventricle corner (between the

flat-level and leaflet surface) and near the adjacent corner can be observed in Fig. 5.3. However,

the flow rate through this region during systole is small which can be seen by the magnitude of

in-plane velocity (up to ≈ 0.5 m/s during the peak systole) on the flat level (Fig. 5.11-c). Because

of the small flow rate through the hinge recess, a lower number of platelets are exposed to high

shear to get activated during systole, which renders the total activation of the hinge as negligible

compared to the bulk flow.

The main activation in the hinge region and the b-datum gap happens during the diastole phase

(t = 400ms to t = 860ms in Fig. 5.6) because of the leakage flow through 1) the gap between

leaflet’s earing and housing in the hinge recess; 2) the gap between the flat surface of leaflets and
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Figure 5.9: Scalar shear stress for the MHV in the large scale domain at time t=(a) 137, (b) 206,
(c) 309, and (d) 412 ms within the cardiac cycle. Reprinted from [3].
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Figure 5.10: Platelet activation for the MHV in the large scale domain using the Soares activation
model at time t=(a) 137, (b) 206, (c) 309, and (d) 412 ms within the cardiac cycle. Reprinted
from [3].
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Figure 5.11: Three-dimensional streamtraces at peak systole (a) and mid-diastole (b) for small
scale simulation near the hinge recess (c) In-plane velocity on flat level at peak systole. Reprinted
from [3].
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the housing, and 3) b-datum gap. These three gaps (Fig. 5.1 c) result in three leakage jets (Fig. 5.5-

c and Fig. 5.11-a) which exit the hinge recess from lateral, adjacent and ventricle corners with the

maximum velocity magnitude of 2.4 m/s (at the adjacent corner). The leakage jets create regions

of high shear stress near these three corners with the maximum magnitude of 1120 dyne/cm2 at

the adjacent corner (Fig. 5.3-a), which is much higher than the peak shear stress in the bulk flow (≈

200 dyne/cm2). For the smaller gap size, the minimum of shear stress and velocity is observed in

the ventricle corner. Fig. 5.7 shows the platelet activation at mid-diastole on the flat level using the

Soares activation model. A high magnitude of the activation is observed downstream of the valves

near the ventricle corner. This can be explained by the streamtraces (Fig. 5.11-a) in the hinge recess

at mid-diastole (since the flow is almost steady in this phase the stream tracers and path-lines for

platelets are almost the same). As can be seen, due to the reverse flow, the streamlines dive into

the hinge recess mostly from the aortic corner then pass through the gap between leaflet’s earing

and hinge recess and exit the ventricle corner. The platelets moving through these streamlines will

travel the longest distance and thus experience a longer exposure time under the elevated shear

stress (in the hinge recess). The platelet activation on the plane of 300µm above the flat is also

shown in Fig. 5.7 for the Soares model. The activation in this plane mainly happens due to the jet

from the b-datum gap. The maximum velocity and shear of 2.8 m/s and 1200 dyne/cm2 can be

seen on this plane (Fig. 5.5-c and Fig. 5.3-a).

The total activation depends on both the shear stress and the number of platelets exposed

to shear stress, i.e., flow rate during diastole. In the diastole, during the rapid closure of the

leaflets (t = 430 ms), there is a sharp increase in the total platelet activation because of the high

flow rate of the leakage flow (Fig. 5.6). After the valves close, the flow rate through the hinge and

b-datum gap is almost constant (see the flow curve in Fig. 5.6). Consequently, the rate of activation

in this phase is not changing much and the total activation is almost linear in this phase.

Based on the above discussion, even though the platelets in hinge region are exposed to much

higher shear stress levels (compare Figs. 5.3 and 5.9) and locally show higher levels of activation

(compare Figs. 5.7 and 5.10), the total amount of activation generated by hinge domain is less than
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20% of the bulk domain mainly because of the low flow rate through the hinge domain compared

to the bulk flow (Fig. 5.6). In fact, the mean flow rate of the leakage flow after the valve closure

through the hinge region and the b-datum gap is only about 2% of the forward flow rate through

the valve in the bulk flow (Fig. 5.6). Therefore, a considerably smaller number of platelets will be

exposed to high shear during diastole compared to the bulk flow, which is the main reason for the

lower total amount of activation generated in the hinge region (Fig. 5.6).

5.4 Validation and sensitivity studies

In this section, we validate our numerical simulations with the exact or closest available exper-

iments for the hinge region, bulk flow, and platelet activation in the literature.

5.4.1 Validation of the bulk flow and leaflet kinematics

In this work, the exact setup of Dasi et al. [6], which was previously used to validate the MHV

simulations of Borazjani et al. [46], is used to validate the bulk flow and valve kinematics obtained

from both one-way and two-way simulations. The MHV’s leaflet kinematics is compared with the

experimental measurements of Dasi et al. [6]. As can be seen the leaflet kinematics is remarkably

in agreement with the experimental results in terms of the overall duration and acceleration rates of

the opening and closing phases (Fig. 5.12). The coupling method (one-way or two-way) between

the hinge region and the bulk flow results in 20 ms difference in the full closure of the leaflet.

Nevertheless, both coupling methods are quite close to the measured kinematics.

In addition, the flow field is compared to the PIV visualization of Dasi et al. [6]. Fig. 5.8

compares the out of plan vorticity using a two-way coupling simulation with PIV measurements at

four different time instants within a cardiac cycle. The flow field of numerical simulation matches

well with the experiment. No significant difference observed between the one-way and two-way

simulations at these four instants.

The pressure drop (backpressure between the aortic and ventricle sides of the valve) is shown

in Fig. 5.13. The pressure is averaged over the planes ±25.4 mm upstream and downstream of

the valve as in experiments by Jun et al. [7]. As can be seen the trend of pressure matches during
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Figure 5.12: Comparison of the calculated leaflet kinematics with experimental observations [6].
Reprinted from [3].

the cardiac cycle with the experiment except for the rapid closure period. In addition, the diastolic

pressure in our simulation is around 100 mmHg while the pressure wave in the experiment is

set to be 120 mmHg. The figure also plots the pressure difference on the boundary of the hinge

domain (±6 mm) from the valves. As can be seen the interpolation method (one-way and two-

way) considerably changes the pressure measurements in the hinge domain and as it is expected

due to the higher velocity magnitudes in the hinge region for the one-way interpolation method a

higher diastolic pressure difference is observed compared to two-way coupling.

Based on the above, the simulations provide all the flow features observed at the bulk level in

the experiments similar to the previous publication Borazjani et al. [46]. In the next section, we

validate the platelet activation framework.
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Figure 5.13: Pressure difference between the aortic and ventricle (for planes ±25.4 mm upstream
and downstream of the valve) side during a cardiac cycle in the numerical simulations compared
to the experiments by [7] for 23 mm St. Jude BMHV. Reprinted from [3].
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5.4.2 Sensitivity of the results to the initial activation distribution

The Soares model requires a non-zero initial activation [4]. The Soares model works best for

an initial activation PAS0 in the range of 0.0001 to 0.01. In order to compare the platelet acti-

vation in the bulk and hinge region using a random initialization of platelets (PAS0), a truncated

normal probability distribution function with the mean=0.005 and std=0.002 is with the maximum

value of 0.01 and minimum value 0.0001 of used considering the above range of PAS0 (0.0001 to

0.01) which is shown in the Fig. 5.14. The difference in the ratio of the platelet activation in the

hinge region versus the bulk flow using random initialization compared to constant initialization

of (PAS0 = 0.01) was less than 2%. This indicates that the results are independent of the initial

activation.

Figure 5.14: Truncated normal probability distribution used for PAS0 in Soares model. Reprinted
from [3].
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5.4.3 Validation/verification of the simulated hinge flow: Comparison with experiments and

the role of the coupling method

Fig. 5.4 compares the effect of the one-way vs. two-way interpolation method between the

bulk flow and the hinge domains on the velocity profile/magnitude near the hinge region at peak

systole. Figure 5.4-a and 5.4-b shows the velocity magnitude and glyph on the flat level as well as

the plane of 300 µm for one-way and two-way interpolation, respectively. No significant difference

is observed by using one-way or two-way interpolation on the velocity profile/magnitude at peak

systole which is the case during the whole systole phase. As mentioned in the paper, the flow dives

in the hinge recess from the aortic corner and exits the hinge recess from the ventricle corner.

The main difference in the results with different interpolation methods (between grids) is in

the diastole phase, which is thoroughly discussed in the paper. This suggests the one-way interpo-

lation can provide reasonable results during the systole phase. However, two-way interpolation is

essential in the numerical simulation during the diastole.

Table 5.2 compares the average of the magnitude of the velocities and scalar shear stress in this

study using two-way coupling interpolation with the corresponding range of ensemble average in

the previous experiments on the flat level in different corners of the hinge recess at peak systole

and mid-diastole. Viscous shear stress observed during the diastole is multiple times higher than

the peak systole and the maximum value of the shear stress is observed in the lateral corner at

mid-diastole which is in agreement with the experiment. The velocities in our simulations are in

good agreement with the experiment while the shear stresses are somewhat higher. One reason

can be that the shear stresses in the micro PIV are for in-plane shear stresses (not 3D shear stress

tensor) which are calculated as below:

σ = µ (
∂u1

∂x2

+
∂u2

∂x1

) (5.1)

where u1 and u2 are the components of velocity in x1 and x2 directions on the plane, respectively.

As discussed by [187], the shear stress from the 3D stress tensor is higher than the corresponding
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2D ones.

Table 5.2: Comparison of velocity and viscous shear stress at the lateral, adjacent, and ventricular
jets at the peak systolic and mid-diastolic phases for current study to the previous experiments on
flat level. Reprinted from [3].

study phase corner velocity range (m/s) shear stress (dyne/cm2)

jun et al. [7] systole lateral 0.15 -1.1 44 -450
adjacent 0.25 -0.9 65 -410

diastole lateral 0.42 -0.86 3 -280
adjacent 2.35 -2.57 100 -440
ventricle 0.96 -1.8 82 -340

current study (average value) systole lateral 0.4 80
adjacent 0.5 70

diastole lateral 2.3 700
adjacent 2.65 1060
ventricle 1.05 350

5.5 Limitations

The limitation of our study is that the simulations were performed for only one cardiac cycle

and no region with activation higher than Hellums criterion (35 dyne.s/cm2) or ∆PAS = 1 was

identified during one-time passage. Nevertheless, such levels of activation can be reached after

multiple passages through the valves. The implicit assumption of our comparison of total platelet

activation in hinge vs. bulk flow, therefore, is that every passage generates similar activation in

each region. This is a reasonable assumption as the cycle-to-cycle variations of the flow in me-

chanical valves are small [6], i.e., the similar flow field in each cycle, which creates similar shear

exposure to platelets in consecutive cycles. In addition, due to the complexity of the platelet ac-

tivation phenomenon, any mathematical model for predicting activation is limited to its range of

verified validity and its assumptions (from simplifying assumptions in the experiments to neglect-

ing chemical factors in platelet activation).
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5.6 Conclusion

In this study, we developed a numerical framework that enables us to answer the open question

about the role of systole phase (bulk flow) versus diastole phase (hinge/gap flow) in the poor

thrombogenic performance of BMHVs in terms of shear-induced platelet activation. The results

show that while the hinge area has higher shear stress and maximum local activation compared to

the bulk flow, the total activation due to the bulk flow, contrary to the common belief [185, 201, 7],

is several times higher than that of hinge/leakage flow using both activation models. This is mainly

because of the higher flow rate during systole exposes more platelets to elevated shear in the bulk

flow, whereas the low leakage flow rate during diastole (∼2% of bulk flow at peak systole) exposes

a lower number of platelets to much higher shear stress. The relative importance of the number of

platelets exposed (flow rate) vs. the elevated shear and exposure time was ignored in the previous

studies.

Comparing the results of one-way and two-way interpolation with the experiments ([222, 7]),

shows that, although most of the previous numerical simulation ([200, 185, 56]) has used one-way

interpolation due to computational simplicity, the results using this method will overestimate the

velocities, shear stress, and the platelet activation during the diastole phase in the hinge region.

In addition, our results show that hinge gap size can significantly affect the washout potential of

BMHVs while the maximum shear stress and total activation do not change remarkably (less than

10%) for different hinge gap sizes. The larger gap size shows a better washout performance near

the hinge region by having a higher maximum instantaneous velocity through the hinge (2.8 m/s)

in comparison to the smaller one (2.4 m/s).
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6. PATIENT-SPECIFIC VALVE DESIGN AND PLACEMENT: HYBRID ECHO-CFD

In the previous chapters, the hemodynamic performance of the mechanical heart valves in

simplified geometries such as simplified aorta was investigated. To evaluate the hemodynamics

performance of artificial heart valves and optimize their design and placement for specific patients

employing medical images and combining them with CFD tools is essential. In this chapter, we

show the results of an image-based CFD (without artificial valves) by combining the echocar-

diography images with our overset-CURVIB solver. Combining echo-CFD with artificial valve

simulations is intended to be performed as a part of the future plan (section 7). This chapter is or-

ganized as follows: the computational setup for the simulations are discussed in section 6.2. Later,

the comparison of reconstructed LV with their physiological range investigated in section 6.3.1.

Then, the flow simulation using the reconstructed geometry is discussed in section 6.3.2. The ef-

fect of the mitral valve on the flow in the LV is investigated in section 6.3.2.1. The difference of

flow pattern inside the healthy and AMI left-ventricles is investigated in section 6.3.2.2. The re-

sults of flow simulations using a hybrid echo-CFD framework are compared to Doppler ultrasound

for both AMI and healthy LVs in section 6.4. Finally, the limitation of the work is discussed in

section 6.5.

6.1 Background

Several noninvasive techniques have been used to characterize abnormal blood patterns that

contribute to heart failure. Medical imaging techniques including cardiovascular magnetic res-

onance [232], and 3D echocardiography (echo) [233] have been widely used to visualize flow

patterns in the cardiac system. However, they typically have lower spatial/temporal resolution

compared to computational fluid dynamic (CFD) methods [232, 234]. CFD in combination with

imaging techniques for geometric reconstruction can provide a powerful tool for investigating the

flow pattern with more details in the cardiac system [235].

The geometric segmentation and reconstruction process from medical images along with the
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assumptions for motions of valves and the endocardial wall can greatly influence the flow pattern

inside the left-ventricle (LV) [236, 237, 132]. Currently, two types of techniques are available

to model the motion of valves and the LV [234]: 1) fluid-structure interaction, and 2) prescribed

models. In prescribed models, the motion of geometries are prescribed based on in-vivo measure-

ments [238] or simplified equations to define the motion [132, 239, 240]. Of course, obtaining

the motions from medical images is more realistic than prescribing the motion based on simplified

equations. The fluid-structure interaction models have been widely used in numerical simula-

tions [241, 242, 95, 243, 244] especially for capturing the motion of heart valves. However, due to

the complexity of geometry, dynamic shape, and large deformation of LV and mitral valve these

models are computationally expensive [85, 236], and the lack of data for tissue mechanical prop-

erties from in-vivo measurements makes using them quite challenging. Therefore, it is desirable

to use image-based geometry/motion if available. However, the main concern about using the

medical images in CFD simulations is their accuracy in terms of spatio-temporal resolution.

3D imaging techniques, e.g., computed tomography [245], cardiac magnetic resonance [246],

3D echo [247], and 2D ones, e.g., 2D echo [248], have been used for visualization of LV and its

valves. Each of these imaging modalities has its own advantage and disadvantages which makes

them suitable for specific applications. Among these, cardiac computed tomography and resonance

can provide higher spatial resolution compared to echo, but are not as widely used as echo in daily

practice due to their considerably higher image acquisition time, cost, the expertise required for

the operation, and other drawbacks such as exposing patients to radiation and reacting to metal.

2D echo is the most widely used method for non-invasive assessment of the LV function because

of its low cost and fast acquisition [249]. However, limited 2D cross-sections are available in this

imaging technique thus a geometric reconstruction is needed to obtain 3D geometry of the LV and

its valves, which is a challenging task. In addition, the 2D images inherently contain some extent

of speckle noise. 3D echo provides the 3D geometry using a 3D full volume acquisition rather than

a 2D acquisition. Therefore, 3D echo has better reproducibility and accuracy compared to 2D echo

as it does not require geometric 3D reconstruction from 2D cross-sections. However, the complex
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acquisition and lengthy data analysis made 3D echo less commonly used in clinical practice com-

pared to 2D echo [250]. In addition, 2D echo can provide high temporal resolution (from 250 fps,

down to 50 fps for resolving the whole heart) compared to other techniques [251] (e.g., computed

tomography, and cardiac magnetic resonance), which is essential for capturing the flow features

during a cardiac cycle due to the complex and fast three-dimensional motion of the LV. Therefore,

our goal is to develop a method for patient-specific simulations of the flow within the LV, based on

2D echo.

The valvular geometry and leaflet motion can have a significant impact on the flow field inside

the LV [252]. Due to the highly dynamic motion and geometry of the leaflets, the reconstruc-

tion of heart valves still remains a challenge. Typically, there is a trade-off between the spatial

and the temporal accuracy of the 3D reconstruction of valves due to complex geometry. Hence,

a wide range of simplifications, both for geometry and motion, have been used to model the ven-

tricular valves during a cardiac cycle. However, the literature can be divided into three general

categories: 1) simplifying both motion and geometry of valves to an on/off approach, where the

switch between the on and off configuration occurs instantaneously without any intermediate posi-

tions [253, 254, 255]; 2) simplifying the geometries of valves due the lack of spatial resolution of

the available imaging technique and calculate the motion of the valves with higher temporal reso-

lution [252, 256]; 3) modeling the valves with higher spatial resolution and use simplifications or

mathematical approaches to predict the motion of the valves [257, 258, 259, 260, 261]. Here, we

reconstruct mitral and aortic valves using the segmented data from multiple-axis 2D echo images

with the temporal resolution of more than 30 fps, while some geometric simplifications have been

assumed for 3D reconstruction of valves due to a limited number of views from 2D echo in which

the valves are visible.

Some studies considered the effect of ventricular valves in their LV simulations [262, 263, 132,

264, 256, 261, 252, 265, 266]. Due to the significant impact of the mitral valve on the performance

of the heart, most LV simulations are just considering the effect of the mitral valve (neglecting the

aortic valve) and the simulations are mainly limited to the diastolic phase [263, 256, 261, 252, 265,
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266]. Charonko et al. [267] reported that the mitral vortex ring facilitates the filling and enhances

flow transfer to the LV’s apex. Dahl et al. [265] studied the effect of the mitral valve in a 2D

simulation of LV. Their results show that asymmetric leaflets for the mitral valve as well as an

adequate model for the left atrium are essential for resolving important flow features in the LV. Seo

et al. [252] showed the mitral valve can significantly affect the vortex ring propagation and flow

field inside LV. They also found that due to the asymmetry of the mitral valve a circulatory flow

pattern can be generated in the LV which can enhance apical washout ability and reduce the risk of

thrombus formation. Su et al. [256] investigated the effect of the mitral valve on vortex formation

time. Their results showed that vortex formation time is a promising parameter to characterize

the performance of the LV. Bavo et al. [268, 269] used 3D echo for real-time patient-specific flow

simulation and investigated the effect of the mitral valve on the flow inside the LV for different

clinical cases. However, only a few simulations studied the flow pattern inside the LV incorporated

with both ventricular valves [264, 256, 262] and even fewer compared flow pattern in baseline LV

with left ventricles with any kind of heart failure [256, 270, 271, 272].

In this study, the 3D reconstruction method developed in our group ([273, 251]) is coupled with

our in-house CFD code [274], which is based on a sharp-interface immersed boundary method [80,

46, 1], to simulate the ventricular flows (section 6.3.2). The effect of the mitral valve on the

hemodynamic of blood inside the LV is investigated in section 6.3.2.1. In addition, this framework

is applied to a baseline LV and an LV with acute myocardial infarction (AMI) and the results are

discussed in section 6.3.2.2. Later, the results of CFD simulations for both baseline and AMI

left ventricles are compared to Doppler ultrasound velocity measurements obtained during the

experiments (section 6.4). Finally, the limitations of our study as well as the feature works are

explained in section 6.5.

6.2 Methods and materials

To handle the complex shape and motion of LV, a curvilinear immersed boundary method(CRVIB) [80,

169, 46] is used which is explained in detail in chapter 2. The CURVIB flow solver has been

extensively validated for a variety of complex flow problems [1, 275] and implemented in var-
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ious applications such as cardiovascular flows [276, 3, 5], aquatic motions and vortex dynam-

ics [93, 277, 278, 94] and rheology of suspensions [279]. The 3D-reconstructed surfaces of LV

from 2D-echo which are meshed using triangular elements are given to the flow solver as an input

for each time step to classify the background domain’s nodes into fluid, boundary, and solid using

an efficient ray-tracing algorithm [46] which can handle thick, closed-surface bodies. To classify

the nodes corresponding to heart valves, which are provided as thin structures, an immersed bound-

ary node classification algorithm for thin bodies is used [95]. After immersed boundary nodes

classification, the boundary conditions on the solid/fluid interface are reconstructed using the ve-

locity of the 3D-reconstructed LV surface using no-slip condition. Finally, the blood flow is driven

from/into LV using the volume flux equal to the volumetric change of the LV. The simulations are

performed for two cardiac cycles to let the flow reach a quasi-steady state. To minimize the in-

fluences of the inlet/outlet boundary conditions on the flow inside the LV, simplified surfaces (not

from any medical images) are generated to model left atrium and aorta. These geometries are gen-

erated in a way to make the dimensions of the surfaces have realistic values in comparison to the

reconstructed LV based on data measurements in previous works [280, 281]. The complete recon-

structed geometry used for flow simulations can be seen in Fig. 6.1. It is worth mentioning that

only one of the aorta and atrium exist in the geometry at the same time (the aorta just exists during

the systole phase and will be removed during diastole and an opposite pattern for left atrium).

The blood flows flux from the left atrium and aorta to/from the LV chamber is specified based

on the volumetric change of the LV (the volumetric flux of LV is calculated based on the change

of LV volume in two consecutive time-steps). In addition, the velocity boundary condition at the

inlet of the atria is assumed to be uniform. The Navier-Stokes equation is non-dimensionalized

with a diameter, D = 16.38 mm, of the aortic orifice and the bulk velocity, U = 0.598 m/s, with

a time step dt = 0.0109 s over 2500 time instances during a cardiac cycle. Considering the blood

viscosity to be ν = 3.3× 10−6m2/s leads to a Reynold’s number of 2950 for the simulations. The

LV geometry is discretized with approximately 50, 000 unstructured triangular mesh elements and

is immersed in a background grid with a dimension of 5.19D × 3.33D × 6.32D (where D is the
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Figure 6.1: The final reconstructed LV based on 2D echo images attached to the approximated
aorta and atrium surfaces for a) baseline and b) AMI case

aortic diameter) discretized with 161× 121× 201 grid points in x, y and z directions, respectively.

6.3 Results and discussion

Here, the effect of fixed apex assumption on the final surface reconstruction and LV flux is

studied. In addition, the sensitivity of the results (reconstruction and flow simulations) to the

smoothing algorithm is investigated. Furthermore, the effect of ventricular valves especially the

mitral valve on the flow field in the LV is studied. Finally, the flow hemodynamics of healthy

and acute myocardial infarction LVs are compared with each other. The presented results are

for healthy LV based on variable span weighted moving average smoothing algorithm unless it is

mentioned otherwise.
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Figure 6.2: Comparison of a) volume (V), and b) flux (dV/dt) for baseline and AMI left ventricle
during a cardiac cycle.

6.3.1 Comparison of LV parameters with their corresponding physiological range

Several parameters related to functionality of LV from reconstructed geometry are compared

to their corresponding physiological ranges [282, 283] to show that the reconstruction from echo

images is comparable to physiological data. The volume and volumetric flux versus time for

both healthy and acute myocardial infarction LV are presented in Fig. 6.2. The time is non-

dimensionalized in this figure to have the same time duration for both the healthy and acute my-

ocardial infarction cases. Various parameters including EF , the ratio of maximum fluxes during

the E-wave and A-wave (E/A Ratio), deceleration time and Stroke volume are calculated based

on the curves in Fig. 6.2. Table 6.1 shows the comparison between the calculated parameters and

their physiological ranges reported in previous in-vivo experiments [282, 284] for a porcine LV.

As it can be seen in this table, the parameters calculated here for healthy LV lie within the physi-

ological ranges of in-vivo experiments. However, the EF , and E/A ratio for the acute myocardial

infarction afflicted LV lie outside the physiological ranges for healthy LV as can be expected.

120



Table 6.1: Comparison of the computed cardiac parameters of the reconstructed LV to their phys-
iological range of Porcine LV (EF : ejection fraction, E/A ratio: ratio of maximum fluxes during
the E-wave and A-wave)

Physiological range baseline AMI
heart rate (bpm) 60 - 90 [283] 80 77

EF (%) 46.8 - 62.0 [282] 0.47 0.43
E/A ratio 0 - 1.4 [282] 1.38 2.5

deceleration-time (ms) 58 - 144 [282] 177 172
stroke-volume (mL) 13.1 -59 [282] 29 24

cardiac output (L/min) - 2.3 1.85

6.3.2 Flow simulation for the reconstructed LV assembly

It is well known that the blood flow pattern in the LV has a direct impact on heart perfor-

mance [239]. However, this flow pattern is directly related to the accuracy of LV reconstruction

and valves’ motion. Hence, in this section, the impact of ventricular valves and different smooth-

ing algorithm for LV reconstruction as well as LV dysfunction on the performance of LV in terms

of energy loss during the whole cardiac cycle is measured using the energy equation for a control

volume as follows:

dE

dt
= Q̇− Ẇ =

∂

∂t

∫
CV

ρe dV +

∫
CS

(ρe+ p)~V . ~dA (6.1)

where E is the total energy of the system (Fig. 6.3), Q̇ is the rate of heat transfer to the system,

Ẇ is the rate of work done on/by the system, CV is the control volume, CS is control surface, ~V

velocity of flow, p is pressure, ρ is blood density, and e is the energy per unit mass

e = u+ V 2/2 + ~gz (6.2)

where u is the internal energy of the fluid, V 2/2 is the kinetic energy. Integrating over a cardiac

cycle assuming that ∂
∂t

∫
CV

ρe dV is small and neglecting the heat transferred to the LV as well as
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Figure 6.3: The schematic control volume (CV) and control surface (CS) used for calculating
energy loss in the LV on the mid-plane passing through the aorta.

gravity and difference of internal energy of inlet and outlet, the above equation reduces to

loss =

∫ T

0

∫
CS

ρ (p/ρ+ V 2/2) ~V . ~dA (6.3)

where T is time at the end of the cardiac cycle. Since acute myocardial infarction and healthy

LVs have different stroke-volume and heart beat rate, to be able to compare the performance of the

LV in different cases the rate of loss is calculated per lit of blood pumped in each simulation as

follows:

˙loss (J/lit) =
loss

SV
(6.4)

where SV is the stroke-volume and heart rate is the heart rate. Table 6.2 compares the ˙loss of

the LV during a cardiac cycle for different smoothing algorithms, without heart valve, and acute

myocardial infarction simulations.
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Table 6.2: Comparison of LV ˙loss for different test cases

case (smoothing) ˙loss (J/lit)
baseline (variable span weighted moving average) 8.76

baseline without valve (variable span weighted moving average) 3.89
AMI (variable span weighted moving average) 10.3

6.3.2.1 Effect of mitral valve

The vortex ring generated during the rapid filling (E-wave) is one of the key characteristics of

intraventricular flows [285]. Figure 6.4 shows the vortical structures inside healthy LV with in-

corporate ventricular valves during the diastole phase visualized by iso-surface of q-criteria [286].

For comparison, Fig. 6.5 shows the same visualization for the LV without valves at the same time

instances. As can be observed in Fig. 6.4 at time t/T = 0.448 (t/T=instance time / cardiac cycle

length), in the early diastolic phase where the mitral valve leaflets are just beginning to open, the

vortex ring starts forming on the tip of the leaflet of the mitral valve. Since the mitral orifice is

a circular this vortex ring has a circular shape. The vortex ring starts to pinch off and propagates

inside the LV around the peak E-wave (Fig. 6.4-b). Due to the asymmetric geometry of mitral

leaflets, the ring propagates towards the posterior wall of LV while starting to disintegrate as it

approaches the wall. This ring finally hits the wall and begins to break down into small-scale

vortical structures that fill the whole volume of LV. During the A-wave also another vortex ring is

generated. However, this time the ring is weaker and dissipates faster without propagating much

in the LV.

Comparing the q-criteria visualization of LV without the valve; it can be observed that the

vortex ring starts forming at the mitral annulus (Fig. 6.5). Due to the absence of the mitral valves,

the symmetric ring propagates towards the apex of LV. However, since the mitral annulus has a

larger orifice area compared to the orifice of the mitral valve, the ring is weaker and the core of

the vortex has smaller propagation speed. The peak velocity near the mitral annulus in LV with
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Figure 6.4: 3D vortical structures visualized at different time instances during the diastolic filling
using the iso-surfaces of q-criteria for a baseline LV with reconstructed valves for different time
instants during diastole (t/T=instance time / cardiac cycle length)
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Figure 6.5: 3D vortical structures visualized at different time instances during the diastolic filling
using the iso-surfaces of q-criteria for a baseline LV without valves, for different time instants
during diastole (t/T=instance time / cardiac cycle length)
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mitral valve is around 1.37m/s which is in agreement with the previously published physiological

values for a healthy LV [53], whereas in the simulation without mitral valve this value is 0.76m/s.

Therefore, the vortex ring is not traveling far in the apical direction inside the LV and it starts

breaking down after propagating about 30% of the LV length. This shallow vortex ring penetration

depth that happens in the simulations without the mitral valve, can negatively affect the washout

ability of LV in the apex region. In addition, as previously shown by Seo et al. [252] the presence

of mitral valve results in a higher asymmetric diastolic flow pattern and consequently a counter-

clockwise (CCW) circulation which increases the washout potential of LV. This is in agreement

with our results which show the CCW circulation of about 63×10−4 m2/s and 41×10−4 m2/s for

LV with and without the mitral valve, respectively, which is an increase of 35%. As it been shown

in the previous study by Seo et al. [239], the asymmetric flow pattern during the diastole phase

which is also reflected in the higher CCW circulation will increase the efficiency of blood ejects

towards aorta during the systole phase. In addition, the effect of the aortic and mitral valve on the

˙loss is investigated in Table 6.2. As can be seen the presence of ventricular valve’s increases the

˙loss. This increase is mainly due to the presence of aortic valve during the systole. However, the

presence of aortic valve is essential to prevent backflow during the diastolic phase.

6.3.2.2 Comparing healthy and acute myocardial infarction reconstructed LV

Acute myocardial infarction can significantly affect the performance of LV during the systole.

Several studies [287, 288, 289] investigated the effect of the acute myocardial infarction on systolic

functionalities in terms ofEF and the amount of blood flux through the aorta. Figure 6.6 shows the

maximum velocity of flow through the aortic orifice at peak systole. As can be seen, the magnitude

of velocity in the healthy LV is higher than the acute myocardial infarction case which is due to

the lower EF in the acute myocardial infarction LV.

Acute myocardial infarction can also affect the diastolic performance of the LV [290] in terms

of the filling pattern. A bulge or dyskinetic region in the reconstructed endocardial of the acute

myocardial infarction case can be seen in Fig. 6.7. The visualization of vortical structures using

q-criteria in this figure shows the formation of a vortex ring from the tip of mitral leaflets the same
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Figure 6.6: Comparison of the flow velocity in the aortic orifice at peak systole between (a) baseline
(b) AMI left ventricle.

as the healthy subject. The vortex ring formed in the acute myocardial infarction subject is weaker

and has a lower propagation velocity(1.12 m/s compared to the healthy one 1.37 m/s) and thus it

disintegrates and dissipates in the sooner. It can also be seen that in the acute myocardial infarction

simulation the vortical structures are predominantly found in the region directly beneath the mitral

annulus, as compared to a more uniform and looped sweeping of structures in a healthy subject.

Comparison of the ˙loss in Table 6.2 for acute myocardial infarction and healthy LV shows that the

acute myocardial infarction LV has a higher ˙loss by approximately 20% compared to the healthy

one. The results suggest that ˙loss can be used as a promising indicator to measure the performance

of LV.

6.4 Validation and sensitivity study

To validate our hybrid echo-computational fluid dynamics framework for the hemodynamic

analysis of left ventricle, the velocity calculated from the numerical simulations are compared to
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Figure 6.7: 3D vortical structures visualised at different time instances during the diastolic filling
using the iso-surfaces of q-criteria for a acute myocardial infarction afflicted LV (t/T=instance time
/ cardiac cycle length)
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Doppler ultrasound velocity measurements of the same experiments for both healthy and acute

myocardial infarction cases on a section right under the mitral valve (Fig. 6.8). As can be seen in

this figure the velocity calculated from the simulations are in good agreement with the experimental

measurements during diastole for both healthy and acute myocardial infarction case. Since the

section on which the velocity has been measured during the experiment will go through the atria

during systole the results are not reported for this phase of the cardiac cycle. Although Doppler is

a good measure for validation of flow inside LV, the comparison is limited to a component of the

velocity normal to the section on which the measurements are performed during the experiments.

To perform a more reliable validation other image modalities (e.g., 4D-MRI, PIV, etc.) should

be performed along with the Doppler measurements for 3D flow visualization [291, 292]. In

addition, the sensitivity of the final 3D-reconstruction of LV with respect to the number of long-

axis sections used for the reconstruction in terms of the volumetric curve is shown in Fig. 6.9.

The results show that the volume curve is not changing considerably by increasing the number of

log-axis sections. These results are in agreement with previous research on 3D-reconstruction of

LV from 2D-echo [293]. The effect of using a different number of sections as well as the temporal

and spatial resolution on the 3D-reconstruction is investigated thoroughly by Rajan et al. [251].

Regarding the computational fluid dynamic simulations, the spatial and temporal resolution used

in this study is similar to the previous study by Song and Borazjani [253] which was found to be

fine enough to produce grid-independent results.

6.5 Limitations and future works

The segmentation task in 2D-echo is a challenging task due to the available speckle noises

in these images. Therefore, most of the available segmentation methods (including the one used

in this study) need some extent of manual segmentation. In addition, the valves are segmented

manually by an expert which may expose the framework to an inter- and intra-observer variability.

In the future, automatic segmentation using deep leaning method should be used to minimize the

manual operations. The microanatomy of the valves (e.g., the mitral valve has two leaflets and

a D-shape orifice versus the presented study in which the orifice is O-shape. In addition, the
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Figure 6.8: Comparison between the Doppler velocity measurements and the velocity from the
numerical simulation during diastole on a section below the mitral valve.

Figure 6.9: Comparison of the volume of 3D reconstructed baseline LV using different number of
long-axis cross-sections.
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mitral and aortic valves are not on the plane parallel to each other) is not accurate since the valves

are reconstructed based on the limited number of views from 2D-echo images. In addition, the

basal section of the LV is simplified (including the orientation of the mitral and aortic valves)

due to a lack of available images and using the echo-pack segmentation software. Therefore, an

improvement in the segmentation process is required to identify beyond the basal section. The

effect of atria on the flow inside the LV is yet to be investigated. While some researchers found the

influence of atria on the flow inside the LV insignificant [294], others reported the proper modeling

of atria is essential especially for LVs with high ejection fraction [295]. In this work, the atria are

generated based on simplifying assumptions and not from medical images. Therefore, the anatomy

of the atria may not be physiological and need to be improved in future works. In addition, the

final LV wall is smoothed out and the effect of the Left ventricular trabeculae is neglected (the

effect of trabeculae is investigated in some literature e.g. by Sacco et al [240]). Furthermore, flow

validation using 4D-flow MRI is needed to accurately validate the 3D flow structures inside the

LV.
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7. SUMMARY AND OUTLOOK*

Artificial heart valves are far from ideal. Thrombus formation is a major concern for recipients

of mechanical heart valves (MHVs), which requires them to take anticoagulant drugs for the rest of

their lives. Bioprosthetic heart valves (BHVs) do not require anticoagulant therapy but deteriorate

after 10 to 15 years. Bileaflet mechanical heart valves (BMHVs) are prone to thromboembolic

complications which are believed to be initiated by platelet activation. The main challenge inac-

curate hemodynamic investigation of the prosthetic heart valves is different length scales involved

in bulk and leakage flows during the cardiac cycle. For instance, the diameter of the mechanical

heart valves typically varies from 21 to 25 mm where the leaflet can undergo large displacement

of the same dimension. On the other hand, the hinge gap sizes in a BMHVs as an example of a

mechanical heart valve has a dimension of around 100µ m. Therefore, performing a multi-scale

simulation for simultaneously investigating the bulk flow and hinge region is a must.

Currently, two hypotheses are available regarding the main source of platelet activation in

BMHVs. While researchers agree on the contribution of bulk flow during the systole phase in

poor hemodynamic performance of BMHVs, it is mostly believed that the main source of platelet

activation is the leakage flow through the hinge region because that the clot formation is typically

observed near the hinge region. As the first step in testing this hypothesis, we quantified the role of

bulk flow during the systole through BMHVs. Our results show that the activation in the bulk flow

during the systole phase might play an essential role as well (section 4). This is based on our results

obtained by comparing the thrombogenic performance of a MHV and a BHV (as control) in terms

of shear-induced platelet activation under exactly the same conditions (section 4). Three different

mathematical activation models including the linear level of activation, damage accumulation, and

Soares model are tested to quantify the platelet activation during systole using the previous sim-

ulations of the flow through MHV and BHV in a straight aorta under the same physiologic flow

*Part of this chapter is reprinted with permission from “Platelet activation of mechanical versus bioprosthetic heart
valves during systole” by M. Hedayat et al., 2017, Journal of biomechanics, 56, 111-116, Copyright 2017 by Elsevier
Ltd.
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conditions. Results indicate that the platelet activation in the MHV at the beginning of the systole

phase is slightly less than the BHV. However, at the end of the systole phase, the platelet activation

by the bulk flow for the MHV is several folds (1.41, 5.12 and 2.81 for the linear level of activation,

damage accumulation, and Soares model, respectively) higher than the BHV for all tested platelet

activation models (section 4).

Performing multi-scale flow simulation through heart valves is not trivial by using conventional

numerical methods such as ALE methods or fixed grid immersed boundaries due to the enormous

computational cost and different grid resolution needed for a different part of the simulation which

can vary by 3 order of magnitude. Therefore, the use of overset grids for performing a multi-scale

simulation is required. However, to reduce the computational cost associated with the overset grids

due to the grid assembly and interpolation an efficient grid assembly algorithm is needed. To over-

come this challenge a parallel dynamic overset framework has been developed for the curvilinear

immersed boundary (overset-CURVIB) method to enable tackling a wide range of challenging flow

problems (section 2). The dynamic overset grids are used to locally increase the grid resolution

near complex immersed bodies, which are handled using a sharp interface immersed boundary

method, undergoing large movements as well as arbitrary relative motions. The new framework

extends the previous overset-CURVIB method with fixed overset grids and a sequential grid as-

sembly to moving overset grids with an efficient parallel grid assembly. In addition, a new method

for the interpolation of variables at the grid boundaries is developed which can drastically decrease

the execution time and increase the parallel efficiency of our framework compared to the previous

strategy. The moving/rotating overset grids are solved in a non-inertial frame of reference to avoid

recalculating the curvilinear metrics of transformation while the background/stationary grids are

solved in the inertial frame. The new framework is verified and validated against experimental

data, and analytical/benchmark solutions (section 3). In addition, the results of the overset grid are

compared with results over a similar single grid. The method is shown to be 2nd order accurate,

decrease the computational cost relative to a single grid, and good overall parallel speedup (section

3). The grid assembly takes less than 7% of the total CPU time even at the highest number of CPUs
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tested in this work. The capabilities of our method are demonstrated by simulating the flow past a

school of self-propelled aquatic swimmers arranged initially in a diamond pattern (section 3).

Using the overset-CURVIB flow solver a multi-scale simulation performed on a bileaflet me-

chanical heart valves to investigate the contribution of bulk and hinge flows to the activation of

platelets in BMHVs (section 5) for the first time by performing simulations of the flow through

a BMHV and resolving the hinge by overset grids (one grid for the bulk flow and two for the

hinge regions coupled together using one-way and two-way interpolation). It was found that two-

way coupling is essential to obtain correct hinge flow features. The platelet activation through

the hinge for two gap sizes (250 and 150 µm) is compared to the activation in the bulk flow us-

ing two platelet activation models to ensure the consistency of the observed trends. The larger

gap has a higher total activation, but a better washout ability due to higher velocities. The max-

imum shear stress observed in the bulk flow (∼ 320 dyne/cm2) is much smaller than the hinge

(∼ 1000 dyne/cm2). However, the total activation by the bulk flow is found to be several folds

higher than by the hinge/leakage flow. This is mainly due to the higher flow rate of the bulk flow

which exposes many more platelets to shear stress than the leakage flow.

Simulation of heart valves in simplified geometries such as simplified aorta which was the sub-

ject of our research in section 4 and section 5 can provide essential information in investigating the

hemodynamics and performance of the prosthetic heart valves. This simulation provides valuable

information to improve the design of prosthetic heart valves. Several comparisons between the

CFD simulations and in-vitro experiments have been performed which show the accuracy of CFD

simulations in predicting the functionality of heart valves during a cardiac cycle. However, per-

forming the simulation in idealized or simplified geometries and boundary conditions can provide

limited (although important) information about the functionality of prosthetic devices in a specific

patient where the simplified assumptions may not apply. In addition, the geometry, as well as the

cardiac parameters including the heart rate, ejection fraction (EF ), stoke-volume (SV ), cardiac

output and etc., can vary from one patient to another. Therefore, the implanted prosthetic valves

can perform differently from patient to patient. patient-specific simulations can play an important
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role in the development of medical devices such as heart valves. In addition, a reliable analysis of

intraventricular flow under the realistic assumptions can provide a powerful indicator for the abnor-

mal functionality of the cardiovascular system since the abnormal hemodynamics of the blood can

result in the development of structural modifications in the cardiovascular system. Thus numerical

simulation of the cardiovascular flows not only can lead to the diagnosis of existing abnormalities

but also can help in the prediction of feature possible diseases. To evaluate the hemodynamics

performance of artificial heart valves and optimize their design and placement for specific patients

employing medical images and combining them with CFD tools is essential. in this section 6,

echo is combined with CFD, i.e., an echo-CFD framework, to study ventricular flows. To achieve

this, the previous 3D reconstruction from multiple 2D echo at standard cross-sections is extended

by 1) reconstructing aortic and mitral valves from 2D echo and closing the LV geometry by ap-

proximating a superior wall; 2) incorporating the physiological assumption of the fixed apex as a

reference (fixed) point in the 3D reconstruction; and 3) incorporating several smoothing algorithms

to remove the nonphysical oscillations (ringing) near the basal section (section 6). The method is

applied to echo images from a baseline left-ventricle (LV) and an LV after inducing acute my-

ocardial infarction (AMI). The 3D reconstruction is validated by comparing it against a reference

reconstruction from many echo sections while flow simulations are validated against the Doppler

ultrasound velocity measurements. The sensitivity study shows that the choice of the smoothing

algorithm does not change the flow pattern inside the LV. However, the presence of the mitral valve

can significantly change the flow pattern during the diastole phase. In addition, the abnormal shape

of an LV with AMI can drastically change the flow during diastole. Furthermore, the hemodynamic

energy loss, as an indicator of the LV pumping performance, for different test cases is calculated,

which shows a larger energy loss for an LV with AMI compared to the baseline one.

7.1 Future work

For future work, we plan to use the overset-CRVIB framework for investigating the throm-

bogenic performance analysis of trileaflet valves using a highly resolved flow simulation because

these valves may have lower platelet activation compared to bileaflet ones as their flow during
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systole is much closer to the bioprosthetic ones. In addition, to investigated the hemodynamics of

heart valves for a specific patient under realistic conditions (e.g., realistic geometry, flow boundary

condition, etc.), patient-specific fluid-structure interaction simulation by combining the echocar-

diography images and artificial hear valves is planned to be performed. These two ideas are further

discussed below:

a) Thrombogenic performance analysis of trileaflet valves

The design of the current BMHVs is based on a design developed in the early 1970s. Since

then there has been some progress in the design of mechanical heart valves. However, the current

artificial heart valves are far from ideal. BMHVs generate a non-physiological flow pattern during

the systole phase as well as high shear stress near the hinge region during the diastole. As discussed

in section 4, the platelet activation due to non-physiological flow in the bulk flow is much higher

compared to the BHVs (which generates flow similar to the native valve). In addition, As discussed

in section 5, the activation during the systole is considerably higher compared to the hinge region.

Concluding from these results, a valve with a central jet-like BHV might have lower activation

compared to other types of valves. In order to compensate these issues, recently, trileaflet valves

have been introduced. These valves combine the favorable hemodynamics of bioprosthetic heart

valves with the durability of mechanical heart valves. During the systole, these valves generate the

flow pattern similar to the bioprosthetic ones which can drastically reduce the area of high shear

stress by providing a large central orifice area. In addition, this design provides a smooth closing

during the deceleration phase and reduces the risk of exposing the platelets to a high level of shear

stress in the hinge area. Investigating the thrombogenic performance of trileaflet valves through

numerical simulations and comparing the hemodynamics as well as the platelet activation between

trileaflet and BMHVs valves can provide a basis to move toward less thrombogenic mechanical

prostheses and durable mechanical heart valves.

b) Combination of FSI simulation and platelet activation with echo-CFD

Patient-specific computational fluid dynamics can provide valuable information for clinical

decision-making. Using the echo-CFD framework developed in this work provides the opportu-
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nity to analyze the performance of the heart valves in more realistic conditions. By combining

the FSI techniques with the echo-CFD framework as well as platelet activation a patient-specific

analysis of mechanical heart valves will be possible which can provide the surgeons valuable in-

formation for surgery planning and eventually optimize the factors involved in the surgery such

calculating the orientation and placement of the artificial valves in the surgeries to minimize the

surgery compilation as well as choosing the right type of artificial valve for a specific patient.
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