
MINING STUDENT SUBMISSION INFORMATION TO REFINE PLAGIARISM

DETECTION

Choose an item.

A Thesis

by

KATE ASHLEY CATALENA

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Dilma Da Silva

Committee Members, Krishna R. Narayanan

Frank M. Shipman III

J. Michael Moore

Head of Department, Scott Schaefer

May 2020

Major Subject: Computer Science

Copyright 2020 Kate Ashley Catalena

ii

ABSTRACT

Plagiarism is becoming an increasingly important issue in introductory programming

courses. There are several tools to assist with plagiarism detection, but they are not effective for

more basic programming assignments, like those in introductory courses. The proliferation of

auto-grading platforms creates an opportunity to capture additional information about how

students develop the solutions to their programming assignments. In this research, we identify

how to extract information from an online autograding platform, Mimir Classroom, that can be

useful in revealing patterns in solution development. We explore how and to what extent this

additional information can be used to better support instructors when identifying cases of

probable plagiarism. We have developed a tool that takes the raw student assignment

submissions from Mimir, analyzes them, and produces data sets and visualizations that help

instructors to refine information extracted by existing plagiarism detection platforms. The

instructors can then take this information to further investigate any probable cases of plagiarism

that have been found by the tool. Our main goal is to give insight into student behaviors and

identify signals that can be effective indicatives of plagiarism. Furthermore, the framework can

enable the analysis of other aspects of students’ solution development processes that may be

useful when reasoning about their learning.

As an initial exploration scenario of the framework developed in this work, we have used

student code submissions from the CSCE 121: Introduction to Program Design and Concepts

course at Texas A&M University. We experimented with the student code submissions from the

Fall 2018 and Fall 2019 offerings of the course.

iii

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Da Silva, for her guidance and support

throughout this research. I would also like to thank my committee members, Dr. Shipman, Dr.

Moore, and Dr. Narayanan, for their guidance and insight throughout this research.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of Dr. Dilma Da Silva of the

Department of Computer Science and Engineering and Dr. Frank Shipman of the Department of

Computer Science and Engineering, Professor J. Michael Moore of the Department of Computer

Science and Engineering, and Dr. Krishna R. Narayanan of the Department of Electrical and

Computer Engineering.

Funding Sources

This graduate study was supported by internal faculty funding.

v

TABLE OF CONTENTS

Page

ABSTRACT ... ii
ACKNOWLEDGEMENTS ... iii

CONTRIBUTORS AND FUNDING SOURCES ... iv
TABLE OF CONTENTS .. v

LIST OF FIGURES .. vi
LIST OF TABLES ..viii

1. INTRODUCTION ... 1
2. RELATED WORK .. 5

2.1 Plagiarism Detection ... 5
2.2. Autograding ... 8
2.3. Student Fingerprint Identification ... 11

3. THE PRAISE FRAMEWORK .. 13
3.1 Analytics Provided by Mimir... 14
3.2 Data Integration ... 16
3.3 Plagiarism Enhancement ... 20

4. EXPERIMENTATION .. 23
4.1 Data Sets ... 23
4.2 Usage Scenarios .. 23

4.2.1 Data Visualization of Mimir Submission Patterns ... 24
4.2.2 Additional Data Visualizations ... 36

4.3 Plagiarism Detection Enhancement ... 40

5. CONCLUSIONS ... 48
5.1 Summary ... 48
5.2 Conclusions ... 49
5.3 Future Work .. 50

REFERENCES ... 54

APPENDIX A .. 58

vi

LIST OF FIGURES

Page

Figure 2-1 Examples of Visualizations Offered by AC. Reprinted from Visualizing
Program Similarity in the AC Plagiarism Detection System by Manuel Freire. 6

Figure 3-1 Snapshot of the Analytics from Mimir Classroom (Part 1) 15

Figure 3-2 Snapshot of the Analytics from Mimir Classroom (Part 2) 16

Figure 3-3 PRAISE UML class diagram ... 17

Figure 3-4 Visual depiction of the layout and purpose of the components in the PRAISE
framework ... 18

Table 3-1 MOSS report for a homework assignment (shown with anonymized student
information)... 20

Figure 4-1 The Percentage of Submissions Per Day for All Assignments 24

Figure 4-2 The Percentage of First Submissions Per Day for All Assignments 25

Figure 4-3 The Percentage of Last Submissions Per Day for All Assignments 25

Figure 4-4 The distribution showing the total number of submissions made per day for
the assignment Change Maker from Fall 2019. .. 27

Figure 4-5 The distribution showing the total number of submissions made per day for
the assignment Tweets from Fall 2019. .. 27

Figure 4-6 The distribution showing the total number of first submissions made per day
for the assignment Change Maker. ... 29

Figure 4-7 The distribution showing the total number of last submissions made per day
for the assignment Change Maker. ... 29

Figure 4-8 The distribution showing the total number of first submissions made per day
for the assignment Tweets.. 30

vii

Figure 4-9 The distribution showing the total number of last submissions made per day
for the assignment Tweets.. 30

Figure 4-10 The percentage of the first and last submissions made per day for the Change
Maker assignment. ... 31

Figure 4-11 The percentage of the first and last submissions made per day for the Tweets
assignment. .. 32

Figure 4-12 Graph of the total number of submissions versus the time of the last
submission for each student for the Change Maker assignment. ... 33

Figure 4-13 Graph of the total number of submissions versus the time of the first
submission for each student for the Change Maker assignment. ... 34

Figure 4-14 Graph displays the percentage of lines changed for a student's last
submission for the Change Maker assignment. ... 35

Figure 4-15 Graph displays the percentage of lines changed for a student's last
submission versus the number of submissions made by that student for the Change
Maker assignment. ... 36

Figure 4-16 Graph displays grade versus time of the first submission for each student for
the Change Maker assignment. .. 38

Figure 4-17 Graph displays the assignment grade versus the time of the last submission
for each student for the Change Maker assignment. ... 39

Figure 4-18 Graph displays the assignment grade versus the time of the first submission
for each student for the Tweets assignment. ... 39

Figure 4-19 Graph displays grade versus time of the last submission for each student for
the Tweets assignment ... 40

Figure 4-20 Anonymized MOSS report for Change Maker assignment 42

Figure 4-21 Anonymized MOSS report for the Tweets assignment ... 43

viii

LIST OF TABLES

Page

Table 3-1 MOSS report for a homework assignment (shown with anonymized student
information) .. 20

Table 4-1 Extracted Mimir Metrics for the 98 Percent Similarity Instance for the Change
Maker Assignment. ... 45

Table 4-2 Extracted Mimir Metrics for the 91 Percent Similarity Instance for the Change
Maker Assignment. ... 46

1

1. INTRODUCTION

In the last few years, it has become evident that plagiarism in introductory programming

courses is more and more prevalent. A New York Times article, published May 29, 2017,

indicated that as the demand for computer science education increased in universities across the

country, the prevalence of cheating on programming assignments also increased [1]. Students are

relying on others to pass their introductory programming courses rather than doing their own

work. Plagiarism in introductory courses results in these students not having the foundation to

successfully complete upper-level coursework. Researchers have been working on techniques to

detect document plagiarism for many years [2,3]. The problem of detecting code plagiarism has

been explored by computer scientists for more than thirty years. As of late, there have been

several tools that help identify cases of plagiarism across programming assignments. Most of

these products can be effective for complex programming assignments that result in large code

bases and allow for a variety of problem-solving approaches. For introductory programming

courses, concepts and language constructs are explored through small programs and simple

algorithms, with less intrinsic variation among student solutions. It is not uncommon that

existing tools will flag a high level of similarity between programs that were developed

independently by students. Introductory programming assignments may generate answers at a

level of structural similarity that makes identifying plagiarism much harder for lower-level

courses.

Our research aims at exploring how and to what extent the student submissions to an

online autograding platform can be used by the professor to identify probable cases of

2

plagiarism. At Texas A&M University, many instructors use Mimir Classroom [27] as the

homework grading platform for the Introduction to Programming courses. Instructors prepare a

test suite for each assignment, including function-specific test cases and tests that cover the

whole program functionality. Students are told to first complete their homework assignments on

their computer, testing their code locally with their own test cases and test datasets made

available to students. They then upload their homework solution files to Mimir Classroom. Their

submission is tested and graded immediately according to a set of test cases and criteria set by

the instructor. The platform allows the student to see what their grade would be on that

submission. They also have the ability to see detailed information about any of the visible test

cases used for testing their code. Instructors can specify the maximum number of submissions

for an assignment; for the courses we worked with in this research, assignments were configured

to allow students to make as many submissions as they would like. They then can either edit their

work and upload their new files or take the current grade. Mimir allows the instructor to

download all assignment submissions for each student.

Besides managing assignment submission and automatic grading, Mimir also offers

plagiarism support. Like most other tools identifying plagiarism, Mimir uses complex analysis of

program structure, post-compilation analysis, and student user patterns to catch many of the

tricks students employ when cheating. The Mimir platform offers three levels of detection. With

current class analysis, the platform compares the solutions from current students; given the large

number of students taking introductory courses, such analysis involves submissions from

hundreds to thousands of students. With historical class analysis, submissions from previous

semesters are also included. With web detection, Mimir compares student submissions with code

3

fragments available at repositories such as Stack Overflow [4] and RosettaCode [5]. Mimir also

offers integration with one external plagiarism detection tool, as we discuss in Chapter X.

Although the plagiarism analysis provided by tools such as Mimir has been very useful,

in this work we show that such information may lack the precision and granularity needed to

help instructors to decide if it is appropriate to invest in further investigation. Our work explores

how additional information about the solution development processes and student involvement in

the course can be used to better support the instructor on assessing plagiarism cases.

From the bulk download of submitted code to an auto-grading platform, we can gather

additional data about the student work. The work in this thesis created a framework that captures

the data and makes it available for further analysis towards assessing how the extra information

can help the instructor to better identify the code similarity cases to pursue further. Our

framework captures every submission made to Mimir Classroom, including each individual file

and the timestamp of each submission, integrates is with additional plagiarism detection

information, and organizes the data for further analysis. All of this information can be used to

reveal student code development habits that can be informative when reasoning on plagiarism.

For example, submission with flagged code (i.e., with a large chunk of code detected as similar

to code in another submission) from a student who has a submission profile very distinct from

the rest of the class (e.g., very few submissions right before the deadline while the majority of

students had many dozens of submissions) could be indicative of plagiarism. Another example is

a student with an intermediate submission that replaced most of the functionality with new code

that is similar to code from another student. The data available in our framework can also be

analyzed to look at overall development patterns by students to identify students who possibly

worked together.

4

With the inherent structural simplicity of the basic programs developed in introductory

programming courses, code similarity analysis alone cannot identify plagiarism with perfect

accuracy. Our goal is to aid instructors in identifying cases that may deserve more attention and

investigation by integrating additional information about student work. It is not our intent to

provide the professor with cases of plagiarism with a high level of certainty, but instead, give

them insight into concerning behaviors.

5

2. RELATED WORK

2.1 Plagiarism Detection

Computer programming plagiarism detection methods have been around for decades.

Ottenstein published a paper in 1976 discussing his method for detecting plagiarism in Fortran

code. He quantified each assignment using a few different features and then quantitatively

compared each submission to identify cases of plagiarism [7]. In 1987 Jankowitz published a

paper evaluating methods for detecting plagiarism in Pascal programs [8]. This paper differed

from its predecessors because it looked more at the order of procedures being executed, whereas

other papers predating it just looked at features of the code, much like Ottenstein.

MOSS is a tool used for plagiarism detection of coding assignments. It works by

comparing the similarity between programs [9]. This system is very effective for detecting

student submissions derived from the same source through only small changes like changing

variables names, adding whitespace, introduction or removal of comments, etc. MOSS tends to

be better for higher-level programming courses, rather than lower-level, more introductory

programming assignments [15]. Plagiarism is an increasing issue in introductory courses, where

MOSS is not as accurate at identifying plagiarism cases.

MOSS is not the only widely used plagiarism detection software around, there are several

others. Modiba et al. looked at multiple different plagiarism detection platforms: AC [10,11],

CodeMatch [12], CPD [13], MOSS, and NED [14]. They then compared them to one another

[15]. They found that each platform offered different advantages.

6

Figure 2-1 Examples of Visualizations Offered by AC. Reprinted from Visualizing Program

Similarity in the AC Plagiarism Detection System by Manuel Freire [10].

AC seemed to be more advantageous when there is a very large number of submissions

because it offers helpful visualization; whereas, CodeMatch is better for when you have only a

small number of submissions because the number of results is the square of the number of

submissions. Figure 2-1 shows a couple of examples of visualizations offered by AC. The left

visualization is a plagiarism graph that shows parent and child accounts of plagiarism where the

distance between each node is representative of similarity. The shorter the distance, the more

similar the submissions are. The visualization on the right represents each submission and a

histogram showing the similarity distance to each other submission.

CPD did not seem very advantageous when compared to the other systems because it

only identified duplicated code, which is not very helpful since students often change the code

just slightly to avoid detection. The authors concluded MOSS is a great tool for when programs

are more complex. NED, at the time the authors published their paper, was only in the prototype

stage, but seemed promising since it had the highest number of correctly identified cases of

7

plagiarism. Until it is in the production stage, and more readily available, it is not very

advantageous.

Yan et al. designed TMOSS, an extension of MOSS [16]. MOSS is generally used to look

at students’ final submissions for an assignment, but TMOSS is designed to look at intermediate

student work. The authors designed an Eclipse IDE that occasionally uploads the student work to

the MOSS system throughout a programming assignment. The authors concluded that TMOSS

can be used to identify excessive student collaboration and to help understand how students work

from start to finish on a programming assignment. We aim to do something similar. We hope to

capture student development patterns by capturing the intermediate code submissions to Mimir.

Tahaei and Noelle approach plagiarism detection in a way that does not involve detecting

similarities of a student’s submission to a variety of sources [17]. Instead, the authors use a

feedback system that guides the student as they work, and the student is allowed multiple

submissions of the assignment. The idea is that a student will improve on each submission if they

follow the feedback given. The authors observe how the student progresses with each

submission, attempting to identify behaviors that may be indicative of plagiarism. They

compared their method to MOSS. They found that their method outperformed MOSS when

identifying true plagiarism cases. The data and results proved that following the resubmission

patterns of students could give insight into possible plagiarism cases. The main weakness of this

method was the fact that it does nothing for students who make a single submission since it

compares subsequent submissions.

One of the most concerning issues with plagiarism is the fact that it tends to affect student

performance. Yan et al. confirmed through their study with the TMOSS system that students who

tend to plagiarize and collaborate with others perform worse on exams [16]. Pierce and Zilles

8

conducted a study correlating plagiarism patterns and grades [18]. They found that there is a

significant negative correlation between plagiarism and grades. The issue is, they could not

identify whether weaker students tend to plagiarize or if plagiarizing contributed to the students

performing worse than those who did not plagiarize.

Fonseca et al. looked into how detecting plagiarism early could be used to identify and

address a student’s difficulties [19]. In most cases, plagiarism is detected after the final

submission of an assignment. The authors here decided to turn that process around and start

detecting possible cases of plagiarism long before the final deadline. The idea was that if you

could identify plagiarism early, you may identify where the student is struggling and address

those issues. The authors’ tool detected plagiarism in real-time and allowed the instructor of the

course to view the data in real-time. They found that their tool did allow the professors to better

understand where students were struggling in real-time due to identifying those who had

plagiarized code. The professors could then intervene to help those students better understand the

material. Although their tool seemed to perform well, they only tested with a fairly small sample

space, so it cannot be determined how it would perform for a larger sample.

2.2. Autograding

It is no secret that introductory programming courses have high enrollment numbers [20,

21]. With these high enrollment numbers, it is much more difficult to grade programming

assignments and provide students with meaningful and timely feedback. According to Chris

Wilcox, autograding platforms are built to provide the student with meaningful feedback,

automate the running, testing, and grading of the programs, and to help instructors create

meaningful feedback [22]. Wilcox developed his own testing framework that consisted of a

9

back-end that performed the autograding and a front-end that allowed the instructor to

incorporate real-time testing. They found that this framework performed well in most cases and

saved a lot of time for the professor when compared to manual grading. Although their

autograding system was successful, there were some issues that needed to be accounted for, such

as non-terminating student programs, security, and performance to allow for an interactive

system.

McBroom et al. investigated different techniques that could be used to identify how a

student developed code over a semester in a junior CS course [23]. They focused on the

autograding framework PASTA, which works by running a student submission against a set of

professor defined test cases and then provides immediate feedback to the students. They looked

at nine different features. For example, they looked at the percentage of attempts made three

days or more before the deadline. They also looked at the percentage of tests passed on the first

attempt. They found that students who started early and invested time into improving each

attempt tended to have a final submission that was of much higher quality than their first

submission. They also found that the students who tended to begin their assignments earlier were

also the ones who tended to perform better on their final exam. The students who did not perform

well on their final exam tended to be the students who did not submit their assignments at all.

Gramoli et al. mined submission data in 13 different subject areas over 3 years to

demonstrate that autograding and feedback can be applied to computer science curriculum in

general, not just programming courses [24]. They found that instant feedback and autograding

frameworks are useful for subjects that are not assessing programming skills, in addition to those

that are. They also found that the earlier a student starts to work on their assignment, the earlier

they stop working on that assignment. They did find that students that start submitting earlier

10

tend to have better grades on those assignments, although there was not a significant correlation

on performance. Overall, their main conclusion was that autograding and instant feedback is

beneficial for students in courses other than those assessing programming skills.

Haldenman et al. worked to extend the information provided by two widely used, open-

source autograding platforms, Web-CAT and Autolab, in order to provide more meaningful

feedback for students [25]. Web-CAT and Autolab are both autograding platforms that allow you

to have some set of test cases in order to test a student’s code, and each test case has some hint

associated with it [26]. After using Web-CAT in their introductory course, they found it to be

hard to create hints that are not too vague or too detailed. They designed their methodology to

analyze the results from an entire test suite rather than a single test case in order to guide the

students in the right direction. After applying this methodology to two assignments in their

introductory course, they concluded that the feedback provided to the students would be useful

for correcting and understanding mistakes made on incorrect submissions.

Mimir Classroom is the autograding platform currently used for grading CSCE 121

labwork and homeworks. It allows the teaching staff to create assignments with a corresponding

set of test cases. Students submit their assignments as many times as they want. On each

submission they are able to see their score and what test cases they passed or failed. The teaching

staff has the ability to show all test case information or limit how much information students are

allowed to see about the test case. Mimir offers statistics on each assignment, like common

errors across all submissions and the number of submissions per day. Mimir also offers

plagiarism detection via MOSS and its own method.

Vocareum Classroom [28] is an autograding platform that was previously used for the

grading of CSCE 121 labs and homeworks. It is similar to Mimir. It allows the teaching staff to

11

create assignments with a set of predetermined test cases. Students are able to submit as many

times as they want. They are able to see their score each time they submit and which test cases

were passed.

2.3. Student Fingerprint Identification

There have been efforts made in the past that incorporated information from student

source code repositories (such as Github) to identify a software development fingerprint that

captures the project development process. A fingerprint could be used to infer student behavior

regarding code development and capturing how a student produces a final solution. Such

fingerprint can also be used to help with identifying plagiarism as well [6].

The change history obtained from a source code repository captures a much richer view

of program evolution than what can be captured by tracking the student submissions to an

automatic-grading system like Mimir. Though, this much richer information would come with a

price: most students in an Introduction to Programming course lack the experience to use source

code control tools, such as GitHub. Requiring the use of such a tool – even with appropriate

training – could add a hurdle to students who may already struggle with the material. An

alternative approach would be to provide a working environment for the student that

transparently captures the code as the student develops it.

We designed a virtual machine (VM) that pushed the student’s work to their repository

each time they compiled their program. The VM was meant to ease the difficulty of using

GitHub for the students and allow us to easily access all of the GitHub information that revealed

how the student evolved their solution. There are drawbacks to requiring students to use an

instructor-provided VM as their development environment. In this work, we explore how the

12

limited development history information available from a submission system can aim at

assessing how the information from Mimir Classroom submissions can be used to further refine

the plagiarism information it provides.

13

3. THE PRAISE FRAMEWORK

We have created the PRAISE (PRogramming Activity Indicators of Student Effort)

framework that pulls student activity information together from several sources, making them

available for data analysis during a course and across semesters. We designed PRAISE with

three goals. First, PRAISE intends to provide instructors with a dashboard for use during the

semester. This dashboard enables the instructor to observe overall student behavior on

programming assignments, possibly identifying unusual difficulties with an assignment or

struggle scenarios particular to some students. Second, PRAISE can aid instructors to detect

plagiarism by enhancing the existing code similarity information with indicators of the student

engagement in course assignments. Third, PRAISE aims at building a repository of student

activities useful for mining the relationship between students’ track record in course tasks and

their overall performance in the course.

Regarding the plagiarism detection support, PRAISE was designed to build on top of the

analysis provided by Mimir and MOSS. MOSS, discussed in Section 2.1, is a widely used

plagiarism tool. Mimir offers plagiarism analysis in two forms: they can query the MOSS system

(using the instructor’s authentication identification for that system) and they can report on their

own analysis. Mimir, described in Section 1, provides general analytics about assignments like

overall grades, grades per test case, and the number of submissions per day. PRAISE goes

beyond overall startistics, aiming to add more insight into overall course trends and the

programming fingerprint of each student by analyzing individual submissions from students and

contrasting them with the overall patterns in the course.

14

We bring together data from submissions on homework assignments and labs,

attendance, exam grades, and Piazza participation. The data from the sources do not tell much of

a story when looked at individually, but when this data is harnessed in combination, overall

trends about the course and the coding behavior of individual students may start to emerge. We

designed PRAISE as a data integration and repository tool to enable data analytics on fine-

grained activity information in programming courses. We support data collected from multiple

offerings, which allows for the comparison of data across semesters and instructors, even when

the offerings adopt different homework or lab assignments, leading to a deeper analysis and

understanding of the course.

The first prototype for PRAISE is tightly coupled with Mimir. For any assignments that

are submitted using Mimir, we are able to access the source code for each individual submission

from a student. PRAISE processes these submissions to get their timestamps, the percentage of

lines changed from one submission to the next, and the total number of submissions per student.

Our framework offers a set of visualizations using the data gathered. PRAISE also enhances the

traditional plagiarism ranking by leveraging information gathered from a student’s submission

pattern.

3.1 Analytics Provided by Mimir

Figures 3-1 and 3-2 depict the data analytics currently provided by Mimir Classroom,

showing the data for the first programming assignment in the Fall 2019 CSCE 121 offering. As

we describe in this chapter, PRAISE’s data analytics capabilities go much further than what the

Mimir Classroom product currently offers. Another disadvantage of Mimir’s current support for

data analytics is that, in our experience, it fails to show any analytics for large datasets. Even

15

after dozens of attempts spread across different days, we failed to retrieve to obtain any results

for most of the homeworks in the course.

Figure 3-1 Snapshot of the Analytics from Mimir Classroom (Part 1)

16

Figure 3-2 Snapshot of the Analytics from Mimir Classroom (Part 2)

3.2 Data Integration

The PRAISE framework is organized in terms of course offerings. Instructors or specify a

course offering through an open-standard file specification format such as JSON. The

specification lists the student activities to be integrated into the PRAISE repository, such as

programming assignments, exams, class attendance, or Piazza participation statistics. Figure 3-3

displays the framework’s UML diagram, which gives insight into all of the information we are

storing. For brevity, in this section we focus on the description of the PRAISE framework

components related to programming assignments.

17

Figure 3-3 PRAISE UML class diagram

In order to capture the overall trends and individual coding fingerprint for a student, we

must first have access to the information from Mimir. Mimir allows the instructor to download a

zip file containing every submission from a student for a specific coding assignment. The zip file

contains a directory for each student. The student directory then has a directory for each

submission the student has made along with the source code for that submission. This zip file has

to be processed so that all the necessary information can be extracted and then used. Figure 3-4

depicts the PRAISE design.

18

Figure 3-4 Visual depiction of the layout and purpose of the components in the PRAISE

framework

The component Mimir_Organizer, a script, handles extracting the files from the zip file.

An instructor can download the zip file from Mimir. The zip file will need to be stored in a

directory. The instructor provides Mimir_Organizer with the path to the directory containing the

zip file. The current prototype also requires the output path where the instructors would like the

extracted data to be saved, but the next version of PRAISE will take care of the persistent storage

of anonymized submissions. If there are multiple zip files (i.e., for multiple assignments) saved

in the directory, the script will process all of the zip files at once. The script extracts everything

from the zip file, anonymizes the directories that were previously named using student emails for

cross-semester analysis, and restores all original timestamps to the files. This is the first step in

preprocessing the information.

The second step prepares the information to be stored in the data store. The script loops

through each student submission and extracts the total number of submissions, the timestamp for

19

each submission, the number of lines changed for that submission compared to the last, and the

percentage of lines changed between that submission and the last. In out first PRAISE prototype,

the data store is a csv (comma-separated values) file, but a future version of PRAISE will need to

deploy a database to support the target scalability of the system to hundreds of courses offerings,

thousands of students and potentially millions of programming assignment submissions. These

csv files, and later the database, contain all of the assignment information, meaning that anyone

wanting to perform their own data analysis has the capability of using the information from the

data store as they wish.

The PRAISE framework is meant to be flexible. It can process optional information upon

request from the user. As mentioned earlier, there is a great deal of data that is available for the

CSCE 121 course used to exercise the PRAISE prototype. An instructor has the option to provide

additional information from attendance records, exam grades from Gradescope, Piazza, and

assignment grades. When this information is provided, the Data_Organizer is responsible for

processing the data from its raw format to the format expected by the tools (e.g., python scripts)

to be used to analyze the data. Again, data from these sources is completely optional. When they

are provided, other scripts in the PRAISE framework can provide the analysis associated with

them. If they are not provided, the student submission information from Mimir will be the only

information analyzed.

Mimir_Analysis is a Jupyter Notebook [29] that can be harnessed in order to process and

visualize all wanted information. It incorporates a menu that asks the user a few questions in

order to identify where the pertinent csv files are located, the assignments they want data

analysis on, and the due dates for those assignments. Once this information is provided, the tool

generates a series of graphs based on what the user requested. If the user opted to only analyze

20

the Mimir submission information, eight different graphs are generated, as illustrated in the

figures in Section 4. The additional data the user chooses to include determines what other

graphs will be generated. All graphs will be displayed immediately in the Jupyter Notebook and

saved as a single pdf file for the user to download and view as needed.

3.3 Plagiarism Enhancement

Student 1 Student 2 File
Student 1

Similarity

Student 2

Similarity

Lines

Matched

f02ee921a3ecb8680

4e2d2733062b275

823d36aefee6c20ac

8ab7a712ac142af

functions

99 99 101

86ba4f8f35a594500

a978f19bb3f75d5

f02ee921a3ecb8680

4e2d2733062b275

functions

99 99 101

ff1068bef0f49798e

7d19289309395f4

5e7c192ce9f205cff

cf32c7babc4ee45

functions

99 99 155

ff1068bef0f49798e

7d19289309395f4

53354af1f4baa8b6e

5cca73ac1bb441d

functions

99 99 101

ff1068bef0f49798e

7d19289309395f4

823d36aefee6c20ac

8ab7a712ac142af

functions

99 99 101

51b848140ecfe885

70f4c7a508694ca2

86ba4f8f35a594500

a978f19bb3f75d5

functions

99 99 107

Table 3-1 MOSS report for a homework assignment (shown with anonymized student

information)

21

Mimir offers a plagiarism report from MOSS, but we have discovered that the MOSS

report offered by Mimir does not exclude starter code, which skews the results. To have better

control of the MOSS configuration used on the plagiarism detection, we obtain MOSS reports

directly from its server. We have written a python script that directly runs the MOSS service

with the homework assignment submissions downloaded from Mimir. The MOSS report is a link

to a webpage, so we have also written a python script to extract and convert the necessary

information from the webpage to a csv file for easy analysis. Table 3-1 shows the MOSS report

for the homework assignment Tweets.

From Table 3-1, we can see that MOSS reports plagiarism by listing a pair of students, a

file, a percentage of similarity for each student’s code, and the number of lines matched. It is

important that MOSS is able to analyze code at a structural level, so it can identify similarities

even when variable names are changed, whitespace has changed, or comments have changed. As

discussed in Section 1, plagiarism cannot be determined strictly from a MOSS report, so

instructors often have to analyze more data in order to conclusively determine if a submission is

plagiarized. Instructors will look at a variety of features in order to conclusively determine

plagiarism, usually through inspection of coding intricacies such as typos in comments,

commenting style, unusual placement of braces and brackets, peculiar algorithm choices,

variable name choices, operand order in long expressions, and whitespace placement. With the

increasing adoption of code editors and Integrated Development Environment (IDE) tools that

take care of code formatting for the student, many of the idiosyncrasies that are useful to

pinpoint plagiarism disappear as the tool adjusts element placement to conform to best practices.

With our work, we aim to enhance the traditional approach to plagiarism identification by

enhancing the MOSS report with features that capture additional information about the software

22

development process. By making available information for each student such as the number of

submissions, their timestamps, and their rate of change between submissions, we expose to the

instructor the coding fingerprint for each student in their efforts to submit their final solution.

Our experience, as reported in Section 4, shows that students tend to submit many solutions as

they receive instant feedback from the autograding system. Such submission patterns provide

more insight into the probability of plagiarism.

This work explores a set of features to assess their effectiveness in reflecting student

submission patterns that are likely to be linked to plagiarism. We decided to focus on the total

number of submissions, the time between a student’s first submission and their1 last submission,

and the percentage of lines changed for the last submission. In addition to these features, we also

consider how these measures for a given student compare to the overall set of students in the

course offering: we provide the raw metrics and their percentile placement in the student group.

PRAISE is intended to be a platform to enable experimentation with additional features.

Moss_Analysis is another Jupyter notebook that allows for customization through user-

inputted information like the path to the MOSS csv file and the path to the Mimir Analysis file.

We take the MOSS report and for any two students listed in the MOSS file, we use the Mimir

data to gain further insight into their programming behaviors. Moss_Analysis creates a new file

that contains the MOSS information in addition to the Mimir metric and the respective

percentiles for those metrics for each student.

1 In this document, we use the “their” for singular instead of his/her.

23

4. EXPERIMENTATION

This chapter reports in our experience using the PRAISE framework to assist on plagiarism

detection.

4.1 Data Sets

We have collected data from the Fall 2018 and Fall 2019 course offerings for CSCE 121:

Introduction to Program Design and Concepts at Texas A&M University. From the Fall 2018

course, we have 10 different assignments with at least with at least 300 students doing each

assignment. For the Fall 2019 offering, we have a total of 10 homework assignments with 595 or

more students attempting each assignment. Generally, there are more students completing the

assignments that occur early in the semester compared to those that occur later as many students

may choose to drop the course. For the purposes of this research, all identifying student

information has been anonymized.

4.2 Usage Scenarios

We demonstrate our experience with the PRAISE framework by showing the analysis

provided by PRAISE for the homework assignments from Fall 2019. When illustrating the

analysis of a single assignment, we chose two of the assignments: the first (Change Maker) and

the eighth (Tweets) homework assignments of the course to capture codebases at different levels

of complexities. Change Maker was completed by 657 students through a total of 1,831

submissions. Tweets was completed by 593 students with a total of 9,408 submissions. The

specification for both assignments is included in Appendix A.

24

4.2.1 Data Visualization of Mimir Submission Patterns

PRAISE shows several interesting features captured from the Mimir submission analysis. First,

we show some of the information that PRAISE can provide for assignments across the semester.

Figure 4-1 depicts the distribution for total submissions per day. Figure 4-2 shows the

distribution of first submissions for each day and Figuer 4-3 shows the numbers of last (final)

submissions per day across all assignments.

Figure 4-1 The Percentage of Submissions Per Day for All Assignments

25

Figure 4-2 The Percentage of First Submissions Per Day for All Assignments

Figure 4-3 The Percentage of Last Submissions Per Day for All Assignments

26

Next, we illustrate the information PRAISE provides for specific assignments. We look at

the total number of submissions per day for a single assignment; Figure 4-4 shows the

distribution of the total number of submissions made for Change Maker, the first homework

assignment from the Fall 2019 offering. We can see that as we approach the due date, September

6th at 11:59 pm, the number of submissions per day generally increased, as expected. September

5th had the greatest number of submissions, with about 700 total. Also, the last 3 bars represent

late submissions for the assignment. This assignment had very few late submissions. This can

most likely be attributed to it being the first assignment of the course and its relative simplicity.

Figure 4-5 shows the distribution of the total number of submissions per day for the

homework assignment Tweets, which was the eighth assignment of the semester, so it was

relatively more difficult than Change Maker. With this assignment, we have an almost normal

distribution, with the total number of submissions peaking on October 31st, two days before the

due date, with about 4800 submissions. Comparing this to the 700 max submissions for the

Change Maker assignment, we notice that with more difficult assignments, there may be a drastic

increase in the number of submissions made. Looking at the late submissions for this assignment,

we can see that there were many more late submissions made compared to the Change Maker

assignment. This makes sense considering the increased difficulty from one assignment to the

next.

27

Figure 4-4 The distribution showing the total number of submissions made per day for the

assignment Change Maker from Fall 2019.

Figure 4-5 The distribution showing the total number of submissions made per day for the

assignment Tweets from Fall 2019.

28

Not only does PRAISE displays the total number of submissions per day, but we also

visualize the number of first and last submissions made per day. These distributions give insight

into questions like: “How many students are starting the assignment early?”, “How many

students are procrastinating?”, and “How many students are finishing the assignment relatively

early?”. These are all questions that can be explored by looking at these two distributions. For

example, Figure 4-6 and Figure 4-7 show the distribution of the first and last submissions made

per day, respectively, for the Change Maker assignment. These graphs make it very easy to see

that there were very few students who started early and finished early. Surprisingly, there were a

few students who did not even start the assignment until after the due date. Figure 4-8 and Figure

4-9 show the same distributions for the Tweets homework assignment. We see some similar

trends. There were very few students who started early and finished early. There were even more

students who made their first submission after the due date. These are interesting observations

that could be explored further through additional analysis, like correlating the time of the first

and last submission with the final grade received on the assignment.

29

Figure 4-6 The distribution showing the total number of first submissions made per day for the

assignment Change Maker.

Figure 4-7 The distribution showing the total number of last submissions made per day for the

assignment Change Maker.

30

Figure 4-8 The distribution showing the total number of first submissions made per day for the

assignment Tweets.

Figure 4-9 The distribution showing the total number of last submissions made per day for the

assignment Tweets.

31

In addition to the standalone distributions mentioned previously, PRAISE can combine

the information into a single graph for ease of observation. Figure 4-10 and Figure 4-11 show the

combined distributions for the Change Maker and Tweets assignments, respectively. Instead of

displaying the counts for each kind of submission per day like with the other graphs, we used

percentages here instead. These graphs are meant to easily combine the previously mentioned

distributions into a single graph for easy observation and understanding. When looking at the

two figures, we can see that there were many more submissions per day for the Tweets

assignment compared to Change Maker.

Figure 4-10 The percentage of the first and last submissions made per day for the Change Maker

assignment.

32

Figure 4-11 The percentage of the first and last submissions made per day for the Tweets

assignment.

In addition to the distribution graphs, PRAISE offers several other visualizations based

on the data analysis of the Mimir submissions. Figure 4-12 displays the total number of

submissions for a student versus the time of their last submission for the Change Maker

assignment. The motivation for exploring this graph was the plagiarism detection portion of the

framework. PRAISE is able to display the notion of “programming fingerprint” of each student.

The idea here is that students who have a very late last submission time, with very few

submissions (in relation to the overall behavior in their group) may have an unusual pattern of

activities leading to the completion of their homework. With the intent of further capturing

student coding fingerprints, we display a similar graph with the time of the first submission

rather than the time of the last submission, which is shown in Figure 4-13. For these graphs,

33

PRAISE also provides markers for the assignment release date, the assignment due date, the

average number of total submissions, and the average submission time.

Figure 4-12 Graph of the total number of submissions versus the time of the last submission for

each student for the Change Maker assignment.

34

Figure 4-13 Graph of the total number of submissions versus the time of the first submission for

each student for the Change Maker assignment.

In addition to all of the other graphs mentioned previously, PRAISE automatically

provides two additional graphs to the user. Figure 4-14 and Figure 4-15 show the percentage of

lines changed for the last submission and the percentage of lines changed versus the total number

of attempts, respectively. We decided to include both of these graphs in PRAISE because the

percentage of lines changed for the last submission may be of interest when trying to understand

a student’s coding behavior. Looking only at the percentage of lines changed for the last

submission can be misleading, especially for the less complex assignments with a small number

of lines of code. There are plagiarism scenarios that involve a large percentage of lines changed

in the final submission, for example when a student gives up on fixing the problems in their code

and submits new code obtained through collaboration/interaction with other students or tutoring

services. There are instances where a student only submits once or twice, so the percentage of

lines changed for their last submission is high, but this does not mean that they used other

35

sources to complete their homework. Looking at Figure 4-14 and Figure 4-15, we can see that

the majority of those who had a high percentage of lines changed for their last submission had a

very low number of total submissions. Of course, those who submitted right around the due date,

only had a few attempts and had a large percentage of lines changed for their last submission

while exhibiting high code similarity level – as reported by tools such as MOSS – would be a

more likely case of plagiarism; and therefore, would need to be investigated further.

Figure 4-14 Graph displays the percentage of lines changed for a student's last submission for the

Change Maker assignment.

36

Figure 4-15 Graph displays the percentage of lines changed for a student's last submission versus

the number of submissions made by that student for the Change Maker assignment.

4.2.2 Additional Data Visualizations

In addition to the default graphs mentioned above, PRAISE supports the production of

several optional graphs. For example, Figure 4-16 and Figure 4-17 harness the assignment grade

information provided by the user in order to show final assignment grade versus time of the first

and the last submissions, respectively. These graphs may give insight into overall trends related

to grades outcome. For example, does the data show that those who start working earlier get

higher grades than those who wait to begin their work? Or does the data show that those who

finish closer or even after the due date perform more poorly than those who make their last

submission earlier?

Figure 4-16 and Figure 4-17 show grade information for the Change Maker assignment.

Looking at Figure 4-16, we can see that almost all of the students who started before the due

date, received a perfect score. We can also see that the majority of those who did not start until

37

after the due date did not receive a perfect score. It is important to note here that there are late

points associated with turning the assignment in late. It is hard to discern whether the cause for

the lower scores is only attributed to the late points or the fact that the assignment was not

completed fully. Looking at Figure 4-17, we can draw similar conclusions. Those who finished

early received the highest grades. Those who finished later, mainly after the deadline, received

lower grades, but as mentioned earlier it is dififcult to attribute the lower scores to poorer

performance or to simply the late points. Note here that the highest grade is a 95 due to 5 points

being allocated to a pre-homework quiz. These observations make sense for an assignment of

lesser difficulty, but what about for an assignment of higher difficulty like the Tweets

assignment? Looking at Figure 4-18 and Figure 4-19, we can see the same graphs, but for the

Tweets assignment. In general, those that started earlier received better grades than those who

started later. As for grade versus the time of the last submission, no trends can automatically be

identified since the variance is so much higher than the Change Maker assignment.

These are just a couple of examples of the optional data visualizations that PRAISE

supports. PRAISE also offers visualizations that correlate the Mimir data with attendance, exam

grades, and Piazza participation. In addition to viewing a single assignment, we can also support

viewing graphs for multiple assignments side-by-side, which may be beneficial for identifying

38

overall trends for assignments as the difficulty changes. We also support viewing assignments

across semesters so that comparisons can be made from one semester to the next.

Figure 4-16 Graph displays grade versus time of the first submission for each student for the

Change Maker assignment.

39

Figure 4-17 Graph displays the assignment grade versus the time of the last submission for each

student for the Change Maker assignment.

Figure 4-18 Graph displays the assignment grade versus the time of the first submission for each

student for the Tweets assignment.

40

Figure 4-19 Graph displays grade versus time of the last submission for each student for the

Tweets assignment

4.3 Plagiarism Detection Enhancement

Before discussing how PRAISE can enhance plagiarism detection, we report in our

experience using MOSS to flag plagiarism. We obtained MOSS reports for all ten homeworks in

the Fall 2019 offering, and we discuss here the results for the Change Maker Tweets

assignments. As discussed in Chapter 1, code similarity tools may be ineffective with

introductory assignments. We found that a 99 percent similarity on a simple assignment like

Change Maker is a lot different than a 99 percent similarity on a more complicated and complex

assignment, like Tweets. The instances where the similarity reported by MOSS was above 90

percent on the Tweets assignment were easy to identify as plagiarism just by inspecting the code.

On the other hand, even a 98 percent similarity, the highest similarity for the Change Maker

41

assignment, could not be conclusively identified as plagiarism by inspecting the code. Figures

4.20 and 4.21 show the top part of the MOSS report, with student e-mails omitted.

After labeling the instances from the MOSS report as plagiarism or not based on our code

inspection, we ran the Moss_Analysis script to enhance the MOSS report with the submission

pattern data we extracted from Mimir.

When looking at the Tweets assignments and the top submissions labeled as plagiaristic,

we found some interesting patterns. The MOSS report is useful because it makes it easy to

identify students who worked together as a group. Although we can use the MOSS report as a

guide to identifying students who worked together, the MOSS information does not provide any

evidence of who may have originated the base solution for the group source code copy. With the

information provided by PRAISE, there may be evidence that one of the students worked by

incrementally submitting code versions until the solution worked, and the other students simply

started from a copy of that working solution. This information does not change things in terms of

plagiarism; given the clear syllabus specification that no collaboration is allowed on the

assignments, all students, regarding who may have written the code originally, may be have

violated the honor code for the course. Nonetheless, the instructor may gain insights on overall

student learning by considering how each of the students involved in high-similarity code

submission engaged in the homework assignment.

We found that the information gathered by PRAISE can be useful in providing

information about plagiarism scenarios where code has been copied without the knowledge or

the consent of its author. The submission patterns can reveal that one student made incremental

progress towards a solution, and had no history of code similarity with other students in the other

assignments.

42

Figure 4-20 Anonymized MOSS report for Change Maker assignment

43

Figure 4-21 Anonymized MOSS report for the Tweets assignment

When inspecting the MOSS report for the Tweets assignment (Figure 4-21), we identified

a large number of students who had submissions with 98 or 99 percent similarity. As discussed

above, based on just the MOSS report, we could only identify what group of students all had the

same solution, but could not identify where the solution most likely originated from. With the

features provided by PRAISE, we could easily identify which student from the group made their

last submission first and analyze his/her submission pattern. One of the students made their last

44

submission at least 2 days before the first submission time of the other students in this group.

This student also made a total of 9 submissions; whereas, the others in the group made 5 or less

submissions, except for one student. Also, several of the other students made relatively large

changes to the code on their last submission.

Looking at another group of students, about 15 students, who all had the same solution,

no student immediately stood out as having finished much earlier than everyone. After taking a

close look, the information in PRAISE allowed us to identify the student who made their last

submission before everyone else. That student made a total of 49 submissions. Each of the other

students in this group made 12 or fewer submissions. A few of these students made relatively

large changes to the code on their last submission. We could also easily see that the majority of

these students started the assignment late, submitting it right before or even after the deadline.

These experiences indicate that the PRAISE framework, by adding features extracted

from the the Mimir submission history, can make identifying the source of the plagiarized code

easier. For situations where the source of the common solution is not a student (e..g, a tutoring

service), PRAISE’s ability to carry out data analysis across different offerings (different

instructors reusing an assignment, possibly in different semesters) can bring a great advantage to

the plagiarism detection effort in large departments, where thousands of students may take the

same course every semester. The data confirmed our intuition that, in general, those who

plagiarize using another student’s code tend to have fewer submissions than the original student.

Also, those that plagiarize finish and often start after the original student has finished submitting

their code. This may be because the original student has first worked through multiple

submissions to pass all test cases required for the homework, and then they pass on their working

solution to others. We also have observed large changes in the last submission by those who

45

plagiarized. All of these observations were made by looking at the data presented by PRAISE by

extracting features from the Mimir submissions.

Student 1 Student 2

Total Submissions

(Percentile)
3 (68.7976) 1 (16.5145)

% Lines Changed on Last

Submission (Percentile)
0 (31.422) 100 (31.4220)

Days Between First and

Last Submission

(Percentile)

0.0112 (64.3951) 0 (16.6922)

First Submission Time 9/2/19 12:10 AM 9/3/2019 5:20 PM

Last Submission Time 9/2/19 12:26 AM 9/3/2019 5:20 PM

Table 4-1 Extracted Mimir Metrics for the 98 Percent Similarity Instance for the Change Maker

Assignment.

As mentioned previously, for simple assignments, not even a 99 percent similarity can be

used conclusively as evidence of plagiarism due to the inherent limited variaions in expressing

simple tasks as code in C++. Also, in simple assignments the style and approach used by the

instructor in the classroom may lead to many students developing code with the same structure

and the same approach for other characteristics such as the choice of variable names.

Considering this, PRAISE can aid in identifying cases of plagiarism by exposing information on

how students worked to derive the submitted solutions . For example, from the MOSS report for

the Change Maker assignment shown in Figure 4-20, we have an instance where 2 students share

46

code that is 98 percent similar, but since there are so few ways for completing the assignment,

simply looking at their code was not sufficient for us, as instructors, to confirm plagiarism. With

the additional Mimir features, we gain additional insight. Table 4-1 shows those features for the

two students from line 6 of Figure 4-20. We can see that Student 1 submitted a total of 3 times,

with no lines changed for their last submission, and a short time between their first and last

submission. Student 2 submitted only once with their last submission being a full day after

Student 1. Taking all of this into consideration, we can say that this is a probable instance of

plagiarism that should be further investigated.

Student 1 Student 2

Total Submissions

(Percentile)
4 (81.3546) 2 (46.8037)

% Lines Changed on Last

Submission (Percentile)
0 (31.422) 12.5 (95.1835)

Days Between First and

Last Submission

(Percentile)

0.1766 (86.6003) 0.0036 (34.8392)

First Submission Time 9/4/2019 12:26 AM 9/3/2019 6:09 PM

Last Submission Time 9/4/2019 4:40AM 9/3/2019 6:14PM

Table 4-2 Extracted Mimir Metrics for the 91 Percent Similarity Instance for the Change Maker

Assignment.

47

Table 4-2 shows the Mimir features for another example where the MOSS report reported

two students having 91 percent similarity (line 1 of Figure 4-X). As with the first example,

looking at the code for each student and the MOSS report is not conclusive. The PRAISE data

shows that the Student 2 submitted twice and made their last submission before Student 1 started,

who made 4 attempts. The PRAISE information on their own may be indicative of plagiarism,

but are not conclusive of plagiarism, just like the MOSS report on code similarity and code

inspections are not definitely conclusive of plagiarism. Even when we consider the PRAISE

information, including the Mimir submission pattern features, in combination with the code of

the students, we can not conclude if they are plagiarized or not, just similar. We expect to see

similar approaches to simple assignments since there is a limited number of ways to complete

them. In situations like these, the information provided by PRAISE can clear up much of the

ambiguity associated with identifying plagiarism of simpler assignments. PRAISE can help the

instructors to distinguish the cases that are more likely to be plagiarism, helping them to

prioritize their investigation effort to address first the scenarios of more likelihood of plagiarism.

If we look at the instances on the MOSS reports that were labeled as not being plagiarized,

we can identify some characteristics that are different than those discussed earlier. The students

who did not plagiarize generally have more submissions than those who did plagiarize.

Instances of only one submission are almost non-existant among those who did not plagiarize.

Also, for the most part, the time between a student’s first submission and last submission is

greater than those who plagiarized. We also can see that, generally, those that plagiarize start

later, closer to the deadline than those who do not plagiarize. The fact that we can identify

different characteristics for cases of plagiarism and those that did not plagiarize is indicative of

the fact that the Mimir features do enhance plagiarism detection.

48

5. CONCLUSIONS

5.1 Summary

We have designed PRAISE (Programming Activity Indicators of Student Effort) as a

framework for pulling together student and course data from several different sources. PRAISE

takes this data and visualizes it to give more insight into overall course trends and individual

student programming fingerprints. The current version of PRAISE brings together data from

submissions on homework assignments and labs, attendance, exam grades, and Piazza

participation.

We have found that PRAISE’s data visualizations aid in better understanding the coding

behaviors of the class as a whole and on a more individual level. Generally, when we view data

from each of the available sources on their own, trends are hard to identify and understand.

PRAISE helps to eliminate this issue by creating a suite where all data can be analyzed and

visualized side-by-side. We also make it possible to view data across assignments and then

across semesters. This gives the user an even deeper understanding of the course as a whole. The

data repository can also enable additional data mining that may lead to new insights as the

instructor and PRAISE administrators pursue new questions.

In addition to the data visualization, PRAISE provides an enhancement of the traditional

plagiarism detection. Plagiarism is complicated. Tools like MOSS offer insight into the similarity

of code, but it is far away from providing conclusive data. Our framework can assist in this by

enhancing the code similarity indices with additional features. We capture in PRAISE features

related to the process of developing assignment solutions. By observing these features, an

instructor gains insight into the coding behaviors of a student. Certain behaviors are more

49

indicative of plagiarism than others, so combining such information with code similarity

rankings enhances the process of plagiarism detection.

Our framework is just in the beginning stages. We expect PRAISE to evolve and change

as instructors and computer science (CS) education researchers gain experience with obtaining

data to reveal the efforts students dedicate to their activities. In its current state, PRAISE already

provides informative visualizations and assistance with plagiarism detection. PRAISE has been

designed to be expanded and improved so that it becomes an impactful toolset that instructors

can utilize to better understand courses and students.

5.2 Conclusions

PRAISE shares some similarities with those mentioned in the related work. For example,

the AC [10,11] plagiarism detection system was found to be advantageous because it produces

helpful visualizations even when there are a large number of submissions. AC focuses on a

distance measure between submissions to identify and visualize plagiarism. PRAISE offers

visualizations that provide insight into the overall submission trends. This helps to identify

outlying behavior that may be indicative of plagiarism.

PRAISE also captures student coding behaviors by extracting information about their

submission habits. We extract information about each individual submission each student makes

to Mimir. TMOSS [16] does something similar by periodically uploading student submissions to

MOSS [9], so that intermediate MOSS reports can be captured in order to better identify

plagiarism. PRAISE enhances the traditional approach to plagiarism detection using MOSS and

gives further insight into overall submission trends. PRAISE is different than MOSS and

TMOSS because it extracts additional features about the student fingerprint not given by these

50

systems. We gather timestamp information, percentage of lines changed on each submission,

total number of submissions, and all of the relative percentiles.

Compared to Smith’s work of trying to identify and understand a student’s coding

fingerprint by looking at their GitHub commits [6], we go a step further. The previous work done

to capture a student’s coding fingerprint offered some unique visualizations and insight into

overall trends, but was not integrated with any plagiarism detection system. We expanded on the

ideas in Smith’s research in order to enhance plagiarism detection. Another benefit from

PRAISE is the fact that it works with the information available from an autograding system such

as Mimir. In many institutions, students have to use an autograding system to submit their work,

receive feedback, and get their assignments graded. This is advantageous because we can still

capture student’s coding fingerprint without imposing additional requirements such as using a

version control system such as Github, which can be quite complicated for beginners.

In conclusion, we envision PRAISE as the foundation for something bigger. We showed

that PRAISE can harness Mimir submission information to improve plagiarism reports. PRAISE

can also help instructors to gain a deeper understanding of class trends and individual student

coding behavior. In addition to general course information, PRAISE can enhance traditional

plagiarism detection methods. This framework has the potential to evolve into a complete

interactive toolset for instructors and researchers, serving as a platform for data analysis of

courses and plagiarism detection.

5.3 Future Work

This research is just the initial step to building something better that provides even more

detailed information to instructors regarding the student coding fingerprint. We believe that as

51

we build on this framework, we will be able to identify and incorporate additional useful

information. For example,

at the moment we only correlate the Mimir metrics with the assignment grade. We would

like to extrend on this and correlate the Mimir metrics with the overall course grade and exam

grades. This is just an example of the additional information we plan to provide.

This research led to an initial framework prototype to advance plagiarism detection, a

common problem in computer science courses. This framework can be expanded to further

support instructors and researchers in data analysis of the vast amount of data we have access to

in courses like CSCE 121. As mentioned earlier, the current data store is a set of csv files, which

is not scalable. For the target data exploration of this research, the csv file data store was

sufficient, but to expand PRAISE towards its potential, a more scalable and resilient approach

for data storage and manipulation will need to be implemented. A first, immediate step in the

future work would be to migrate to a database structure in order to allow for scalability across

more courses and course offerings.

The current PRAISE prototype supports plagiarism detection by enhancing the MOSS

report to include data about student submission patterns when submitting solutions to an

autograding environment such as Mimir. We plan to improve such support by introducing a

ranking system that predicts the likelihood that submissions flagged by code similarity measures

as plagiarism are, indeed, plagiarism. The ranking system will incorporate machine learning

methods to model student behavior. This would require obtaining ground truth data, i.e., some

set of training data where cases of plagiarism have been properly identified by experts

(instructors). At this point, we believe that such time-consuming task would be necessary for any

new assignment being added to PRAISE, but we may find that with appropriate characterization

52

of assignments, existing models can be applied to new assignments without acquisition of more

training data. Regardless, such effort by course staff would greatly improve the trustworthiness

of our plagiarism ranking system. In addition to creating the training data, evaluation of the

models and testing them would need to be done to ensure that the ranking system is trustworthy

and behaves as intended.

PRAISE would benefit from a well-designed user interface (UI.) The UI could guide a

user through what files are needed and any optional features they may be interested in viewing.

A UI that allows the graphs and visualizations to be interacted with would be ideal. Allowing the

users to select ranges of data, easily switch features, easily compare to similar assignments, etc.

are all things that need to be addressed in the future.

Taking PRAISE even further, we would like to analyze submissions to identify where

students may be struggling. The goal is to identify what issues are common among a group of

students, so that those issues can be addressed through autograding feedback, labs, or class

discussion. We envision PRAISE as advancing the state-of-art in providing formative feedback

to students by removing some of the limitation present in efforts such as [30]. A feature like this

could be harnessed in order to improve overall performance and understanding for the students in

the course.

In the future, we plan to deploy PRAISE throughout the entire semester rather than just at

the end of the semester like we have done for the Fall 2019 CSCE 121 offering. Instructors will

be able to identify plagiarism early in the semester. This will allow the teaching staff to identify

students who resort to plagiarism because they are struggling. If those students can be identified

and helped early on, they may be able to succeed in the course. It is also important to identify

plagiarism early in order to penalize those who do it so that the word spreads and students are

53

less likely to do it in the future. We want to help the students to succeed on their own, so they

have a better chance of success in higher-level courses.

54

REFERENCES

[1] J. Bidgood and J. B. Merrill. “As Computer Coding Classes, So Does Cheating,” New York

Times, p. A1, 29-May-2017

[2] Martin Potthast, Benno Stein, Alberto Barrón-Cedeño, and Paolo Rosso. 2010. An

evaluation framework for plagiarism detection. In Proceedings of the 23rd International

Conference on Computational Linguistics: Posters (COLING '10). Association for

Computational Linguistics, Stroudsburg, PA, USA, 997-1005.

[3] Eissen S.M.., Stein B. (2006) Intrinsic Plagiarism Detection. In: Lalmas M.,

MacFarlane A., Rüger S., Tombros A., Tsikrika T., Yavlinsky A. (eds) Advances in

Information Retrieval. ECIR 2006. Lecture Notes in Computer Science, vol 3936.

Springer, Berlin, Heidelberg

[4] Stack Overflow, https://stackoverflow.com

[5] RosettaCode, http://www.rosettacode.org/wiki/Rosetta_Code

[6] C. M. Smith, "A Toolset for Mining GitHub Repositories in Educational Software

Projects," M. S. thesis, Dept. of Computer Sc. and Eng., Texas A&M Univ., College

Station, TX, 2018.

[7] Karl J Ottenstein. 1976. An algorithmic approach to the detection and prevention of

plagiarism. ACM Sigcse Bulletin 8, 4 (1976), 30–41.

[8] H. T. Jankowitz, Detecting Plagiarism in Student Pascale Programs, The Computer

Journal, Volume 31, Issue 1, 1988, Pages 1–8, https://doi.org/10.1093/comjnl/31.1.1

[9] Alex Aiken. 2004. MOSS: A System for Detecting Software Plagiarism.

https://theory.stanford.edu/~aiken/moss/ (2004).

55

[10] M. Freire. Visualizing Program Similarity in the AC Plagiarism Detection System. In

Proceedings of the Working Conference on Advanced Visual Interfaces, AVI ’08, pages

404–407, New York, NY, USA, 2008. ACM.

[11] M. Freire, M. Cebrian, and E. Rosal. AC: An Integrated Source Code Plagiarism Detection

Environment. Technical Report cs.IT/0703136, Universidad Aut ́onoma de Madrid, Mar

2007. Comments: 57 pages, 11 figures.

[12] B. Zeidman. Tools and algorithms for finding plagiarism in source code. Dr Dobbs, July 01

2004.

[13] T. Copeland. Detecting duplicate code with pmd’s cpd, Dec 03 2001.

[14] B. Haskins. Utilising n-grams and Edit Distance as a Means of Identifying Copied

Programming Assignments. In Proceedings of the 44th Annual Conference of the Southern

African Computer Lecturers’ Association (SACLA), Port Elizabeth, 25 -26 June 2014.

SACLA Organising Committee.

[15] Phatludi Modiba, Vreda Pieterse, and Bertram Haskins. 2016. Evaluating plagiarism

detection software for introductory programming assignments. In Proceedings of the

Computer Science Education Research Conference 2016 (CSERC '16), Vreda Pieterse and

Marko van Eekelen (Eds.). ACM, New York, NY, USA, 37-46. DOI:

http://dx.doi.org/10.1145/2998551.2998558

[16] Lisa Yan, Nick McKeown, Mehran Sahami, and Chris Piech. 2018. TMOSS: Using

Intermediate Assignment Work to Understand Excessive Collaboration in Large Classes. In

Proceedings of the 49th ACM Technical Symposium on Computer Science Education

(SIGCSE '18). ACM, New York, NY, USA, 110-115. DOI:

https://doi.org/10.1145/3159450.3159490

56

[17] Narjes Tahaei and David C. Noelle. 2018. Automated Plagiarism Detection for Computer

Programming Exercises Based on Patterns of Resubmission. In Proceedings of the 2018

ACM Conference on International Computing Education Research (ICER '18). ACM, New

York, NY, USA, 178-186. DOI: https://doi.org/10.1145/3230977.3231006

[18] Jonathan Pierce and Craig Zilles. 2017. Investigating Student Plagiarism Patterns and

Correlations to Grades. In Proceedings of the 2017 ACM SIGCSE Technical Symposium

on Computer Science Education (SIGCSE '17). ACM, New York, NY, USA, 471-476.

DOI: https://doi.org/10.1145/3017680.3017797

[19] N. Fonseca, L. Macadeo, & A. Mendes . 2018. Using early plagiarism detection in

programming classes to address the student’s difficulties. 2018 International Symposium

on Computers in Education (SIIE). Jerez, Spain. DOI: 10.1109/SIIE.2018.8586700.

[20] Generation CS: Report on CS Enrollment. CRA, 2019. https://cra.org/data/generation-cs/.

[21] Growth of Computer Science Undergraduate Enrollments. Sites.nationalacademies.org,

2019. https://sites.nationalacademies.org/CSTB/CompletedProjects/CSTB_171607.

[22] Chris Wilcox. 2016. Testing Strategies for the Automated Grading of Student Programs.

In Proceedings of the 47th ACM Technical Symposium on Computing Science

Education (SIGCSE '16). ACM, New York, NY, USA, 437-442. DOI:

https://doi.org/10.1145/2839509.2844616

[23] J. McBroom, B. Jeffries, I. Koprinska, & K. Yacef. 2016, June. Mining behaviors of

students in autograding submission system logs. In EDM (pp. 159--166)

[24] Vincent Gramoli, Michael Charleston, Bryn Jeffries, Irena Koprinska, Martin McGrane,

Alex Radu, Anastasios Viglas, and Kalina Yacef. 2016. Mining autograding data in

computer science education. In Proceedings of the Australasian Computer Science Week

57

Multiconference (ACSW '16). ACM, New York, NY, USA, , Article 1 , 10 pages.

DOI=http://dx.doi.org/10.1145/2843043.2843070

[25] Georgiana Haldeman, Andrew Tjang, Monica Babeş-Vroman, Stephen Bartos, Jay Shah,

Danielle Yucht, and Thu D. Nguyen. 2018. Providing Meaningful Feedback for

Autograding of Programming Assignments. In Proceedings of the 49th ACM Technical

Symposium on Computer Science Education (SIGCSE '18). ACM, New York, NY, USA,

278-283. DOI: https://doi.org/10.1145/3159450.3159502

[26] Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: automatically

grading programming assignments. In Proceedings of the 13th annual conference on

Innovation and technology in computer science education (ITiCSE '08). ACM, New York,

NY, USA, 328-328. DOI: https://doi.org/10.1145/1384271.1384371

[27] Mimir Classroom, https://www.mimirhq.com/classroom/competitive-comparison

[28] Vocareum Classroom, https://www.vocareum.com/#classroom

[29] Jupyter Notebook, https://jupyter.org/

[30] Giving Hints is Complicated: Understanding the challenges of an automated hint system

based on frequent wrong answers. In Proceedings of the 23rd Annual ACM Conference on

Innovation and Technology in Computer Science Education 2018. ACM ITiCSE '18.

58

APPENDIX A

HOMEWORK ASSIGNMENT GUIDELINES

A.1 Specification for the Change Maker Assignment

Individual Homework: Change Maker

Overview

You have been tasked to write a program that makes change with the minimum amount of coins

for a given amount -- a 'Coin Maker', if you will. For example, $2.16 would consist of 8

quarters, 1 dime, 1 nickel, and 1 penny: 11 coins in total. Your code will be submitted to Mimir

for autograding. Therefore, your code must match exactly the required input and output

specified in the requirements.

Objectives

1. Exposure to reading and writing data via standard input and standard output respectively.

2. Familiarity with: the declaration of variables, reading and writing to the objects bound to

them, and interacting with those named objects throughout program code

3. Experience working with the arithmetic types and the set of operations that can be

performed on them.

Grading breakdown

Points

59

5 Pre-Homework Quiz

95 Runs correctly (using instructor’s

test cases)

100 TOTAL

Requirements

When developing your solution to this problem, ensure that your program implements the

following requirements:

● Name the source file containing the main function coinmaker.cpp.

● Source code is written such that it is readable by a novice programmer. Use descriptive

variable identifiers and comments where appropriate (e.g. for non-trivial program code).

● Assume an unlimited number of 1¢, 5¢, 10¢, and 25¢ coins are available for change.

● Input is taken via standard input (i.e. cin): amount to make change from. It’s never

recommended to use floating-point numbers when dealing with monetary values;

therefore, read in the amount to make change from as two integers value (one for dollars

and another for cents)

○ You will first prompt for the whole-dollar amount and read that value.

60

○ You will then prompt the user for the whole-number of cents and read that value

 You can assume that the two integers provided as input are non-negative.

● If change is being made for less than a dollar (e.g. $0.24), assume that the user will

always enter a zero for the whole-dollar amount. If change is being made for a whole-

dollar amount with no cents (e.g. $12.00), assume that the user will always enter zero for

the whole-number of cents.

● Makes change with the minimum amount of coins for a given amount. Think about how

you can accomplish this using modulo (%) and division (/).

● Output via standard output (i.e. cout): number of coins of each denomination and the total

number of coins.

● Required format of i/o (here we use $12.34 as example input; user input in bold red;

everything else is output):

Enter dollars: 12↵

Enter cents: 34↵

Pennies: 4↵

Nickels: 1↵

Dimes: 0↵

Quarters: 49↵

61

↵

Total coins used: 54↵

62

A.2 Specification for the Tweets Assignment

Individual Homework: Twitter Analytics

Objectives

● Work with C++ strings. In the supporting information, we list a few string methods that

you may find useful.

● Work with reading strings from files.

● Work with function arguments passed by reference.

● Further practice with dynamic allocation and resizing of arrays.

● Further practice with statically-allocated arrays.

● Further practice with accumulating data statistics.

● Further practice with the process of fixing code errors. If you need motivation, you may

want to look at a few quotes about bugs and debugging at the end of this document.

Grading breakdown

Points

100 Runs correctly

10 Bonus: Early-bird submission

110 MAX TOTAL POINTS

Overview

We all know companies that dedicate entire data centers with hundreds of thousands of machines

to the analysis of social media data. In many cases, these machines are high-cost ones due to

63

their large-memory configuration (current prices are around $ 20,000 for a machine with 2 TB of

RAM.)

You were hired as an intern by a startup that is working hard to raise money from venture

capitalists, but until they have enough cash to buy equipment, they need you to write data

analytics code that can run on the computers that their interns bring with them for the internship.

One of the company founders was your TA in CSCE 121 and is aware that you have experience

with dynamically resizing arrays and paying attention to memory leaks.

The company wants to offer a new service to their customers: low-cost statistics on the usage of

hashtags on Twitter2 data streams. They want you to create a program that customers can use to

upload twitter data and get statistics about the most popular hashtags or statistics about a hashtag

of particular interest to the customer. Tweet data files can be quite large: users produce 500

million tweets per day and around 200 billion tweets per year3. Due to the limited availability of

memory in the company machines, your program must analyze tweets, update statistics about

hashtag popularity accordingly, and then discard the tweet. The screenshots below show how

users will interact with your program (user input appears in red.)

First, the user runs the program and sees the menu of options, selecting option 1 and providing

the name of the file containing tweet data:

Welcome to Aggieland Twitter Feeds Stats

2 Twitter is a microblogging and social network service founded in 2006 [https://en.wikipedia.org/wiki/Twitter]
3 Source: https://www.internetlivestats.com/twitter-statistics/, visited in October 24, 2019.

64

The options are:

1. load tweet data file and update stats

2. show overall stats (number of tweets, retweets, and hashtags)

3. show most popular hashtags

9. quit

--------> Enter your option: 1

Enter filename: TAMU-small.csv

Welcome to Aggieland Twitter Feeds Stats

The options are:

1. load tweet data file and update stats

2. show overall stats (number of tweets, retweets, and hashtags)

3. show most popular hashtags

9. quit

--------> Enter your option:

Now the user asks for option 2 (show stats) and option 3 (show at most 10 most popular tweets

so far):

--------> Enter your option: 2

Tweets: 3, Retweets: 2, Hashtags: 5

Welcome to Aggieland Twitter Feeds Stats

The options are:

65

1. load tweet data file and update stats

2. show overall stats (number of tweets, retweets, and hashtags

3. show most popular hashtags

9. quit

--------> Enter your option: 3

Tag #tamu - 2 occurrence(s)

Tag #aggieland - 1 occurrence(s)

Tag #gigem - 1 occurrence(s)

Tag #aggienetwork - 1 occurrence(s)

Tag #sec - 1 occurrence(s)

As you can see, the TAMU-small.csv file is a very small one, useful for debugging code.

The user can keep uploading new files. Now a larger one:

--------> Enter your option: 1

Enter filename: starwars.csv

Welcome to Aggieland Twitter Feeds Stats

The options are:

1. load tweet data file and update stats

2. show overall stats (number of tweets, retweets, and hashtags)

66

3. show most popular hashtags

9. quit

--------> Enter your option: 3

Tag #starwars - 13477 occurrence(s)

Tag #theriseofskywalker - 5162 occurrence(s)

Tag #funko - 3838 occurrence(s)

Tag #pop - 3828 occurrence(s)

Tag #e - 2104 occurrence(s)

Tag #giveaway - 1753 occurrence(s)

Tag #the - 1720 occurrence(s)

Tag #ep9 - 1714 occurrence(s)

Tag #starwarstheriseofskywalker - 835 occurrence(s)

Tag #returnofthejedi - 739 occurrence(s)

The user again asks to load another file and look at the stats:

--------> Enter your option: 1

Enter filename: frozen2.csv

Welcome to Aggieland Twitter Feeds Stats

The options are:

1. load tweet data file and update stats

2. show overall stats (number of tweets, retweets, and hashtags)

3. show most popular hashtags

67

9. quit

--------> Enter your option: 3

Tag #frozen2 - 15963 occurrence(s)

Tag #starwars - 13488 occurrence(s)

Tag #theriseofskywalker - 5175 occurrence(s)

Tag #funko - 3888 occurrence(s)

Tag #pop - 3865 occurrence(s)

Tag #e - 2366 occurrence(s)

Tag #giveaway - 1764 occurrence(s)

Tag #the - 1720 occurrence(s)

Tag #ep9 - 1714 occurrence(s)

Tag #choprasisters - 1015 occurrence(s)

Welcome to Aggieland Twitter Feeds Stats

The options are:

1. load tweet data file and update stats

2. show overall stats (number of tweets, retweets, and hashtags)

3. show most popular hashtags

9. quit

--------> Enter your option: 2

Tweets: 47423, Retweets: 30460, Hashtags: 3007

68

The input files have real data. They were obtained by connecting to a Twitter API (application

programming interface) and invoking services that retrieve small collections of recent tweets.

These input files (and many others) are available in the Google Drive (folder datasets).

The input files contain one tweet per line. The tweets may contain characters such as emoticons

that do not display well as a text file. As an example, the file TAMU-small.csv contains only

three tweets:

You will need to process each tweet so that you extract the information you need: is it a retweet?

What are its hashtags?

Requirements & Roadmap

To facilitate the integration of your code with other components of the system, the team leads at

the company stated that your solution must use the declarations in the file functions.h. The file

contains the declaration of the three functions that you must implement and use in your solution.

These functions manipulate two structs that are also declared in functions.h (pictured in the next

page.)

Notice the the struct OrderedHashtagList is dynamically allocated, growing as your system

processes tweets and finds hashtags. As you add hashtags to the hashtag list, you may need to

69

allocate a larger area for the list by doubling the capacity list (like you did in the labwork in

Week 8). You are asked to keep the list in decreasing order of hashtag popularity.

/* struct that keeps track of the statistics for a single

* hashtag.

 */

struct Hashtag {

 std::string name;

 long counter = 0; // total number of occurrences

};

/* struct that maintains a list of hashtags ordered in

* decreasing order of popularity, i.e., in the

* first position of the array we maintain the most popular hashtag.

 */

struct OrderedHashtagList {

 int capacity = 1; /* how many positions have been allocated

* for the array 'list'. The 'list' array may be

* resized during

* execution, possibly growing or shrinking

 */

 Hashtag* list = new Hashtag[capacity]; /* array of Hashtag elements

* that must be kept sorted by

70

number

* of occurrences of the hashtag.

 */

 int size = 0; /* size of the array 'list', i.e., how many positions in

* the array are currently occupied

 */

};

For example, if the first tweet that your system process has the following text:

After processing its hashtags, the variable holding your OrderedHashtagList will have the

following data in its fields: capacity will be 8, size will be 5, and list points to an array of 8

Hashtag elements that resides in the heap:

71

If the next tweet processed has the hashtags #tamu and #awesomecsce121, then the counter for

the #tamu hashtag will become 2, and as the now most popular hashtag, it will reside in position

0 of the array list. The hashtag is added to the end of the list with counter 1.

The functions that you are required to implement are:

void readTweet(string line, bool& isRetweet,

 int& nb_htags, string*& array_of_htags);

Parameters:

● line: string containing the tweet information received by the function

● isRetweet: reference to bool; function will update it with true if retweet

● nb_htags: reference to int; function will update with number of hashtags in the tweet

72

● array_of_htags: reference to an array of strings; function will allocate the array and store

the hashtags on it

Return value: none

Functionality: it processes the string in order to identify its hashtags and if it is a retweet. Real-

life twitter data feeds present retweets in different ways. For the purpose of this homework, you

only need to handle the following formatting for retweets:

● Appear preceded by ”

2019-10-25 14:56:43,"RT @astudent: I will finish my csce 121 homework early”. Notice

how it appears in code:

string example(“\””)

● Appear preceded by comma, as in

2019-10-25 18:14:40,RT @astudent: I am done with my homework

● Appear preceded by ‘

2019-10-25 18:14:40,’RT @astudent: I dreamed I finished my homework

For hashtags, you can assume that they only contain letters and digits.

bool insertHashtag(string ht, OrderedHashtagList& hashlist);

Parameters:

● ht: string

● hashlist: reference to OrderedHashtagList struct

Return value: true if insertion succeeds, false if memory allocation fails.

73

Functionality: the function searches for the string ht in the hashlist’s array. If the hashtag is

already in the list, its counter is updated and the order of the elements in the array may need to be

rearranged if the increment of the popularity counter changes the ordering of the hashtags.

If the hashtag is not in the list, it needs to be inserted. If there is no capacity in the array, a resize

to double its capacity must be carried out.

In order to account for #TAMU and #tamu as the same hashtag, hashtags in the hashlist must be

all in lowercase. The Useful functions section discusses the library support std::tolower and other

methods that you may find useful when manipulating the string ht.

void showMostPopularHashtags(OrderedHashtagList hashlist, int k);

This function simply prints to the console the k most popular hashtags, i.e., the first k elements

of the array in hashlist.

When invoking the function from the main program, you should use k = 10.

The main program and starter code

Your program needs to be able to open input files and read tweets lines from it for processing

them. We provide starter code for tweets.cpp that prints the menu of options (function

printMenu) and reads a user option from the console (function getOption)

The following screenshots show the format for a few error scenarios:

Welcome to Aggieland Twitter Feeds Stats

74

The options are:

1. load tweet data file and update stats

2. show overall stats (number of tweets, retweets, and hashtags)

3. show most popular hashtags

9. quit

--------> Enter your option: 5

Invalid option

Welcome to Aggieland Twitter Feeds Stats

The options are:

1. load tweet data file and update stats

2. show overall stats (number of tweets, retweets, and hashtags)

3. show most popular hashtags

9. quit

--------> Enter your option: d

Invalid option

--------> Enter your option: 1

Enter filename: tammmmmmmuuuu.csv

File can't be opened.

Welcome to Aggieland Twitter Feeds Stats

The options are:

75

1. load tweet data file and update stats

2. show overall stats (number of tweets, retweets, and hashtags

3. show most popular hashtags

9. quit

--------> Enter your option:

Notice the typo on error message “File can’t be open.”. It should be “File can’t be opened”, but

we first released with this typo in the Mimir test case and changing it now would impact the

students who finished the assignment already.

What to submit

You need to submit:

● functions.h

● functions.cpp (containing the three required functions and possibly other functions that

you used in your solution)

● tweets.cpp (with the main program.)

The folder datasets in the Google Drive contains many datasets for you to use when running on

your machine. All the datasets used in the Mimir tests are available.

Useful functions

You may use any of the functionality provided by C++ strings in your solution. Most students

may find the following operations useful:

76

● compare or operator ==

Example of reading from the console and comparing two strings:

int main() {

 string st1, st2;

 getline(cin, st1);

 getline(cin, st2);

 if (st1.compare(st2) == 0) {

cout << "Strings are the same" << endl;

 } else {

cout << "Strings are not the same" << endl;

 }

 if (st1 == st2) { // it is the same thing

cout << "Strings are still the same" << endl;

 } else {

cout << "Strings are still not the same" << endl;

 }

}

● find_first_of(char c): returns the position of the first occurrence of character c in the

string. For example:

string text(“CSCE121 is fun”);

text.find_first_of(“1”) returns 4.

77

● find_first_of(char c, int pos): finds first position after pos. For example:

text.find_first_of(“1”, 5) returns 6.

● std::isalpha(char c): returns true if c is an alphanumeric character

● std::isdigit(char c)

● std::tolower(char c): returns the lowercase form of char c

Change Log

● Version 1.1: Added comment on message error msg “file can’t be open” - 10/27/19

● Version 1.0: initial release - 10/25/19

Quotes about testing and debugging (in case you are interested)

● “Program testing can be a very effective way to show the presence of bugs, but is

hopelessly inadequate for showing their absence.” (Edsger Dijkstra)

● "If debugging is the process of removing bugs, then programming must be the process of

putting them in." (Edsger Dijkstra)

● “Debugging is twice as hard as writing the code in the first place. Therefore, if you write

the code as cleverly as possible, you are, by definition, not smart enough to debug it.”

(Brian W. Kernighan)

● “A good programmer is someone who always looks both ways before crossing a one-way

street.” (Doug Linder)

● "Don't wait until you have a bug to step through your code" and "Never allow the same

bug to bite you twice" (Steve Maguire, from his book "Writing Solid Code: Microsoft's

Techniques for Developing Bug-Free C Programs")

78

● "With good program design debugging is a breeze, because bugs will be where they

should be." (David May)

● “Without requirements or design, programming is the art of adding bugs to an empty text

file.” (Louis Srygley)

● “When debugging, novices insert corrective code; experts remove defective code.”

(Richard Pattis)

● “If builders built buildings the way programmers wrote programs, then the first

woodpecker that came along would destroy civilization.” (Gerald Weinberg)

● “If McDonalds were managed like a software company, 1 out of every 100 Big Macs

would give you food poisoning, and the response would be, ‘We’re sorry, here’s a

coupon for two more.’ ” (Mark Minasi)

● “Where is the ‘any’ key?” (Homer Simpson, trying to figure out the “Press any key”

notification)

● “There are two ways to write error-free programs; only the third one works.” (Alan J.

Perlis)

● "Beware of bugs in the above code; I have only proved it correct, not tried it." (Donald E.

Knuth)

