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ABSTRACT

We develop a collection of numerical algorithms which connect ideas from polyhedral geom-

etry and algebraic geometry. The first algorithm we develop functions as a numerical oracle for

the Newton polytope of a hypersurface and is based on ideas of Hauenstein and Sottile. Addition-

ally, we construct a numerical tropical membership algorithm which uses the former algorithm as

a subroutine. Based on recent results of Esterov, we give an algorithm which recursively solves a

sparse polynomial system when the support of that system is either lacunary or triangular. Prior

to explaining these results, we give necessary background on polytopes, algebraic geometry, mon-

odromy groups of branched covers, and numerical algebraic geometry.
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1. INTRODUCTION

Understanding the solution sets of polynomial systems,

f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fk(x1, . . . , xn) = 0, (1.1)

is a ubiquitous need throughout mathematics, as well as the primary goal of algebraic geometry.

Such solution sets,

V(f1, . . . , fk) = {(a1, . . . , an) ∈ Cn | fi(a1, . . . , an) = 0 for i = 1, . . . , k},

are called varieties. One way to study varieties is to partition them into families with respect to

some structure so that most varieties in the same family have the same properties. Those that do not

exhibit these generic properties may still be understood through the role they play in their family.

In this dissertation, we study families of varieties delineated via the monomials appearing in their

defining polynomials.

The support of a polynomial,

f(x1, . . . , xn) =
∑

α=(α1,...,αn)∈Zn
cαx

α1
1 · · ·xαnn , cα ∈ C,

is the set supp(f) = {α ∈ Zn | cα 6= 0}. Studying a polynomial system F = (f1, . . . , fk) through

its support A• = (supp(f1), . . . , supp(fk)) endows it with the structure of a sparse polynomial

system and identifies F as a point in the coefficient space CA• . Sparse polynomial systems be-

longing to the same family share a striking number of properties, many depending only on the

collection P• of convex hulls of the supports in A•, called Newton polytopes.

The polyhedral geometry of the Newton polytopes P• encodes much information about V(F ).

For example, the famous Bernstein-Kushnirenko Theorem (Proposition 5.3.1) states that when F

is a square system (k = n) the number of isolated points of V(F ) in (C×)n is bounded by a
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numerical value called the mixed volume of P•. It also states that this bound is almost always

attained, inducing a branched cover

πA• : XA• → CA• (1.2)

(x, F ) 7→ F

from the incidence variety XA• = {(x, F ) | x ∈ (C×)n, F (x) = 0} whose fiber π−1
A•(F ) is

identified with the solutions of F = 0 in (C×)n. This viewpoint gives geometric structure to

families of sparse polynomial systems whereby we may understand their constituents.

More difficult than counting solutions of polynomial systems is computing them. Over the last

sixty years, mathematicians laid the groundwork for computational algebraic geometry, developing

symbolic algorithms for studying and computing solutions of polynomials. More recently, tech-

niques from numerical analysis joined algebraic geometry to form a novel computational paradigm

known as numerical algebraic geometry. While symbolic algorithms use the algebraic properties

of a polynomial system to study its solutions, numerical algebraic geometry studies varieties by

computing numerical approximations of points on them, thus providing a predominantly geometric

viewpoint toward computations in algebraic geometry.

Due to the geometric nature of numerical algebraic geometry, many definitions and proofs from

geometry translate directly to numerical algorithms. For example, the definition of the monodromy

group of a branched cover immediately suggests a numerical method to compute it (Algorithm

6.5.1). Another example is Huber and Sturmfels’ proof of the Bernstein-Kushnirenko Theorem

in [2] which produces the polyhedral homotopy algorithm (Algorithm 6.3.5) for computing all

solutions of F = 0.

In Section 8 we give an algorithm which improves upon the polyhedral homotopy whenever

the branched cover πA• decomposes into a composition of branched covers. This decomposition

happens if and only if the monodromy group of πA• is imprimitive, a condition that Esterov [3]

classified via computable conditions on A•. Our algorithm (Algorithm 8.3.3) assesses whether or
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not πA• decomposes and recursively computes fibers of the decomposition to compute a fiber of

πA• , thus solving a sparse polynomial system with support A•.

Conversely, algorithms in numerical algebraic geometry can extract information about Newton

polytopes. In 2012, Hauenstein and Sottile suggested a numerical algorithm (Algorithm 7.1.2)

which functions as a vertex oracle for the Newton polytope of the defining equation of a hypersur-

face. In Section 7, we explain how this algorithm is stronger than a vertex oracle and as a conse-

quence, introduce the notion of a numerical oracle. Based on ideas from Hept and Theobald [4],

we develop a tropical membership test (Algorithm 7.2.2) which relies on the algorithm of Hauen-

stein and Sottile as a subroutine. We analyze the convergence rates of each algorithm (Theorem

7.3.1) and explain our implementation of them in Section 7.4. Finally, we use our implementa-

tion to investigate the colossal Lüroth polytope (Section 7.6) and determine the implicit equation a

hypersurface from algebraic vision (Section 7.5).

We provide all necessary background in Sections 2-6. Section 2 includes elementary results

regarding polytopes, numerical oracles, mixed volumes, and subdivisions. In Section 3 we give a

basic introduction to algebraic geometry necessary for the subsequent sections. In Section 4 we

discuss branched covers, decomposable branched covers, and monodromy/Galois groups; we also

give a proof that the monodromy/Galois group of a branched cover is imprimitive if and only if

the branched cover is decomposable. In Section 5 we connect the previous sections by introducing

Newton polytopes, sparse polynomial systems, and tropical algebraic geometry. Section 6 builds

the theory of numerical algebraic geometry and contains an assembly of numerical algorithms,

including Huber and Sturmfels’ treatment of the polyhedral homotopy, as well as algorithms which

use monodromy to solve polynomial systems.
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2. POLYTOPES

We remark that a portion of the discussion of numerical oracles in this section also appears in

the article [1] by the author*.

2.1 Describing polytopes

A subset S ⊂ Rn is convex if for any p, q ∈ S the line segment between them [p, q] =

{λp+ (1− λ)q | 0 ≤ λ ≤ 1} is also contained in S. The convex hull of S is

conv(S) =
⋂
{S ′ ⊂ Rn | S ⊂ S ′, S ′ convex}.

Lemma 2.1.1. If A = {α1, . . . , αk} ⊂ Rn is finite then

conv(A) =

{
k∑
i=1

λiαi

∣∣∣∣∣
k∑
i=1

λi = 1, λi ∈ R≥0

}
.

Proof. The forward containment is true since the right-hand-side is a convex set containing A.

Indeed, if p =
∑k

i=1 λiαi and q =
∑k

i=1 νiαi are elements of the right-hand-side and γ ∈ [0, 1],

then

γp+ (1− γ)q =
k∑
i=1

(γλi + (1− γ)νi)αi

is as well.

The reverse containment for k = 1 or k = 2 is true by definition. Assume it is true for k − 1

and let α =
∑k

i=1 λiαi be an element of the right-hand-side. Without loss of generality, assume

λ1 6= 0 so that

α = λ1α1 + (1− λ1)

(
λ2

1− λ1

α2 + · · ·+ λk
1− λ1

αk

)
.

Since p := α1 and q :=
∑k

i=2
λi

1−λ1
αi are points in conv(A) by induction, the segment [p, q]

containing α must be in conv(A) as well.
*Reprinted with permission from T. Brysiewicz, “Numerical Software to Compute Newton polytopes and Tropical

Membership,” Mathematics in Computer Science, 2020. Copyright 2020 by Springer Nature.
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Definition 2.1.2. A polytope is any subset P ⊂ Rn that can be written as the convex hull of finitely

many points. If these points can be taken to be in Zn, then P is called an integral polytope.

Example 2.1.3. For ease of reading, we will often encode points in Rn as the columns of a matrix.

Let A =
(

0 0 3/2 2 2 2 3 4
2 3 3/2 0 3 4 2 0

)
⊂ R2. The polytope Q = conv(A) shown in Figure 2.1 is an integral

polytope since we may write Q = conv
(

0 0 2 2 4
2 3 0 4 0

)
.

Figure 2.1: An integral polytope Q ⊂ R2.

The dimension of a subset S ⊂ Rn, denoted dim(S), is the dimension of its affine span,

RS =

{
k∑
i=1

λisi

∣∣∣∣∣ si ∈ S, λi ∈ R,
k∑
i=1

λi = 1

}
,

and the codimension of S is codim(S) = n− dim(S). Polygons are polytopes of dimension two.

If S is compact, we define the support function of S as

hS : Rn → R

ω 7→ max
x∈S
〈x, ω〉.
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Figure 2.2: Left: Directions ω1, ω2, ω3, and ω4 = (0, 0). Right: The polytope Q ⊂ R2 and three of its
proper faces exposed by ω1, ω2, and ω3.

Given ω ∈ Rn, the subset of S exposed by ω is

Sω = {x ∈ S | 〈x, ω〉 = hS(ω)}.

A face F of a polytope P ⊂ Rn is any subset of P of the form F = ∅ or F = Pω for some

ω ∈ Rn. Faces of dimensions 0, 1, k, dim(P ) − 1 are called vertices, edges, k-faces, and facets

respectively. The set of vertices is denoted vert(P ) and the set of facets is denoted facets(P ).

Example 2.1.4. Let Q be as in Example 2.1.3. The dimension of Q is 2 and its codimension is 0.

Let ω1 = (−1, 1), ω2 = (2, 1), ω3 = (−1,−2), and ω4 = (0, 0). Then

hQ(ω1) = 3, hQ(ω2) = 8, hQ(ω3) = −2, hQ(ω4) = 0,

and the faces exposed by ω1, ω2, ω3, and ω4 are

Qω1 = {(0, 3)}, Qω2 = conv({(2, 4), (4, 0)}), Qω3 = {(2, 0)}, Qω4 = Q.

Figure 2.2 depicts these directions and faces. In total, Q has one empty face, five vertices, five

facets (edges), and one 2-face. �
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Given a polytope P ⊂ Rn, it is useful to collect directions ω ∈ Rn which expose the same face

into cones. A subset C ⊂ Rn is a cone if for any p ∈ C, we have that λp ∈ C for λ ∈ R≥0. A cone

is a convex cone if it is closed under addition. Indeed if p and q are elements of a cone C which

is closed under addition and λ ∈ [0, 1] then λp + (1− λ)q ∈ C since each summand is in C. The

(outer) normal fan of a polytope P is the collection

N (P ) = {C[ω]}ω∈Rn

of convex cones

C[ω] = {ω′ ∈ Rn | Pω ⊆ Pω′}.

We denote the set of all C[ω] of codimension at least i by N (i)(P ).

Example 2.1.5. Figure 2.3 displays Q along with its normal fan N (Q) which has one zero-

dimensional cone (the origin), five one-dimensional cones, and five two-dimensional cones. �

Figure 2.3: A polytope and its corresponding normal fan
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Lemma 2.1.6. [5, Proposition 2.2] Every polytope may be written as

P = conv(vert(P )). (2.1)

If A ⊂ Rn is finite, then vert(conv(A)) ⊆ A.

Lemma 2.1.7. [5, Proposition 2.3] Let F be a face of a polytope P ⊂ Rn.

(1) F is a polytope with vert(F ) = F ∩ vert(P ).

(2) Every intersection of faces of P is a face of P .

(3) The faces of F are exactly the faces of P that are contained in F .

(4) F = P ∩ RF .

Lemma 2.1.6 gives one way to canonically represent a polytope: as the convex hull of its

vertices. This representation is called the vertex representation of a polytope. Halfspaces provide

another way to represent polytopes. A halfspace of Rn is any subset of the form

Rn
ω,c = {x ∈ Rn | 〈x, ω〉 ≤ c} ⊂ Rn,

for some ω ∈ Rn and c ∈ R. Given a polytope P ⊂ Rn and any direction ω ∈ Rn, the halfspace

HP (ω) = Rn
ω,hP (ω) contains P . Note that HP (ω) = HP (λ · ω) for any λ > 0.

Lemma 2.1.8. [5, Theorem 2.15] Every polytope P ⊂ Rn may be written as

P = RP ∩

(
m⋂
i=1

HP (ωi)

)
(2.2)

for any set {ωi}mi=1 ⊂ Rn such that {Pωi}mi=1 = facets(P ). Conversely, any bounded intersection

of halfspaces is a polytope.
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If a polytope is n-dimensional, then it has a unique representation of the form (2.2) since each

facet is (n− 1)-dimensional and is exposed by its unique outer-normal ray. Note that these are the

one-dimensional cones in the normal fan of a polytope. If a polytope has positive codimension,

then it has a unique representation of the form (2.2) within its affine hull (the ωi in (2.2) are

taken to be parallel with the affine hull of P ). We call such a unique representation the halfspace

representation of a polytope.

Example 2.1.9. The polytope Q in Example 2.1.3 has the halfspace representation,

Q = HQ(2, 1) ∩HQ(0,−1) ∩HQ(−1,−1) ∩HQ(−1, 0) ∩HQ(−1, 2).

Each of these halfspaces are displayed in Figure 2.4. �

Figure 2.4: Five halfspaces in R2 whose intersection is Q.
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2.2 Oracles

While the vertex and halfspace representations are the most common ways of expressing a

polytope, other representations come from functions called oracles. Colloquially, an oracle is

an entity which provides prophetic insight whenever queried. Likewise, the vertex oracle for a

polytope P ⊂ Rn is the function

VP : Rn → Rn ∪ {PFE}

ω 7→

 Pω dim(Pω) = 0

PFE otherwise

where PFE abbreviates the expression “Positive dimensional Face Exposed”. We remark that

VP (ω) = PFE if and only if ω ∈ N (1)(P ). The process of evaluating a vertex oracle is called

querying the oracle.

Remark 2.2.1. When a vertex oracle query returns a vertex VP (ω) = v, it implicitly returns the

information that hP (ω) = 〈v, ω〉 and therefore that P ⊂ Rn
ω,〈v,ω〉 = HP (ω).

Let 0 denote the all 0’s vector in Rn, 1 denote the all 1’s vector in Rn, and ei denote the i-th

coordinate vector in Rn. For any v ∈ Rn, let |v| denote the sum of its coordinates. Given a polytope

P ⊂ Rn, let L(P ) = P ∩ Zn denote its set of lattice points.

Proposition 2.2.2. If P ⊂ Rn is an integral polytope, then the vertex representation of P can be

recovered from the vertex oracle for P .

Proof. Let P ⊂ Rn be an integral polytope and VP its vertex oracle. To prove the proposition, we

first bound P between two polytopes by querying the vertex oracle as follows.

Let ω∗ = (ω∗1, . . . , ω
∗
n) ∈ Rn

>0 be a vector such that ω∗1, . . . , ω
∗
n are rationally independent (i.e.

〈x, ω∗〉 6= 0 for any 0 6= x ∈ Zn). Observe that VP (ω∗) must return a vertex: otherwise, there

exist two vertices p1, p2 such that 〈p1, ω
∗〉 = 〈p2, ω

∗〉 implying that x = p1 − p2 is an integer

point whose dot product with ω∗ is nonzero. A consequence of Remark 2.2.1 is that the halfspace

10



HP (ω∗) containing P is computed as well. Since ω is in the positive orthant, HP (ω∗) bounds

P ∩ Rn
≥0.

Similarly, for every vertex v of the hypercube cube(n) = [−1, 1]n, we let v ◦ ω∗ denote the

Hadamard (coordinate-wise) product so that the output VP (v ◦ ω∗) is a vertex of P . Again, each

oracle query bounds P in the corresponding orthant of Rn so that the intersection

P ∗ =
⋂

v∈cube(n)

HP (v ◦ ω∗),

is bounded, and thus by Lemma 2.1.8, is a polytope. Setting P∗ = conv({VP (v ◦ ω) | v ∈

cube(n)}) gives containments

P∗ ⊆ P ⊆ P ∗. (2.3)

The proof proceeds algorithmically. Set P ∗ = conv (L(P ∗)) so that P ∗ is integral. Since P

is integral, the containments (2.3) are still true. For every p ∈ vert(P ∗) r P∗, pick ω such that

VP ∗(ω) = p. Since p is the unique point in P ∗ obtaining a maximum dot product with ω and

P ⊆ P ∗ then p ∈ P if and only if VP (ω) = p. We have three cases: either p ∈ P and so

VP (ω) = p (case (i)), or VP (ω) returns PFE (case (ii)) or VP (ω) returns another vertex q 6= p

(case (iii)).

Case (i): If VP (ω) = p then set P∗ = conv(P∗∪ p). Note that the containments (2.3) still hold and

that the number of lattice points of P∗ has increased.

Case (ii): If VP (ω) = PFE, then p 6∈ P and so we may set P ∗ = conv(L(P ∗)rp) while preserving

(2.3). In this case, the number of lattice points of P ∗ has decreased.

Case (iii): If VP (ω) = q 6= p, then we may set P∗ = conv(P∗ ∪ q) and P ∗ = conv(L(P ∗ ∩

HP (ω))) while preserving (2.3). In this case, the number of lattice points of P∗ may have increased

depending on whether or not q was already in P∗, but it will always be the case that the number of

lattice points of P ∗ has decreased.

Each oracle query involves one of the above cases and each case preserves the containments

(2.3) while either increasing the number of lattice points in P∗ or decreasing the number of lattice
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points in P ∗. Thus, this process must terminate with vert(P ∗) r P∗ = ∅, proving that these

polytopes are equal to each other and so P∗ = P = P ∗.

.

Algorithm 2.2.3 (Vertex oracle→ vertex representation). .
Input:
• The vertex oracle VP for an integral polytope P ⊂ Rn

≥0

Output:
• The vertex representation for P
Steps:

0 Pick ω∗ = (ω∗1, . . . , ω
∗
n) ∈ Rn

>0 with rationally independent coordinates
1 set P∗ = ∅, set P ∗ = Rn

2 for each vertex v ∈ cube(n) do
2.1 set P∗ = conv(P∗ ∪ VP (v ◦ ω∗))
2.2 set P ∗ = P ∗ ∩HP (v ◦ ω∗)

3 while L(P∗) 6= L(P ∗) do
3.1 set P ∗ = conv(L(P ∗))
3.2 Pick p ∈ vert(P ∗) r P∗
3.3 Find ω ∈ Rn such that VP ∗(ω) = p
3.4 if VP (ω) = p then set P∗ = conv(P∗ ∪ p)
3.5 if VP (ω) = PFE then set P ∗ = conv(L(P ∗) r p)
3.6 if VP (ω) = q 6= p then

3.6.1 set P ∗ = P ∗ ∩HP (ω)
3.6.2 if q 6∈ P∗ then set P∗ = conv(P∗ ∪ p)

4 return vert(P∗).

Example 2.2.4. Figure 2.5 displays the steps required to complete Algorithm 2.2.3 on Q from

Example 2.1.3. We use ω∗ = (1,
√

2) in step (0) of the algorithm. Step (2) in Algorithm

2.2.3 is represented by the top-left graphic showing the four vertex oracle queries on the vectors

ω∗,−ω∗, (−1,
√

2), and (1,−
√

2). Each query reveals a vertex of Q and a halfspace containing Q.

The intersection of all such halfspaces Q∗ is depicted in grey in the first image along with Q∗ in

green and conv(L(Q∗)) in red.

The next image (to the right) displays the oracle query VQ(1, 0) = (4, 0), revealing a vertex

which was already found. Thus, this oracle query does not increase the size of Q∗ but it does

establish that (5, 1) (a previous vertex ofQ∗) is not contained inQ and so the size ofQ∗ is reduced.
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Figure 2.5: A graphical interpretation of Algorithm 2.2.3 running on the polytope Q in Example 2.1.3.

The third image (bottom left) attempts to establish whether or not (4, 2) ∈ Q by choosing ω =

(2, 1) so that VQ∗(ω) = (4, 2) and querying VQ(ω) = PFE. This does not find a new vertex of Q,

nor does it find a new halfspace containing Q. It does, however, reveal that (4, 2) 6∈ Q and so Q∗

is again reduced to conv(L(Q∗) r (4, 2)). At this stage, (0, 2) is the unique vertex of Q∗ which is

not in Q∗ and VQ(−2, 1) = (0, 2) reveals that it is a vertex of Q. The outer polytope Q∗ is reduced

again, the inner polytope Q∗ grows, and Q∗ becomes equal to Q∗, ending the algorithm. �

Remark 2.2.5. Implementing Algorithm 2.2.3, as is, requires the representation of a rationally

independent vector ω∗ on a computer for step (2). Theoretically, a random ω ∈ Rn will expose

a vertex of P with probability one and so in practice, we replace steps (0) and (2) by randomly

querying the oracle in each orthant until a vertex is returned. This process bounds P in a polytope

P ∗. We remark that probability one statements about the theory may not translate to probability

one computations and we give a more detailed discussion in Remark 7.3.3 in Section 7. �

We denote the standard full-dimensional simplex in Rn by ∆n = conv(0, e1, . . . , en) and the

dilation of ∆n by a factor of d by d∆n = conv(0, d · e1, . . . , d · en). The degree of a polytope
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P ⊂ Rn
≥0, is deg(P )= hP (1). A polytope is homogeneous if |p| = deg(P ) for all p ∈ P and the

homogenization of P is P̃ = {(p, deg(P )− |p|) | p ∈ P} ⊂ Rn+1.

Definition 2.2.6. The numerical oracle for a polytope P ∈ Rn is the function

OP : Rn → Rn ∪ {EEP}

ω 7→


Pω dim(Pω) = 0

min(Pω) 0 < dim(Pω) < dim(P )

EEP Pω = P

where min(Pω) is the coordinate-wise minimum of all points in Pω.

The expression EEP abbreviates Exposes Entire Polytope. This oracle is dubbed “nu-

merical” because it arises naturally from the numerical HS-algorithm (Algorithm 7.1.2 of Sec-

tion 7).

Generally, one cannot distinguish whether the output of a numerical oracle for a polytope P

is a vertex v = Pω or the coordinate-wise minimum w = min(Pω) of a positive-dimensional

face. For example, the numerical oracle query O∆2(1, 1) returns 0 not because 0 is a vertex, but

because 0 = min(conv(e1, e2)). Thus, at first glance, a numerical oracle may seem weaker than

a vertex oracle. However, when the polytope P is homogeneous of degree d these cases may be

distinguished easily since the sum of the coordinates of a vector output of OP (ω) will be d if

and only if the vector is a vertex and it will be less than d otherwise. Restricted to homogeneous

polytopes, a numerical oracle gives strictly more information than a vertex oracle, implying the

following corollary to Proposition 2.2.2.

Corollary 2.2.7. If P is a homogeneous integral polytope then the vertex representation of P may

be recovered from its numerical oracle.

Other oracles for polytopes exist and are well-studied. For example, Emiris et. al. [6] devel-

oped an algorithm similar to Algorithm 2.2.3 for oracles which are stronger than vertex oracles:

instead of returning PFE, they return a vertex on the corresponding positive-dimensional face.
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2.3 Mixed volume

We develop some of the theory of mixed volumes of polytopes and include multiple formulas

and characterizations of mixed volume. We list them here for convenience.

(1) Coefficient of a volume function (Definition 2.3.3).

(2) Volume alternating sum formula (Lemma 2.3.6).

(3) Axiomatic characterization (Lemma 2.3.8).

(4) Lattice point alternating sum formula for integral polytopes (Lemma 2.3.9).

(5) Sum of volumes of mixed cells formula (Lemma 2.4.3).

We give a sixth way of computing mixed volume in Section 5 via the Bernstein-Kushnirenko

Theorem (Proposition 5.3.1).

We begin our discussion by introducing two natural operations on subsets of Rn. Let S1, S2 ⊂

Rn and λ ∈ R≥0. The set

λS1 = {λs | s ∈ S1},

is the scaling of S1 by λ. The set

S1 + S2 = {s1 + s2 | s1 ∈ S1, s2 ∈ S2},

is the Minkowski sum of S1 and S2. The scaling of a polytope P = conv(A) by λ ∈ R≥0 is

clearly a polytope given as λP = conv(λA). The following lemma proves an analogous result for

Minkowski sums of polytopes.

Lemma 2.3.1. Let P,Q ⊂ Rn be polytopes.

(1) The support functions of P and Q are additive: hP+Q = hP + hQ.

(2) The Minkowski sum P +Q is a polytope which may be written as conv(vert(P ) + vert(Q)).
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(3) If F ⊂ P + Q is a face, then there exist unique faces FP ⊆ P and FQ ⊆ Q such that

F = FP + FQ.

(4) If P and Q are integral, so is P +Q.

Proof. Additivity of support functions is immediate since

hP+Q(ω) = max
s∈P+Q

〈s, ω〉 = max
p∈P,q∈Q

〈p+ q, ω〉 = max
p∈P
〈p, ω〉+ max

q∈Q
〈q, ω〉.

To show that P + Q is a polytope, we first show P + Q is convex. Let a = p1 + q1 and

b = p2 + q2 for p1, p2 ∈ P and q1, q2 ∈ Q. Then v ∈ [a, b] implies

v = λa+ (1− λ)b

= λ(p1 + q1) + (1− λ)(p2 + q2)

= (λp1 + (1− λp2)) + (λq1 + (1− λ)q2) ∈ P +Q,

proving that P + Q is convex. To see that P + Q ⊂ conv(vert(P ) + vert(Q)), suppose towards

contradiction that there exists v ∈ P +Qrconv(vert(P )+vert(Q)). Then there exists a halfspace

of conv(vert(P ) + vert(Q)) not containing v. In other words, there exists ω such that 〈v, ω〉 =

hP+Q(ω) > hP (ω) + hQ(ω), a contradiction by part (1). Thus,

vert(P ) + vert(Q) ⊂ P +Q ⊂ conv(vert(P ) + vert(Q)),

and taking the convex hull of this containment proves parts (2) and (4).

To prove part (3), observe that for any ω ∈ Rn we have (P + Q)ω = Pω + Qω by part (1).

Suppose

(P +Q)ω = Pω′ +Qω′′ ,

for some other ω′, ω′′ ∈ Rn. The evaluation of x 7→ 〈x, ω〉 at any point on the right-hand-side must

equal hP (ω) + hQ(ω), implying that Pω′ = Pω and Qω′′ = Qω.
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To fix notation, let P• = {P1, . . . , Pn} be a collection of n polytopes in Rn. We denote the set

{1, . . . , n} by [n]. The following result is due to Minkowski when d = 3 [7].

Lemma 2.3.2 (H. Minkowski [7]). The function

V (P•) : Rn
≥0 → R

V (P•)(λ1, . . . , λn) = vol(λ1P1 + · · ·+ λnPn)

is a homogeneous polynomial of degree n in R[λ1, . . . , λn] where vol denotes the n-dimensional

Euclidean volume.

Definition 2.3.3. The mixed volume of P•, denoted MV(P•), is the coefficient of λ1λ2 · · ·λn in

V (P•).

Example 2.3.4. Consider A = conv(0, e1, e2, e1 + e2) and B = conv(0, e1, e2) as displayed in

Figure 2.6. Then V (A,B) = λ2
1 + 2λ1λ2 + 1

2
λ2

2 and so MV(A,B) = 2. �

Figure 2.6: A graphic expressing vol(λ1A+ λ2B) for two polygons A,B ⊂ R2.

Lemma 2.3.5. Let P, P1, . . . , Pn, Q ⊂ Rn be polytopes and let a ∈ R≥0. Then,
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(1) MV(P, . . . , P ) = n! vol(P ).

(2) MV is symmetric in its arguments.

(3) MV is multilinear:

MV(aP1 +Q,P2, . . . , Pn) = aMV(P1, . . . , Pn) + MV(Q,P2, . . . , Pn).

Proof. Note that vol(λ1P + · · ·+λnP ) = vol((λ1 + · · ·+λn)P ) = (λ1 + · · ·+λn)n vol(P ) and so

the coefficient of λ1 · · ·λn is n! vol(P ). Part (2) is immediate from the definition of mixed volume.

For a proof of part (3), see [8, Lemma 3.6].

Lemma 2.3.6. [8, Theorem 3.7] Given a collection of polytopes P1, . . . , Pn,

MV(P1, . . . , Pn) =
∑
I⊂[n]

(−1)n−|I| vol

(∑
i∈I

Pi

)
.

Proof. We restate the proof given in [8]. Due to precisely the properties of mixed volume in

Lemma 2.3.5, we may treat the statement in the theorem as the polynomial equation

n!x1 · · ·xn = (x1 + · · ·+ xn)n −
n∑
i=1

(x1 + · · ·+ xi−1 + xi+1 + · · ·xn)n +− · · · (2.4)

· · ·+ (−1)n−2
∑
i<j

(xi + xj)
n + (−1)n−1

n∑
i=1

xni ,

where xi1 · · ·xiN ↔ vol (λi1 · Pi1 + · · ·+ λiN · PiN ). To verify (2.4), we may simply check how

many times each monomial appears in the right-hand-side. The monomial xni appears once in the

first term, n− 1 times in the second, and so on to give a total of

1− (n− 1) +

(
n− 1

2

)
− · · ·+ (−1)n−2(n− 1) + (−1)n−1 = (1− 1)n−1 = 0.

Similarly, every term on the right-hand-side cancels except for the mixed term x1 · · ·xn which
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appears n! times.

Since the formula in Lemma 2.3.6 is short when n = 2, we state it as a corollary.

Corollary 2.3.7. The mixed volume of two convex polygons P1, P2 ⊂ R2 is

MV(P1, P2) = vol(P1 + P2)− vol(P1)− vol(P2).

Lemma 2.3.8. The only function from n-tuples of polytopes to R satisfying the properties in Lemma

2.3.5 is MV.

Proof. The proof of the formula of Lemma 2.3.6 relied precisely on the properties in Lemma 2.3.5.

Thus, any other function satisfying those properties will have the same formula.

When each polytope in a collection P• is integral, there is a discrete analog of Lemma 2.3.6

involving lattice point enumeration.

Lemma 2.3.9. [9, Corollary 3.10] Given a collection of integral polytopes P1, . . . , Pn,

MV(P1, . . . , Pn) = (−1)n +
∑
∅6=I⊂[n]

(−1)n−|I|
∣∣∣L(∑

i∈I

Pi

)∣∣∣.
2.4 Subdivisions

Following [2] we give the notion of subdivisions of collections of finite subsets of Rn. The

combinatorial constructions in this section provide a fifth description of the mixed volume of a

collection of polytopes and are fundamentally important for Algorithm 6.3.5 of Section 6.3.3.

Let A• = (A1, . . . ,Ak) be a collection of finite subsets of Rn whose union affinely spans Rn.
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A cell of A• is a tuple C• = (C1, . . . , Ck) of nonempty subset Ci ⊂ Ai. We define

type(C•) = (dim(conv(C1)), . . . , dim(conv(Ck))),

conv(C•) = conv(C1 + · · ·+ Ck),

|C•| = |C1|+ |C2|+ · · ·+ |Ck|,

vol(C•) = vol(conv(C•)).

Definition 2.4.1. A subdivision of A• is a collection S• =
{
C(1)
• , . . . , C(m)

•

}
of cells satisfying

(1) dim
(

conv
(
C(i)
•

))
= n for all i = 1, . . . ,m.

(2) conv
(
C(i)
•

)
∩ conv

(
C(j)
•

)
is a proper face of conv

(
C(i)
•

)
and conv

(
C(j)
•

)
for all i 6= j ∈

[m].

(3)
⋃m
i=1 conv

(
C(i)
•

)
= conv(A•).

If S• additionally satisfies

(4)
∣∣∣type

(
C(i)
•

)∣∣∣ = n for all i = 1, . . . ,m,

then we say it is a mixed subdivision. Even stronger, if S• additionally satisfies

(5)
∑k

i=1

(∣∣∣C(j)
i

∣∣∣− 1
)

= n for all j = 1, . . . ,m,

then we say it is a fine mixed subdivision.

A cell C• of a subdivision S• is called a mixed cell when min(type(C•)) > 0 and a fine mixed

cell if it additionally satisfies
∑k

i=1(|Ci| − 1) = n. When k = n, a cell C• is mixed if type(C•) = 1

and it is fine mixed if |Ci| = 2 for i = 1, . . . , k.

Example 2.4.2. When k = 1, every subdivision ofA• is a mixed subdivision because parts (1) and

(4) of Definition 2.4.1 become the same statement. The fine mixed subdivisions of A• are those

with the property that the convex hull of each cell is an n-simplex. Such subdivisions comprise a

rich family of combinatorial objects called triangulations [10]. �
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The definitions above provide a new description of mixed volume.

Lemma 2.4.3. [2, Theorem 2.4] Suppose A• = (A1, . . . ,Ak) is a collection of finite subsets of

Rn whose union affinely spans Rn and let Pi = conv(Ai). If S• is a mixed subdivision of A• and

r = (r1, . . . , rk) ⊂ Nk such that |r| = n, then the mixed volume of

P = (P1, . . . , P1︸ ︷︷ ︸
r1

, P2, . . . , P2︸ ︷︷ ︸
r2

, . . . , Pk, . . . , Pk︸ ︷︷ ︸
rk

),

is the sum of the volumes of the mixed cells in S• of type (r1, r2, . . . , rk):

MV(P ) =
∑
C•∈S•

type(C•)=(r1,...,rk)

vol(C•).

We describe a process which produces subdivisions from functions. Let A ⊂ Rn be a finite set

and let ` : A → R be any function. Let Γ` : A → Rn+1 be the function Γ`(α) = (α, `(α)). We call

` a lifting function and we call the polytope

conv`(A) = conv(Γ`(A)) ⊂ Rn+1,

the lift of A by `. Similarly, given a set of functions `• = (`1, . . . , `k) with `i : Ai → R, let

Γ`• : A• → Rn+1 be the function Γ`•(α1, . . . , αk) =
∑k

i=1 Γ`i(αi). Analogously, define

conv`•(A•) = conv(Γ`•(A•)) =
k∑
i=1

conv`i(Ai).

For any polytope P ⊂ Rn+1, the lower hull of P is the set

hull(P ) = {Pω | ω ∈ Rn+1 and 〈ω, en+1〉 < 0}.

The n+ 1 above is suggestive in that we will often take lower hulls of lifts of polytopes.
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Lemma 2.4.4. LetA ⊂ Rn be a finite collection of points and ` : A → R a function. The projection

of the lower hull of conv`(A) onto the first n coordinates is conv(A).

Proof. Since conv(A) is full-dimensional in its affine span, we may assume dim(conv(A)) = n

and show that α ∈ vert(conv(A)) =⇒ Γ`(α) ∈ hull(conv`(A)).

Let α ∈ vert(conv(A)) and ω ∈ Rn so that conv(A)ω = α. Then (ω, 0) exposes Γ`(α) and

is in the interior of the (n + 1)-dimensional cone C[(ω, 0)]. Thus, there exists a direction with

negative last coordinate which exposes Γ`(α) implying that Γ`(α) ∈ hull(conv`(A)).

Definition 2.4.5. Given a set `• of lifting functions `i : Ai → R, let S`• be the set of maximal (with

respect to inclusion) cells C• of A• satisfying

(1) dim(conv`•(C•)) = n,

(2) conv`•(C•) ∈ hull(conv`•(A•)).

We remark that the maximality condition in Definition 2.4.5 ensures that {conv`•(C•)}C•∈S`•

are distinct. Indeed if conv`•(C•) = conv`•(C ′•) but C• 6= C ′• then the union C• ∪ C ′• satisfies

conditions (1) and (2) of Definition 2.4.5 and contains each cell, contradicting maximality.

Lemma 2.4.6. The set S`• is a subdivision of A•.

Proof. If conv`•(A•) is only n-dimensional, it must lie in a hyperplane implying that S`• = A• is

the trivial subdivision.

Let π : Rn+1 → Rn be the projection onto the first n coordinates. Suppose C• ∈ S`• and

conv`•(C•) is exposed by ω ∈ Rn+1 where ω has negative last coordinate. Since dim(conv`•(C•)) =

n, its projection under π has dimension at most n. Moreover, its projection has dimension less than

n only if the affine span of conv`•(C•) contains a line which projects to a point under π. But no

such line exists because ω has negative last coordinate and exposes conv`•(C•). Thus, S`• satisfies

(1) of Definition 2.4.1.

Given distinct C• and C ′• in S`• , both conv`•(C•) and conv`•(C ′•) are facets of conv`•(A•), and

so by part (2) of Lemma 2.1.7, their intersection is a face of of conv`•(A•) as well. By part (3)
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of Lemma 2.1.7, that intersection is a face of both conv`•(C•) and conv`•(C ′•) . It is proper since

conv`•(C•) and conv`•(C ′•) are distinct. Thus, S`• satisfies (2) of Definition 2.4.1. Part (3) of

Definition 2.4.1 follows from Lemma 2.4.4.

Any subdivision of the form S`• is called the coherent subdivision of A• induced by `•.

Example 2.4.7. Consider the set A• = {A1} where A1 consists of all lattice points in the 3-dilate

of the unit square in R2. Let `• = {`1} where `1 : A1 → R is defined by

`1(α) =

 π α is in the boundary of conv(A1)

1 otherwise
.

Then

conv`•(A•) = conv`1(A1) = conv


0 0 3 3 1 1 2 2

0 3 0 3 1 2 1 2

π π π π 1 1 1 1

.
The lower hull of conv`•(A•) consists of five facets exposed by the directions

(0, 0,−1), (0, 1− π,−1), (1− π, 0,−1), (0, π − 1,−1), (π − 1, 0,−1),

which project down to conv(A1), producing a description of the subdivision S`• =
{
C(1)
• , . . . , C(5)

•

}
.

The collection
{

conv
(
C(i)
•

)}5

i=1
consists of five quadrangles displayed in blue in Figure 2.7. �

Example 2.4.8. Let A• = {A1,A2} where

A1 = {(0, 0), (0, 1), (1, 0), (1, 1)},

A2 = {(0, 0), (1, 2), (2, 1)}.
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Figure 2.7: A lifting of a dilated square and the corresponding polyhedral subdivision.

Let `• = (`1, `2) be the functions defined by

`1(0, 0) = 2, `1(0, 1) = 3, `1(1, 0) = 3, `1(1, 1) = 3,

`2(0, 0) = 1, `2(1, 2) = 1, `2(2, 1) = 1.

Figure 2.8 displays conv(A1) and conv(A2) along with the lower hulls of the convex hulls of their

lifts in the first two images. The third image displays the lower hull of conv`•(A•) along with the

two points of Γ`1(A1)+Γ`2(A2) which do not belong to any facet in the lower hull. The third image

also contains a depiction of the induced subdivision onA•. The green parallelograms and the pink

diamond are the mixed cells of the subdivision. The sum of their areas is equal to 4 = MV(A•)

verifying Lemma 2.4.3. Figure 2.9 shows the projections of these lower facets. �

2.5 Monotonicity and positivity of mixed volume

The defect of a collection of polytopes P = {P1, . . . , Pk} is

d(P ) = dim

(
k∑
i=1

Pi

)
− k.
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Figure 2.8: A coherent fine mixed subdivision.

Figure 2.9: The projection of a coherent fine mixed subdivision.
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We say P is essential if the defect of any nonempty subset of P is nonnegative.

Lemma 2.5.1. A collection of polytopes P• = {P1, . . . , Pn} in Rn has positive mixed volume if

and only if P• is essential.

Mixed volume is monotonic with respect to inclusion: if P1 and Q1, . . . , Qn are polytopes in

Rn where P1 ⊂ Q1, then

MV(P1, Q2, . . . , Qn) ≤ MV(Q1, . . . , Qn). (2.5)

On the other hand, P1 ( Q1 does not imply that the inequality (2.5) is strict.

Conditions for strict monotonicity were originally determined by Maurice Rojas [11] in 1994

but have since been rediscovered for the unmixed case [12] ten years later and again rediscovered

and explained in the mixed case [13, 14] another ten years after that. The following version comes

from [14].

A subset S ⊂ P of a convex polytope touches a face F of P whenever S ∩ F is nonempty.

Lemma 2.5.2. [14, Proposition 3.2] Let P1 and Q• = (Q1, . . . , Qn) where P1, Q1, . . . , Qn are

polytopes in Rn such that P1 ⊂ Q1. Then MV(P1, Q2, . . . Qn) = MV(Q•) if and only if P1

touches every face (Q1)ω for ω in the set

U = {ω ∈ Rn | {(Q2)ω, . . . , (Qn)ω} is essential}.

Example 2.5.3. Let Q1 = Q2 = conv(e1,−e1, e2,−e2) and let P1 = [0, 1]2. The collection U in

Lemma 2.5.2 is the set {e1 +e2, e1−e2,−e1 +e2,−e1−e2} of directions exposing the facets ofQ1.

Indeed, for every ω ∈ U , we have P1 ∩ (Q1)ω 6= ∅, so P1 touches each facet. Figure 2.10 displays

P1 ⊂ Q1 and Q2 along with a depiction of a mixed subdivision of each of the sums P1 + Q2 and

Q1 +Q2. The mixed cells of each subdivision are the same and so the pairs of polytopes have the

same mixed volume, MV (P1, Q2) = MV(Q1, Q2) = 16. �
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Figure 2.10: Polytopes P1, Q1, and Q2 as in Example 2.5.3 along with a fine mixed subdivision displaying
that MV(P1, Q2) = MV(Q1, Q2).

Given two collections of polytopes P• = (P1, . . . , Pn) and Q• = (Q1, . . . , Qn) in Rn with

Pi ⊂ Qi, one may either iterate Lemma 2.5.2 to determine strict monotonicity or use the following

generalized version.

Lemma 2.5.4. [14, Theorem 3.3] Let P• = (P1, . . . , Pn) and Q• = (Q1, . . . , Qn) be collections of

polytopes in Rn such that Pi ⊂ Qi for i = 1, . . . , n. For ω ∈ Rn let

Tω = {i ∈ [n] | Pi touches (Qi)ω}.

Then

MV(P•) < MV(Q•)

if and only if there exists ω such that the collection {(Qi)ω | i ∈ Tω} ∪ {Qi | i ∈ [n] r Tω} is

essential.
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3. ALGEBRAIC GEOMETRY

Algebraic geometry is the study of solution sets of polynomial equations. Such sets are called

varieties and there is an intimate dictionary between the algebraic properties of collections of

polynomials and the geometric properties of the varieties they define.

We explain a small subset of algebraic geometry relevant to this dissertation. For a more

thorough treatment of algebraic geometry we invite the reader to consult [15, 16, 17, 18]. In

particular, Ideals, Varieties, and Algorithms by Cox, Little, and O’shea [15] takes a concrete and

computational approach to solutions of polynomial equations that is suitable for undergraduates.

Throughout this section, we write C[x] for the polynomial ring C[x1, . . . , xn] in n variables

with coefficients in C. Given a collection F ⊂ C[x], we write 〈F 〉 for the ideal in C[x] generated

by all elements of F . When working in few variables, we use the more familiar variables of x, y, z,

and w in that order.

3.1 Affine varieties

We denote n-dimensional complex affine space by

Cn = {(a1, a2, . . . , an) | ai ∈ C, i = 1, . . . , n}.

For any subset F ⊂ C[x], the affine variety defined by F is

V(F ) = {(a1, . . . , an) ∈ Cn | f(a1, . . . , an) = 0 for all f ∈ F} ⊂ Cn.

We also refer to V(F ) as the vanishing locus of F , the zero set of F , or the affine variety cut out

by F . It is worth mentioning that many texts refer to V(F ) as an “affine algebraic set” and reserve

the term “affine variety” for a more specific object. If f ∈ C[x] and f(a) = 0 for some a ∈ Cn,

then we say that f vanishes at a. We sometimes will decorate the notation Cn with subscripts to

indicate the coordinates involved. For example, V(y − x2) ⊂ C2
x,y.
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If X ⊂ Y are both affine varieties, we say X is a subvariety of Y . The set Cn is an affine

variety cut out by {0} ⊂ C[x]. We list some affine subvarieties of C2 in Figures 3.1-3.5.

Figure 3.1: The set V(0) de-
fines C2 ⊂ C2.

Figure 3.2: The set V(1) de-
fines ∅ ⊂ C2.

Figure 3.3: The set V(x2 +y2−
1) defines the unit circle in C2.

Figure 3.4: The set V(x − y) defines a line in
C2.

Figure 3.5: The set V(x − a, y − b) defines a
single point (a, b) ⊂ C2.

For any subset S ⊂ Cn (not necessarily a variety), we denote the set of all polynomials which

vanish on S by

I(S) = {f ∈ C[x] | f(s) = 0 for all s ∈ S}.
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This set is an ideal in the polynomial ring C[x] since if f, g ∈ I(S) and h ∈ C[x], then f + hg ∈

I(S) because

f(s) + h(s)g(s) = 0 + h(s) · 0 = 0 for all s ∈ S.

Hence, we call I(S) the ideal of S. At this point, we may think of V and I as the functions,

V : {subsets of C[x]} → {subsets of Cn}

I : {subsets of Cn} → {subsets of C[x]} .

Lemma 3.1.1. The functions V and I are inclusion reversing:

(1) If S1 ⊂ S2 ⊂ Cn then I(S2) ⊂ I(S1).

(2) If F1 ⊂ F2 ⊂ C[x] then V(F2) ⊂ V(F1).

Proof. Suppose S1 ⊂ S2 ⊂ Cn. Then any polynomial vanishing on S2 vanishes on the subset S1

and so I(S2) ⊂ I(S1). Suppose that F1 ⊂ F2 ⊂ C[x]. Then if every element of F2 vanishes at

some a ∈ Cn, then every element of the subset F1 vanishes at a as well.

Lemma 3.1.2. For any subset F ⊂ C[x], we have V(F ) = V(〈F 〉).

Proof. If g ∈ 〈F 〉, then

g =
∑
f∈F

h · f, h ∈ C[x], (3.1)

and so evaluating the sum at a point a ∈ V(F ) shows that g(a) =
∑
f∈F

h(a) · 0 = 0 and thus

V(F ) ⊆ V(〈F 〉). Conversely, since F ⊂ 〈F 〉, we have V(〈F 〉) ⊆ V(F ) proving equality.

Proposition 3.1.3 (Hilbert’s Basis Theorem [19]). Every ideal I ∈ C[x] may be written as I =

〈f1, . . . , fk〉 for some k ∈ N and fi ∈ C[x].

A more general version of Hilbert’s Basis Theorem states that the polynomial ring R[x] over

any Noetherian ring R is Noetherian. Hilbert proved the case when R is either a field or the ring
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of integers [19]. Consequently, when studying affine varieties X = V(F ) ⊂ Cn, we may assume

that F is finite.

Given an affine varietyX = V(f1, . . . , fk) ⊂ Cn, declare that the subvarieties ofX of the form

X∩V(g1, . . . , gm) for some g1, . . . , gm ∈ C[x] are closed. Lemma 3.1.4 along with the facts that ∅

and Cn are affine varieties prove that this gives a topology on X = Cn, which we call the Zariski

topology.

Lemma 3.1.4. Finite unions and arbitrary intersections of closed affine subvarieties of Cn are

closed affine subvarieties of Cn.

Proof. Let F,G ⊂ C[x] be finite generating sets for the ideals I and J respectively. Then

V(I) ∩ V(J) = V(I + J),

equivalently,

V(F ) ∩ V(J) = V(F ∪G).

These intersections may be taken to be arbitrary by Hilbert’s Basis Theorem. Finite unions are also

varieties since,

V(I) ∪ V(J) = V(IJ),

or equivalently,

V(F ) ∪ V(G) = V({f · g | f ∈ F, g ∈ G}),

completing the proof.

Figures 3.6 and 3.7 display examples of unions and intersections of varieties.

The Zariski topology on a closed subvariety of Cn is the subspace topology inherited from

the Zariski topology on Cn. Affine varieties come equipped with a second topology: the subspace

topology inherited from the Euclidean topology on Cn ∼= R2n. The Zariski topology is weaker than

the Euclidean topology in the sense that closed/open sets in the Zariski topology are closed/open
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Figure 3.6: The set V(x2+y2−1, x−y) defines
two points.

Figure 3.7: The set V((x2 + y2 − 1) · (x − y))
defines the union of the unit circle and a line.

in the Euclidean topology but the converse is very much not true.

For any subset S ⊂ Cn, denote its closure in the Zariski topology by S. The following lemma

is dual to Lemma 3.1.2.

Lemma 3.1.5. For any subset S ⊂ Cn we have I(S) = I(S).

Proof. We have I(S) ⊃ I(S) immediately. Suppose f ∈ I(S) so that f(s) = 0 for all s ∈ S.

If f 6∈ I(S) then there exists some point s′ ∈ S such that f(s′) 6= 0 implying that S ∩ V(f) is a

variety which is strictly smaller than S and contains S, a contradiction.

Even when restricted to ideals and closed affine varieties, the functions V and I are not inverses

of each other. It is true that V(I(X)) = X for any closed affine variety X ⊂ Cn, but it is not

true that I(V(I)) = I for any ideal I ⊂ C[x]. For example I(V(〈x2〉)) = 〈x〉. For V and I

to be inverses of each other, we must restrict the domain of V to the subset of ideals satisfying

fm ∈ I ⇐⇒ f ∈ I , called radical ideals. For any ideal I , the set
√
I = {f ∈ C[x] | fm ∈

I for some m ∈ N} is a radical ideal called the radical of I .

Proposition 3.1.6 (Hilbert’s Nullstellensatz [20]). Given an ideal I ⊂ C[x],

I(V(I)) =
√
I.
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The Nullstellensatz implies that with a further restriction to radical ideals, the functions

V : {radical ideals in C[x]} → {closed affine subvarieties of Cn}

I : {closed affine subvarieties of Cn} → {radical ideals of C[x]}

are inverses. As corollaries we have that V(I) = V(
√
I) and that V(I) ⊂ Cn is empty if and only

if I = C[x].

Every polynomial f ∈ C[x] defines a function

f : Cn → C

x 7→ f(x).

A regular function on an affine varietyX ⊂ Cn is the restriction of a polynomial function on Cn to

X . Two regular functions f and g onX are the same if and only if f−g ∈ I(X) and so the regular

functions on X are identified with equivalence classes in the quotient ring C[X] = C[x]/I(X)

called the coordinate ring of X . Just as regular functions on affine varieties are restrictions of

polynomials, a regular map of affine varieties X ⊂ Cn, Y ⊂ Cm is any function

ϕ : X → Y

x 7→ (ϕ1(x), . . . , ϕm(x))

where each ϕi : X → C is a regular function. We say ϕ is an isomorphism if it is bijective and its

inverse is also a regular map.

A regular map ϕ : X → Y of affine varieties naturally induces a C-algebra homomorphism on

the coordinate rings of X and Y in the opposite direction:

ϕ∗ : C[Y ]→ C[X]

f 7→ f ◦ ϕ.
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Conversely, given any C-algebra homomorphism φ : C[Y ]→ C[X], with C[Y ] = C[y]/I(Y ) and

C[X] = C[x]/I(X) let [gi] ∈ C[X] be the image of [yi] under φ. The map,

φ# : X → Y

x 7→ (g1(x), . . . , gm(x)),

is a regular map of varieties. Note then that ϕ is an isomorphism of affine varieties if and only if

ϕ∗ is a C-algebra isomorphism.

Example 3.1.7. Given an affine variety V(f1, . . . , fk) = X ⊂ Cn, subvarieties ofX are not always

closed. To see this, consider the open subset Uf = X r V(f) for some 0 6= f ∈ C[X]. While Uf

cannot be expressed as X ∩V(g1, . . . , gr) for any collection g1, . . . , gr ∈ C[x] (Uf is not closed) it

can still be given the structure of a variety in the following way.

Introduce a new variable z and consider Y = V(f1, . . . , fk) ∩ V(fz − 1) ⊂ Cn+1. Here, Y

is a closed subvariety of the variety cut out by the same equations as X considered in a higher

dimensional space. The coordinate ring C[Y ] is isomorphic to C[X][ 1
f
] via the map z 7→ 1

f
. This

gives Uf the structure of an affine variety and hence we call it a principal affine open subvariety

of X .

3.2 Projective varieties

The fundamental theorem of algebra states that a univariate polynomial of degree d has d

complex zeros, counted with multiplicity. This fact does not hold over the real numbers and so

extending the notion of polynomial equations over R to those over C casts the real case into a larger

picture which is better behaved. Similarly for varieties, we extend the notion of affine varieties to

projective varieties. Doing so produces a more unified understanding of affine varieties.

We wish to keep the notation of C[x] for a polynomial ring in n variables, and so many of our

statements will involve Pn−1 rather than Pn. When we write this, we assume n ≥ 2.

Definition 3.2.1. Define the equivalence ∼ on the set Cn r {0} by setting x = (x1, . . . , xn) ∼

(y1, . . . , yn) = y if and only if y = λx for some λ ∈ C r {0}. Projective (n − 1)-space is the
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quotient

Pn−1 = (Cn r {0})/ ∼ .

We write the equivalence class of (a1, . . . , an) in Pn−1 as [a1 : · · · : an].

The zeros of a polynomial f ∈ C[x] are well-defined on Pn−1 whenever f satisfies the condition

f(x) = 0 if and only if f(λx) = 0, for any λ ∈ Cr {0}.

This property is equivalent to f being homogeneous. A polynomial

f =
∑
α∈A

cαx
α1
1 · · ·xαnn ∈ C[x], cα ∈ Cr {0}

is homogeneous of degree d if |α| = d for all α ∈ A. Denote the set of homogeneous polynomials

of degree d by C[x]d. If a polynomial is not homogeneous, we say it is inhomogeneous.

One may erroneously guess that since the zeros of f ∈ C[x] are well-defined on Pn−1 if and

only if f is homogeneous, then the zeros of {f1, . . . , fk} ⊂ C[x] are well-defined if and only if

f1, . . . , fk are homogeneous, but this is not necessary. For example, the zero set of {x3 + x2 +

y2 − z2, x} are the points {[0 : 1 : −1], [0 : −1 : 1]} ∈ P2. Due to the argument in Lemma 3.1.2,

the zeros of {x3 + x2 + y2 − z2, x} are the same as the zeros of I = 〈x3 + x2 + y2 − z2, x〉 =

〈x2 + y2 − z2, x〉. Ideals such as I which can be generated by homogeneous elements are called

homogeneous ideals. The common zeros of a collection F ⊂ C[x] are well-defined on projective

space exactly when 〈F 〉 is a homogeneous ideal.

Definition 3.2.2. Let F ⊂ C[x] be a collection of polynomials such that 〈F 〉 is a homogeneous

ideal. The projective variety defined by F is

V(F ) = {[a1 : · · · : an] ∈ Pn−1 | f([a1 : · · · : an]) = 0 for all f ∈ F} ⊂ Pn−1.

Since Pn−1 is a quotient of Cnr{0}with projection π : Cnr{0} → Pn−1, any subset S ⊂ Pn−1
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may be pulled back to the subset

CX = π−1(S) ∪ 0 ⊂ Cn,

called the affine cone over S. For any subset S ⊂ Pn−1, we define the set I(S) to be the set of

Figure 3.8: Left: An affine cone over a quartic curve in P2. Right: An affine cone over a circle in P2.

polynomials which vanish on the cone over S. This is an ideal, and the following proves something

stronger.

Lemma 3.2.3. If S ⊂ Pn, then the ideal I(S) is homogeneous.

Proof. Suppose f is a non-homogeneous generator of I(S) given as

f =
k∑
i=0

fi(x),
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where each fi(x) is homogeneous. Since f vanishes on a subset of projective space, for any s ∈ S,

we have f(s) = 0 if and only if f(λs) = 0 for any λ ∈ Cr {0}. On the other hand

f(λs) =
k∑
i=0

λdeg(fi)fi(s),

is a polynomial in λ which must vanish whenever s ∈ S. Thus, thinking of λ as a variable, each

coefficient fi(s) of λi must be zero. This implies that fi(x) ∈ I(S) and in particular, f0 = 0.

Thus, f may be replaced as a generator of I(S) with the finite set {fi}ki=1 since f ∈ 〈f1, . . . , fk〉 ⊂

I(S).

The sets Pn−1 = V(0) and ∅ = V(x1, . . . , xn) ⊂ Pn−1 are projective varieties. For any

projective variety X ⊂ Pn−1, declaring subvarieties of the form X ∩ V(I) ⊂ X to be closed gives

a topology by the same arguments as in the affine case. This topology is also called the Zariski

topology. The ideal m0 = 〈x1, . . . , xn〉 is called the irrelevant ideal since for any homogeneous

ideal I , V(I ·m0) ⊂ Pn−1 is the same as V(I). Since 0 is always contained in the cone over S the

ideal I(S) is always contained in the irrelevant ideal.

The same arguments as in the affine case show that the following basic properties of the func-

tions

V : {homogeneous ideals in C[x]} → {closed projective subvarieties of Pn−1}

I : {subsets of Pn−1} → {homogeneous ideals in C[x] containing m0}

hold projectively.

(1) V and I are inclusion reversing,

(2) V(F ) = V(〈F 〉),

(3) I(S) = I(S),

(4)
√
I ·m0 = I(V(I)) (projective Nullstellensatz).
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Thus, the functions

V : {homog. radical ideals in C[x] contained in m0} → {closed projective subvarieties of Pn−1}

I : {closed projective subvarieties of Pn−1} → {homog. radical ideals in C[x] contained in m0}

are inclusion-reversing inverses.

3.3 Charts on projective space

Consider the open set

Ui = Pn−1 r V(xi).

Since any point in projective space has some nonzero coordinate, the Ui cover Pn−1 and every

point in Ui has a unique representative of the form

(
x1

xi
, . . . ,

xi−1

xi
, 1,

xi+1

xi
, . . . ,

xn
xi

)
.

The maps

ϕi : Ui → Cn−1

[x] 7→
(
x1

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)

are charts for Pn−1 as a manifold. We call these the standard affine open charts for Pn−1 as they

identify each Ui with an affine space. We sometimes will refer to the Ui themselves as charts.

3.4 Homogenizing and dehomogenizing

Let X ⊂ Pn−1 be a projective variety. For X = V(f1, . . . , fk) ⊂ Pn−1 with fi ∈ C[x], the

affine cone of X is simply CX = V(f1, . . . , fk) ⊂ Cn. For any variable xi, the intersection of

the affine cone of X with the hyperplane Hi = V(xi − 1) ∼= Cn−1 is a closed affine subvariety

CX ∩ V(xi − 1) ⊂ Cn−1 called the dehomogenization of X with respect to xi. Identifying Hi

with Cn−1 via the standard affine open chart ϕi, the dehomogenization of X with respect to xi is
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the same as the image of ϕi : X ∩ Ui → Cn−1.

Conversely, suppose X is an affine subvariety of Cn−1. By introducing a new coordinate xn

we define the projective closure of X as

X = {[x : 1] | x ∈ X} ⊂ Pn−1. (3.2)

This is the same as taking the closure ϕ−1
n (X) where ϕn is the standard affine open chart on

Pn−1. When considering the projective closure (3.2) of an affine variety, we call the hyperplane

H∞n = V(xn) the hyperplane at infinity. Of course, the processes of projectively closing an

affine variety and dehomogenizing a projective variety may be done with respect to any hyperplane

H ⊂ Cn not passing through the origin, via the exact same geometric procedure. In these cases,

the corresponding hyperplane at infinity is the hyperplane H∞ through the origin with the same

normal direction as H .

The dehomogenization ofX ⊂ Pn−1 with respect to xn is exactlyX and writing equations for a

dehomogenization is straightforward: if F = {f1, . . . , fk} ⊂ C[x] is a collection of homogeneous

polynomials, then the dehomogenization of V(F ) with respect to the variable xi is the affine variety

V(g1, . . . , gk) ⊂ Cn−1,

where gj := fj(x1, . . . , xi−1, 1, xi+1, . . . , xn) is the dehomogenization of fj with respect to xi.

The inverse task of producing the algebraic equations for X from those for X is much more diffi-

cult. Given a polynomial

f =
∑
α∈A

cαx
α1
1 · · ·x

αn−1

n−1 ∈ C[x1, . . . , xn−1], cα ∈ Cr {0}

of degree d, the homogenization of f with respect to a new variable xn is the polynomial

f̃ =
∑
α∈A

cαx
α1
1 · · ·x

αn−1

n−1 · xd−|α|n ∈ C[x].
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Similarly, for a subset F of polynomials, let F̃ = {f̃}f∈F be the homogenization of F . It is

easy to see that dehomogenizing f̃ with respect to xn recovers f and so the dehomogenization

of V(F̃ ) ⊂ Pn−1 with respect to xn is V(F ) ⊂ Cn−1. Unfortunately, V(F̃ ) 6= V(F ) and so

merely homogenizing equations for an affine variety does not produce equations for its projective

closure. In order for this to work, we must homogenize the ideal I = 〈F 〉 generated by F ; that is,

V(Ĩ) = V(F ). Thus, the homogenization of the ideal generated by a collection of polynomials is

not the ideal generated by the homogenizations of those polynomials. We illustrate the failure of

the naïve homogenization F̃ to cut out the projective closure V(F ) in the following example.

Example 3.4.1. Let F = {xy − 1, z − x2} ⊂ C[x, y, z] define the set C ⊂ C3 called the twisted

cubic displayed in Figure 3.9. Let I = 〈F 〉. The homogenization of I with respect to w is

Figure 3.9: A twisted cubic.

Ĩ = 〈xy−w2, zw−x2, yz−xw〉, but the ideal generated by the homogenization of F with respect

to w is 〈F̃ 〉 = 〈xy − w2, zw − x2〉 ⊂ Ĩ . Notice that the line {[0 : s : t : 0] | [s : t] ∈ P1} is

contained in V(xy − w2, zw − x2) but not in V(xy − w2, zw − x2, yz − xw). �

3.5 Regular functions

We define the homogeneous coordinate ring of a projective variety X ⊂ Pn−1 to be the

graded quotient ring

C[X] = C[x]/I(X).
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Note that this is the coordinate ring of CX . Contrary to the affine case, most polynomials are not

functions on any projective variety X ⊂ Pn−1, rather, the only polynomial functions on X are

constants: if f ∈ C[x] is not constant, then for λ ∈ C r {0, 1} we have f(λx) = λdeg(f)f(x) 6=

f(x).

Despite there being almost no polynomial functions on a projective variety, there are still func-

tions between projective varieties which are locally given by polynomials. Given a collection

{f1, . . . , fk} ⊂ C[X]d of polynomials of the same degree, the function

f : X r V(f1, . . . , fk)→ Pk−1

x 7→ [f1(x) : · · · : fk(x)]

is well-defined. If ϕ : X → Pk−1 is a function such that for every x ∈ X there exist f1, . . . , fk ∈

C[x] of the same degree such that x 6∈ V(f1, . . . , fk) and

ϕ(y) = [f1(y) : · · · : fk(y)], for all y ∈ X r V(f1, . . . , fk),

then we say the map ϕ is regular. Two projective varieties are isomorphic if there exist reg-

ular maps ϕ : X → Y and ψ : Y → X which are inverses of each other. Regular maps of

affine/projective varieties are continuous maps under the Zariski topology.

3.6 Irreducibility and dimension

The term “variety” without the adjectives “affine” or “projective” refers to either an affine

variety or a projective variety.

3.6.1 Irreducibility

A nonempty variety X is irreducible if it satisfies

X = X1 ∪X2 =⇒ X = X1 or X = X2,
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whenever X1 and X2 are closed subvarieties of X . Otherwise, we say it is reducible. A union

X = X1 ∪X2 ∪ · · · ∪Xm of sets is irredundant if Xi 6⊂ Xj for any distinct i, j ∈ [m]. Note that

if X = X1 ∪X2 is a witness for the reducibility of a variety X , then this union is irredundant.

Lemma 3.6.1. Every nonempty variety X may be written as an irredundant union of finitely many

irreducible closed subvarieties

X = X1 ∪X2 ∪ · · · ∪Xm.

Proof. Let X be a variety. If it is irreducible, the lemma is satisfied. Otherwise, it may be written

as a union X = Y1 ∪ Y (1) of proper closed subvarieties. As a convention, we suppose that Y (1)

is irreducible if Y1 is, and otherwise we reorder them. Similarly, if Y (1) is reducible, we write

Y (1) = Y2 ∪ Y (2). Iteratively applying this process to Y (j) produces a proper infinite chain

X ) Y1 ) Y2 ) Y3 ) · · ·

of closed subvarieties Yi ⊂ X . Applying I to this chain gives an ascending chain of ideals which

is proper since each Yi is closed, contradicting Hilbert’s Basis Theorem.

Lemma 3.6.2. Let X be a variety. If X admits two irredundant decompositions,

X = X1 ∪ · · · ∪Xm, and X = Y1 ∪ · · · ∪ Ym′ ,

into irreducible closed subvarieties, then m = m′ and {X1, . . . , Xm} = {Y1, . . . , Ym′}.

Proof. We will show that for all i, Yi = Xj for exactly one j. Consider

Yi = X ∩ Yi =
m⋃
j=1

Xj ∩ Yi.

Since Yi is irreducible, one of the sets in the union must equal Yi, or equivalently, Xj ∩ Yi = Yi for

some j ∈ [m], implying that Yi ⊆ Xj . Applying this argument to Xj shows that Xj ∩ Yk = Xj for
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some k ∈ [m′], implying that Xj ⊆ Yk. Together, this implies Yi ⊆ Yk and since the unions are

irredundant, Yi = Yk = Xj . Iterating this argument on X =
⋃
k 6=j Xk and Y =

⋃
k 6=i Yk proves the

result.

We call the decomposition in Lemma 3.6.2 the irreducible decomposition of X .

Lemma 3.6.3. Irreducible varieties are those whose ideals are prime.

Proof. Suppose X is reducible, witnessed by X1 ∪X2, where X1, X2 are proper nontrivial closed

subvarieties of X . Write I1 = I(X1) and I2 = I(X2) so that I1I2 = I(X). Picking f1 ∈ I1 r I2

and f2 ∈ I2 r I1, we see that f1, f2 6∈ I(X) but f1f2 ∈ I(X) so I(X) is not prime. Conversely,

suppose I(X) is not prime, witnessed by f1, f2 6∈ I(X) yet f1f2 ∈ I(X). Let I1 = 〈f1〉 + I(X)

and I2 = 〈f2〉 + I(X). We claim that X = X1 ∪ X2 where X1 = V(I1) and X2 = V(I2).

Both X1, X2 ⊂ X = V(I(X)) since I(X) ⊂ I1(X) and I(X) ⊂ I2(X). Moreover, their union

X1 ∪X2 is V(I1I2) = V(I(X)) = X .

3.6.2 Dimension

The dimension of an irreducible variety X is the longest length dim(X) of a proper chain of

irreducible closed subvarieties

∅ = X−1 ( X0 ( X1 ( · · · ( Xdim(X) = X.

If X is not irreducible, then its dimension is the maximum dimension of its irreducible compo-

nents. The codimension of a subvariety X ⊂ Z is codimZ(X) = dim(Z) − dim(X). We will

omit the subscript on codimension whenever Z = Cn or Z = Pn or we have specifically men-

tioned Z and so the subscript is clear from context. If X and Y are both subvarieties of Z and

dim(X) = codim(Y ), then we say that X and Y have complementary dimension.

A variety of codimension 1 is the zero set of a single polynomial and is called a hypersur-

face. Zero-dimensional varieties are finite collections of points. If X is a closed subvariety of an

irreducible variety Z and dim(X) = dim(Z) then X = Z.
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Given a variety X one expects the intersection of X and a hypersurface to have dimension

one less than X . The following lemma states that the dimension is lowered by at most one in the

projective setting.

Lemma 3.6.4. [18, I.6.2 Corollary 5 of Theorem 4] Let f1, . . . , fk ∈ C[x] be homogeneous poly-

nomials and suppose X ⊂ Pn−1 is a projective variety of dimension m. Then we have that

dim(V(f1, . . . , fk) ∩X) ≥ m− k.

The affine analog of Lemma 3.6.4 gives a weaker conclusion.

Lemma 3.6.5. [18, I.6.2 Corollary 2 of Theorem 5] Let f1, . . . , fk ∈ C[x] and X ⊂ Cn an affine

variety of dimension m. Every irreducible component of V(f1, . . . , fk) ∩X ⊂ Cn has dimension

at least m− k.

We distinguish the conclusions of Lemma 3.6.4 and Lemma 3.6.5 in the following example.

Example 3.6.6. Let X = C2
x,y and f1 = xy − 1, f2 = x. Then V(f1, f2) = ∅. While it is true that

Lemma 3.6.5 guarantees that every irreducible component of V(f1, f2)∩X has dimension at least

0, the variety V(f1, f2) ∩X has no irreducible components and so the lemma does not apply.

Naïvely homogenizing, take f̃1 = xy − z2, f̃2 = x and X = P2, so that

V(f̃1, f̃2) ∩X = {[0 : 1 : 0]} ⊂ P2.

This is nonempty as guaranteed by Lemma 3.6.4.

Notice that with respect to this homogenization, the point [0 : 1 : 0] is on the line at infinity.

This aligns with our intuition as Figure 3.10 shows that the line V(x) and the hyperbola V(xy− 1)

asymptotically approach each other along the y-axis. �

Corollary 3.6.7. If ∅ 6= V(f1, . . . , fk) ⊂ Cn then V(f1, . . . , fk) has dimension at least n− k.

Lemma 3.6.8. [18, I.6.2 Theorem 6.] Let X and Y be subvarieties of Cn (or Pn) of dimensions

m1 and m2 respectively. Then every irreducible component of X ∩ Y has dimension at least

m1 +m2 − n. Moreover, if X and Y are projective and m1 +m2 ≥ n then X ∩ Y 6= ∅.
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Figure 3.10: The affine varieties V(xy − 1) and V(x).

3.7 Function fields and rational functions

When X ⊂ Cn is irreducible, I(X) is prime and so its coordinate ring C[X] is an integral

domain. The field of fractions of C[X] is called the function field of X , denoted C(X), and

consists of all rational functions g/h : X 99K C such that h 6∈ I(X).

If X is an irreducible projective variety, the function field of X , denoted C(X), consists of

rational functions g/h : X 99K C such that g and h have the same degree and h 6∈ I(X). We use

the dashed arrow notation to remind ourselves that rational functions are not defined everywhere

but they are well-defined on the open subset U = X r V(h). Indeed if u ∈ U , then

g(λu)/h(λu) = (λdg(u))/(λdh(u)) = g(u)/h(u)

for all λ ∈ C r {0}. Unlike the affine case, the function field of X is not the field of fractions of

C[X], but rather, its 0-th graded piece. A rational map ϕ : X 99K Pm from X to projective space
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is given as

ϕ = [ϕ1 : · · · : ϕm+1], ϕi ∈ C(X), for i = 1, . . . ,m+ 1, (3.3)

where ϕi = gi/hi. The map ϕ is defined on the open set

V = X r (V(g1, . . . , gm+1) ∪ V(h1 · · ·hm+1)) .

We may always write a rational map (3.3) so that ϕi are polynomials. Since each ϕi is of the form

ϕi = gi/hi, we simply clear denominators,

ϕ = [g1/h1 : · · · : gm+1/hm+1] = [f1 : · · · : fm+1] (3.4)

where fi = (gi/hi) ·
∏m+1

j=1 hj . Even though the coordinates of every rational function may be

written as polynomials, these are not regular functions because V(f1, . . . , fm+1) may not be empty.

Two rational functions g/h, g′/h′ ∈ C(X) are equal whenever gh′ − g′h ∈ I(X). Of course,

they may be defined on different open subsets U = X rV(h) and U ′ = X rV(h′), but they agree

on the dense open subset U ∩ U ′. Similarly, two rational maps

ϕ = [f1 : · · · : fm+1] and ϕ′ = [f ′1 : · · · : f ′m+1],

written in the form (3.4), are the same if fif ′j − fjf ′i ∈ I(X) for all i, j ∈ [m + 1]. Equivalently,

ϕ and ϕ′ agree on an dense open subset of X . Thus, for any dense open subset U ⊂ X , rational

maps on X are determined by their values on U . Hence, when U is an affine open subvariety of

X , C(U) = C(X).

3.8 Products, graphs, and the degree of a variety

Given a function f : A → B of sets, the graph of f is simply the set Γ(f) = {(a, b) | a ∈

A, b = f(a)} ⊂ A × B. We may similarly define the graph of a regular or rational map of

algebraic varieties, however, a priori these graphs do not come equipped with the structure of a
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variety. We obtain a variety structure on the graph of a map by developing a variety structure on

products of varieties vis-á-vis Segre maps.

3.8.1 Segre maps

Given two projective spaces Pn−1 and Pm−1, define the Segre map

σn−1,m−1 : Pn−1 × Pm−1 → Pnm−1,

to be the function sending a pair of points [x] ∈ Pn−1 and [y] ∈ Pm−1 to the point whose coordinates

are all possible pair-wise products of the coordinates of [x] and [y], namely,

σn−1,m−1([x1 : · · · : xn], [y1 : · · · : ym]) = [x1y1 : · · · : xiyj : · · · : xnym].

Giving Pnm−1 coordinates zi,j = xiyj , the image of the Segre map is

Σn−1,m−1 = V(zi,jzk,l − zi,lzk,j) ⊂ Pnm−1,

and is called the Segre variety.

3.8.2 Products

Defining the product of affine varieties is easy. If X ⊂ Cn and Y ⊂ Cm, the Cartesian

product X × Y = {(x, y) | x ∈ X, y ∈ Y } naturally lives in Cn × Cm ∼= Cn+m via the map

((x1, . . . , xn), (y1, . . . , ym)) 7→ (x1, . . . , xn, y1, . . . , ym) and its structure as an affine variety comes

from this realization of X × Y as a subvariety of Cn+m.

Given two projective varieties X ⊂ Pn−1 and Y ⊂ Pm−1, from now on, whenever we write the

product X × Y we will mean the image of the Cartesian product X × Y under the Segre map

X × Y = {σn−1,m−1(x, y) | x ∈ X, y ∈ Y }.

The Segre map is injective and so we will write elements of X × Y as (x, y) where x ∈ X and
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y ∈ Y . The projection maps πX : X × Y → X and πY : X × Y → Y onto the first and second

coordinates are regular maps. When X ⊂ Cn−1 and Y ⊂ Pm−1 we have X
ι
↪−→ X ⊂ Pn−1 and so

we take X × Y to be the variety X × Y = σn−1,m−1(ι(X), Y ) ⊂ Pnm−1.

3.8.3 Graphs

Given a regular function ϕ : X → Y define the graph of ϕ to be

Γ(ϕ) = {(x, y) | x ∈ X, y = ϕ(x)} ⊂ X × Y.

This is a closed subvariety of X × Y and the projection maps are regular. When X or Y are

projective, we will often first take affine open subsets so that ϕ is a map of affine varieties and

the graph is an affine variety. When we do this, we may assume X = V(f1, . . . , fk) ⊂ Cn and

Y ⊂ Cm so the graph of ϕ is the subvariety of Cn × Cm ∼= Cn+m given explicitly as

Γ(ϕ) = V(f1, . . . , fk, ϕ1 − xn+1, . . . , ϕm − xn+m).

Lemma 3.8.1. The closure of the image of an irreducible variety under a regular map is irre-

ducible.

Proof. Suppose ϕ : X → Y is a regular map with Y reducible, witnessed by Y = Y1 ∪ Y2. Since

ϕ is continuous with respect to the Zariski topology, X = ϕ−1(Y1) ∪ ϕ−1(Y2) is an irredundant

union of proper nonempty closed subvarieties of X witnessing the reducibility of X .

Given a rational map ϕ : X 99K Pm of projective varieties, let U ⊂ X be its domain of

definition. We define the graph of ϕ, denoted Γ(ϕ), to be the closure of Γ(ϕ|U) in X × Pm and

we define the image of ϕ to be the image of Γ(ϕ) under πY . The inverse image of a subvariety

Z ⊂ Pm is ϕ−1(Z) = πX(π−1
Pm(Z)). Given Y ⊂ Pm, a rational map ϕ : X 99K Y is any rational

map ϕ : X 99K Pm whose image is contained in Y .

Lemma 3.8.2. The image of an irreducible variety under a rational map is irreducible.
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3.8.4 Dominant maps

Unfortunately, given two rational maps ϕ : X 99K Y , and ψ : Y 99K Z, the composition

ψ ◦ ϕ : X 99K Z is not always well-defined as shown in the following example.

Example 3.8.3. Let

ϕ : P1 → P3

[u : v] 7→ [u3 : u2v : uv2 : v3]

and
ψ : P3 99K P2

[x : y : z : w] 7→ [xz − y2 : yw − z2 : xw − yz].

Then ψ ◦ ϕ([u : v]) = [0 : 0 : 0] is a point in P2. �

The problem in Example 3.8.3 is that the image of ϕ is disjoint from the domain of definition of

ψ. This motivates the definition of dominant maps, a subset of rational maps for which composition

is always well-defined.

We say a rational map ϕ : X 99K Y of varieties is dominant if ϕ(X) is dense in Y . If ϕ : X 99K

Y is dominant with domain of definition U and ψ : Y 99K Z with domain of definition V , then the

domain of definition of the composition ψ ◦ ϕ : X 99K Z is U ∩ ϕ−1(V ).

In the same way that a regular map ϕ : X → Y of affine varieties induces a C-algebra ho-

momorphism ϕ∗ : C[Y ] → C[X], a dominant map ϕ : X 99K Y induces an injective C-algebra

homomorphism which (when X is irreducible) extends to the function field ϕ∗ : C(Y ) → C(X).

Conversely, given an injective homomorphism φ : C(Y ) → C(X) of function fields, we obtain a

dominant rational map φ# : X 99K Y .

Lemma 3.8.4. [18, I.6.3 Theorem 7] Let ϕ : X → Y be a surjective regular map between irre-

ducible varieties and that dim(X) = n and dim(Y ) = m. Then m ≤ n and

(1) dim(F ) ≥ n−m for any y ∈ Y and for any component F of the fiber ϕ−1(y).

(2) there exists a nonempty open subset U ⊂ Y such that dim(ϕ−1(y)) = n−m for y ∈ U .
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Lemma 3.8.5. [18, I.6.3 Theorem 8] Let ϕ : X → Y be a regular map between projective varieties

with ϕ(X) = Y . Suppose that Y is irreducible, and that all the fibers ϕ−1(y) for y ∈ Y are

irreducible of the same dimension. Then X is irreducible.

Proposition 3.8.6. [16, Proposition 7.16] Given a dominant map π : X 99K Y , there exists an

open subset U ⊂ Y such that the fiber π−1(u) is finite if and only if π∗ expresses the field C(X) as

a finite extension of the field C(Y ). The number of points in a fiber over u ∈ U is the degree of the

field extension.

Proof. We recount the proof from [16]. Without loss of generality, replace X and Y with affine

open subsets so that π is a projection map (x1, . . . , xn) 7→ (x1, . . . , xn−1) of affine varieties. Thus,

the function field C(X) is generated over C(Y ) by xn. If xn is algebraic over C(Y ) with minimal

polynomial

g(x1,...,xn−1)(xn) = ad(x1, . . . , xn−1)xdn + ad−1(x1, . . . , xn−1)xd−1
n + · · · ,

we may clear denominators so that the coefficients of g are regular functions. The discriminant D

of g is a closed subset of the coefficient space since C is algebraically closed and so outside of this

locus the fibers of π consist of exactly d points.

Conversely, if xn is transcendental, then any polynomial in I(X) written in C(x1, . . . , xn−1)[xn]

must be identically zero as functions on Y . That is, the fiber π−1(y) for any y ∈ Y contains in-

finitely many points.

We remark that the locus of points x∗ ∈ Y which do not have the generic fiber size in Proposi-

tion 3.8.6 come in three types:

(1) The coefficient x∗ belongs to the discriminantD because gx∗(xn) has roots with multiplicity.

(2) The coefficient x∗ belongs to the discriminant D because ad(x∗) = 0.

(3) The rational coefficients ai(x1, . . . , xn−1) are not defined at x∗.
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A rational map π : X 99K Y satisfying Proposition 3.8.6 is called a generically finite map.

The degree of the field extension is called the degree of the map.

Corollary 3.8.7. Suppose f : X 99K Y is a dominant map of irreducible varieties of the same

dimension. Then f satisfies Proposition 3.8.6.

3.8.5 Degree of a variety

A variety cut out by linear equations is called a linear variety. The set of all linear subvarieties

of Pn of dimension k corresponds to the set of all k + 1 planes in Cn+1 through the origin. This

space is called the Grassmannian of (k + 1)-planes in Cn+1 and is denoted Gr(k + 1, n+ 1).

The Grassmannian itself is a projective variety cut out by all relations amongst the minors of a

(k + 1) × (n + 1) matrix. Similarly, a linear subvariety L ⊂ Cn of dimension k corresponds to

the (k + 1)-plane L in Pn. Thus, it makes sense to talk about subvarieties and open subsets of the

space of linear spaces of a particular dimension.

Lemma 3.8.8. Let X be an irreducible codimension m subvariety of Cn or Pn. There exists an

open subset V ⊂ Gr(k + 1, n + 1) with the property L ∈ V =⇒ 0 < |L ∩X| < ∞ if and only

if k = m. When k = m, there exists a smaller open subset V ′ ⊂ V for which the number of such

intersection points is constant.

Proof. The result is true for an affine variety if and only if it is true for its projective closure. Let

X be projective and suppose such an open set V ⊂ Y = Gr(k + 1, n + 1) exists. Consider the

variety

Z = {(x, L) | L ∈ Y, x ∈ L ∩X} ⊂ X × Y

with projections πX and πY to X and Y respectively. By assumption, the image of πY contains

V and the fibers of πY over a point v ∈ V are finite. The fibers over πX are all irreducible of

dimension dim(Y )− (n− k) and so Z is irreducible of dimension dim(X) + dim(Y )− (n− k)

by Lemmas 3.8.4 and 3.8.5. If dim(X) < n − k then dim(Z) < dim(Y ) = dim(V ) and so

V 6⊂ πY (Z), a contradiction. Thus, k ≥ n − dim(X) = m. On the other hand, if k > m then
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by Lemma 3.6.4 the intersection X ∩ L is either empty or at least one-dimensional. We conclude

k = m.

Conversely, if k = m,

dim(Z) = dim(X) + dim(Y )− (n−m) = dim(Y ),

implying that πY is generically finite (such a V exists). By Lemma 3.8.6 there is an open subset

V ′ ⊂ V such that the number of points in a fiber of πY over V ′ is constant.

When X,L ⊂ Z, and L ∈ V ′ as in the above lemma, then cardinality |X ∩L| is some constant

d ∈ N. This number d is called the degree of X and is denoted deg(X). Given an irreducible

polynomial f ∈ C[x] The degree of a hypersurface V(f) is the degree of f . The degree of a

collection of d points is d. We give the first Bertini theorem.

Lemma 3.8.9. [18, II.6.1 Theorem 1] Let X and Y be irreducible varieties defined over a field

of characteristic 0 and f : X → Y a regular map such that f(X) is dense in Y . Suppose that X

remains irreducible over the algebraic closure C(Y ) of C(Y ). Then there exists an open dense set

U ⊂ Y such that all the fibers f−1(y) over y ∈ U are irreducible.

Corollary 3.8.10. Let X be a variety and H a general hyperplane. Then

(1) deg(X) = deg(X ∩H).

(2) dim(X)− 1 = dim(X ∩H).

(3) If X is irreducible of dimension at least two, then X ∩H is irreducible.

Proof. Part (1) follows directly from the definition of the degree of a variety. For part (2), if X

is irreducible and dim(X) = dim(X ∩ H) then H must contain X , but most hyperplanes do not

contain a nonempty variety. For part (3), suppose that L is the normal line to the hyperplane H

and consider the linear projection f : X → L. Then for a general point y ∈ L, the fiber f−1(y) is

irreducible and the hyperplane slice X ∩H corresponds to one such fiber.
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3.9 Singular points

Let X = V(F ) ⊂ Cn be an irreducible affine variety of dimension m such that 〈F 〉 is a radical

ideal. We say X is smooth at a point p ∈ X if the rank of the Jacobian matrix

DF =

[
∂fi
∂xj

]

evaluated at p is n − m, otherwise we say p is singular. We say X is smooth if it is smooth at

all of its points. The set Sing(X) of singular points of X is a proper closed subvariety of X [17,

Theorem 5.3] and so the set of smooth points of X is open and dense. If p is a point of a projective

variety X , then p is smooth on X if p is smooth on Ui ∩X for some affine chart containing p.

The following proposition is called the second Bertini theorem.

Proposition 3.9.1. [18, II.6.2 Theorem 2] Let f : X → Y be a regular dominant map with X

smooth. There exists a dense open set U ⊂ Y such that the fiber f−1(y) is nonsingular for every

y ∈ U .

A corollary of the second Bertini theorem is fundamental to the theory of numerical algebraic

geometry (Section 6).

Corollary 3.9.2. If X is a smooth variety and H is a general hyperplane then X ∩H is smooth.

Proof. This follows by the same argument as in Corollary 3.8.10 replacing the first Bertini theorem

with the second Bertini theorem.

Let V(F ) ⊂ Cn
x ×Ct be an irreducible affine variety of dimension one such that the projection

π : V(F )→ Ct

(t, x1, . . . , xn) 7→ t

is dominant. The Jacobian DF encodes the points t ∈ Ct for which π−1(t) does not have the

generic cardinality as in Proposition 3.8.6. LetDtF = ∂F
∂t

andDxF = ∂F
∂x

so thatDF is the matrix
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whose first column is Dt and whose last n columns are DxF . Given a point p = (t∗, x∗) ∈ V(F ),

p is smooth on V(F ) when rank(DF (t∗, x∗)) = n. If rank(DxF (p)) = n − 1, then p is singular

(rank(DF (p)) = n− 1) on V(F ) or the fiber π−1(t∗) has points with multiplicity. We depict this

dichotomy in Figure 3.11.

Example 3.9.3. Consider the curve V(f) with

f = (x− 3)2 − (t− 1)(t+ 1)(t+ 2)2,

displayed in Figure 3.11. The rank of Dxf is zero at the points (−2, 3), (−1, 3), and (1, 3) on

V(f). The rank of Df at these points is 0, 1, and 1 respectively. �

Figure 3.11: Three points on a quartic curve in V(f) ⊂ Ct × Cx such that the matrix Dxf has rank zero
when evaluated at these points.
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4. BRANCHED COVERS AND GROUPS

Representing geometric objects as fibers of maps is a powerful method in geometry. For exam-

ple, the simple problem of solving a quadratic equation ax2 + bx + c = 0 for a, b, c ∈ C may be

interpreted geometrically via a map

π : {([a : b : c], x) ∈ P2
a,b,c × C | ax2 + bx+ c = 0} → P2

a,b,c

([a : b : c], x) 7→ [a : b : c],

over the parameter space P2
a,b,c. We identify the solutions of a quadratic equation such as 3x2 +

8x + 4 = 0 with the fiber π−1([3 : 8 : 4]) = {([3 : 8 : 4],−2), ([3 : 8 : 4],−2
3
)}. The subset

U ⊂ P2
a,b,c of parameters whose corresponding quadratic equation has two distinct solutions is the

complement of the vanishing of the discriminant B = V(a(b2− 4ac)) and comprises a dense open

subset of P2
a,b,c. Since a 6= 0 for [a : b : c] ∈ U , rescaling to monic quadratic equations,

π|a=1 : {(b, c, x) ∈ C3 | x2 + bx+ c = 0} → C2
b,c

(b, c, x) 7→ (b, c)

gives a “branched cover” of affine varieties. In this framework, the solutions of 3x2+8x+4 = 0 are

identified with the fiber over the parameter
(

8
3
, 4

3

)
∈ C2

b,c. Figure 4.1 depicts this parameter space

along with the set U |a=1 ⊂ C2
b,c. Every point (b, c) ∈ C2

b,c which is not on the dotted parabola in

Figure 4.1 is in U |a=1. Fibers over parameters in the red region, like π|−1
a=1(0, 1) = ±

√
−1, have

two distinct (complex conjugate) nonreal points, and the fibers over points in the blue region have

two distinct real points. Points on the parabola have fibers consisting of one real solution occurring

with multiplicity two.

The variety V(b2 − 4c) is a hypersurface in C2
b,c and thus has (complex) codimension 1 and

real codimension 2. Thus, U is a connected real manifold, even though it is disconnected when
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Figure 4.1: The parameter space C2
b,c along with the discriminant V(b2 − 4c).

restricted to R2
b,c as seen in Figure 4.1.

The discussion above distills the essence of the behavior of branched covers. We give an

elementary treatment of branched covers and covering spaces in Section 4.1 and we provide back-

ground on permutation groups, monodromy groups, and Galois groups in Sections 4.2-4.3. We

conclude in Section 4.4 with a discussion of decomposable branched covers.

4.1 Branched covers

An (irreducible) branched cover is a dominant map π : X 99K Z of irreducible varieties

of the same dimension. We may assume that we restrict to an affine open subset of X so that

π : X → Z is regular with X ⊂ Cn and Y ⊂ Cm. Irreducible branched covers are generically

finite in the sense of Proposition 3.8.6 and thus there exists a number d and a dense open set U ⊂ Z

such that for any u ∈ U , the fiber π−1(u) has cardinality d and π∗ expresses the field C(X) as a

degree d field extension of C(Z).

More generally, a branched cover is a map π : X → Z such that X is reducible and the

restriction of π to some top dimensional component of X is an irreducible branched cover. The
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restriction of π to every other top dimensional component is either dominant or the image is a

proper closed subvariety of Z. Let X1, . . . , Xk be those components of X such that the restriction

πi of π to Xi is dominant. Suppose πi has fibers of cardinality di over any point in the dense open

subset Ui ⊂ Z. Then it is immediate that for any u ∈ U =
⋂k
i=1 Ui, the cardinality of the fiber

π−1(u) is d =
∑k

i=1 di.

Given a branched cover X π−→ Z as above, d is the degree of π, U is the set of regular values

of π, and the complement of U is the branch locus of π. We say π is trivial if d = 1. With

respect to the real Euclidean topologies X and Z inherit from their ambient spaces, there exists an

open cover {Vβ} of U such that for each β, the fiber π−1(Vβ) is a disjoint union of d open sets in

π−1(U), each of which is mapped homeomorphically onto Vβ . Such a map π|U : π−1(U) → U is

called a d-sheeted covering space.

Many properties of branched covers, like the well-definedness of degree and regular values,

extend immediately from their irreducible restrictions. Therefore, in the interest of brevity, we use

“branched cover” to refer to an irreducible branched cover, unless otherwise stated. We refrain

from elaborating on branched covers which are not irreducible.

4.2 Permutation groups

We recall some terminology concerning permutation groups [21]. For d ∈ N, the symmetric

group Sd on d elements is the group of bijections from [d] to [d] under composition. Any subgroup

G ⊂ Sd of the symmetric group acts on the ordered set {1, 2, . . . , d} by permuting its elements and

is thus called a permutation group. A permutation group acts transitively if for every i, j ∈ [d],

there exists g ∈ G such that g(i) = j. For now, we will assume that G acts transitively on [d].

A block ofG is a subsetB ⊂ [d] such that for every g ∈ G, either gB = B or gB∩B = ∅. The

subsets ∅, [d], and every singleton are blocks of every permutation group. If these trivial blocks are

the only blocks, then G is primitive and otherwise it is imprimitive.

When G is imprimitive, we have a factorization d = ab with 1 < a, b < d and there is a

bijection [a] × [b] ↔ [d] such that G preserves the projection [a] × [b] → [b]. That is, the fibers

{[a]×{i} | i ∈ [b]} are blocks ofG, its action on this set of blocks gives a homomorphismG→ Sb
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with transitive image, and the kernel acts transitively on each fiber [a] × {i}. In particular, G is a

subgroup of the wreath product Sa oSb = (Sa)
boSb, where Sb acts on (Sa)

b by permuting factors.

We observe a second characterization of imprimitive permutation groups G. Since G acts

transitively, if H ⊂ G is the stabilizer of a point c ∈ [d], then H has index d in G and we

may identify [d] with the set G/H of cosets. If B is a nontrivial block of G containing c, then

its stabilizer L is a proper subgroup of G that strictly contains H . Furthermore, using the map

G/H → G/L, we see that G is imprimitive if and only if the stabilizer of the point eH ∈ G/H is

not a maximal subgroup.

4.3 Monodromy groups and Galois groups

Let π : X → Z be a degree d branched cover so that the restriction π−1(U)
π−→ U is a d-sheeted

covering space. A lift of a continuous function γ : Y → U is a map γ̃ : Y → X such that π◦ γ̃ = γ.

The path lifting property for a covering space says that for any path γ : [0, 1] → U and any lift

ũ0 of the point u0 = γ(0), there is a unique path γ̃ : [0, 1]→ X which lifts γ with the property that

γ̃(0) = ũ0 [22].

Since the cardinality of the fiber π−1(γ(0)) is d, there are d paths {γ̃i(t)}di=1 lifting γ, giving a

bijection mγ from the fiber over γ(0) to the fiber over γ(1) defined by mγ(γ̃i(0)) = γ̃i(1). When

γ(0) = γ(1), we call γ a (monodromy) loop based at γ(0). The set of all mγ such that γ is a loop

based at u ∈ U forms a groupMπ,u called the monodromy group of π based at u.

For any path γ in U , conjugation by mγ gives an isomorphismMπ,γ(0)
∼= Mπ,γ(1). Since X

is irreducible, U is path-connected and so as a permutation group, the monodromy group is well-

defined up to the relabelling of points in a fiber. We define the monodromy group of π, denoted

Mπ, to be this group.

Lemma 4.3.1. The monodromy group of a branched cover X π−→ Z is transitive.

Proof. Let p, q ∈ π−1(u) for some u ∈ U . The set π−1(U) is path-connected and so a path τ

connecting p to q projects to a loop γ = π ◦ τ with τ as a lift. Hence, mγ(p) = q.

We define the Galois group Gπ of π to be the Galois group ofK/C(Z) where K is the Galois
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closure of C(X)/C(Z). Harris [23] gave a modern proof of the following proposition, but this

idea goes back at least to Hermite [24].

Proposition 4.3.2. [23, pg. 689] The groups Gπ andMπ for a branched cover π are equal.

4.4 Decomposable branched covers

A branched cover π : X → Z is decomposable if there is a dense open subset V ⊂ Z over

which π factors

π−1(V )
ϕ−→ Y

ψ−→ V , (4.1)

with ϕ and ψ both nontrivial branched covers. The fibers of ϕ over points of ψ−1(v) are blocks

of the action of Gπ on π−1(v), which implies that Gπ is imprimitive. Pirola and Schlesinger [25]

observed that decomposability of π is equivalent to imprimitivity of Gπ. We give a proof, as we

discuss the problem of computing a decomposition.

Proposition 4.4.1. A branched cover is decomposable if and only if its Galois group is imprimitive.

Proof. We need only to prove the reverse direction. As above, let C(Z), C(X), and K be the

function fields of Z, X , and the Galois closure of C(X)/C(Z), respectively, and let Gπ be the

Galois group of K/C(Z). Let H be the subgroup of Gπ such that C(X) = KH , the fixed field of

H . The set of Galois conjugates of C(X) forms the orbit Gπ/H , and the number of conjugates is

the degree of the branched cover X → Z.

If Gπ acts imprimitively, then the stabilizer L of a nontrivial block B containing C(X) is a

proper subgroup properly containing H . Thus its fixed field M = KL, which is the intersection

of the conjugates of C(X) in the block B, is an intermediate field between C(Z) and C(X). For

any variety Y ′ with function field M , there will be dense open subsets Y of Y ′ and V of Z such

that (4.1) holds.

While imprimitivity is equivalent to decomposability, the proof does not address how to com-

pute the variety Y of (4.1). One way is as follows. Replace Z and X by affine open sub-

sets, if necessary, and let y1, . . . , ym ∈ C[X] be regular functions on X that generate M over

59



C(Z). Let x1, . . . , xm be indeterminates and let I ⊂ C(Z)[x1, . . . , xm] be the kernel of the map

C(Z)[x1, . . . , xm] → C(X) given by xi 7→ yi. This is the zero-dimensional ideal of algebraic

relations satisfied by y1, . . . , ym. Replacing Z by a dense affine open subset if necessary, we may

choose generators g1, . . . , gr of I that lie in C[Z][x1, . . . , xm]—their coefficients are regular func-

tions on Z. There is an open subset V ⊂ Z such that the ideal I defines an irreducible variety

Y ⊂ V × Cm whose projection to V is a branched cover and whose function field is M . Re-

stricting X → Z to V , we obtain the desired decomposition, with the map X → Y given by the

functions y1, . . . , ym.

This does not address the practicality of computing Y , but it does indicate an approach. Given

the subgroup L of Gπ and a set of generators of C[X] over C[Z], if we apply the Reynolds averag-

ing operator [26] for L to monomials in the generators, we obtain the desired generators y1, . . . , ym

of M . One problem is that elements of Gπ may not act on X , so their action on elements of C[X]

may be hard to describe.

There is an exception to this. If L 6= H normalizes H in G and π : X → Z is a covering space,

then Γ = L/H acts freely on X , preserving the fibers—it is a group of deck transformations of

X → Z [27, Ch 13]. When Γ acts on the original branched cover, Y = X/Γ is the desired space,

and both Y and the map X → Y may be computed by applying the Reynolds operator for Γ to

generators of C[X]. The examples given in [28, Section 5] are of this form, and the authors use

this approach to compute decompositions.

Example 4.4.2. Not all imprimitive groups have this property. Consider the wreath product G =

S3 oS3, which acts imprimitively on the nine-element set [3]× [3]. The stabilizer of the point (3, 3)

is the subgroup H = ((S3)2× S2)o S2, where S2 ⊂ S3 is the stabilizer of {3}. Then H is its own

normalizer in G, as S2 is its own normalizer in S3. �

All imprimitive Galois groups in the Schubert calculus constructed in [29, Section 3] and in [30]

have stabilizer H equal to its normalizer. For these, the decomposition of the branched cover fol-

lows from a deep structural understanding of the corresponding Schubert problem. There remain

many Schubert problems whose Galois group is expected to be imprimitive, yet a decomposi-
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tion (4.1) of the corresponding branched cover is unknown.

4.5 Real branched covers

The nonreal solutions of any univariate polynomial f ∈ R[x] come in complex conjugate pairs.

Similarly, for a multivariate polynomial system F = (f1, . . . , fk) ⊂ R[x], any point z ∈ Cn

satisfies F (z) = 0 if and only if its complex conjugate z satisfies F (z) = 0.

When a branched cover π : X → Z with Z ⊂ Cm has the property that for any z ∈ Z ∩Rm the

ideal I(ϕ−1(z)) can be generated by real polynomials, we say π is a real branched cover. The set

of real regular values of a real branched cover is possibly disconnected in Rm, and we call these

connected components discriminant chambers.

Lemma 4.5.1. If z, z′ ∈ Z ∩ Rm are in the same discriminant chamber, then the number of real

points in π−1(z) is equal to the number of real points in π−1(z′).

Proof. Let z, z′ be in the same discriminant chamber Dz and let γ : [0, 1]→ Z∩Dz be a path from

z to z′. For any point γ(t∗) for t∗ ∈ [0, 1] the fiber π−1(t∗) consists of deg(π) distinct points. On

the other hand, since nonreal points in the fiber come in complex conjugate pairs, the number of

real points in a fiber over γ([0, 1]) changes only if either two real points come together and become

complex or two complex points come together and become real. However, this cannot happen

since points in each fiber over γ are distinct.

Example 4.5.2. Let

f = 4(φ2x2 − y2)(φ2y2 − z2)(φ2z2 − x2)− (1 + 2φ)(x2 + y2 + z2 − 12)2 ∈ C[x, y, z],

where φ = 1+
√

5
2

is the golden ratio. The surface V(f) is known as the Barth sextic. The projection

π : C3
x,y,z → C2

x,y

is a branched cover of degree 4.
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Figure 4.2: The Barth sextic.

Figure 4.3: The discriminant of the projection of the Barth sextic onto C2
x,y with the number of real points

in the fiber of any point in each discriminant chamber indicated.
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Figure 4.4: One of the small discriminant chambers not easily noticeable in Figure 4.3.

The branch locus B of π is displayed in Figure 4.3 along with labels indicating the number of

real points in any fiber of the corresponding discriminant chamber. Over Q,B decomposes into two

lines (purple and green) and two sextics (blue and red). Over R, the blue sextic curve decomposes

into the union of a conic and four lines. The red curve is irreducible over R. The boxed region in

Figure 4.3 contains a small discriminant chamber whose fibers have two real points. An enlarged

depiction of this chamber is displayed in Figure 4.4. �
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5. NEWTON POLYTOPES, SUPPORT, TROPICAL GEOMETRY, AND SPARSE

POLYNOMIAL SYSTEMS

We introduce Newton polytopes, sparse polynomial systems, and tropical geometry. These

connect ideas from Sections 2, 3, and 4. Material in Section 5.2 appears in the article [1] by the

author*.

5.1 Newton polytopes

Let C× = Cr {0} be the multiplicative group of nonzero complex numbers and (C×)n be the

n-dimensional complex torus. For each α = (α1, . . . , αn) ∈ Zn, the (Laurent) monomial with

exponent α,

xα = xα1
1 x

α2
2 · · ·xαnn ,

is a character (multiplicative map) xα : (C×)n → C×. Any finite linear combination

f =
∑
α∈A

cαx
α, cα ∈ C,

of monomials is a (Laurent) polynomial which also defines a function f : (C×)n → C. When

cα ∈ C× for all α ∈ A, we say that A is the support of f and write supp(f) = A. Otherwise, we

say that f is supported on A. We denote the vector space of all polynomials supported on A by

CA. Consistent with the notation for polytopes, for any ω ∈ Rn we set,

fω =
∑
α∈Aω

cαx
α.

If A is the support of f , then the support of xβf is β + A, the translation of A by β. As a

monomial xβ for β ∈ Zn is invertible on (C×)n, the polynomials f and xβf have the same sets of

zeros in C×. By translating the support of a polynomial by integer vectors we may assume that 0

*Reprinted with permission from T. Brysiewicz, “Numerical Software to Compute Newton polytopes and Tropical
Membership,” Mathematics in Computer Science, 2020. Copyright 2020 by Springer Nature.

64



is in the affine Z-span of A without changing any assertions about the zeros of f in (C×)n, thus

we define ZA to be the lattice generated by differences α − β for α, β ∈ A. For similar reasons,

the results from Section 3 extend to this setting by shifting supp(f) to the positive orthant so that

f is polynomial.

The Newton polytope of f (or of V(f)) is

New(f) = New(V(f)) = conv(supp(f)).

We say f has dense support in New(f) if supp(f) = L(New(f)), the set of lattice points in

New(f). The Newton polytope of a polynomial and its support both encode a considerable amount

of information about the polynomial and its zero set. Moreover, these combinatorial objects behave

well under certain algebro-geometric transformations on polynomials and varieties.

5.1.1 Basic observations about Newton polytopes

Let f ∈ C[x]. Then the following observations are immediate from our definitions.

(1) New(f̃) = Ñew(f) where .̃ denotes homogenization.

(2) f is homogeneous if and only if New(f) is homogeneous.

(3) deg(f) = deg(New(f)).

(4) New(f) is an integral polytope.

For any f, g ∈ C[x], the Newton polytope of f · g is New(f) + New(g). Indeed, Lemma 2.3.1

implies that the vertices of New(f) + New(g) are uniquely represented as α′ + β′ for some α′ ∈

vert(New(f)) and β′ ∈ vert(New(g)). Thus, the only term of the sum

f · g =
∑

α∈supp(f)
β∈supp(g)

cαcβx
αxβ

which has exponent α′ + β′ is cα′cβ′xα
′+β′ which is in the support of f · g because cα′ · cβ′ 6= 0.
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Supports (and Newton polytopes) respect permutations of variables. For any permutation σ ∈

Sn, the support of

σ(f) =
∑
α∈A

cαx
ασ(1)

1 x
ασ(2)

2 · · · xασ(n)
n

is the set

σ(A) = {σ(α) | α ∈ A} = {(ασ(1), . . . , ασ(n)) | α ∈ A}.

Consequently, New(σ(f)) = σ(New(f)) = conv(σ(A)). Hyperplanes containing New(f) corre-

spond to scalings of the variables x1, . . . , xn which do not alter the variety V(f).

Lemma 5.1.1. Let f ∈ C[x] be a polynomial with supportA and let ω ∈ Rn. ThenA is contained

in the hyperplane 〈α, ω〉−hA(ω) = 0 if and only if V(f) = V(f(tω1x1, . . . , t
ωnxn)) for all t ∈ C×.

Proof. The equality V(f) = V(f(tω1x1, . . . , t
ωnxn)) holds for all t ∈ C× if and only if for all

a ∈ V(f),

0 = f(tω1a1, . . . , t
ωnan) =

∑
α∈A

cαt
〈α,ω〉aα

=

hA(ω)∑
k=−hA(ω)

 ∑
α∈A
〈α,ω〉=k

tkcαa
ω


=

hA(ω)∑
k=−hA(ω)

tkgk(a). (5.1)

The right-most-side is a polynomial in t and thus gk(a) = 0 for all k = −hA(ω), . . . , hA(ω) and all

a ∈ V(f). However, this means that V(f) ⊂ V(gk) for all k. Since f is not identically zero, at least

one gk is not. Suppose gj 6= 0 for some j. Then containment of hypersurfaces implies deg(gj) ≥

deg(f) and since tjgj is a summand of (5.1), these degrees must be the same. Containment of

hypersurfaces also implies that gj(x) = r(x) · f(x) for some r ∈ C[x], but since the degrees of gj

and f are equal, r must be a constant implying V(f) = V(gj). Consequently, every other summand

of (5.1) must be zero, proving that A is contained in the hyperplane 〈α, ω〉 − hA(ω) = 0.

The converse is true since if 〈α, ω〉 = hA(ω) for all α ∈ A, then f(tω1x1, . . . , t
ωnxn) =
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thA(ω)f(x), and thus cuts out the same variety as f for any t ∈ C×.

Remark 5.1.2. Fix r ∈ N and k = (k1, . . . , kr) ∈ Nr and consider the grouping of variables{
{xi,j}

kj
i=1

}r
j=1

. By definition of projective space, the zero set of a polynomial

f =
∑

α=(α(1),...,α(r))∈A

cαx
α(1)

i,1 · · ·xα
(r)

i,r ∈ C[xi,j]

with support A is well-defined subvariety of Pk1 × · · · × Pkr if and only if it is invariant under

scaling any of the variable groups: for each j ∈ [r] and t ∈ C×, the polynomial f is invariant

under the action which multiplies each variable in the group {xi,j}
kj
i=1 by t. By Lemma 5.1.1, this

is equivalent to the condition that for all α ∈ A and j ∈ [r], there exists dj such that |α(j)| = dj .

The vector d = (d1, . . . , dr) is called the multidegree of V(f).

Lemma 5.1.1 has strong implications when considering invariants. Fix some support A ⊂ Zn

and suppose that F ⊂ C[cα]α∈A is a polynomial in the coefficient space CA of all polynomials

f =
∑
α∈A

cαx
α ∈ C[x]

supported on A. Observe that an action of a group GyCn naturally induces an action G y CA

on the coefficient space. If for all f ∈ V(F) and all σ ∈ G, we have that σ · f ∈ V(F), then we

say that F is invariant under the action of G.

Proposition 5.1.3. Suppose that F ∈ C[cα]α∈A is a homogeneous polynomial of degree D with

variables in the coefficient space CA of all polynomials

f =
∑
α∈A

cαx
α ∈ C[x],

supported on A ⊂ Zn. Suppose further that |α| = d for all α ∈ A. Let A be the n × |A| matrix

whose columns are points in A and whose rows are {ωx1 , . . . , ωxn}.

(1) If F is invariant under the scaling xi 7→ txi for some i ∈ [n] and all t ∈ C×, then Fωxi = F .
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(2) Suppose F is invariant under all scalings and permutations of the variables xi and that RA

is n dimensional. Then p ∈ New(F) solves the linear equation

(
A

1

)
p =

(
dD

n
, . . . ,

dD

n
,D

)T
.

In particular, New(F) ⊂ R|A|p is contained in an affine linear space of codimension n.

Proof. Given f = {cα}α∈A, the action of t 7→ tx1 on Cn induces the action

ft = f(tx1, x2, . . . , xn) =
{
t〈e1,α〉cα

}
=
{
t(ωx1 )αcα

}
on the coefficients of f and thus the variables of F . If F is invariant under this action, then

ft ∈ V(F) if and only if f ∈ V(F) for all t ∈ C×. Hence by Lemma 5.1.1 we have that

Fωx1
= F . The same argument applies for scaling any other variable.

If F is invariant under scaling any of the variables x1, . . . , xn, then P is contained in the

intersection
⋂n
i=1Hi where

Hi =
{
p ∈ R|A|p

∣∣ 〈p, ωxi〉 = hP (ωxi)
}

by part (1). Since F is also invariant under the symmetric group Sn, the value of the support

function h = hP (ωxi) does not depend on i. Since F is homogeneous, P is also contained in the

affine hyperplane

Hdeg =
{
p ∈ R|A|p

∣∣ 〈p,1〉 = D
}
.

Thus, the set

H = Hdeg ∩

(
n⋂
i=1

Hi

)
is the solution set of the matrix equation,

(
A

1

)
p = (h, h, . . . , h,D)T .

68



Note that since |α| = d for all α ∈ A, we have (1, 1, . . . , 1,−d)
(
A
1

)
= 0. Therefore, hn−dD = 0

and so h = dD
n

.

5.1.2 Integer linear algebra and coordinate changes

Supports of polynomials do not maintain their structure under generic linear changes of co-

ordinates: for a generic linear map φ : Cn → Cn, the composition f(φ(z)) has dense support

deg(f)∆n. Supports do, however, respect partial evaluation in the following sense. Let πI : Zn →

Z|I| be the projection onto the coordinates indexed by I ⊂ [n].

Lemma 5.1.4. Let f ∈ C[x] be a polynomial with supportA and let ak+1, . . . , an ∈ C× be general.

Then the support of f(x1, . . . , xk, ak+1, . . . , an) is the projection π[k](A).

Supports of polynomials transform naturally under monomial changes of coordinates. Identi-

fying the set Hom((C×)n,C×) of characters on (C×)n with the free abelian group Zn, a homo-

morphism Φ: (C×)m → (C×)k is determined by k characters of (C×)m, equivalently by a homo-

morphism (linear map) ϕ : Zk → Zm of free abelian groups. Note that ϕ is also the map pulling a

character of (C×)k back along Φ. In particular, an invertible map Φ: (C×)n → (C×)n (a monomial

change of coordinates) pulls back to an invertible map ϕ : Zn → Zn, identifying GL(n,Z) with the

group of possible monomial coordinate changes. We will write Φ = ϕ∗ and ϕ = Φ∗ for these, not

to be confused with the notation for the homomorphism of coordinate rings induced by a regular

map of varieties. If Φ(x) = (xα1 , . . . , xαn) where the integer span of {α1, . . . , αn} is Zn, then the

map ϕ = Φ∗ : Zn ∼−→ Zn sends the i-th standard basis vector ei to αi and is represented by the

invertible matrix A whose i-th column is αi.

Suppose that f is a polynomial on (C×)n with supportA. Given a homomorphism Φ: (C×)m →

(C×)n, the composition f(Φ(z)) for z ∈ (C×)m is a polynomial supported on ϕ(A), where the

coefficient of zβ is the sum of coefficients of xα for α ∈ ϕ−1(β) ∩ A. For generic choices of

coefficients of xα, this sum is nonzero and so f(Φ(z)) has support ϕ(A).
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5.1.3 Smith normal form

Let A = {0, α1, . . . , αm} ⊂ Zn be a collection of integer vectors. The sublattice ZA ⊂ Zn

that it generates is the image of a Z-linear map Zm → Zn and is represented by a n ×m integer

matrix A whose columns are the vectors ai. Suppose that ZA has rank k. The Smith normal form

of A is a factorization into integer matrices

A = PDQ , (5.2)

where P ∈ GL(n,Z) and Q ∈ GL(m,Z) are invertible, and D is the rectangular matrix whose

only nonzero entries are d1, . . . , dk along the diagonal of its principal k × k submatrix. These are

the invariant factors of A and they satisfy d1|d2|d3| · · · |dk. The sublattice ZA ⊂ Zn has a basis

given by the columns of the matrix PD. If we apply the coordinate change P−1 to Zn, then ZA

becomes the subset of the coordinate space Zk ⊕ 0n−k given by d1Z⊕ d2Z⊕ · · · ⊕ dkZ⊕ 0n−k.

The Smith normal form is also useful in solving binomial equations over (C×)n. Fix a collec-

tion F ⊂ C[x] of binomials

a1x
α1 = b1x

β1 a2x
α2 = b2x

β2 . . . anx
αn = bnx

βn

with ai, bi ∈ C× for i = 1, . . . , n. Recall that we can scale the equations and translate their support

so that ai = 1 and βi = 0 for all i = 1, . . . , n. We now assume our system F is of the form

xα1 = b1 xα2 = b2 . . . xαn = bn. (5.3)

It is useful to use matrices as exponents. For example, we encode xα1 as (x1, . . . , xn)((α1)1,...,(α1)n).

LettingA be the matrix whose columns are α1, . . . , αn, we write xA = x(α1,...,αn) = (xα1 , . . . , xαn)

so that (5.3) is written as xA = b.

Assume for simplicity that A spans Rn so that dn of a Smith normal form A = PDQ is
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nonzero. Then

(xA)Q
−1

= bQ
−1

and setting zP−1
= x gives

zP
−1AQ−1

= zD = bQ
−1

. (5.4)

whose solutions are clearly the set Z = {z | zi is a di-th root of bi} of
∏n

i=1 di points. Taking

x = zP expresses these solutions in terms of x.

5.1.4 Centroids and trace curves

Given an affine variety X ⊂ Cn and a generic linear space L of complementary dimension to

X , the intersection X ∩L is finite and consists of deg(X) points. The centroid of X ∩L, denoted

µ(X ∩ L) is the coordinate-wise average of those points. A family of linear spaces {Lt}t∈C is a

pencil if there exists a vector v ∈ Cn such that Lt = t · v+L0 for all t ∈ C. The following lemma

is the basis for the numerical algorithm known as the trace test (see Section 6.5.1).

Lemma 5.1.5. Let X ⊂ Cn be an irreducible affine variety and let Lt be a general pencil of linear

spaces of complementary dimension. The Zariski closure of the union

µ(X ∩ Lt) =
⋃
t∈C

µ(X ∩ Lt)

is an affine line.

Proof. Let X ⊂ Cn be an irreducible affine variety of dimension m. Observe that if L is a linear

space of complementary dimension, then π(µ(X ∩ L)) = µ(π(X) ∩ π(L)) where π : Cn → Cn−1

is any projection such that dim(π(L)) = dim(L) − 1. Projecting this way n − m − 1 times

produces π′ : Cn → Cm+1 so that dim(π′(L)) = 1. Thus, π′(X) is a hypersurface in Cm+1 and

µ(X ∩ L) ∈ π′−1(µ(π′(X) ∩ π′(L)). Let v1, . . . , vn−m span L and define πi : Cn → Cm+1 to be

the projection such that dim(πi(vj)) = 0 whenever i 6= j. Then the intersection

n−m⋂
i=1

π−1
i (µ(πi(X) ∩ πi(L)))
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is the point µ(X ∩ L). Thus, it is enough to prove the statement for when X is a hypersurface.

Let X ⊂ Cn be a hypersurface, let Lt be a general pencil of lines, and let P =
⋃
t∈C Lt.

Consider X ′ = X ∩P . By Lemma 3.8.10, X ′ is a curve and so it is enough to prove the statement

for plane curves.

Suppose V(f) = X ⊂ C2 is a plane curve of degree d, and Lt a general pencil of lines. After

an action by rotation, we may assume that Lt is the family V(x − t). This rotation is a generic

linear change of coordinates because the family Lt is general and so the support of f must be

d∆n. Since scaling does not change the zero set, we assume that the coefficient of yd is one. Then

X ∩ Lt = X ∩ V(x− t) has points {(t, yi(t))}di=1 where yi(t) are the zeros of

f(t, y) =
d∏
i=1

(y − yi(t)) = yd − (y1(t) + · · ·+ yd(t))y
d−1 + · · ·

for some rational functions yi(t). On the other hand, the coefficient of yd−1 in f ∈ C[x][y] is

c(1,d−1)x + c(0,d−1) and so −(y1(t) + · · ·+ yd(t)) = c(1,d−1)x + c(0,d−1). Since the y-coordinate of

µ(X ∩ Lt) is 1
d
(y1(t) + · · ·+ yd(t)), the points satisfying −dy = c(1,d−1)x+ c(0,d−1) are the points

which are centroids of this family. In other words, the centroids are on the graph of the function

y = −1

d
(c(1,d−1)x+ c(0,d−1)). (5.5)

The line of centroids guaranteed by Lemma 5.1.5 is called the trace line of X with respect to

Lt.

Example 5.1.6. Let

f = 2− 4x+ x3 + (−2− 2x)y + (3− x)y2 + y3

and let Lt = V(x−t) so that (5.5) computes the trace line of V(f) to be V
(
y − 1

3
x+ 1

)
. The cubic

V(f) and its trace line are depicted in Figure 5.1. Notice that even though many lines Lt do not
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Figure 5.1: A plane cubic V(f) (blue), the trace line µ(V(f, x − t)) (red), and the specific centroids
µ(V(f, x+ 3)), µ(V(f, x− 1)), µ(V(f, x− 2)).

intersect V(f) in three real points, the centroids are still real. This is because the points V(f) ∩ Lt

must appear in complex conjugates and so their imaginary parts will cancel in the average. �

When the Newton polytope of a plane curve X of degree d is smaller than d∆2 the family of

lines V(x−t) is not generic with respect toX . Therefore, Equation 5.5 does not compute the curve

of centroids. In particular, the closure of these centroids may not be a line. The following result

gives a formula for the curve of centroids when the family V(x− t) is not generic with respect to

X .

Lemma 5.1.7. Suppose

f =
∑

(i,j)∈A

ci,jx
iyj ∈ C[x, y]

for A ⊂ Z2
≥0 and Lt = V(x− t). Then

⋃
t∈C

µ(V(f) ∩ Lt) = V

degx(f)∑
i=0

ci,degy(f)−1x
i + degy(f)y

degx(f)∑
i=0

ci,degy(f)x
i

 ,
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where degx(f) = max(i,j)∈A(i) and degy(f) = max(i,j)∈A(j).

Proof. As with the proof of Lemma 5.1.5, we take

f(t, y) =

degx(f)∑
i=0

ci,degy(f)t
i

 yd +

degx(f)∑
i=0

ci,degy(f)−1t
i

 ydegy(f)−1 + · · ·

and writing f(t, y) as a monic polynomial tells us that

−(y1(t) + · · ·+ ydegy(f)(t)) =

(∑degx(f)
i=0 ci,degy(f)−1t

i
)

(∑degx(f)
i=0 ci,degy(f)ti

) .

Since x = t and the y-coordinate of µ(X ∩Lt) is 1
degy(f)

(y1(t) + · · ·+ ydegy(f)(t)) we write this as

− degy(f)y =

(∑degx(f)
i=0 ci,degy(f)−1x

i
)

(∑degx(f)
i=0 ci,degy(f)xi

) ,

and clearing denominators gives the result.

When the family Lt is not general as in Lemma 5.1.7, we define the trace curve of X with

respect to Lt to be the closure of the set of centroids of X ∩ Lt for t ∈ C.

Example 5.1.8. Consider the quartic curve

f = 1− x+ x2 + (5 + x− 3x2)y + (−3 + 3x− x2)y2

in C2 whose Newton polytope, support, and coefficients are depicted in Figure 5.2.

The equation of the trace curve of V(f) with respect to the nongeneric family of lines V(x− t)

is

g = (5 + x− 3x2) + 2y(−3 + 3x− x2).

Lemma 5.1.7 essentially states that the equation g can be read off from the coefficients of the top

two rows of the polytope New(f). �
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Figure 5.2: Left: The Newton polytope, support, and coefficients of f . Right: The curve V(f) (blue), the
trace curve of V(f) with respect to V(x − t) (red), and five lines in the family Lt along with the centroids
of their intersections with V(f).

If X = X1 ∪ · · · ∪ Xr ⊂ Cn is a reducible affine variety and L is a generic linear space of

complementary dimension, then µ(X ∩L) = 1
deg(X)

∑r
i=1 µ(Xi ∩L) · deg(Xi) and so we have the

following corollary.

Corollary 5.1.9. Let X ⊂ Cn be an affine variety which is possibly reducible and let Lt be a

general pencil of linear spaces of complementary dimension. The union of the centroids of the

intersections X ∩ Lt is an affine line.

5.2 Tropical geometry

Newton polytopes are intimately related to tropical geometry. We only begin to touch on the

topic here and encourage the reader to reference [31] for a more extensive treatment.

The tropicalization of a variety depends on the choice of a valuation ν on the base field involved

(in our case C). Relevant to this document is the trivial valuation: ν(c) = 0 for all c ∈ C×. With
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this valuation, the tropicalization of a polynomial

f =
∑
α∈A

cαx
α, A = supp(f)

is the map

trop(f) : Rn → R (5.6)

ω 7→ max
α∈A
〈α, ω〉

and the tropicalization of the hypersurface V(f) is

trop(V(f)) = {ω ∈ Rn | the maximum in trop(f)(ω) is attained at least twice}. (5.7)

By (5.6), trop(f) is the same function as hNew(f) and by (5.7), the tropicalization of V(f) is

the codimension 1 part of the normal fan of the Newton polytope of f , namelyN (1)(New(f)) (see

Section 2.1).

Let P = New(f), and fix a monomial change of coordinates Φ: (C×)n → (C×)n with ϕ = Φ∗

so that we have Q = ϕ(P ) = New(f ◦ Φ). The map ϕ induces a map in the opposite direction on

functionals {α 7→ 〈α, ω〉 | ω ∈ Rn}. Consequently, ω is an element of trop(V(f)) if and only if

ϕ−1(ω) ∈ trop(V(f ◦ Φ)) and so

ϕ−1(trop(V(f))) = trop(V(f ◦ Φ)),

or equivalently,

trop(V(f)) = ϕ(trop(V(f ◦ Φ))). (5.8)

The tropicalization of V(I) for some ideal I ⊆ C[x1, . . . , xn] is the intersection

trop(V(I)) =
⋂
f∈I

trop(V(f)).
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Hept and Theobald in [4], motivated by the results of Bieri and Groves in [32], investigated

how to write trop(V(I)) as an intersection of finitely many tropical hypersurfaces coming from

projections. The following is a consequence of the proof of Theorem 1.1 in [4].

Theorem 5.2.1. If I ⊆ C[x] is an m-dimensional prime ideal, and {πi : Rn → Rm+1}n−mi=0 are

generic projections,

trop(V(I)) =
n−m⋂
i=0

π−1
i (πi(trop(V(I)))

where each π−1
i (πi(trop(V(I)))) is a tropical hypersurface.

Coordinate projections are not always generic and it is possible that only the proper contain-

ment ⋂
J⊆[n]

codim(πJ (V(I)))=1

π−1
J (πJ(V(I))) ( trop(V(I))

holds where πJ is the projection onto the coordinates indexed by J ⊂ [n].

Remark 5.2.2. The notion of genericity involved in Theorem 5.2.1 comes from that of a geomet-

rically regular projection. Let Y be a union of m-dimensional linear subsets of Rn. A projection

π : Rn → Rm+1 is geometrically regular with respect to Y ⊂ Rn if the image of k-dimensional

linear subspaces of Y remain k-dimensional and π respects containments: π(Y1) ⊂ π(Y2) =⇒

Y1 ⊂ Y2. These properties form an open dense subset within the set of projections and taking

π1, . . . , πn−m distinct such projections gives

Y =
n−m⋂
i=1

π−1
i (πi(Y )).

A tropical variety is contained in a union of finitely many linear spaces, but requires one more

projection π0 in order to write it as the intersection of preimages; this projection determines which

part of each linear space belongs to the tropical variety. �
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Example 5.2.3. The following is Example 4.2.11 in [33]. Let

I1 = 〈xz + 4yz − z2 + 3x− 12y + 5z, xy − 4y2 + yz + x+ 2y − z〉,

I2 = 〈xy − 3xz + 3yz − 1, 3xz2 − 12yz2 + xz + 3yz + 5z − 1〉.

The varieties defined by these two ideals are curves in C3 whose tropicalizations are the rays from

the origin to the positive (product of coordinates is positive) and negative vertices of the cube

[−1, 1]3 respectively. We display both curves in Figure 5.3. Notice that for any {i, j} ⊂ {1, 2, 3},

Figure 5.3: (Reprinted from [1]) An example of two tropical curves which cannot be distinguished from
their coordinate projections

we have that π{i,j}(trop(V(I1))) = π{i,j}(trop(V(I2))) is the tropical plane curve whose rays

are the positive span of the vertices of the square [−1, 1]2. Therefore, these two tropical curves

cannot be distinguished from their coordinate projections. Note that these projections are not

geometrically regular with respect to the union of linear spaces containing each tropical curve. �

Remark 5.2.4. By (5.8), we have that trop(V(f)) = ϕ(trop(V(f ◦Φ))) for any monomial change

of coordinates Φ and so for any f1, . . . , fm ∈ C[x],

ϕ−1(trop(V(f1, . . . , fm))) = trop(V(f1 ◦ Φ, . . . , fm ◦ Φ)),
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where ϕ = Φ∗. Projecting gives

π[k]ϕ
−1(trop(V(f1, . . . , fm))) = π[k] trop(V(f1 ◦ Φ, . . . , fm ◦ Φ)). (5.9)

Thus, one way to produce a projection A : Rn → Rk on tropical varieties other than a coordinate

projection is to write A as π[k] ◦ ϕ−1 such that ϕ is an n× n matrix over Z and apply (5.9). �

5.3 Sparse polynomial systems

Given a collection A• = (A1, . . . ,An) of nonempty finite subsets of Zn, write CA• = CA1 ×

· · · ×CAn for the vector space of n-tuples F = (f1, . . . , fn) of polynomials, where fi is supported

on Ai, for each i. An element F ∈ CA• corresponds to a system of polynomial equations

f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0 ,

called a sparse polynomial system supported on A•. We write F to refer to these equations or

to their vector of coefficients, depending on context. For ω ∈ Rn, we let Fω = ((f1)ω, . . . , (fn)ω).

Letting P• = (P1, . . . , Pn) where Pi = conv(Ai), we define the mixed volume MV(A•) of A• to

be MV(P•).

5.3.1 Geometry of sparse polynomial systems

Given A• = (A1, . . . ,An), consider the incidence variety

XA• =
{

(F, x) ∈ CA• × (C×)n | F (x) = 0
}

equipped with projections πA• : XA• → CA• and p : XA• → (C×)n. For F ∈ CA• , the fiber

π−1
A•(F ) is identified with the set V(F ) of solutions in (C×)n to F = 0.

For any x ∈ (C×)n, the fiber p−1(x) is a codimension n vector subspace of CA• . Indeed, for

each i = 1, . . . , n, the condition that fi(x) = 0 is a linear equation in the coefficients CAi of fi,
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and these n linear equations are independent. As a consequence XA• is irreducible of dimension

dim(C×)n + dimCA• − n = dimCA• ,

by Lemma 3.8.4 and Lemma 3.8.5.

Proposition 5.3.1 (Bernstein-Kushnirenko). Let F ∈ CA• be a system of polynomials supported

on A•. The number of isolated solutions in (C×)n to F = 0 is at most MV(A•). There is a dense

open subset U ⊂ CA• consisting of systems with exactly MV(A•) solutions.

Thus πA• : XA• → CA• is a branched cover if and only if MV(A•) 6= 0. When this is the case,

we denote the Galois group of πA• by GA• . We remark that Proposition 5.3.1 gives a different

way to compute the mixed volume of a collection of polytopes P• than the formulas given in

Section 2.3: solve a polynomial system whose Newton polytopes comprise the collection P• and

count the solutions in the algebraic torus. A corollary of Proposition 5.3.1 is Bézout’s theorem.

Corollary 5.3.2 (Bézout). Let ∆• = (d1∆n, . . . , dn∆n) with d1, . . . , dn ∈ N. Then π∆• is a

branched cover of degree
∏n

i=1 di.
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6. NUMERICAL ALGEBRAIC GEOMETRY

Numerical algebraic geometry refers to a collection of theoretical and computational tech-

niques for studying algebraic varieties using numerical methods. Contrary to symbolic algorithms

which use the algebraic description of a variety as input, numerical methods represent varieties

by computing approximations of points on them. This gives a computational paradigm which is

almost entirely geometric, albeit, theoretically grounded in the algebra and geometry developed in

Section 3.

At its core, numerical algebraic geometry uses tools from numerical analysis to compute

approximate solutions of zero-dimensional polynomial systems. Computations on positive-dimen-

sional varieties are performed numerically via their zero-dimensional intersections with general

affine linear spaces of complementary dimension. The information of such an intersection com-

prises the fundamental data structure in numerical algebraic geometry: a witness set. When

equipped with the method of homotopy continuation, a witness set may be used to efficiently

extract information from a variety.

Understanding the basic concepts underlying numerical algebraic geometry does not require

an extensive background in algebraic geometry, but the language from Section 3 illuminates many

of the ideas involved. For example, we will see that homotopy methods are conveniently chosen

branched covers, a clever interpretation of the fibers, and a special (but not too special!) fiber

which can be computed.

We begin by briefly explaining the core numerical methods underlying the theory in Section 6.1

and then move on to an assortment of algorithms from numerical algebraic geometry, including the

polyhedral homotopy (Algorithm 6.3.5) and the monodromy solve algorithm (Algorithm 6.5.3).

We remark that Figure 6.8 appears in the article [1] by the author1.

1Reprinted with permission from T. Brysiewicz, “Numerical Software to Compute Newton polytopes and Tropical
Membership,” Mathematics in Computer Science, 2020. Copyright 2020 by Springer Nature.
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6.1 Core numerical methods

We discuss what it means to numerically solve a polynomial system and explain two core

numerical algorithms: Euler’s method and Newton’s method. These algorithms may be used as the

predictor and corrector subroutines of a predictor-corrector method.

6.1.1 Approximate solutions

Given a polynomial map F : Cn → Cn, the system F = 0 is a collection of n polynomial

equations in n variables and is thus called a square system. We suppose for now that V(F ) is

finite. For such a multivariate map, define

NF (x) = x− (DF )−1 F (x),

where DF is the Jacobian matrix of F evaluated at x, (DF )−1 is its inverse, and x and F (x) are

column vectors. We remark that NF (x) is only well-defined when DF is nonsingular at x ∈ Cn.

Applying NF to a point x0 ∈ Cn is called a Newton step on x0, or a Newton iteration. A Newton

sequence is a sequence of points {x0, x1, . . .} defined recursively from some initial point x0 by

xi+1 = NF (xi). A sequence {x0, x1, . . .} converges quadratically to a point ξ ∈ Cn if for all i

||xi − ξ|| ≤ 21−2i ||x0 − ξ||.

Newton’s method is a root-finding algorithm which iteratively applies Newton steps to some point
x0 ∈ Cn with the hope that the Newton sequence {x0, x1, . . .} converges to a solution of F = 0. .
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Algorithm 6.1.1 (Newton’s Method). .
Input:
• A point x0 ∈ Cn

• A square polynomial system F
• Some number of iterations, m ∈ N
Output:
• The m-th Newton iteration, Nm

F (x0)
Steps:

1 set i = 0
2 while i < m do

2.1 set xi+1 = xi − (DF |xi)−1F (xi)

2.2 set i = i+ 1

3 return xm.

Lemma 6.1.2. [34, Theorem 3.5] If x0 is sufficiently near a smooth point ξ ∈ V(F ) then a Newton

sequence beginning with x0 will converge quadratically to ξ.

A point x0 ∈ Cn is an approximate zero of F = 0 with associated zero ξ ∈ V(F ) if the

Newton sequence starting at x0 converges quadratically to ξ. In this sense, x0 is a numerical

solution to F = 0.

Certifying that a point is a numerical solution is made possible through α-theory [35, Ch.8],

developed by Smale [36] in the 1980’s. We introduce the notation

β(F, x) = ||x−NF (x)|| = ||DF (x)−1F (x)||,

γ(F, x) = sup
k≥2

∣∣∣∣∣∣∣∣DF (x)−1DkF (x)

k!

∣∣∣∣∣∣∣∣ 1
k−1

,

α(F, x) = β(F, x) · γ(F, x),

where DkF (x) is the symmetric tensor comprised of the k-th order partial derivatives of f . Since

DkF is a linear map from the k-fold symmetric power of Cn to Cn, so is DF (x)−1DkF (x).

The norm in the definition of γ(F, x) is the operator norm induced by the standard norms on Cn

and the symmetric powers of Cn. With this notation, we state a sufficient condition on quadratic
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convergence which forms the basis for α-theory.

Proposition 6.1.3. A point x0 ∈ Cn is an approximate solution of a square system F = 0 if

α(F, x0) < (13− 3
√

17)/4 ≈ 0.15767078.

Given a point x ∈ Cn and a square polynomial system F = 0, software such as alphaCerti-

fied [37] and NumericalCertification [38] verify the inequality in Proposition 6.1.3 and can thus

rigorously certify that x0 is an approximate solution of F = 0.

6.1.2 Euler’s method

Euler’s method is a standard numerical method for solving a first order ordinary linear differ-

ential equation given an initial value. Fix an ordinary linear differential equation encoded via a

matrix equation
∂x

∂t
= F (t;x(t)), x(t0) = x0,

where F (t;x(t)) : Ct×Cn
x → Cn is continuous near (t0;x0) in Ct×Cn

x. Fix a step size h > 0 and

define

EF (t;x) = x+ hF (t;x).

Applying EF to a point (t0;x0) is called an Euler step. An Euler sequence is a sequence of points

{(t0;x0), (t1;x1), . . .} where ti+1 = ti − h and xi+1 = EF (ti;xi).

Analogous to Newton’s method, given a step size h and a number of steps m, Euler’s method

attempts to compute an approximation xm of x(tm).
.
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Algorithm 6.1.4 (Euler’s method). .
Input:
• A first order linear differential equation ∂x

∂t
= F (t;x)

• An initial value x(t0) = x0

• A step size h
• A number of steps m
Output:
• An approximation xm of x(tm)
Steps:

1 set i = 0
2 while i < m do

2.1 set xi+1 = EF (ti;xi)

2.2 set ti+1 = ti − h
3 return xm.

Example 6.1.5. Figure 6.1 displays four branches of a curve V(F ) ⊂ C2
t,x where

F (t;x) = 5(1− t)(x− 0.1)(x− 0.4)2(x− 0.6) + t(x− 0.25)(x− 0.5)(x− 0.75)(x− 0.05).

The branch containing the point (1; 0.75) is the graph of some function x(t) : [0, 1]→ R2 satisfying

F (t, x(t)) = 0 for t ∈ [0, 1] and thus satisfying the differential equation DF (t;x(t)) = 0. After

applying the chain rule, this becomes,

∂x

∂t
= − −4x4 + 5.95x3 − 3.1375x2 + .671875x− .0433125

−16tx3 + 17.85tx2 + 20x3 − 6.275tx− 22.5x2 + .671875t+ 7.8x− .8

We perform Algorithm 6.1.4 on this differential equation using the auxiliary input

x0 = x(1) = 0.75, h = 0.1, and m = 10,

so that xm = x(0). The computed points {(ti;xi)}mi=0 are shown in Figure 6.1 in green. �

85



Figure 6.1: Algorithm 6.1.4 with h = 0.1, x(1) = 0.75, and m = 10.

6.1.3 Predictor-corrector methods

Given a differential equation
∂x

∂t
= F (t;x(t)) (6.1)

and some starting point x(t0) = x0 satisfying (6.1), a predictor-corrector method attempts to

analytically continue x(t) as t goes from t0 to some tm ∈ R (taking h = tm−t0
m

) by interspersing

applications of a predictor method (like Euler’s method) and a corrector method (like Newton’s

method). Combining both prediction and correction increases the accuracy of (tm, xm) dramati-

cally over the use of Euler’s method alone (see Example 6.1.7).

Predictor-corrector methods are versatile and depend on choices of

(1) a differential equation,

(2) a predictor method,

(3) a corrector method,

(4) the parameters involved in both the predictor and the corrector methods.

We give a predictor-corrector method below when the predictor and corrector steps are Euler’s
method and Newton’s method respectively. Thus, this algorithm requires both a differential equa-
tion and a system of equations G satisfying G(t;x(t)) = 0 for t ∈ [0, 1] as input. We remark
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that this is an extremely simple version of such an algorithm and in practice, predictor-corrector
methods are often much more nuanced, using predictor methods with higher accuracy, applying
Newton’s method repeatedly, and adapting the step size throughout the process as needed. .

Algorithm 6.1.6 (Predictor-Corrector). .
Input:
• A system of equations G(t;x) such that G(t;x(t)) = 0 for all t ∈ [0, 1]
• A first order linear differential equation ∂x

∂t
= F (t;x) satisfied by x(t)

• An initial value x(t0) = x0

• A step size h
• A target t-value, t′

Output:
• An approximate solution of x(t′)
Steps:

0 set m =
⌊

(t0−tm)
h

⌋
so that tm − h < t′ < tm

1 set i = 0
2 while i < m do

2.1 set xi+1 = EF (ti;xi)

2.2 set ti+1 = ti − h
2.3 set xi+1 = NG(ti+1;x)(xi+1)

3 set xm+1 = EF (tm;xm) using a stepsize of tm − t′
4 set xm+1 = NG(t′;x)(xm+1)
5 return xm+1.

Example 6.1.7. Figure 6.2 illustrates the accuracy increase in Algorithm 6.1.6 compared to Euler’s

method alone. We list the numerical data in Table 6.1. �

t-value 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

True values .75 .69914 .668991 .649216 .6354 .625304 .617667 .611729 .607003 .603166 .6

Eul. Only .75 .68175 .641803 .615861 .598597 .587539 .580981 .577285 .575157 .573848 .572984
Eul. Newt. .75 .70252 .669168 .649393 .635461 .625331 .61768 .611735 .607006 .603168 .600001

Eul. Err. 0 .01739 .027188 .033355 .036803 .037765 .036686 .034444 .031846 .029318 .027016
Eul. Newt. Err. 0 .00338 .000177 .000177 .000061 .000027 .000013 .000006 .000003 .000002 .000001

Table 6.1: Numerical data for Algorithm 6.1.6 on input from Example 6.1.5.
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Figure 6.2: Algorithm 6.1.6 applied to the same differential equation, initial value, and step size as in
Example 6.1.5

6.1.4 Numerical errors

Since Algorithm 6.1.6 is numerical, it is subject to numerical errors. Due to the limits of ratio-

nal computations, numerical methods require the approximation of numbers up to some precision.

Applying the linear maps relevant to Newton’s method and Euler’s method to these approximations

could possibly increase their error. Algorithm 6.1.6 is especially prone to this whenever the matrix

DF evaluated at the approximation x∗ has a high condition number,

κ(DF (x∗)) = ||(DF (x∗))−1|| · ||DF (X∗)||.

When this happens, we say that the path is ill-conditioned at x∗. One way to alleviate issues

coming from error accumulation due to low precision is to use adaptive precision. Adaptive

precision involves changing the precision used during the predictor-corrector process based on

indicators of the conditioning of the path being followed.

Another problem which could occur during Algorithm 6.1.6 is path-jumping. Path-jumping

occurs when the result (t∗, x∗) of an Euler step attempting to approximate (t∗, x(t∗)) is close

enough to a solution (t∗, x̂(t∗)) 6= (t∗, x(t∗)) so that a Newton sequence starting with (t∗, x∗)

converges to (t∗, x̂(t∗)). We display how this may occur in Figure 6.3. One way to avoid path-
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Figure 6.3: A visual display of path-jumping.

jumping is to decrease the step size during the predictor-corrector process, particularly when DF

is has high condition number.

Developing robust or certifiable predictor-corrector methods is a goal of much current research

[39, 40, 41]. For further information about these topics, we refer the reader to [42].

6.2 Homotopies

Homotopies make the idea of continuous deformations rigorous and are defined with respect to

general topological spaces. For our purposes, we restrict ourselves to homotopies arising from

polynomial systems. Let H(s;x) ∈ C[s][x] be a system of n polynomials in m parameters

s(1), . . . , s(m) and n variables x. Suppose the projection

π : V(H(s;x))→ Cm
s (6.2)

is a degree d branched cover with regular values U ⊂ Cs. The system H(s;x) may also be thought

of as a map

H(s;x) : Cm
s × Cn

x → Cn. (6.3)
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By the path-lifting property of covering spaces, composing H(s;x) with any continuous path

τ : [0, 1]t → Cm
s with τ(0, 1] ⊂ U produces a map

H(τ(t);x) : [0, 1]t × Cn
x → Cn (6.4)

along with d lifts {xi(t)}di=1 over τ(0, 1] satisfying H(τ(t);xi(t)) = 0 for all t ∈ (0, 1]. Set

Hτ (t;x) = H(τ(t);x) so that for any t∗ ∈ (0, 1], the polynomial systemHτ (t
∗;x) ∈ C[x] has d so-

lutions {xi(t∗)}di=1. We callHτ a homotopy with start systemHτ (1;x) ∈ C[x] and target system

Hτ (0;x) ∈ C[x]. We call {xi(t)}di=1 the paths of the homotopy Hτ and the set {xi(1)}di=1 ⊂ Cn

the start solutions of Hτ . The isolated solutions of the target system Hτ (0;x) are called target

solutions. A homotopy is called regular if additionally, τ(0) ∈ U .

We omit the subscript on Hτ when convenient. When the limit lim
t→0

xi(t) of some path exists,

we extend xi(t) : (0, 1]→ Cn continuously by setting xi(0) := lim
t→0

xi(t). If H(t;x) is a homotopy,

then for any λ ∈ C×, we say λH(t;x) and H(t;x) are equivalent and write H(t;x) ≡ λH(t;x)

since the zeros of λH(t;x) are the same as those of H(t;x).

Lemma 6.2.1. If H(t;x) is a homotopy, then each target solution has the form xi(0) for some path

xi(t) : [0, 1]→ Cn of the homotopy.

Proof. Suppose H(t;x) = H(τ(t);x) for H(s;x) ∈ C[s][x] and τ : [0, 1]→ Cm
s . Let U ⊂ Cm be

the set of regular values of V(H(s;x))
π−→ Cs and let p ∈ V(H(0;x)) be a target solution.

Since V(H(0;x)) is nonempty, Corollary 3.6.7 implies that p belongs to to an irreducible com-

ponent C of V(H(s;x)) of dimension at least m. But the dimension of C is at most m since p is

isolated in its fiber over t = 0. Thus dim(C) = m.

Since C has dimension m and the point p in the fiber of π|C : C → Cm
s over t = 0 is isolated

in its fiber, π(C) is open and dense in Cm
s and thus the intersection of U and π|C(C) is open

and dense. Considering the homotopy H(t;x) : [0, 1] × Cn
x → Cn as a map, observe that since

π|C(C) is open and dense in Cm
s , the set H−1(0) ∩ (0, ε)×Cn

x contains points in C for any ε > 0.

Such points must be of the form xi(ε) for some path xi(t) of H and thus lim
ε→0

xi(ε) converges to
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p ∈ C.

Lemma 6.2.2. Let F (x), G(x) ∈ C[x1, . . . , xn] be square systems. Let

H(s;x) = (1− s)F (x) + sG(x).

If s = 1 is a regular value of π : V(H(s;x)) → Cs then there exists a subset S ⊂ C × C of full

measure such that for γ = (γ0, γ1) ∈ S,

Hτγ (t;x) ≡ (1− t)γ0F (x) + tγ1G(x) (6.5)

is a homotopy, where

τγ : [0, 1]→ Cs

t 7→ tγ1

tγ1 + γ0 − tγ0

.

If s = 0 is a regular value of π as well, then Hτγ (t;x) is regular.

Proof. Let τγ(t) = tγ1

tγ1+γ0−tγ0
. We claim that H(τγ(t);x) has the same solutions as the right-hand-

side of (6.5) for any t ∈ Cr V(tγ1 + γ0 − tγ0). To see this, note that

H(τγ(t);x) = (1− τγ(t))F + τγ(t)G

=

(
1− tγ1

tγ1 + γ0 − tγ0

)
F +

tγ1

tγ1 + γ0 − tγ0

G

The denominator tγ1 + γ0 − tγ0 is zero when t = −γ0

γ1−γ0
. When t 6= γ0

γ0−γ1
, the denominator is

nonzero. Thus, for γ chosen in a subset of C × C of full measure, we can clear denominators

without changing the solutions:

= (tγ1 + γ0 − tγ0 − tγ1)F + tγ1G

= (1− t)γ0F + tγ1G.
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The branch locus D of π has complex codimension 1 in Ct, (i.e. D is a finite set of points

d1, . . . , dk in Ct). We claim that the set of ratios γ0/γ1 with the property that τγ(t) = di for some

i and some t ∈ [0, 1] has measure zero in C ∼= R2. Because scaling does not change solutions,

we may assume that γ1 = 1. Note that τγ(t) = t
t+(1−t)γ0

= 1 + 1
(1−t)

1
γ0

so τγ(t) = di if and only

if (di − 1)(1 − t) = γ−1
0 for some t ∈ [0, 1]. Thus, the only γ−1

0 for which τγ(t) = di for some

i = 1, . . . , k and t ∈ (0, 1] are those whose inverses are contained on the finitely many half-open

line segments {(di − 1)(1 − t)}t∈(0,1]. This set has measure zero. Thus, the subset S ′ ⊂ C × C

inducing such ratios has measure zero in C×C ∼= R4 and its complement S = C×CrS ′ has full

measure in C×C. Moreover, if τγ(0) 6= di for any i = 1, . . . , k, then τγ([0, 1])∩{d1, . . . , dk} = ∅

for general γ ∈ C× C implying H(t;x) is regular.

A homotopy of the form

H(t;x) = (1− t)F (x) + tG(x) (6.6)

is called a straight-line homotopy. Given two square polynomial systems F (x) and G(x), the

construction (6.6) may not be a homotopy, however, if 1 is a regular value of π : V(H(t;x))→ Ct,

then (6.5) is a homotopy with probability one: under any probability measure on the space C× C

of choices for γ in (6.5), the probability that γ is chosen so that H(τγ(t);x) is a homotopy is one.

Replacing H(t;x) with (6.5) is called the γ-trick.

Lemma 6.2.3. Suppose that H(s;x) ∈ C[s][x] is a square system and that

π : V(H(s;x))→ Cm
s

is a branched cover with regular values U ⊂ Cm
s . If s1 ∈ U and s0 ∈ Cm

s , then there exists a path

τ : [0, 1] → U such that τ(0) = s0 and τ(1) = s1 making Hτ a homotopy. If s0 ∈ U then Hτ is a

regular homotopy.

Proof. Since s1 ∈ U , the line connecting s0, s1 in Cm
s intersects the branch locus of π in finitely
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many points. Parametrize this line by

τ ′ : C→ Cm
s

q 7→ (1− q)s0 + qs1.

Composing τ ′ with the map γ from Lemma 6.2.2 for generic (γ0, γ1) ∈ C × C produces a path

τ : (0, 1]→ U so that Hτ is a homotopy, and additionally, if s0 ∈ U then τ : [0, 1]→ U and Hτ is

a regular homotopy.

In light of this result, given a branched cover π : X → Cm
s , a value s0 ∈ Cm

s , and a regular

value s1 ∈ Cm
s , we will henceforth use the phrase “a homotopy from s1 to s0” assuming that we

take a homotopy as in Lemma 6.2.3.

6.2.1 Homotopy continuation

Given a homotopy H(t;x) and some path x(t) : (0, 1]→ Cn of the homotopy for which x(1) is

known, the method of path tracking uses the predictor-corrector algorithm to analytically continue

x(t) as t goes from 1 toward 0. Producing a differential equation satisfied by x(t) is simple. By

definition, H(t;x(t)) = 0 and therefore,

DH(t;x(t)) = 0. (6.7)

Applying the chain rule to (6.7) gives

DtH +DxH ·
∂x

∂t
= 0. (6.8)

Reordering, this becomes the Davidenko differential equation [43],

∂x

∂t
= −(DxH)−1DtH (6.9)
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which when used as the input to the predictor-corrector algorithm (Algorithm 6.1.6) produces a

path tracking algorithm for regular homotopies.
.

Algorithm 6.2.4 (Path tracking for regular homotopies). .
Input:
• A regular homotopy H(t;x)
• Approximate start solutions S1 to H(1;x) = 0
• A step size h
Output:
• Approximate target solutions S0

Steps:
1 for s ∈ S1 do

1.0 Let xs(t) be the path of H(t;x) with xs(1) = s
1.1 set xs(0) equal to the output of Algorithm 6.1.6 using the input

• Differential equation: ∂x
∂t

= −(DxH)−1DtH

• System of equations: H(t;x) = 0

• Initial value: xs(1)

• Step size: h
• Target t-value: 0

2 return S0 := {xs(0)}s∈S.

Euler and Newton steps of the path tracking algorithm at (t∗, x∗) are explicitly

(x∗, t∗)
E−→ (t∗ − h, x∗ + h(DxH(t∗;x∗))−1DtH(t∗;x∗)) (6.10)

(x∗, t∗)
N−→ (t∗;x∗ − (DxH(t∗;x∗))−1H(t∗;x∗)).

Equations (6.10) are only valid at the points (t∗;x∗) where DxH(t∗;x∗) is invertible. This is

the case at all points (t;x(t)) corresponding to a path x(t) of the regular homotopy. When H is not

a regular homotopy, these conditions fail at 0, but more importantly, they become computationally

prohibitive near zero as described in Section 6.1.4.
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6.2.2 Endgames

We tame difficulties of homotopies at t = 0 using endgame algorithms to produce the nonreg-

ular analog of Algorithm 6.2.4. Let H(t;x) be a homotopy coming from lifting a path in Cm
s to

paths {xi(t)}di=1 with respect to the branched cover

π : X → Cm
s .

If H(t;x) is not regular, a path xi(t) may exhibit wild behavior near t = 0 arising from one of two

situations, each preventing the effective use of Algorithm 6.2.4 on H(t;x).

(1) As t→ 0, the path x(t) diverges.

(2) The matrix DxH is not invertible at p = (0;x(0)) because

(a) the rank of DH|p is n− 1,

(b) the rank of DH|p is n, but the rank of DxH|p is n− 1,

(c) the rank of DHp is less than n− 1.

Figure 6.4 displays a homotopy where each instance occurs (in order from top to bottom). The

default practical solution for handling (1) is to simply truncate paths which seem to be diverging.

This is assessed throughout the path tracking process by testing at each step whether |xi(t)| < N

for some tolerance N � 0. If the test fails, the path is no longer tracked under the assumption that

it is diverging. Another option is to homogenize the equations of X and take a random dehomoge-

nization. This involves choosing some hyperplane at infinity, and so long as this (real codimension

2) hyperplane does not meet any of the homotopy paths (which have real dimension 1), no path

will diverge in the corresponding affine chart.

The next section deals with second case.

6.2.3 Cauchy endgame

Each instance of case (2) may be handled the same way via the Cauchy endgame.
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Figure 6.4: A homotopy displaying possible behaviors at t = 0.

Let x(t) be a path of a homotopy H(t;x). We assume throughout this section that the function

H(t;x) extends from a function on the domain [0, 1]t × Cn
x to a function on Ct × Cn

x so that x(t)

extends to a map x(t) : U → (H(t;x))−1(0) where U are the regular values of Ct.

There exists ε > 0 such that 0 ∈ Ct is the only branch point of the homotopy in the disc ∆ ⊂ Ct

of radius ε centered at 0 and the map x(t) has a Puiseux expansion

x(t) =
(
f1

(
t

1
r

)
, . . . , fn

(
t

1
r

))
,

for some r ∈ N and complex analytic functions f1, . . . , fn on the disc D = ε1/r∆. The number

r is called the winding number of x(t). Figure 6.5 displays the graph of some x(t) : ∆ → Cx,

with winding number r = 2, projected onto the product of ∆ ⊂ Ct and the real axis of Cx. Let

θ : D → ∆ be the map θ(z) = zr. Composing gives f(z) = (f1(z), . . . , fn(z)) = x(θ(z)) which

is holomorphic on D and has the property that f(0) = x(0).
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Figure 6.5: A depiction of the local behavior of a path x(t) of a homotopy near a branch point with winding
number 2.

Lemma 6.2.5. Suppose that g is a holomorphic function on a closed disc D ⊂ Cz centered at the

origin. Then

g(0) =
1

2πi

∫
∂D

g(z)

z
dz.

.

Algorithm 6.2.6 (Cauchy Endgame). .
Input:
• A path x(t) of a homotopy H(t;x)
• An approximation of x(ε) such that 0 ∈ ∆ ⊂ Ct is the only branch point in the disc ∆
centered at 0 with radius ε
Output:
• A numerical approximation of x(0)
• The winding number of x(t)
Steps:

1 Use Algorithm 6.2.4 to track the point x(ε) around a parametrization of the boundary
of ∆ by t(s) = εe

√
−1s to produce the points (t(s);x(t(s))) (and store them) until on

the r-th loop, (ε, x(t(0))) = (x(u(2π)), tε)
2 Approximate x′ ≈ x(0) via the path integral in the Cauchy integral formula using the

stored values in step (1)
3 return (x′, r)

.
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Figure 6.6: A visual depiction of the full path tracking algorithm.

Equipped with the Cauchy endgame, we may now state the full path tracking algorithm.
.

Algorithm 6.2.7 (Path tracking). .
Input:
• A homotopy H(t;x)
• Approximate start solutions S1 to H(1;x)
• A tolerance N � 0 for determining divergence
• An endgame tolerance ε > 0
Output:
• Approximate target solutions S0

Steps:
1 for s ∈ S1 do

1.0 Let xs(t) be the path of H(t;x) with xs(1) = s
1.1 Compute xs(ε) using Algorithm 6.2.4
1.2 if |xs(ε)| ≤ N and there are no signs of ill-conditioning of the path xs(t), then

continue tracking to t = 0
1.3 if |xs(ε)| > N then set xs(0) :=∞
1.4 else Use Algorithm 6.2.6 to compute xs(0)

2 return S0 := {xs(0)}s∈S.
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We illustrate this algorithm in Figure 6.6

6.3 Homotopy continuation methods

Given a zero-dimensional polynomial system F ∈ C[x], the process of homotopy continua-

tion finds the isolated solutions of F = 0 by the following model.

(1) If F is overdetermined (more equations than variables), construct a square polynomial sys-

tem F̂ so that V(F ) ⊂ V(F̂ ).

(2) Find a branched cover π : H(t;x)→ Cm
s so that the fiber π−1(y0) is V(F̂ ).

(3) Compute the deg(π) solutions in the fiber π−1(y1) for some y1 ∈ U .

(4) Construct a homotopy Hτ (t;x) where τ is a path connecting τ(1) = y1 to τ(0) = y0.

(5) Apply a path tracking algorithm to compute the target solutions V(H(0;x)) = V(F̂ ) =

π−1(y0) from the start solutions V(H(1;x)) = π−1(y1).

(6) Determine which points of V(F̂ ) are isolated points of V(F ).

Step (1) is done by squaring-up the system F . If F = (f1, . . . , fk) ⊂ C[x], then for a generic

matrix A ∈ Ck×n, the system

F̂ =

{
k∑
i=1

ai,jfi

}n

i=j

is a square polynomial system such that the isolated points of V(F ) are isolated points of V(F̂ ).

Step (6) is usually performed heuristically by checking if F (s) ≈ 0 at each isolated point s ∈

V(F̂ ). If F (s) ≈ 0 up to some numerical tolerance, then s is deemed to be an isolated solution of

F = 0. Recently, methods have been developed for certifying solutions of overdetermined systems

[44, 45]. In our following discussions we will assume that the polynomial systems involved are

already square.

The most general homotopy method is that of a parameter homotopy [46, 47]. Common special

cases of parameter homotopies include the Bézout homotopy [48], the polyhedral homotopy [2,
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49], and the witness homotopy. We explain these in the following sections. For reference, we

include the ingredients of steps (1) and (2) of each homotopy in Table 6.2 at the end of Section

6.4.1.

6.3.1 Parameter homotopies

Let H(s;x) ∈ C[s][x] be a square parametrized polynomial system. A parameter homotopy

is any homotopy coming from the restriction of a branched cover

π : V(H(s;x))→ Cm
s

to a path τ : [0, 1]→ Cm
s such that τ(0, 1] is contained in the regular values U of π so that

Hτ (t;x) : [0, 1]t × Cn
x → Cn

is a homotopy. In other words, every homotopy is a parameter homotopy.

The parameter homotopy method constructs a fiber π−1(s∗) in an ad hoc fashion. This

theoretically can always be done via the Bézout homotopy method, explained in the next section,

but often a more immediate or efficient construction is apparent. In either case, it is standard

practice to move from π−1(s∗) to a fiber π−1(s1) over a general s1 ∈ U via Algorithm 6.2.4. Once

π−1(s1) has been computed for a general s1 ∈ Cm
s , one may quickly solve for a fiber π−1(s0) by

taking τ to be a general path connecting s1 to s0 and applying Algorithm 6.2.7 to the homotopy

Hτ (t;x). We note that when s0 ∈ U , by definition, Hτ (t;x) is a regular homotopy.

6.3.2 The Bézout homotopy

The Bézout homotopy method solves a zero-dimensional polynomial system V(f1, . . . , fn)

where fi ∈ C[x] has degree di. In the language of sparse polynomial systems, this method solves

for any fiber of the branched cover

π∆• : X∆• → C∆•
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where ∆• = (d1∆n, . . . , dn∆n). By Bézout’s theorem, this branched cover has degree d =∏n
i=1 di. The fiber over G = {xdii − 1}ni=1 consists exactly of the points (x1, . . . , xn) where xi

is any of the di-th roots of unity. Consequently, |π−1
∆•

(G)| = d and so G is a regular value of π∆• .

Given a polynomial system F ∈ C∆• , if the path τγ : [0, 1] → C∆• is given by τ(t) = γ0(1 −

t)F +γ1tG for some random γ0, γ1 ∈ C, then by the γ-trick, the mapHτγ (t;x) : [0, 1]t×Cn
x → Cn

is a homotopy. Since the parameters of π are linear, this homotopy is

Hτγ (t;x) = γ0(1− t)F (x) + γ1tG(x).

If F = 0 has d solutions, then F is a regular value, making Hτ (t;x) a regular homotopy.
.

Algorithm 6.3.1 (Bézout homotopy). .
Input:
• A square polynomial system F = (f1, . . . , fn) ⊂ C[x]
Output:
• Approximations of the isolated solutions of F = 0
Steps:

0 set di = deg(fi), G = {xdii − 1}ni=1, S1 = {a ∈ Cn | adii = 1}, and γ0, γ1 ∈ C
random complex numbers

1 return the output of Algorithm 6.2.7 on input homotopy H(t;x) = γ0(1− t)F +
γ1tG and start solutions S1.

It is best to perform path tracking between two polynomial systems where at least one of them

is general. In practice, both the start system G of the Bézout homotopy, and the target system

F could have special structure. For this reason it is common to apply Algorithm 6.3.1 to solve a

random polynomial system Ĝ ∈ C∆• and subsequently apply a straight-line homotopy from Ĝ to

F . This process comprises the Bézout homotopy method.
.
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Algorithm 6.3.2 (Bézout homotopy method). .
Input:
• A square polynomial system F = (f1, . . . , fn) ⊂ C[x]
Output:
• Approximations of the isolated solutions to F = 0
Steps:

0 set di = deg(fi), Ĝ ∈ C∆• random, γ0, γ1 ∈ C random, and H(t;x) = γ0(1 −
t)F + γ1tĜ

1 set Ŝ1 to be the output of Algorithm 6.3.1 applied to Ĝ
2 return the output of Algorithm 6.2.7 on input homotopyH(t;x) and start solutions
Ŝ1.

6.3.3 The polyhedral homotopy

Generalizing the Bézout homotopy, the polyhedral homotopy understands a zero-dimensional

polynomial system F = {f1, . . . , fn} as a member of the family CA• of sparse polynomial sys-

tems supported on A• = {A1, · · · ,An} where supp(fi) = Ai. The relevant branched cover in

this scenario is πA• : XA• → CA• . Unlike more basic homotopy methods, a start system is not

immediately available, but must be constructed. Much of the notation in the subsequent discussion

comes from Section 2.3.

Suppose F ∈ CA• is general and let `• = (`1, . . . , `n) be a set of lifting functions `i : Ai → Z≥0

such that the induced subdivision S`• (Definition 2.4.5) is a fine mixed subdivision of A•. Define

fi,`i(t;x) =
∑
α∈Ai

ci,αx
αt`i(α),

so that New(fi,`i) = conv`i(Ai) and similarly define the homotopy

F`•(t;x) = {fi,`i(t;x)}ni=1,

coming from a path in the branched cover πA• : XA• → CA• discussed in Section 5.3.1. When

t = 1, we have F`• = F and for a general value of t, this is a zero-dimensional polynomial

system with support A• and so π : V(F`•) → Ct is a branched cover with MV(A•) branches. As
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t→ 0, there are often many solutions of F`•(t;x) = 0 which diverge, although some may not. We

understand these paths {xi(t) : Ct → Cn}MV(A•)
i=1 near t = 0 by analyzing their Puiseux expansions

and changing coordinates accordingly. We explain the process below.

The branches of F`•(t;x) are functions x = x(t) admitting a Puiseux expansion

x(t) = (z1t
ν1 , . . . , znt

νn) + terms with higher powers of t,

for some z = (z1, . . . , zn) ∈ Cn and ν = (ν1, . . . , νn) ∈ Qn. Taking the composition F`•(t;x(t))

yields

{fi,`i(x(t))}ni=1 =

{∑
α∈Ai

cαz
αt〈ν,α〉+`i(α) + terms with higher powers of t

}n

i=1

.

The solutions of the above system approach those of

F ν(t; z) =

{∑
α∈Ai

ci,αz
αt〈ν,α〉+`i(α)

}n

i=1

,

as t→ 0. Let ω = (−ν,−1) and observe that the terms of

∑
α∈Ai

ci,αz
αt〈ν,α〉+`i(α) =

∑
α∈Ai

ci,αz
αt〈−ω,Γi(α)〉

with lowest power of t are those α such that the inner product 〈ω,Γi(α)〉 is maximized. Equiv-

alently, these are the vectors α such that Γi(α) ∈ (Γi(Ai))ω. Dividing by the lowest power of t

occurring in each polynomial of F ν(t; z) and evaluating at t = 0 yields the polynomial system

Gν = 0 consisting of polynomials

f νi =
∑

Γi(α)∈(Γi(Ai))ω

ci,αz
α.

The solutions of Gν in (C×)n are the same as those of F ν(0; z) in (C×)n. Moreover, since the face
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of a Minkowski sum is a Minkowski sum of faces, we have that

conv

(
n∑
i=1

(Γi(Ai))ω

)
= (conv`•(A•))ω

is a face of conv`•(A•). Let Ci(ν) = supp(f νi ) and C•(ν) = (C1(ν), . . . , Cn(ν)).

Lemma 6.3.3. The system Gν has a solution in the algebraic torus if and only if C• is a fine mixed

cell of the fine mixed subdivision S`• .

Proof. Suppose Gν has a solution in (C×)n. Since Gν is a general sparse polynomial system, the

Bernstein-Kushnirenko Theorem asserts that the number of solutions in the algebraic torus is the

mixed volume of the supports of the f νi . By Lemma 2.5.1, the polytopes {conv(Γi(Ai))ω}ni=1 form

an essential set and so the dimension of (conv`•(A•))ω is n. Thus, it is a facet in the lower hull of

conv`•(A•) and we conclude that C•(ν) is a cell of S`• .

If for any i ∈ [n] the polynomial f νi is a monomial, then Gν has no solutions in the algebraic

torus. Thus, each conv(Ci(ν)) has dimension at least 1 and so conv(C•(ν)) is mixed. Since S`• is

a fine mixed subdivision, C•(ν) is fine mixed.

If ν exposes a fine mixed cell, then each f νi is a binomial and the binomial system Gν may be

solved using the Smith normal form (see Section 5.1.3) to produce all dν = vol(C•(ν)) solutions

Xν to Gν . These dν solutions correspond to limits of paths of F`•(t;x) and may be tracked from

t = 0 to t = 1 by first predicting their values at some ε > 0 in the z-coordinates, applying a

corrector method, and changing coordinates back to F`•(t;x) to complete the path tracking from

t = ε to t = 1. This gives dν points Xν of V(F ) ∩ (C×)n. By Lemma 2.4.3, this comprises all of

the MV(A•) branches of this homotopy.

We illustrate the polyhedral homotopy with an example.
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Example 6.3.4. Let A• be as in Example 2.4.8 and take

f1 = 3 + 4x− 2y + xy

f2 = 6− 2xy2 + x2y

and let

`1(0, 0) = 2, `1(0, 1) = `1(1, 0) = `1(1, 1) = 3,

`2(0, 0) = `2(1, 2) = `2(2, 1) = 1.

so that

F (t;x) = {3t2 + 4xt3 − 2yt3 + xyt6, 6t− 2xy2t+ x2yt}.

The three directions ωi = (−νi,−1) exposing facets in the lower hull of conv`•(A•) which corre-

spond to fine mixed cells are

ω1 = (2, 2,−1), ω2 = (−2, 1,−1), ω3 = (1,−2,−1),

and so ν1 = (−2,−2), ν2 = (2,−1), ν3 = (−1, 2).

Construct F ν1(t;x(t)) = {3t2+4z1t−2z2t+z1z2t
2, 6t−2z1z

2
2t
−5+z2

1z2t
−5} and divide out by

the lowest powers of t to produce Gν1(z) = {3 + z1z2,−2z1z
2
2 + z2

1z2} which has 2 = vol(C•(ν1))

solutions: Xν1 =
{

(
√
−3/2,

√
−6), (−

√
−3/2,−

√
−6)

}
.

Similarly, for ν2 construct F (t;x(t))ν2 = {3t2 + 4z1t
5 − 2z2t

2 + z1z2t
7, 6t− 2z1z

2
2t+ z2

1z2t
4}

and Gν2(z) = {3 − 2z2, 6 − 2z1z
2
2}. The system Gν2(z) has 1 = vol(C•(ν2)) solution, namely

Xν2 = {(4/3, 3/2)}.

Finally, for ν3 we have F ν3(t;x(t)) = {3t2 + 4z1t
2− 2z2t

5 + z1z2t
7, 6t− 2z1z

2
2t

4 + z2
1z2t} and

Gν3(z) = {3 + 4z1, 6 + z2
1z2} which has 1 = vol(C•(ν3)) solution: Xν3 = {(−3/4,−32/3)}.

Each solution set Xνi may be used to approximate dνi solutions of F`•(t;x) at t = ε > 0 via
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Figure 6.7: A cartoon describing the Polyhedral homotopy.

a predictor and corrector step followed by a coordinate change. Subsequently, we may track these

solutions of Xνi ⊂ V(F ) ∩ (C×)n via the homotopy F`•(t;x) as t goes from ε to 1. �

.

Algorithm 6.3.5 (Polyhedral homotopy). .
Input: A general sparse polynomial system F ∈ CA•
Output: All solutions of F = 0 in the algebraic torus (C×)n

Steps:
0 set solutions = ∅
1 Choose lifting functions `• such that S`• is a fine mixed subdivision of A•
2 Compute the mixed cells C(1)

• , . . . , C(m)
•

3 for each mixed cell C• do
3.1 Compute the vector (−ν,−1) exposing conv`•(C•)
3.2 Compute Xν = V(Gν) ∩ (C×)n using Smith normal form

3.3 Move the solutions Xν from t = 0 to t = ε > 0 via a prediction and correction
step and change coordinates to x

3.4 Track the solutions of F`•(ε;x) in step (3.3) from t = ε to t = 1 (backwards)
under the homotopy F`•(t;x) and append the resulting solutions Xν to the list
solutions

4 return solutions.
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Since we usually do not a priori know whether or not a sparse polynomial is general in the sense

of Proposition 5.3.1, given F ∈ CA• , we solve for the isolated solutions of F in the algebraic torus

via the following method.
.

Algorithm 6.3.6 (Polyhedral homotopy method). .
Input: A sparse polynomial system F ∈ CA•
Output: All isolated solutions of F = 0 in the algebraic torus (C×)n

Steps:
0 Pick a general sparse polynomial system G ∈ CA•
1 Apply Algorithm 6.3.5 to G to produce all isolated points V(G) ∩ (C×)n

2 Track the points V(G) ∩ (C×)n to the points V(F ) ∩ (C×)n via the straight-line ho-
motopy H(t;x) = γ0(1− t)F + γ1tG

3 return V(F ) ∩ (C×)n
.

6.4 Witness sets

Positive-dimensional varieties are represented in numerical algebraic geometry by slicing them

with sufficiently many general hyperplanes which cut out degree-many points. Numerical approx-

imations of these points are computed using homotopy methods and stored in the fundamental data

structure of numerical algebraic geometry, a witness set.

Definition 6.4.1. Let X be an irreducible variety. A witness set for X is a triple (F,L, S) where

• F : a finite set of polynomials such that X is an irreducible component of V(F ).

• L: a general affine linear space of complementary dimension to X .

• S: a set containing approximations of each of the points in X ∩ L.

IfX is reducible with top-dimensional componentsX1, . . . , Xk then a witness set forX is (F,L, S)

where S = S1 ∪ · · · ∪ Sk such that (F,L, Si) is a witness set for Xi.

We refer to L as a witness slice and S as witness points. One immediate way to compute a

witness set is by using Algorithm 6.3.1.
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Algorithm 6.4.2 (Constructing a witness set). .
Input:
• A polynomial system F = (f1, . . . , fn−m) ⊂ C[x] such that X is the union of irreducible
components of V(F ) of dimension m = dim(V(F ))
Output:
• A witness set (F,L, S) for X
Steps:

1 Choose m random linear polynomials L = {`1, . . . , `m} ⊂ C[x]
2 Apply Algorithm 6.3.1 to F ∪ ` to produce S
3 return (F,L, S)

.

If X = X1 ∪ · · · ∪Xk ⊂ Cn is the irreducible decomposition of a variety whose components

are not all of the same dimension, let Dim(X) denote the set {dim(Xi)}ki=1. A witness superset

of X is a collection {(F,Li, Si)}i∈Dim(X) where (F,Li, Si) is a witness set for the union of all

irreducible components of X of dimension i. Methods for computing witness supersets include

“working dimension by dimension” and the “cascade algorithm”. These are discussed in [50, Ch.

9.3-9.4].

6.4.1 The witness cover

Given an irreducible variety X ⊂ Cn of dimension m, let

W (X) =
{

(x, L)
∣∣ x ∈ X ∩ V(L), and L ∈ (C∆n)m} ⊂ X × (C∆n)m

}
be the incidence variety of points on X with linear varieties cut out by m linear polynomials. Then

W (X) is irreducible of dimension m(n+ 1) and the map,

πW (X) : W (X)→ (C∆n)m,

is a degree deg(X) branched cover (by Lemma 3.8.8) called the witness cover of X . With this

language, it is straightforward to describe how to “move” witness sets.
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Algorithm 6.4.3 (Regular Witness homotopy). .
Input:
• A witness set (F,L, S) for X
• A general linear space L′ of dimension n−m
Output:
• A witness set (F,L′, S ′) for X
Steps:

1 set H(t;x) = γ0(1− t)[F |L] + γ1t[F |L′]
2 Track the witness points S via H(t;x) to the solutions S ′ of F = L′ = 0
3 return (F,L′, S ′)

.

We may deform witness sets of a variety to special linear intersections via a similar algorithm.
.

Algorithm 6.4.4 (Witness homotopy). .
Input:
• A polynomial system F = (f1, . . . , fn−m) ⊂ C[x] such that X is an irreducible compo-
nent of V(F ) of dimension m = dim(V(F ))
• A witness set (F,L, S) for X
• A linear space L′ of dimension n−m
Output:
• The points S ′ = X ∩ L′
Steps:

1 set H(t;x) = γ0(1− t)[F |L] + γ1t[F |L′]
2 Track the witness points S via H(t;x) to the solutions S ′ of F = L′ = 0
3 return S ′.

Since L and L′ are regular values of the branched cover πW (X), Lemma 6.2.2 guarantees that

Algorithm 6.4.4 computes a witness set (F,L′, S ′). We remark that Algorithm 6.4.4 functions just

as well for reducible varieties X =
⋃k
i=1Xi where the map πW (X) becomes a branched cover

which is not irreducible.

Now that we have explained each of the four homotopy methods mentioned in the introduc-

tion, we provide a reference table (Table 6.2) for their ingredients. Parameter homotopies and
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Homotopy Relevant systems Branched Cover Start system

Parameter
Section 6.3.1

Fs ∈ C[s][x] V(Fs)
π−→ Cm

s V(Fs1)

Bézout
Section 6.3.2

F ∈ C∆• = Cd1∆n,...,dn∆n X∆•

π∆•−−→ C∆• {xdii − 1}ni=1

Polyhedral
Section 6.3.3

F ∈ CA• XA•
πA•−−→ CA• Constructed from a

fine mixed subdivision

Witness
Section 6.4

X ∩ L where
dim(X) = m = codim(L)

W (X)
πW (X)−−−−→ (C∆n)m Any witness set for X

Table 6.2: Ingredients for homotopy methods.

the Bézout homotopy are implemented in most numerical algebraic geometry software including

Bertini, PHCPack, HOM4PS, homotopycontinuation.jl and NAG4M2 [49, 51, 52, 53, 54]. The

polyhedral homotopy is implemented in PHCPack and HOM4PS [49, 53].

6.4.2 Witness sets for images of maps

Much of the strength of numerical algebraic geometry stems from the fact that witness sets

(the fundamental data structure in numerical algebraic geometry) can often be computed even

when their symbolic analogs, Gröbner bases, cannot. In some sense, this is because Gröbner

bases transparently express so much information about a variety while witness sets do not. Rather,

witness sets offer users the option to discover information as-needed, similar to the oracles from

Section 2.

One particular instance where witness sets can be easily computed is when the variety of inter-

est is a projection. Because witness sets are geometric in nature, they behave well with respect to

projections.

Definition 6.4.5. A pseudo-witness set for an affine variety Z is a quadruple (F, ϕ, ϕ−1(L1), S)

where

• F : a finite set of polynomials such that X is the union of top dimensional components of

V(F ) ⊂ CN .
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• ϕ: a coordinate projection ϕ : CN → Cn such that Z = ϕ(X) and dim(Z) = dim(X).

• L1: a general affine linear space in Cn of complementary dimension to Z.

• S: a set containing approximations of each of the points in X ∩ ϕ−1(L1).

Often, one desires a pseudo-witness set for the image Z = ϕ(X) of a map X
ϕ−→ Cn where the

dimension of X is larger than its image. When this is the case, one may take dim(X) − dim(Z)

generic linear equations L2 ⊂ C[x1, . . . , xN ] so thatX∩L2 so that that the image ofX∩L2
ϕ−→ Cn

is Z and dim(X ∩ L2) = dim(Z). By factoring ϕ through its graph, it is enough to be able to

compute witness sets for projections. We do this in the following way.
.

Algorithm 6.4.6 (Constructing a pseudo-witness set). .
Input:
• A witness set (F,L, S) for a variety X of dimension m
• A coordinate projection ϕ : CN → Cn such that Z = ϕ(X) and dim(Z) = m
Output:
• A pseudo-witness set (F, ϕ, ϕ−1(L∗), S) for Z
Steps:

0 Assume that ϕ(x1, . . . , xN) = (x1, . . . , xn)
1 Fix dim(Z) random linear forms L∗ ⊂ C[x1, . . . , xn]
2 Use Algorithm 6.4.4 to compute a witness set (F,L∗, S∗) for X by moving

(F,L, S)→ (F,L∗, S∗)
3 return (F, ϕ, ϕ−1(L∗), S)

.

Example 6.4.7. We give two examples which exhibit subtleties in pseudo-witness sets. The first

is the twisted cubic C ⊂ C3 with the projection ϕ : C3 → C2 such that the image is a parabola.

During the homotopy which constructs a pseudo-witness, one of the three points of intersection

with the twisted cubic diverges towards infinity.

The second example involves the necessity of a dimension reduction. The varietyX in this case

is the cylinder V(x2 + y2 − 1) ⊂ C3
x,y,z along with the projection π : C3

x,y,z → Cx,y whose image

is the circle defined by the same equation in C[x, y]. In this case, to construct a pseudo-witness set

for the circle, we must first slice the cylinder by a hyperplane to produce the red curve C in Figure
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Figure 6.8: (Reprinted from [1]) Constructing a pseudo-witness set for a projection of a twisted cubic

6.9. The dimension of C is the same as the dimension of its image and so one may simply deform

a witness set for C to be vertical with respect to π to produce a pseudo-witness set for the circle. �

Any algorithm that may be performed using solely the witness cover of a variety may also be

performed using pseudo-witness sets since these may be moved just as easily with respect to the a

pseudo-witness cover. Suppose ϕ : X → Z is a projection. To construct a pseudo-witness cover

for Z, replace X and Z with affine open sets, intersect X with a linear space L2 of codimension

dim(X) − dim(Z), and relabel variables so that ϕ(x1, . . . , xN) = (x1, . . . , xn) is a degree d

branched cover of affine varieties X ⊂ CN , Z ⊂ Cn of dimension m. Take

PW (Z, ϕ) =
{

(x, L1)
∣∣ x ∈ X ∩ L1, and L1 ∈ (C∆n)m

}
to be the incidence variety of points onX with linear varieties cut out bym polynomials in the first

n coordinates. Define the pseudo-witness cover of Z with respect to ϕ (and L2) to be the map

πPW (Z,ϕ) : PW (X)→ (C∆n)m.

Any pseudo-witness set of the form (F, ϕ, ϕ−1(L1), S) is a fiber S = π−1
PW (X)(L1) of πPW (X)
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Figure 6.9: Constructing a pseudo-witness set for a projection of a cylinder via slicing.

by construction. In particular, we see that Z has degree |S|/d witnessed by the |S|/d points

ϕ(S) ⊂ Z ∩ L1. Note, that |S| is not necessarily equal to the degree of X , as shown in the first

part of Example 6.4.7. For more information about pseudo-witness sets, see [55].

6.5 Monodromy

Recall the background on monodromy groups of branched covers in Section 4.

Let F (s;x) ⊂ C[s][x] be a parametrized polynomial system in m parameters s and n variables

x so that

π : V(F (s;x))→ Cm
s

is a degree d branched cover with regular values U ⊂ Cm
s . We do not assume π is an irreducible

branched cover. For s1, s2 ∈ U and c1 ∈ C let

τs1,s2,c1 : [0, 1]t → Cm
s

t 7→ (1− t)s1 + c1ts2
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be a path in Cm
s . For this section, we will assume that c1 is in the Euclidean dense subset of C

which satisfies τs1,s2,c1([0, 1]) ⊂ U . Applying the path tracking algorithm for regular homotopies

(Algorithm 6.2.4) to the homotopy Hs1,s2,c1(t;x) produced by π and τs1,s2,c1 gives the bijection

mτs1,s2,c1
discussed in Section 4.3. Picking another generic complex number c2, the composition

mτs2,s1,c2
◦mτs1,s2,c1

: π−1(s1)→ π−1(s1)

is a monodromy permutation of the d points in the fiber over s1. This permutation is the mon-

odromy element mγ where γ is the loop in Cm
s formed by following the concatenation of the paths

τs1,s2,c1 and τs2,s1,c2 .

This leads immediately to a heuristic algorithm for computing elements of the monodromy

group of a branched cover.
.

Algorithm 6.5.1 (Extract monodromy group element). .
Input:
• A parametrized polynomial system F (s;x) ⊂ C[s][x] such that π : V(F (s;x)) → Cm

s is
an irreducible branched cover of degree d
• A fiber S1 = π−1(s1)
Output:
• An element g of the monodromy groupMπ

Steps:
1 Label S1 = {p1, . . . , pd} so that pi is identified with i ∈ [d]
2 Pick s2,∈ U and generic c1, c2 ∈ C
3 Track all points in S1 along Hs1,s2,c1 to produce S2

4 Track all points in S2 along Hs2,s1,c2 to produce (mτs2,s1,c2
◦mτs1,s2,c1

)(S)
5 Determine g = mτs2,s1,c2

◦mτs1,s2,c1
(pi) for each i ∈ [n] to determine g

6 return g
.

Example 6.5.2. Rather than producing loops with only two parameter values in our examples, we

use three parameters, s1, s2, and s3, to clarify the ideas and images. Figure 6.10 shows a schematic

of the computation of a monodromy group element using numerical algebraic geometry. Labeling

the points of π−1(s1) from bottom to top as 1, 2, . . . , 5, the element mγ ∈Mπ is mγ = (1, 2)(4, 5),
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Figure 6.10: A schematic of a single monodromy loop tracked numerically.

written in cycle notation. Its cycles are depicted in distinct colors in Figure 6.10. �

To determine the monodromy group Mπ of a branched cover, one may repeatedly extract

group elements using Algorithm 6.5.1 until the group generated by these elements fails to grow

after many runs of the algorithm. This is, of course, heuristic. A more rigorous way to compute the

monodromy group is to restrict the parameter space Cs to a generic line Ct ⊂ Cs. The branch locus

of π restricted to Ct consists of finitely many points b1, . . . , bk. A theorem of Zariski [56] implies

that the monodromy groupMπ is generated by loops around each bi. For more information about

computing monodromy groups of branched covers using numerical algebraic geometry, we refer

the reader to [57].

6.5.1 Solving via monodromy

Recall that the monodromy group of an irreducible branched cover is transitive (Lemma 4.3.1).

Thus, the observation that monodromy permutations can be explicitly computed using numerical
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algebraic geometry suggests one way to compute π−1(s1) given some point q ∈ π−1(s1): pick a

random monodromy loop γ, use a homotopy to track q via a lift of γ thus computing mγ(q), and

repeat. This is the naïve version of the monodromy solve algorithm.
.

Algorithm 6.5.3 (Naïve monodromy solver). .
Input:
• A parametrized polynomial system F (s;x) ⊂ C[s][x] such that π : V(F (s;x)) → Cm

s is
an irreducible branched cover
• A single point q in some fiber π−1(s1)
Output:
• All points in π−1(s1)
Steps:

1 set S1 = {q}
2 while π−1(s1) has not been fully computed do

2.1 Pick s2,∈ U and generic c1, c2 ∈ C
2.2 Track all points in S1 along Hs1,s2,c1 to produce S2

2.3 Track all points in S2 along Hs2,s1,c2 to produce

S ′1 = (mτs2,s1,c2
◦mτs1,s2,c1

)(S) ⊂ π−1(s1)

2.4 set S1 = S1 ∪ S ′1
3 return S1.

Remark 6.5.4. Conditions for determining when the fiber has been “fully computed” in step (2)

are called stopping criteria and are not obvious. When the degree of the cover is known, then

a stopping criterion for Algorithm 6.5.3 is “stop when deg(π) points of π−1(s1) have been com-

puted”. We give an alternative stopping criterion when π is the witness cover of a variety. �

By Lemma 5.1.5, the centroids of witness points on a pencil of witness slices of an irreducible

affine variety lie on an affine line. A stronger result is true.

Lemma 6.5.5. Let X be an irreducible affine variety and Lt a general pencil of linear spaces of

complementary dimension. Given a subset of witness points S0 ⊂ L0 ∩ X , the centroids of the

paths starting at S0 along the homotopy over Lt in the witness cover moves affine linearly if and

only if S0 = L0 ∩X .
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Let X be an irreducible variety of dimension m. When performing Algorithm 6.5.3 on the

witness cover

πW (X) : W (X)→ (C∆n)m

a stopping criterion is that the condition in Lemma 6.5.5 holds. This may be checked during

the monodromy algorithms by moving a witness set to three slices in a pencil and numerically

taking the centroids of the witness points. As witness points are only numerical approximations,

this test relies on determining whether the midpoint mpq of two centroids p, q ∈ Cn satisfies

p+q
2
−mpq = 0: it requires assessing whether or not a numerical value is zero. Although extremely

reliable in practice, this means the trace test does not certify the computation of all witness points.

Developing an algorithm to certify the trace task is an important open task in numerical algebraic

geometry.

6.5.2 Monodromy solving for real branched covers

Algorithm 6.5.3 is not optimal. For example, suppose the first two loops of Algorithm 6.5.3 are

γ and γ′ depicted in Figure 6.11. These loops induce a transitive subgroup of S5, but Algorithm

6.5.3 would only use each once, discovering a total of three points after the second loop.

Figure 6.11: An example of two monodromy loops generating a transitive subgroup of a monodromy group.
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A model for monodromy algorithms as well as a strategy-analysis for choosing monodromy

loops are given in [58]. We propose improving Algorithm 6.5.3 by taking advantage of auto-

morphisms of fibers guaranteed by the structure of π. For example, many polynomial systems of

interest are defined over the real numbers, whose solutions come in complex conjugate pairs (see

Section 4.5) and so computing a nonreal solution x ∈ π−1(s1) immediately computes its conjugate

x ∈ π−1(s1). This occurs, in particular, whenever π is a real branched cover and s1 is real. Thus,

we propose an additional step to Algorithm 6.5.3.
.

Algorithm 6.5.6 (Monodromy solver for real branched covers). .
Input:
• A parametrized polynomial system F (s;x) ⊂ C[s][x] such that π : V(F (s;x)) → Cm

s is
an irreducible real branched cover
• A single point q in some fiber π−1(s1) with s1 real
Output:
• All points in π−1(s1)
Steps:

1 set S1 = {q}
2 while π−1(s1) has not been fully computed do

2.1 Pick s2,∈ U and generic c1, c2 ∈ C
2.2 Track all points in S1 along Hs1,s2,c1 to produce S2

2.3 Track all points in S2 along Hs2,s1,c2 to produce

S ′1 = (mτs2,s1,c2
◦mτs1,s2,c1

)(S) ⊂ π−1(s1)

2.4 set S1 = S1 ∪ S ′1 ∪ S ′1
3 return S1.

Example 6.5.7. Figure 6.12 depicts a schematic for Algorithm 6.5.6 showing a monodromy loop

along with complex conjugation generating a transitive subgroup of S5. Algorithm 6.5.6 computes

all solutions in three steps using only one monodromy loop along with complex conjugation. �

We remark that step (2.4) in the above algorithm may be replaced by any operation g preserving

the fiber π−1(s1). In particular, if g is a deck transformation of the cover π, then one may append

the orbit gS1 to S1 in step (2.4) at a nominal cost.
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Figure 6.12: A schematic describing step (2) of Algorithm 6.5.6.

6.5.3 Expected success of monodromy solving

The authors of [58] address the question of how many monodromy loops are necessary to

induce a transitive subgroup ofMπ under the assumptions

(1) Mπ is the full symmetric group.

(2) Random choices of s2, c1, and c2 samples elements ofMπ uniformly at random.

For branched covers π of degree d, they prove a generalization of Dixon’s theorem [59], a result

which implies that the probability of two random elements of Sd generating a transitive subgroup

of Sd approaches 1 as d→∞.

One may hope for an analogous result with respect to Algorithm 6.5.6. That is, given a

branched cover π of degree d and a regular value s1 whose fiber is known to be fixed under the

action ι of complex conjugation, what is the probability that a random monodromy element along

with complex conjugation generate a transitive subgroup of π−1(s1)?

As in [58], we must make decide how to model the action of complex conjugation on a fiber.

A fiber of π whose points are fixed under complex conjugation may consist entirely of real points
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(in which case Algorithm 6.5.6 is no different than Algorithm 6.5.3) or entirely of nonreal points,

or some number in between. Thus, we analyze the case when conjugation on a fiber is modeled

by random involutions in Sd and the case that it is modeled by a fixed-point free involution. The

latter case is relevant in applications as there are many instances where we can guarantee that a

fiber contains no real points (such as computing witness sets for varieties which are compact over

R).

We fix some notation. Let Ri ⊂ Si be a subset of the symmetric group with the property

that whenever the subgroup generated by σ ∈ Si and τ ∈ Ri has ki orbits of size i, then τ ∈

(R1)k1 × (R2)k2 × · · · × (Rd)
kd where each factor of Ri acts on an orbit of size i. Note that not

every sequence of subsets of Si has this property. For example, any sequence of subsets starting as

R1 = {(1)}, R2 = {(1)}, R3 = {(1, 2)}, . . .

does not have this property since the permutation (1, 2) has orbits of sizes (k1, k2) = (1, 1), but

(1, 2) 6∈ R1 ×R2.

Proposition 6.5.8. Let Ri be a sequence of subsets of Si such that whenever (σ, τ) ∈ Sd ×Rd has

ki orbits of size i, then (σ, τ) ∈ (S1 × R1)k1 × · · · × (Sd × Rd)
kd . Let td be the probability that

(σ, τ) ∈ Sd ×Rd generates a transitive subgroup of Sd. Then the ti satisfy the recursion

d|Rd| =
d∑
i=1

iti|Ri| · |Rd−i|.

Proof. We use the same strategy as [58, 59] to determine a recursion for the probabilities td.

Let Kd = {k ∈ Nd |
∑
iki = d} be the set of number partitions of d. The number of

set partitions which have parts corresponding to some k is
(

d!∏d
i=1(i!)kiki!

)
. This is since there are

d! ways to place the numbers {1, . . . , n} into a sequence of cycles of sizes k1, . . . , kd, but we

have over counted since each cycle can be permuted i! ways, and cycles of the same size may be

permuted as well. Let (σ, τ) ∈ Sd × Rd, then if 〈σ, τ〉 is a subgroup whose orbits have sizes k,

then σ, τ must respect these partitions so (σ, τ) ∈ (S1 × R1)k1 × · · · × (Sd × Rd)
kd . So we may
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assume σ and τ have been uniformly chosen from Sk1
1 ×· · ·×S

kd
d andRk1

1 ×· · ·×R
kd
d respectively.

Therefore, using the probabilities ti we may count the elements in Sd ×Rd via

|Sd ×Rd| =
∑
k∈Kd

(
d!∏d

i=1(i!)kiki!

)
d∏
i=1

[ti(i! · |Ri|)]ki

= d!
∑
k∈Kd

d∏
i=1

(
tii!|Ri|
i!

)ki 1

ki!

= d!
∑
k∈Kd

d∏
i=1

(ti · |Ri|)ki
ki!

and since |Sd ×Rd| = d! · |Rd| we have

|Rd| =
∑
k∈Kd

d∏
i=1

(ti · |Ri|)ki
ki!

. (6.11)

Using the theory of generating functions, we extract a recursion on the numbers ti. Let F̂ (x) be

the generating function of F (d) = |Rd| and recall the formal identity

exp

(
∞∑
i=1

yix
i

)
=
∞∑
d=0

xd

∑
k∈Kd

d∏
i=1

ykii
ki!

 .

Applying this formula to F̂ (x) using Equation (6.11) gives us

exp

(
∞∑
i=1

ti|Ri|xi
)

= F̂ (x).

Now consider F̂ ′(x):

∞∑
d=1

d|Rd|xd−1 =
∂

∂x
F̂ (x)

=
∂

∂x
exp

(
∞∑
i=1

ti|Ri|xi
)
.
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When we apply the chain rule to differentiate this expression we get

= F̂ (x) ·

(
∞∑
i=1

iti|Ri|xi−1

)

=

[
∞∑
d=1

|Rd|xd
]
·

[
∞∑
i=1

iti|Ri|xi−1

]

=
∞∑
d=1

(
∞∑
i=1

iti|Ri| · |Rd|xd+i−1

)

making the substitution d′ = d+ i yields the equality

∞∑
d=1

d|Rd|xd−1 =
∞∑
d′=1

xd
′−1

(
d′∑
i=1

iti|Ri| · |Rd′−i|

)
.

Equating the coefficients of xd gives a recursion

d|Rd| =
d∑
i=1

iti|Ri| · |Rd−i| (6.12)

td = 1−
d−1∑
i=1

i

d
ti
|Ri| · |Rd−i|
|Rd|

, (6.13)

completing the proof.

Even though we followed exactly the same argument used in the results of [58, 59] in our proof

of Proposition 6.5.8, we are not aware of this elementary result in the literature. We remark that

when Ri is a subgroup of Si, the analysis of the probabilities that random elements of Ri × Si

generating either Ai or Si has been done [60].

As mentioned, there are three natural choices of Ri to analyze:

(1) Ri = Si

(2) Ri = Ti

(3) R2i = {all fixed point free involutions} =: T2i.
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The first case is the subject of Dixon’s theorem. The second case corresponds to choosing a

random involution to model complex conjugation on a fiber of the monodromy algorithm. The

third case corresponds to modeling complex conjugation on a fiber where every solution is nonreal

(in particular d is even). We list the first few terms of the probabilities ti in each case in Table 6.3.

d 1 2 3 4 5 10 20 30
Sd 1 0.75 0.722 0.739 0.768 0.881 0.946 0.965
Td 1 0.75 0.583 0.575 0.546 0.607 0.731 0.792
Td - 1 - 0.833 - 0.863 0.937 0.962

Table 6.3: Some probabilities of generating a transitive action by uniformly choosing from Sd ×Rd

We remark that the only property of a sequence {Ri}i∈N determining the probabilities ti are the

cardinalities |Ri|.

Corollary 6.5.9. For d = 2n, the probability that a fixed point free involution and a random

element of Sd generate a transitive subgroup of Sd approaches 1 as d→∞.

Proof. Let pd = 1 − td be the probability that a random element of Sd and a fixed point free

involution do not generate a transitive subgroup of Sd. Note that if d is odd, then there are no fixed

point free involutions. We let aj be the number of fixed point free involutions on a set of cardinality

2j so that

aj = (2j − 1)!! =
(2j)!

j!2j
.

These may be recursively defined by aj = (2j − 1)aj−1 and a1 = 1.

Set d = 2n so that (6.12) becomes

2n · an =
n∑
j=1

(2j) · t2j · aj · an−j
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which we may rearrange so that

t2n = 1−
n−1∑
j=1

2j

2n
t2j
aj · an−j
an

= 1−
n−1∑
j=1

j

n
t2j
aj · an−j
an

.

Consequently, to show that pd → 0 as d→∞ we show that

lim
n→∞

p2n = lim
n→∞

n−1∑
j=1

j

n
t2j
aj · an−j
an

= 0.

Let m = bn−1
2
c and observe that since the t2j are probabilities, they are bounded by 1 so

pd ≤
n−1∑
j=1

j

n

aj · an−j
an

.

By symmetry, if n is even, we have

p2n ≤
1

2

a2
n
2

an
+

m∑
j=1

aj · an−j
an

≤
(

1

2

)m
+

m∑
j=1

aj · an−j
an

and so p2n will approach 0 as n→∞ if and only if

m∑
j=1

aj · an−j
an

does. If n is odd, this bound also holds. Since the aj satisfy the recursion aj = (2j − 1)aj−1, we

know that

ajan−j = aj+1an−j−1
2n− 2j

2j + 1
> aj+1an−j−1

for all 1 ≤ j ≤ m. Thus,
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lim
n→∞

m∑
j=1

aj · an−j
an

≤

(
lim
n→∞

a1 · an−1

an
+

m∑
j=2

a2 · an−2

an

)

= lim
n→∞

(
1

2n− 1
+

m∑
j=2

3

(2n− 1)(2n− 3)

)

= lim
n→∞

1

2n− 1
+

3(m− 1)

(2n− 1)(2n− 3)
= 0

showing that lim
n→∞

p2n → 0 so lim
n→∞

t2n = 1.
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7. NEWTON POLYTOPES AND TROPICAL MEMBERSHIP VIA NUMERICAL

ALGEBRAIC GEOMETRY

A major theme of numerical algebraic geometry is the extraction of information about a variety

X using witness sets. For varieties arising as the image of a map, the algebraic information of

generators of the ideal I(X) may not be readily available. Finding these generators is the problem

of implicitization. While this may be done using symbolic methods involving Gröbner bases, this

technique is often computationally prohibitive for moderate to large problems. Even when X is

a hypersurface, its defining polynomial may be so large that it is not human-readable. Thus, one

naturally desires a coarser description of the polynomial, such as its Newton polytope.

In 2012, Hauenstein and Sottile [61] sketched a numerical algorithm which functions as a

vertex oracle for the Newton polytope of a hypersurface, relying only on the computation of witness

sets. In Section 7.1, we explain how this algorithm, which we call the HS-algorithm, actually

functions as a numerical oracle and is therefore stronger than originally anticipated.

Following ideas from Hept and Theobald, we extend the HS-algorithm to an algorithm for com-

puting the tropicalization of an ideal in Section 7.2. In Section 7.3 we analyze the convergence

of the HS-algorithm. We discuss our implementation in the Macaulay2 [62] package Numeri-

calNP.m2 [63] in Section 7.4 and give large examples showcasing our software in Sections 7.5

and 7.6. Much of this material is contained in the article [1] by the author*.

7.1 The HS-Algorithm

LetH ⊆ Cn be a degree d hypersurface defined by

f =
∑
α∈A

cαx
α ∈ C[x] cα 6= 0,A ⊆ Nn, |A| <∞

*Reprinted with permission from T. Brysiewicz, “Numerical Software to Compute Newton polytopes and Tropical
Membership,” Mathematics in Computer Science, 2020. Copyright 2020 by Springer Nature.
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so that supp(f) = A. Suppose that a, b ∈ (C×)n are general so that the line parametrized by

s 7→ (a1s− b1, . . . , ans− bn) intersectsH at d points, making the map

W(H) = {(p1, . . . , pn, s) | f(p1(a1s− bn), . . . , pn(ans− bn)) = 0}

π ↓

Cn
p

a degree d branched cover. For any direction ω ∈ Rn, the path t 7→ (tω1 , . . . , tωn) in Cn
p corre-

sponds to a family of lines Lt parametrized by

Lt : Cs → Cn

s 7→ (tω1(a1s− b1), . . . , tωn(ans− bn)).

This family of lines lifts to d paths {si(t)}di=1 inW(H) via π, each corresponding to an intersection

point of Lt and H. In other words, these paths comprise the data of witness points and so π

essentially functions as a witness cover.

Each path si(t) may be tracked numerically with respect to the homotopy

f(Lt(s)) : (0, 1]× Cs → C

(t−1, s) 7→ f(Lt(s))

in the variables t−1 and s. We remark that the use of t−1 is a definitional technicality and that we

will mostly work in t using the map

πω : f(Lt(s))
−1(0)→ (1,∞) (7.1)

(t−1, s) 7→ t

so that the fiber of πω over t is identified with {si(t)}di=1. The following lemma is the basis of the
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HS-algorithm.

Lemma 7.1.1. As t → ∞ the s-coordinates of the fibers π−1
ω (t) converge to the solutions of

fω(L1(s)).

Proof. Using the notation (as− b)α = (a1s− b1)α1 · · · (ans− bn)αn , observe that

f(Lt) =
∑
α∈A

cα[tω1(a1s− b1)]α1 · · · [tωn(ans− bn)]αn

=
∑
α∈A

t〈ω,α〉cα(as− b)α

=
∑
α∈Aω

thA(ω)cα(as− b)α +
∑
α∈Acω

t〈ω,α〉cα(as− b)α (7.2)

Since t is not zero, we may scale (7.2) by t−hA(ω) without changing its zeros. Thus the solutions

of (7.2) are the same as those of

∑
α∈Aω

cα(as− b)α +
∑
α∈Acω

t〈ω,α〉−hA(ω)cα(as− b)α (7.3)

where Acω is the complement of Aω in A. Note that π−1
ω (t) = {(t, si(t))}di=1 where {si(t)}di=1 are

the solutions of (7.3). Finding the values of each si(t) as t→∞ is the same as finding the values

of si(t−1) as t → 0 and since these paths are continuous, we substitute t−1 for t in (7.3) and take

the limit as t→ 0:

∑
α∈Aω

cα(as− b)α +
∑
α∈Acω

(t−1)〈ω,α〉−hA(ω)cα(as− b)α

∑
α∈Aω

cα(as− b)α +
∑
α∈Acω

(t)−〈ω,α〉+hA(ω)cα(as− b)α. (7.4)

Note that 〈−ω, α〉+hA(ω) > 0 for all α ∈ Acω by definition, and so evaluating (7.4) at t = 0 gives

V(
∑

α∈Aω cα(as− b)α) = V(fω(L1(s))).

Suppose a hypersurface H ⊂ Cm is the image of a map ϕ : X → H. Recall that a (pseudo)-
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witness set for H can be computed by computing a witness set for the graph of ϕ and applying

Algorithm 6.4.6. Consequently, since fibers of πω are essentially witness points, we may compute

them without access to the defining equation for H. The HS-algorithm follows from the above

observations.

We remind the reader that f̃ denotes the homogenization of a polynomial f and OP denotes a

numerical oracle for a polytope P .
.

Algorithm 7.1.2 (HS-Algorithm). .
Input:
• A witness set, or pseudo-witness set, W for a hypersurfaceH ⊆ Cn

• A direction ω ∈ Rn

Output:
• ONew(f̃)(ω) whereH = V(f)
Steps:

1 Pick random a, b ∈ (C×)n and construct Lt

2 Track the witness points in W to the intersectionH ∩ L1

3 Track all points {si(1)}di=1 along (7.1) from t = 1→ 2.
4 If none of the points move, return EEP
5 Initialize β = (01, 02, . . . , 0n, 0∞) ∈ Nn+1

6 for i from 1 to d do
6.1 Track the point si(1) along (7.1) as t→∞
6.2 If si(t) converges or diverges, stop tracking it

6.2.1 If si(t) converged to ρi, increment βi by one
6.2.2 If si(t) diverged, increment β∞ by one

7 return β
.

Proof of correctness: We claim that Algorithm 7.1.2 is a numerical oracle (see Definition 2.2.6)

for New(f̃). We consider three situations, dependent on ω ∈ Rn, which result in different behav-

iors of the set {si(t)}di=1 as t→∞.

(1) (ω exposes a single point): This means that fω(L1(s)) = cβ(as − b)β is a monomial with

exponent β = (β1, . . . , βn) ∈ A. This clearly has roots of ρi = bi/ai appearing with

multiplicity βi. Note that if |β| < d then there are β∞ = d − |β| paths which diverge as

t → ∞. One way to see this is to observe that β∞ is the exponent of the homogenizing
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variable in the term f̃ω.

(2) (ω exposes A): If ω exposes the entire polytope defined by A, then the roots {si(t)}di=1

remain constant as t varies since f(Lt) = thA(ω)f(L1).

(3) (ω exposes a proper subset of A consisting of more than one point): If ω exposes a

proper non-singleton subset of A, then there is more than one term in fω. We remark this

happens exactly when ω ∈ trop(V(f)). The terms of fω will have a common factor of∏n
i=1(ais − bi)mi where the vector m is the coordinate-wise minimum of the points in Aω.

Therefore, mi roots will converge to ρi and m∞ = minβ∈Aω (d− |β|) points will diverge.

All other roots will converge somewhere else in C.

In each case, the output is that of a numerical oracle. �

7.2 Tropical membership

A direct consequence of the HS-algorithm is a tropical membership algorithm for hypersur-

faces. Recall that for a polynomial f ∈ C[x] of degree d, a direction ω ∈ Rn is an element of

trop(f) if and only if ω exposes a positive-dimensional face of New(f̃). Equivalently, recall that

ω ∈ trop(f) if and only if a numerical oracle outputs a vector v = ONew(f̃)(ω) ∈ Zn+1 satisfying

|v| < d. Thus, since the HS-algorithm functions as a numerical oracle, it may be used as a tropical

membership algorithm for hypersurfaces.
.

Algorithm 7.2.1 (Tropical Membership for Hypersurfaces). .
Input:
• A witness set, or pseudo-witness set, W for a hypersurfaceH ⊆ Cn

• A direction ω ∈ Rn

Output:
• true if ω ∈ trop(H) and false otherwise.
Steps:

0 set d = deg(H) and set β to be the output of the HS-algorithm on input W and
ω

1 if |β| < d then return true, else return false
.

130



Given an arbitrary variety V(I) ⊂ Cn, recall that the tropicalization of V(I) may be realized

as the intersection of preimages of projections of trop(V(I)) (Lemma 5.2.1). When the coordinate

projections are sufficiently generic, Algorithm 7.2.1 extends immediately to a tropical membership

algorithm for the tropicalization of V(I). When they are not, this algorithm can only yield false

positives. To handle this, we may obtain new projections of trop(V(I)) by taking the coordinate

projections of trop(V(I)) after a linear change of coordinates on trop(V(I)). We recall that a

linear change of coordinates on trop(V(I)) amounts to a monomial change of coordinates on I (see

Remark 5.2.4) which will likely increase the degree of V(I). While this makes the computation of

a witness set more difficult, it is often still manageable.
.

Algorithm 7.2.2 (Tropical Membership). .
Input:
• An m-dimensional variety X = V(I) ⊆ Cn

• A direction ω ∈ Rn

Output:
• true if ω ∈ trop(H) and false otherwise
Steps:

1 Replace I with its image under a generic monomial map Φ so that the coordinate
projections of V(I) are generic

2 Replace ω with ϕ−1ω where ϕ = Φ∗

3 Compute a witness set W for X .
4 for each coordinate projection {πJ}J⊆[n] with |J | = n−m− 1 do

4.1 Compute a pseudo-witness set WJ for πJ(X)
4.2 if Algorithm 7.2.1 returns false on input (WJ , πJ(ω)), then STOP and

return false
5 return true.

7.3 Convergence rates of the HS-Algorithm

Theorem 8 of [61] gives an analysis of the convergence of the HS-algorithm whenever ω ex-

poses a vertex. We generalize this result to include the case where ω ∈ trop(V(f)). First, we
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introduce some notation. As before, let

f =
∑
α∈A

cαx
α

be a polynomial with support A and let ω ∈ Rn. The polynomial fω may be written as fω =

xm · g(x) for some polynomial g(x) ∈ C[x] whose terms have no common monomial factor. After

choosing generic points a, b ∈ Cn, we write fω(L1) in its factored form as

fω(L1) = (as− b)mg(L1) = (as− b)m ·K · (s− τ)k.

Note that the τ = (τ1, . . . , τn′) are the n′ complex roots of g(Lt) and so k is some n′-tuple satisfying

|k| < d− |m|. In the case that New(f)ω = β is a vertex, we have m = β, g(x) = 1, and K = cβ .

We define the following constants based on the coefficients cα, the support A, and the constant K.

C = max

{
|cα|
|K|

∣∣∣∣ α ∈ A} , dω = hA(ω)− hAcω(ω)

amin = min{1, |ai| | i = 1, . . . , n}, amax = max{1, |ai| | i = 1, . . . , n}

Finally, based on the positions of the ρi = bi
ai

and the τj appearing as roots of g(L1) we define the

following constants for any z ∈ {ρi}ni=1 ∪ {τj}n
′
j=1.

γz = min

{
amin,

|z − ẑ|
2

∣∣∣∣ ẑ ∈ {ρi}ni=1 ∪ {τj}n
′

j=1 r z

}

Γz = max

{
2

amax

, |z − ρi|
∣∣∣∣ i = 1, . . . , n

}
The constant dω describes how close ω is to exposing a positive-dimensional face of New(f). The

constant γz is defined so that any point inside the circle of radius γz centered at z is closer to z

than any other point in {ρi}n
′
i=1 ∪ {τj}n

′
j=1. We include helpful graphics describing this notation in

132



Figure 7.1 and Figure 7.2.

Figure 7.1: An example of locations of {ρi}4i=1 and {τj}3j=1 in Cs. The smaller circle has radius γτ1 and
the larger circle has radius Γτ1 .

Figure 7.2: A unit vector ω and a geometric description of dω.
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Theorem 7.3.1. Suppose ω ∈ Rn. Let s(t) be a path of the HS-algorithm converging to z as

t→∞ and let β be the number of such paths converging to z. Let t1 ≥ 0 be a number such that if

t > t1 then |s(t)− z| ≤ γz. Then for all t > t1

|s(t)− z|β ≤ t−dω · C · |Acω| ·
(
amax

amin

(
1 +

Γz
γz

))d
.

Proof. Recall from (7.3) we have

t−hA(ω) · f(Lt) =
∑
α∈Aω

cα(as− b)α +
∑
α∈Acω

t〈ω,α〉−hA(ω)cα(as− b)α. (7.5)

Suppose s(t) : (1,∞) → Cs is a continuous path in (7.1) so that f(Lt(s(t))) = 0 for all t > 1.

Then (7.5) gives

|fω(as(t)− b)| =

∣∣∣∣∣∣
∑
α∈Acω

t〈ω,α〉−hA(ω)cα(as(t)− b)α
∣∣∣∣∣∣ (7.6)

and so after dividing through by K and extracting the largest power of t from the sum,

|(as− b)m · (s− τ)k| ≤ t−dω ·
∑
α∈Acω

∣∣∣cα
K

∣∣∣ · |(as(t)− b)α| (7.7)

≤ t−dω · C ·
∑
α∈Acω

|(as(t)− b)α|. (7.8)

Recalling that |s(t)− z| ≤ γz by hypothesis, we bound the right-hand summands,

|ajs(t)− bj| = |aj| · |s(t)− ρj| ≤ amax · |s(t)− z + z − ρj|

≤ amax · (|s(t)− z|+ |z − ρj|)

≤ amax · (γz + Γz)
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and so since 2 ≤ amaxΓz,

|(as(t)− b)α| ≤ (amax(γz + Γz))
|α| ≤ (amax(γz + Γz))

d. (7.9)

Substituting (7.9) into (7.7) gives

|(as− b)m · (s− τ)k| ≤ t−dω · C · |Acω| · (amax · (γz + Γz))
d.

We now bound the factors on the left-hand-side of (7.7),

|s(t)aj − bj| = |aj| · |s(t)− ρj| = |aj| · |s(t)− z + z − ρj| ≥ amin

∣∣∣|z − ρj| − |s(t)− z|∣∣∣
≥ amin · (2γz − γz) = aminγz.

Similarly,

|s(t)− τj| = |s(t)− z + z − τj| ≥
∣∣∣|z − τj| − |s(t)− z|∣∣∣

≥ 2γz − γz = γz ≥ aminγz

and since aminγz ≤ 1 and |m|+ |k| ≤ d we have that

|(as(t)− b)m(s(t)− τ)k| ≥ (aminγz)
d.

So for either z = τj or z = ρi we have

∣∣∣∣(as(t)− b)m(s(t)− τ)k

(s(t)− τj)kj

∣∣∣∣ ≥ (aminγτj)
d−kj ,

∣∣∣∣(as(t)− b)m(s(t)− τ)k

(ais(t)− bi)mi

∣∣∣∣ ≥ (aminγρi)
d−mi ,

respectively.
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We now suppose that z = ρi and essentially recover Theorem 8 of [61]. Note that,

|s(t)− ρi|mi =
1

|ai|mi
·

∣∣∣∣∣∣ (as(t)− b)m(s(t)− τ)k(∏
j 6=i(ajs(t)− bj)mj

)
· (s(t)− τ)k

∣∣∣∣∣∣
and so putting our bounds together gives

|s(t)− ρi|mi ≤ t−dω · C · |Acω| · (amax · (γρi + Γρi))
d · 1

amimin

· 1

(aminγρi)
d−mi

.

Recall that 1 ≥ amin ≥ γρi so

|s(t)− ρi|mi ≤ t−dω · C · |Acω| ·
(
amax

amin

(
1 +

Γρi
γρi

))d
.

On the other hand, if z = τj , we have

|s(t)− τj|kj ≤
(as(t)− b)m(s(t)− τ)k(∏

j 6=i(s(t)− τj)kj
)
· (as(t)− b)m

and so putting our bounds together gives

|s(t)− τj|kj ≤ t−dω · C · |Acω| · (amax · (γτj + Γτj))
d · 1

(aminγτj)
d−kj

.

Since 1 ≥ amin ≥ γτj , we obtain

|s(t)− τj|kj ≤ t−dω · C · |Acω| · (amax · (γτj + Γτj))
d · 1

(aminγτj)
d

≤ t−dω · C · |Acω| ·
(
amax

amin

(
1 +

Γτj
γτj

))d
,

completing the proof.

We give an example displaying the convergence rates in Theorem 7.3.1.
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Example 7.3.2. Consider the plane curve (hypersurface) given by V(f) ⊂ C2 where

f =x+ 20x2 − 4x3 + x4 − 4xy + 10x2y + y2 + 8xy2+

+4x2y2 + x3y2 − 4y3 − 6xy3 + 4x2y3 + 4y4 − 4xy4 + x2y4.

Its Newton polytope and tropicalization are displayed in Figure 7.3. Note that the only lattice point

Figure 7.3: The Newton polytope and tropicalization of a hypersurface.

of the Newton polytope not appearing in the support of f is the point (3, 1). Figure 7.4 displays the

convergence rates in Theorem 7.3.1 as follows. For a uniform sample of unit vectors ω ∈ S2 ⊂ R2,

we draw a ray in the direction of ω with length equal to the minimum of 1 and 1
dω

, the exponent

appearing in Theorem 7.3.1. We remark that setting the length of the rays to be the minimum of

d−ω and 1 models the feature that when this algorithm is used in practice, the user must specify

a tolerance describing how far to track t to see convergence. We also point out that the ridges

indicated in Figure 7.4 occur because dω depends not only on the vertices of New(f) but also on

the monomials in supp(f). �

Example 7.3.2 shows that in practice, the numerical oracle for the Newton polytope of a hy-

persurface coming from the HS-algorithm comes with a cost associated to inputs near the tropical-

ization of the hypersurface: as the input of the HS-algorithm approaches the tropical hypersurface,
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Figure 7.4: For directions ω ∈ S1 we draw the ray in direction ω with length min(1, d−ω) describing the
convergence rate proven in Theorem 7.3.1.

the convergence rate becomes arbitrarily slow. Due to this feature, pairing Algorithm 7.1.2 with

Algorithm 2.2.3 may be too computationally expensive for computing large Newton polytopes.

Remark 7.3.3. Figure 7.4 exposes an important drawback of the algorithms involved in this dis-

sertation: many of our algorithms require a blind random choice of parameters avoiding some

forbidden set of measure zero (in this case, the tropical variety).

The first issue with this is that choosing parameters near the forbidden set can cause computa-

tions to take arbitrarily long. Consequently, the true space of parameters which we want to avoid in

our computations has positive measure. In the case of Figure 7.4, this is the set of directions which

correspond to a black ray. Another example is the choice of γ in Lemma 6.2.2 and Lemma 6.2.3.

If γ is chosen near the set of measure zero, then the condition number involved in path tracking

can become large. This will either cause an instance of path-jumping, or if one is using adaptive

precision, can cause the computation to take arbitrarily long.

The second issue is that our computations inherently work over a subset of rational numbers
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with bounded height. This technically causes problems with observations such as Remark 2.2.5

where the set of directions which do not expose a vertex form a finite subset of the finite set of

rational numbers with bounded height; that is, a set of positive measure.

Nonetheless, even with positive measure, the forbidden sets involved in our computations re-

main heuristically small and in practice the algorithms remain effective. �

7.4 Implementation of Algorithms 7.1.2 and 7.2.2

We describe our implementation of Algorithm 7.1.2 and Algorithm 7.2.2 along with the rele-

vant supporting functions in our Macaulay2 package NumericalNP.m2 [63]. This package con-

tains four main user functions, the first three of which implement the HS-algorithm and the last

implements the tropical membership algorithm. All numerical computations are piped to Bertini

[51] through the package Bertini.m2 [64].

Function 7.4.1 computes a pseudo-witness set for the image of a variety X ⊆ CN under a

projection π : CN → Cn.
.

Function 7.4.1. witnessForProjection
Input:
• I: Ideal defining X ⊆ CN

• ProjCoord: List of coordinates which are forgotten by π
• OracleLocation (option): Path in which to create witness files
Output:
• A subdirectory /OracleLocation/WitnessSet containing
- witnessPointsForProj: Preimages of witness points of π(X)
- projectionFile: List of coordinates in ProjCoord
- equations: List of equations defining X ′ ⊆ X such that π|X′ is generically finite and
π(X ′) = π(X)

.

Given a hypersurface H, Function 7.4.2, witnessToOracle, creates all necessary Bertini

files to track the witness set H ∩ Lt as t → ∞ for any ω ∈ Rn. These files treat ω as a parameter

so that the user who wants to query many directions needs only to produce these files once.
.
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Function 7.4.2. witnessToOracle
Input:
• OracleLocation: Path containing the directory /WitnessSet
Optional Input:
• PointChoice: Prescribes a and b explicitly (see Algorithm 7.1.2)
• TargetChoice: Prescribes targets bi/ai
• NPConfigs: List of Bertini path tracking configurations
Output:
• A subdirectory /OracleLocation/Oracle containing all necessary files to run the
homotopy described in Algorithm 7.1.2.

.

Function 7.4.2, by default, chooses a, b ∈ Cn such that ρi = ai/bi are the n-th roots of unity.

One may choose to either specify a and b (PointChoice), or ρi = ai/bi (TargetChoice) or

request that these choices are random. When random, the function ensures that the points ρi are far

from each other so that convergence to ρi is easily distinguished from convergence to ρj . Bertini

is called to track the points in /OracleLocation/WitnessSet to the points π(X) ∩ L1.

These become start solutions of the homotopy described in Algorithm 7.1.2 with parameters ω and

t. There are many numerical choices for Bertini’s native path-tracking algorithms which can be

specified via NPConfigs.

The fundamental function of NumericalNP.m2 is oracleQuery. It runs the homotopy de-

scribed in the HS-algorithm on a hypersurface H = V(f), monitors convergence, and outputs the

result of the numerical oracle.
.
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Function 7.4.3. oracleQuery
Input:
• OracleLocation (Option): Location containing the directory /Oracle
• ω: A vector in Rn

Optional Input:
• Certainty • Epsilon • MinTracks • MaxTracks • StepResolution
• MakeSageFile
Output:
• ONew(f̃)(ω) or Reached MaxTracks
• A subdirectory /OracleLocation/OracleCalls/Call# containing
- SageFile: Sage code animating the paths s(t)
- OracleCallSummary: a human-readable file summarizing the results

.

To monitor convergence of points s(t) the software tracks t→∞ in discrete steps. The option

StepResolution specifies these step sizes. In each step and for each path si(t), a numerical

derivative is computed to heuristically determine convergence or divergence of the solution. If

the solution is large and the numerical derivative exceeds 10Certainty in two consecutive steps,

then the path is declared to diverge, and if the numerical derivative is below 10−Certainty in two

consecutive steps, then the point is declared to converge. If a converged point is at most Epsilon

from some ρi, then the software deems that it has converged to ρi. When a point is declared to

converge or diverge, it is not tracked further. The option MaxTracks allows the user to specify

Figure 7.5: (Reprinted from [1]) Left: Values of t (magnitude of rays) such that queryOracle finishes for
different ω (direction of rays) on a hypersurface with Newton polytope (center) and normal fan (right).
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how long to wait for convergence of the paths s(t).

Example 7.4.4. Figure 7.5 shows the Newton polytope of the same plane sextic as in Example

7.3.2. It also shows the convergence rate of the algorithm on different directions ω ∈ S1. The

length of each green ray is proportional to the number of steps required for oracleQuery to

finish and the black rays indicate that this convergence was not observed within the limit specified

by MaxTracks. We note that the striking resemblance of Figure 7.4 and 7.5 indicates that the

value of t at which our implementation recognizes convergence is approximately proportional to

the convergence rate we prove in Theorem 7.3.1. We include the image of the tropicalization of this

curve to illustrate how the convergence rate involved in the HS-algorithm slows as ω approaches

directions in the tropical variety. Nonetheless, we remind the reader that this slow convergence

rate does not occur when ω is in the tropical variety. �

One may also specify MinTracks which indicates the step at which convergence begins to be

monitored. The option to create a Sage [65] animation (see Figure 7.6) of the solution paths helps

the user recognize pathological behavior in the numerical computations and fine-tune parameters

such as Certainty, StepResolution, or Epsilon accordingly.

Example 7.4.5. Consider the curve in X ⊆ C3 defined by

I = 〈xyt− (x− y − t)2 + 3x+ t, x+ y2 + t2〉 ⊆ C[x, y, t]

and let π be the projection forgetting the t coordinate. The following code written in Macaulay2

computes a witness set for C = π(X), prepares oracle files for the HS-algorithm and then runs

the HS-algorithm in the direction (3, 2). The software returns the list {2, 4, 0} indicating that

New(π(X))(3,2) = (2, 4).

i1: loadPackage("NumericalNP");

i2: R=CC[x,y,t];

i3: I=ideal(x*y*t-(x-y-t)^2+3*x+t,x+y^2+t^2);

i4: witnessForProjection(I,{2},OracleLocation=>"Example");
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i5: witnessToOracle("Example") ;

i6: time oracleQuery({3,2},OracleLocation=>"Example",MakeSageFile=>true)

-- used 0.178448 seconds

o6: {2,4,0}

The equation of π(X) is the polynomial in Example 7.3.2 and so its Newton polytope is dis-

played in Figure 7.5. Snapshots of the Sage animation created by queryOracle are shown in

Figure 7.6. There, the circles are centered at ρ1 = 1 and ρ2 = −1 and have radius epsilon. The

Figure 7.6: Three snapshots of Sage animation from example with viewing window [−4, 4]2

first image shows the intersections (in the s-coordinates) of the sextic π(X) with L1 in the complex

plane Cs. The second image is a snapshot showing two points converging to s = 1 and the third

image shows four other points converging to s = −1. �

Given an ideal I , the fourth function tropicalMembership computes a pseudo-witness

set for each coordinate projection π(V(I)) whose image is a hypersurface. The algorithm subse-

quently checks that oracleQuery indicates that π(ω) ∈ trop(π(V(I)). If this is true for each

coordinate projection, the algorithm returns true and otherwise returns false. The numerical

options fed to tropicalMembership are passed along to oracleQuery.
.
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Function 7.4.6. tropicalMembership
Input:
• I : Ideal defining X ⊆ Cn

• ω: A vector in Rn

Optional Input:
• Certainty • Epsilon • MinTracks • MaxTracks •StepResolution
• MakeSageFile
Output:
• A list of oracle queries of π(X) in directions π(ω) where π runs through all coordinate
projections such that π(X) is a hypersurface.
• true if all oracle queries exposed positive-dimensional faces and false otherwise

.

Example 7.4.7. We return to Example 5.2.3 of two tropical space curves which are different, yet

have the same tropicalized coordinate projections. We depict these tropical curves again in Figure

7.7 and illustrate their behavior with our software.

Figure 7.7: (Reprinted from [1]) Two tropical space curves with the same tropical coordinate projections

i1 : loadPackage("NumericalNP");

i2 : R=QQ[x,y,z];

i3 : I_1=ideal {x*z+4*y*z-z^2+3*x-12*y+5*z,x*y-4*y^2+y*z+x+2*y-z};

i4 : I_2=ideal{x*y-3*x*z+3*y*z-1,3*x*z^2-12*y*z^2+x*z+4*y*z+5*z-1};

i5 : I_1==I_2

144



o5 = false

i6 : directions:={{1,1,1},{1,1,-1},{1,-1,1},

{1,-1,-1},{-1,1,1},{-1,1,-1},{-1,-1,1},{-1,-1,-1}};

i7 : apply(directions,d->tropicalMembership(I_2,d))

o7 = {true, true, true, true, true, true, true, true}

i8 : apply(directions,d->tropicalMembership(I_1,d))

o8 = {true, true, true, true, true, true, true, true}

�

Every projection of every vertex of cube(3) is in the tropicalization of the corresponding projec-

tion of V(I1) and V(I2). Nonetheless, the tropicalizations of V(I1) and V(I2) are disjoint subsets of

the vertices of the cube, exemplifying that an output of true from tropicalMembership is

not a certification of membership in the tropical variety. Unfortunately, we cannot a priori decide

whether or not our coordinate projections are generic.

Example 7.4.7 (continued). Consider the monomial change of coordinates Φ given by

Φ(x) = xyz, Φ(y) = y, and Φ(z) = z,

and let Φ∗ = ϕ : Z3 → Z3 be the linear map corresponding to Φ. Let F and G be the generators

used in the above code of I1 and I2 respectively. By Equation (5.8) of Section 5.2 we have that

trop(V(F )) = ϕ(trop(V(F ◦ Φ))), ϕ =


1 1 1

0 1 0

0 0 1

 =


1 −1 −1

0 1 0

0 0 1


−1

.

The linear transformation ϕ produces generic coordinate projections in the sense of Theorem 5.2.1

and the function tropicalMembership is able to distinguish trop(V(I1)) from trop(V(I2)).

i9 : I’_1=ideal apply((I_1)_*,f->sub(f,{x=>x*y*z,y=>y,z=>z}));
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i10 : I’_2=ideal apply((I_2)_*,f->sub(f,{x=>x*y*z,y=>y,z=>z}));

i11 : directions’=apply(directions,d->{d#0-d#1-d#2,d#1,d#2})

o11 = {{-1, 1, 1}, {1, 1, -1}, {1, -1, 1}, {3, -1, -1},

{-3, 1, 1}, {-1, 1, -1}, {-1, -1, 1}, {1, -1, -1}}

i12 : apply(directions’,d->tropicalMembership(I’_1,d))

o12 = {false, true, true, false, true, false, false, true}

i13 : apply(directions’,d->tropicalMembership(I’_2,d))

o13 : {true, false, false, true, false, true, true, false}

7.5 A hypersurface from algebraic vision

The following example is a hypersurface in the space of 3×2×2 tensors coming from a multi-

view variety of a pinhole camera and a two slit camera. This example can be found in Proposition

7.5 of [66], where the authors computed the polynomial symbolically via elimination with respect

to another variety in the space of 3× 3× 3 tensors. Although this computation is not new, it serves

to demonstrate the strength of our implementation.

Consider the matrix

[
A B C

]
=



a1,1 a1,2 a1,3 b1,1 b1,2 c1,1 c1,2

a2,1 a2,2 a2,3 b2,1 b2,2 c2,1 c2,2

a3,1 a3,2 a3,3 b3,1 b3,2 c3,1 c3,2

a4,1 a4,2 a4,3 b4,1 b4,2 c4,1 c4,2


.

The matrixA represents a pinhole camera and (B,C), a two slit camera. The corresponding multi-

view variety X is a hypersurface in P11. Let fi,j,k be the minor corresponding to the submatrix
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which ignores columns ai, bj, and ck. Then X is parametrized by these twelve minors

F : C28 → C12

a1,1 a1,2 a1,3 b1,1 b1,2 c1,1 c1,2

a2,1 a2,2 a2,3 b2,1 b2,2 c2,1 c2,2

a3,1 a3,2 a3,3 b3,1 b3,2 c3,1 c3,2

a4,1 a4,2 a4,3 b4,1 b4,2 c4,1 c4,2


F7−→ [fi,j,k]i∈{1,2,3},j,k∈{1,2}.

This map has 17-dimensional fibers. Rather than taking generic linear slices in C28, we find

constant replacements for 17 of the variables under the condition that the Jacobian of F does not

drop rank. This substitution gives a new map F : C11 → C12 whose image is X .

We order the fi,j,k variables lexicographically,

(f111, f112, f121, f122, f211, f212, f221, f222, f311, f312, f321, f322).

The polynomial f which cuts out X is homogeneous of degree 6 in 12 variables, giving an a priori

upper bound of 12, 376 possible monomials appearing in A = supp(f). There is a group action

of G ∼= S3 × S2 × S2 on the coordinates in C12 taking fi,j,k → fσ(i),τ(j),ν(k) which extends to an

action on the vertices of the polytope. This action is transitive on {fi,j,k}i∈{1,2,3},j,k∈{1,2} and so

to get a bound on the size of any coordinate α ∈ A, it is enough to bound one. An oracle query

in the (1, 0, . . . , 0) direction returns the vector (2, 0, . . . , 0) along with four points which converge

somewhere other than a target. As such, New(f) ⊂
⋂12
i=1 R12

ei,2
= 2 · [0, 1]12. This reduces the

possible number of lattice points in New(f) to 8, 074. Querying the oracle in the independent

directions

(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0)

(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) (1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
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returns Exposes entire polytope. Thus, New(f) is a subset of a 7-dimensional subspace

of R12. The following four directions expose four vertices of New(f) which, after applying sym-

metries of G, become 60 vertices V of a 7-dimensional polytope P∗ ⊂ New(f) containing 60 + 6

lattice points.

ONew(f)(6,−3.5,−1, 0.4, 0.16, .6, 0.2, 1.33, .66, .9, 4,−4)

= (2, 0, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0)

ONew(f)(.31,−.31,−.31, .31,−.31, .09,−.31, .31, .31,−.31, .09,−.31)

= (1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0)

ONew(f)(−.31,−.31, .31, .09,−.31, .31, .31,−.31, .09, .31,−.31,−.31)

= (0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0)

ONew(f)(.19,−.39, .13, .19, .04, .08,−.33, .04, .25,−.20,−.13, .71)

= (1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 2).

We conclude that New(f) is 7-dimensional. Two more oracle queries,

ONew(f)(−11,−3,−3, 5,−11,−3,−3, 5, 1, 9, 9,−31) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ONew(f)(−5, 3, 3,−5,−5, 3, 3,−5,−5, 3, 3,−5) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

imply that a positive-dimensional face of New(f) is exposed in each of these directions. The facets

of P∗ are also exposed by these directions but no other pair of points within P ∗ =
⋂12
i=1 R12

ei,2
are

exposed. Thus, New(f) = P∗.
Knowing the support of f , interpolation successfully recovers the polynomial computed in

[66]:

f = f 2
111f212f221f

2
322 − f 2

111f212f222f321f322 − f 2
111f221f222f312f322 +

f 2
111f

2
222f312f321 − f111f112f211f221f

2
322 + f111f112f211f222f321f322 −

f111f112f212f221f321f322 + f111f112f212f222f
2
321 + f111f112f

2
221f312f322 +
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f111f112f221f222f311f322 − f111f112f221f222f312f321 − f111f112f
2
222f311f321 −

f111f121f211f212f
2
322 + f111f121f211f222f312f322 + f111f121f

2
212f321f322 −

f111f121f212f221f312f322 + f111f121f212f222f311f322 − f111f121f212f222f312f321 +

f111f121f221f222f
2
312 − f111f121f

2
222f311f312 + f111f122f211f212f321f322 +

f111f122f211f221f312f322 − 2f111f122f211f222f312f321 − f111f122f
2
212f

2
321 −

2f111f122f212f221f311f322 + 2f111f122f212f221f312f321 + f111f122f212f222f311f321 −

f111f122f
2
221f

2
312 + f111f122f221f222f311f312 + f 2

112f211f221f321f322 −

f 2
112f211f222f

2
321 − f 2

112f
2
221f311f322 + f 2

112f221f222f311f321

+f112f121f
2
211f

2
322 − f112f121f211f212f321f322 − f112f121f211f221f312f322 −

2f112f121f211f222f311f322 + 2f112f121f211f222f312f321 + 2f112f121f212f221f311f322 −

f112f121f212f222f311f321 − f112f121f221f222f311f312 + f112f121f
2
222f

2
311

−f112f122f
2
211f321f322 + f112f122f211f212f

2
321 + f112f122f211f221f311f322 −

f112f122f211f221f312f321 + f112f122f211f222f311f321 − f112f122f212f221f311f321 +

f112f122f
2
221f311f312 − f112f122f221f222f

2
311 + f 2

121f211f212f312f322 −

f 2
121f211f222f

2
312 − f 2

121f
2
212f311f322 + f 2

121f212f222f311f312 −

f121f122f
2
211f312f322 + f121f122f211f212f311f322 − f121f122f211f212f312f321 +

f121f122f211f221f
2
312 + f121f122f211f222f311f312 + f121f122f

2
212f311f321 −

f121f122f212f221f311f312 − f121f122f212f222f
2
311 + f 2

122f
2
211f312f321 −

f 2
122f211f212f311f321 − f 2

122f211f221f311f312 + f 2
122f212f221f

2
311

7.6 The Lüroth invariant

7.6.1 The Lüroth invariant, hypersurface, and polytope.

Let C15
q be the vector space spanned by all homogeneous quartic plane curves with coefficients

{qijk}i+j+k=4 so that a quartic Q ∈ C15
q is written as

Q =
∑

i+j+k=4

qijkx
iyjzk.

Such a quartic V(Q) ⊂ P2 is called Lüroth if it passes through the ten intersection points of five

lines in P2. We display one such quartic in Figure 7.8.
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Figure 7.8: A Lüroth quartic.

The set of all Lüroth quartics L is a hypersurface of degree 54 in P14
q called the Lüroth hy-

persurface. The group PGL(3,C) of all projective linear transformations of P2 acts on a plane

quartic V(Q) by some element A ∈ PGL(3,C) in the natural way: V(Q) 7→ A · V(Q) =

V(Q(A∗(x, y, z))). This action preserves intersection points and so if V(Q) is a Lüroth quartic, so

is A · V(Q). The defining equation Λ of the Lüroth hypersurface is called the Lüroth invariant.

The Lüroth hypersurface is parametrized by the coefficients of five homogeneous linear poly-

nomials `i = aix+ biy + ciz ∈ C[x, y, z]. This parametrization is

ϕ : P((C3)5) 99K P14 (7.10)

(`1, . . . , `5) 7→
5∑
j=1

∏
i 6=j

`i =
∑

i+j+k=4

qijkx
iyjzk. (7.11)

Finding Λ using symbolic elimination algorithms is computationally infeasible. Moreover, it is

expected that Λ in its expanded form is not human-readable. Thus, we attempt to determine the

Lüroth polytope, P = New(Λ) ⊂ R15 using Algorithm 7.1.2. Before discussing computations,

we explain some reductions to the problem.
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Corollary 7.6.1. Every point p in the Lüroth polytope P solves the linear equation



4 3 3 2 2 2 1 1 1 1 0 0 0 0 0

0 1 0 2 1 0 3 2 1 0 4 3 2 1 0

0 0 1 0 1 2 0 1 2 3 0 1 2 3 4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


p =



72

72

72

54


.

Proof. The Lüroth invariant is a homogeneous polynomial of degree 54 in the coefficient space

C4∆3
q
∼= P14 which is invariant under permutations and scalings of variables x, y, and z. Observing

that 54·4
3

= 72 and applying Lemma 5.1.3 gives the result.

We order the coordinates of the space R15
p containing P as follows

{p400
0
, p310

1
, p301

2
, p220

3
, p211

4
, p202

5
, p130

6
, p121

7
, p112

8
, p103

9
, p040

10
, p031

11
, p022

12
, p013

13
, p004

14
}. (7.12)

We may identify coordinates by their numerical bijection with 0, 1, . . . , 14 as listed above. For

example, p301 may be written as p2. Under this bijection, the permutation group S3 acting on

coordinates of the subscripts of pijk induces the following involutions,

σxy = (0, 10)(1, 6)(2, 11)(4, 7)(5, 12)(9, 13)

σyz = (1, 2)(3, 5)(6, 9)(7, 8)(10, 14)(11, 13)

σxz = σxy ◦ σyz ◦ σxy = (0, 14)(1, 13)(2, 9)(3, 12)(4, 8)(6, 11),

written in cycle notation. We write G for this subgroup S3 ↪→ S15. Corollary 7.6.1 gives the a

priori bounds of

p400 ∈ [0, 18], p310 ∈ [0, 24], p220 ∈ [0, 36], p211 ∈ [0, 36] (7.13)

151



C14
a × Cs Cs

C14
a C15

q

πa

πs

ϕ

Lt

Figure 7.9: A fiber product construction to compute witness points.

on the sizes of each coordinate pijk of a point in P. In Section 7.6.3, we use the HS-algorithm to

show that these bounds are not sharp.

7.6.2 Computational setup

To perform computations, we dehomogenize the domain P((C3)5) of the parametrization (7.10)

with respect to a random linear polynomial and work with the restricted map ϕ : C14 → C15
q .

We parametrize the lines Lt in the HS-algorithm by t Lt7→ {tωi(ais − bi)}14
i=0 and chose a, b ∈

(C×)15 so that the target points ρi = bi/ai are the 15-th roots of unity {ζ i15}14
i=0 where ζ15 =

e2π
√
−1/15. We do this under the heuristic assumption that choosing targets far from one another

decreases the chances of the implementation NumericalNP.m2 misattributing which target is the

true limit of a path.

To compute the intersection points of Lt ∩ Λ in the parameters s, we employ the fiber product

construction in Figure 7.9 and solve the equations

Ft = {qijk(a)− tωι(aιs− bι)}14
ι=0 (7.14)

in C14
a × Cs, where ijk ↔ ι is the identification of {(i, j, k) | i, j, k ≥ 0, i + j + k = 4} with

{0, . . . , 14} given in (7.12). During the homotopy process, we project a solution (a, s) ∈ C14
a ×Cs

to s ∈ Cs to monitor convergence.

Whenever querying the numerical oracle in a direction ω ∈ S14 ⊂ R15, by Theorem 7.3.1 it

is best to attempt to maximize dω. Given that we do not a priori know the polytope P, this is

generally difficult. Nonetheless, we always project ω onto the kernel of the matrix in Corollary
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7.6.1 and rescale this projection to be a unit vector. Given that |ω| = 1, this process increases dω

thus increasing the convergence rate of the HS-algorithm.

Given the size of these computations, we expect numerical errors to occur. However, assessing

whether something went wrong during the path tracking process can be done in several ways.

Remark 7.6.2. Suppose that a numerical implementation of the HS-algorithm returns a vertex

OP(ω) = v on the direction ω ∈ R15. A numerical error has occurred if any of the following are

true.

(1) v∞ 6= 0, (Since Λ is homogeneous, no points in the HS-algorithm will diverge)

(2) OP(σ(ω)) 6= σ(v) for any σ ∈ G, (Λ is invariant under G)

(3) v does not solve the matrix equation in Corollary 7.6.1.

(4) v 6∈ HP(ν) where HP(ν) is the halfspace containing P implied by an oracle call OP(ν) we

have already performed on ν ∈ R15, (Since P ⊂ HP(ν) for any ν ∈ R15).

In the last case, an error has occurred on either OP(ω) or OP(ν). �

7.6.3 Vertices of the Lüroth polytope

Using NumericalNP.m2, we reproduce the result of [61] that

P(3,−5,3,2,3,−2,−1,4,−3,−2,3,1,−5,3,−5)=(6, 0, 6, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 12, 0),

indicating that q6
400q

6
301q

30
121q

12
013 is a monomial in the support of Λ. Acting on the exponents by G

reveals that

q6
040q

6
301q

30
211q

12
103, q6

400q
6
310q

30
112q

12
031, q6

040q
6
130q

30
112q

12
301,

q6
004q

6
013q

30
211q

12
130, q6

004q
6
130q

30
121q

12
310,

are also monomials of Λ.
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Figures 7.10-7.12 display snapshots from the Sage [65] animation (produced by Function 7.4.3

for t = 1, 4, 8, 20, 30, and 75 respectively) of the paths {si(t)}54
i=1 in the HS-algorithm. The second

image shows a clustering of 12 points toward ζ13
15 . The third image shows a clustering of six points

toward ζ0
15 and 1 point converging to ζ2

15. Next, a large cluster of 30 points move toward ζ7
15 and

five points move toward ζ2
15. They converge in the last image. As t → ∞, there are two clusters

Figure 7.10: (Reprinted from [1]) Two snapshots of a Sage animation of the paths {si(t)}54
i=1 (for t = 1 and

t = 4 resp.) of Algorithm 7.1.2.

of points which converge to ζ2
15: one of size one and another of size five. This suggests that these

paths have winding numbers one and five respectively (see the Cauchy endgame in Section 6.2.2).

We do not have any conjectures about what this means for the polytope P.

Querying the oracle in the coordinate directions with respect to p400, p310, p220, and p211 re-

turns 18e400, 24e310, 28e220, and 32e211 respectively where eijk is the standard basis vector in the

coordinate pijk. This gives new bounds of

p400 ∈ [0, 18], p310 ∈ [0, 24], p220 ∈ [0, 28], p211 ∈ [0, 32] (7.15)

improving the bounds (7.13) for p220 and p211.
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Figure 7.11: (Reprinted from [1]) Two snapshots of a Sage animation of the paths {si(t)}54
i=1 (for t = 8 and

t = 20 resp.) of Algorithm 7.1.2.

Figure 7.12: (Reprinted from [1]) Two snapshots of a Sage animation of the paths {si(t)}54
i=1 (for t = 30

and t = 75 resp.) of Algorithm 7.1.2.

155



The initial upper bound on the number of terms in f based on homogeneity and degree is(
54+15−1

54

)
= 123, 234, 279, 768, 160. Taking into account the linear space containing P we see that

the p400, p040, and p004 coordinates of a point in P are determined by the rest. Thus, the number of

points in Z15 subject to the bounds of (7.15) and the matrix equation of Corollary 7.6.1 is

[x54]

(
1− x24

1− x

)6(
1− x28

1− x

)3(
1− x32

1− x

)3

= 879, 008, 719, 165

which improves the initial bound by a factor of ≈ 140. Nonetheless, this number remains so large

that interpolation is infeasible.

In total, we have found 1713 vertices, belonging to 1, 1, 28, and 271 orbits of sizes 1, 2, 3, and

6 using our implementation NumericalNP.m2. The orbits of size one and two which we found are

{q18
400q

18
040q

18
004} and {q18

301q
18
130q

18
013, q

18
103q

18
031q

18
310},

respectively. We list the other orbits in Table 7.1 along with an orbit representative, the number

of times a representative of each orbit was found in our search, and the number of elements of

each orbit. The two orbits colored in blue were found by Hauenstein and Sottile [61] in their

computation of the Newton polytope of the hypersurface of even Lüroth quartics which has five

vertices, two having a G-orbit of size one and three belonging to a G-orbit of size three. We did

not find the vertex (4, 0, 0, 14, 0, 14, 0, 0, 0, 0, 4, 0, 14, 0, 4). Up-to-date computations regarding the

Lüroth polytope can be found at the author’s webpage [63].
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Vertex v # |G · v|
(0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 12) 360 6
(4, 0, 0, 0, 0, 28, 0, 0, 0, 0, 18, 0, 0, 0, 4) 126 3
(0, 0, 0, 0, 0, 25, 22, 0, 0, 0, 0, 0, 3, 0, 4) 117 6
(0, 0, 18, 0, 0, 0, 0, 0, 0, 18, 18, 0, 0, 0, 0) 113 3
(0, 0, 0, 0, 32, 0, 0, 0, 0, 8, 10, 0, 0, 0, 4) 106 6
(0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 7, 0, 22, 0, 1) 88 6
(0, 0, 0, 0, 0, 25, 22, 0, 0, 0, 0, 0, 0, 6, 1) 88 6
(0, 0, 18, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 18, 0) 78 2
(0, 0, 0, 0, 32, 0, 0, 0, 0, 8, 6, 0, 8, 0, 0) 72 6
(0, 0, 8, 0, 0, 24, 0, 0, 0, 0, 18, 0, 0, 0, 4) 64 6
(0, 0, 0, 0, 30, 0, 0, 0, 0, 12, 6, 6, 0, 0, 0) 64 6
(0, 0, 0, 0, 0, 24, 22, 0, 0, 2, 0, 0, 0, 6, 0) 64 6
(18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 18) 63 1
(4, 0, 0, 0, 28, 0, 0, 0, 0, 0, 11, 0, 0, 0, 11) 60 3
(0, 0, 0, 0, 30, 0, 0, 0, 0, 12, 10, 0, 0, 2, 0) 54 6
(0, 0, 0, 0, 0, 25, 21, 1, 0, 0, 0, 0, 0, 7, 0) 50 6
(0, 0, 12, 0, 0, 0, 22, 0, 0, 14, 0, 0, 0, 6, 0) 49 6
(0, 0, 12, 0, 0, 0, 16, 0, 0, 20, 6, 0, 0, 0, 0) 48 6
(0, 0, 0, 0, 30, 0, 6, 0, 0, 6, 0, 0, 12, 0, 0) 46 3
(0, 0, 12, 0, 0, 0, 24, 0, 0, 12, 0, 0, 0, 0, 6) 45 6
(0, 0, 0, 0, 0, 24, 16, 0, 0, 8, 6, 0, 0, 0, 0) 45 6
(0, 0, 0, 0, 0, 28, 0, 16, 0, 0, 10, 0, 0, 0, 0) 44 3
(0, 0, 0, 0, 0, 27, 0, 18, 0, 0, 9, 0, 0, 0, 0) 43 3
(0, 0, 8, 24, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 16) 41 6
(0, 0, 0, 0, 0, 28, 16, 0, 0, 0, 6, 0, 0, 0, 4) 41 6
(0, 0, 8, 0, 24, 0, 0, 0, 0, 0, 12, 0, 0, 0, 10) 40 6
(0, 0, 0, 0, 24, 6, 12, 0, 0, 0, 0, 0, 0, 12, 0) 40 6
(0, 0, 0, 0, 29, 0, 0, 0, 0, 14, 10, 1, 0, 0, 0) 39 6
(0, 0, 12, 0, 18, 0, 0, 0, 0, 0, 10, 0, 0, 14, 0) 37 6
(0, 0, 12, 0, 0, 0, 20, 0, 0, 16, 0, 0, 6, 0, 0) 36 6
(0, 0, 1, 24, 0, 0, 0, 0, 0, 21, 0, 8, 0, 0, 0) 31 6
(0, 0, 13, 0, 0, 0, 24, 0, 0, 9, 0, 0, 0, 0, 8) 29 6
(0, 0, 0, 0, 28, 1, 0, 0, 0, 14, 11, 0, 0, 0, 0) 29 6
(0, 0, 12, 0, 0, 0, 18, 0, 0, 18, 0, 6, 0, 0, 0) 28 6
(0, 0, 0, 0, 32, 0, 0, 0, 0, 8, 6, 4, 0, 4, 0) 27 6
(0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 4, 9) 26 6
(0, 0, 2, 0, 0, 21, 24, 0, 0, 0, 0, 0, 0, 0, 7) 25 6
(0, 0, 1, 0, 27, 0, 15, 0, 0, 0, 0, 0, 0, 0, 11) 25 6
(0, 0, 14, 0, 0, 0, 21, 0, 9, 0, 0, 0, 0, 0, 10) 24 6
(0, 0, 11, 0, 9, 0, 21, 0, 0, 0, 0, 0, 0, 0, 13) 21 6

Table 7.1: Vertices of the Lüroth polytope found.
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Vertex v # |G · v|
(0, 0, 21, 0, 0, 0, 0, 0, 0, 9, 16, 0, 0, 8, 0) 18 6
(0, 0, 18, 6, 0, 0, 0, 0, 0, 6, 0, 20, 0, 0, 4) 18 6
(0, 0, 0, 0, 30, 0, 6, 0, 0, 6, 0, 8, 0, 0, 4) 18 6

(0, 0, 20, 0, 0, 0, 12, 0, 0, 0, 9, 0, 0, 0, 13) 17 6
(0, 0, 12, 0, 0, 0, 18, 0, 18, 0, 0, 0, 0, 0, 6) 17 6
(0, 0, 4, 28, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 14) 17 6
(3, 0, 0, 0, 0, 16, 0, 28, 0, 0, 4, 0, 0, 0, 3) 16 3
(0, 0, 17, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 9, 7) 16 6
(0, 0, 8, 0, 24, 0, 0, 0, 0, 0, 6, 4, 0, 12, 0) 16 6
(0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 15, 4, 0, 0, 11) 15 6
(0, 0, 8, 18, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 16) 14 6
(0, 0, 4, 16, 0, 0, 0, 0, 28, 0, 3, 0, 0, 0, 3) 14 6
(0, 0, 0, 4, 0, 28, 0, 8, 0, 0, 12, 0, 0, 0, 2) 14 6
(0, 0, 4, 28, 0, 0, 0, 0, 4, 0, 3, 0, 0, 0, 15) 13 6
(0, 0, 0, 0, 20, 12, 8, 0, 0, 0, 0, 0, 14, 0, 0) 12 6
(0, 0, 19, 0, 0, 0, 6, 0, 0, 9, 0, 18, 0, 0, 2) 11 6
(0, 0, 0, 0, 0, 24, 19, 0, 0, 5, 0, 3, 3, 0, 0) 11 6
(0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 6, 2, 21, 0, 1) 10 6
(0, 0, 0, 3, 0, 22, 22, 0, 0, 0, 0, 0, 0, 0, 7) 10 6
(0, 0, 0, 0, 32, 0, 2, 0, 0, 6, 4, 4, 0, 6, 0) 10 6

(0, 12, 12, 0, 0, 0, 0, 0, 0, 0, 1, 0, 28, 0, 1) 9 3
(0, 0, 8, 0, 0, 20, 0, 0, 0, 8, 18, 0, 0, 0, 0) 9 3
(0, 0, 0, 0, 28, 0, 4, 0, 0, 12, 2, 8, 0, 0, 0) 9 6
(0, 0, 0, 0, 0, 28, 16, 0, 0, 0, 0, 6, 3, 0, 1) 9 6
(0, 0, 0, 0, 0, 24, 22, 0, 0, 2, 0, 0, 3, 0, 3) 9 6
(0, 0, 23, 0, 0, 0, 3, 0, 0, 0, 9, 9, 0, 0, 10) 8 6

(0, 0, 8, 12, 12, 0, 0, 0, 0, 0, 0, 12, 0, 0, 10) 8 6
(0, 0, 0, 0, 28, 0, 0, 0, 8, 8, 6, 4, 0, 0, 0) 8 6
(0, 0, 0, 0, 27, 0, 9, 0, 0, 9, 0, 0, 9, 0, 0) 8 3
(0, 0, 0, 0, 16, 8, 4, 0, 20, 0, 6, 0, 0, 0, 0) 8 6
(0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 6, 13, 0, 9, 2) 7 6
(0, 0, 17, 0, 0, 0, 0, 21, 0, 0, 6, 0, 0, 6, 4) 7 6
(0, 0, 6, 0, 24, 0, 6, 0, 0, 0, 4, 0, 0, 14, 0) 7 6
(0, 0, 2, 20, 0, 0, 3, 0, 23, 0, 0, 0, 0, 0, 6) 7 6
(0, 0, 1, 23, 0, 0, 0, 0, 0, 23, 6, 0, 1, 0, 0) 7 6
(0, 0, 12, 0, 0, 0, 2, 24, 0, 10, 4, 0, 0, 2, 0) 6 6
(0, 0, 8, 0, 0, 8, 8, 24, 0, 0, 0, 0, 0, 0, 6) 6 6

(0, 0, 0, 12, 0, 20, 0, 0, 8, 0, 10, 0, 0, 0, 4) 6 6.
.

Table 7.1 Continued.
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Vertex v # |G · v|
(0, 0, 0, 2, 0, 24, 20, 0, 0, 0, 0, 0, 0, 8, 0) 6 6
(0, 0, 0, 0, 26, 2, 12, 0, 0, 4, 0, 0, 0, 10, 0) 6 6
(0, 0, 12, 0, 0, 0, 6, 18, 0, 12, 0, 6, 0, 0, 0) 5 3
(0, 0, 8, 0, 0, 21, 6, 0, 0, 0, 0, 18, 0, 0, 1) 5 6
(0, 0, 6, 0, 26, 0, 2, 0, 0, 0, 4, 4, 0, 12, 0) 5 6
(0, 0, 2, 0, 24, 0, 6, 0, 0, 12, 0, 10, 0, 0, 0) 5 6
(0, 0, 1, 0, 0, 24, 21, 0, 0, 0, 0, 0, 1, 7, 0) 5 6
(0, 0, 0, 0, 26, 6, 8, 0, 0, 0, 0, 4, 0, 10, 0) 5 6
(0, 0, 0, 0, 26, 6, 8, 0, 0, 0, 0, 0, 8, 6, 0) 5 6
(0, 0, 0, 0, 24, 8, 0, 0, 8, 0, 6, 0, 8, 0, 0) 5 6
(2, 0, 0, 0, 0, 19, 0, 26, 0, 0, 5, 0, 0, 0, 2) 4 3
(0, 0, 20, 6, 0, 0, 0, 0, 0, 0, 6, 12, 0, 0, 10) 4 6
(0, 0, 8, 6, 18, 0, 0, 0, 0, 0, 0, 10, 0, 12, 0) 4 6
(0, 0, 6, 0, 24, 0, 6, 0, 0, 0, 0, 6, 0, 12, 0) 4 6
(0, 0, 4, 0, 0, 18, 24, 0, 0, 0, 0, 0, 0, 0, 8) 4 6
(0, 0, 3, 28, 0, 0, 0, 0, 7, 0, 0, 3, 0, 0, 13) 4 3
(0, 0, 0, 12, 0, 20, 0, 0, 0, 8, 12, 0, 0, 0, 2) 4 6
(0, 0, 0, 10, 0, 22, 0, 8, 0, 0, 0, 12, 0, 0, 2) 4 6
(0, 0, 0, 4, 0, 28, 8, 0, 0, 0, 10, 0, 0, 0, 4) 4 6
(0, 0, 0, 0, 30, 0, 6, 0, 0, 6, 0, 6, 0, 6, 0) 4 3
(0, 0, 0, 0, 28, 0, 6, 0, 0, 10, 0, 8, 0, 2, 0) 4 6
(0, 0, 0, 0, 24, 0, 6, 0, 12, 6, 4, 0, 0, 2, 0) 4 6
(0, 0, 0, 0, 20, 12, 0, 0, 8, 0, 10, 0, 0, 4, 0) 4 6
(0, 0, 0, 0, 0, 28, 14, 2, 0, 0, 0, 6, 4, 0, 0) 4 6
(0, 0, 0, 0, 0, 24, 16, 0, 6, 2, 0, 6, 0, 0, 0) 4 6
(0, 0, 0, 0, 0, 24, 14, 2, 8, 0, 0, 6, 0, 0, 0) 4 6
(3, 0, 18, 0, 0, 0, 0, 0, 0, 6, 3, 20, 0, 0, 4) 3 6
(3, 0, 0, 0, 29, 0, 0, 0, 0, 2, 7, 5, 0, 0, 8) 3 6

(0, 2, 10, 0, 0, 0, 0, 26, 0, 10, 4, 0, 0, 2, 0) 3 3
(0, 0, 12, 0, 0, 0, 12, 0, 24, 0, 0, 4, 0, 0, 2) 3 6
(0, 0, 8, 6, 0, 18, 0, 0, 0, 0, 0, 20, 0, 0, 2) 3 6
(0, 0, 6, 0, 20, 0, 12, 0, 2, 0, 0, 0, 0, 14, 0) 3 6
(0, 0, 6, 0, 0, 12, 6, 24, 0, 0, 0, 0, 0, 6, 0) 3 6
(0, 0, 2, 0, 30, 0, 6, 0, 0, 0, 0, 6, 0, 6, 4) 3 6

(0, 0, 2, 0, 0, 27, 12, 0, 0, 0, 0, 12, 0, 0, 1) 3 6
(0, 0, 2, 0, 0, 22, 0, 22, 0, 0, 7, 0, 0, 0, 1) 3 6
(0, 0, 2, 0, 0, 20, 18, 0, 0, 8, 0, 6, 0, 0, 0) 3 6
(0, 0, 1, 22, 0, 1, 0, 0, 0, 23, 7, 0, 0, 0, 0) 3 6.

.
Table 7.1 Continued.
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Vertex v # |G · v|
(0, 0, 1, 21, 2, 0, 0, 0, 0, 23, 7, 0, 0, 0, 0) 3 6
(0, 0, 0, 4, 0, 21, 0, 22, 0, 0, 5, 0, 0, 0, 2) 3 6
(0, 0, 0, 3, 0, 28, 0, 10, 0, 0, 11, 0, 0, 2, 0) 3 6
(0, 0, 0, 0, 32, 0, 2, 0, 0, 6, 4, 0, 8, 2, 0) 3 6

(0, 0, 0, 0, 29, 0, 0, 1, 0, 13, 10, 0, 0, 1, 0) 3 6
(0, 0, 0, 0, 28, 0, 6, 0, 0, 10, 0, 6, 4, 0, 0) 3 6
(0, 0, 0, 0, 24, 0, 2, 10, 0, 12, 4, 2, 0, 0, 0) 3 6
(0, 0, 0, 0, 18, 6, 4, 0, 20, 0, 4, 2, 0, 0, 0) 3 6
(0, 0, 0, 0, 8, 16, 8, 0, 16, 0, 6, 0, 0, 0, 0) 3 6
(0, 0, 0, 0, 6, 22, 14, 2, 0, 0, 0, 0, 10, 0, 0) 3 6
(0, 0, 0, 0, 4, 22, 0, 20, 0, 0, 7, 0, 0, 0, 1) 3 6
(0, 0, 0, 0, 3, 21, 19, 0, 0, 5, 0, 0, 6, 0, 0) 3 6
(0, 0, 0, 0, 0, 28, 10, 6, 0, 0, 0, 10, 0, 0, 0) 3 3
(0, 0, 0, 0, 0, 28, 8, 8, 0, 0, 6, 0, 4, 0, 0) 3 6
(0, 0, 0, 0, 0, 25, 19, 0, 3, 0, 3, 0, 0, 0, 4) 3 6
(0, 0, 0, 0, 0, 24, 18, 6, 0, 0, 0, 0, 0, 6, 0) 3 6
(0, 3, 18, 0, 0, 0, 3, 0, 0, 6, 0, 20, 0, 0, 4) 2 6
(0, 0, 23, 0, 0, 0, 3, 0, 0, 0, 3, 9, 12, 0, 4) 2 6
(0, 0, 14, 0, 0, 0, 0, 21, 0, 9, 6, 2, 0, 0, 2) 2 6
(0, 0, 12, 7, 0, 0, 2, 20, 0, 0, 3, 0, 0, 0, 10) 2 6
(0, 0, 12, 7, 0, 0, 0, 22, 0, 0, 3, 0, 0, 2, 8) 2 6
(0, 0, 12, 6, 0, 12, 0, 0, 0, 0, 0, 20, 0, 0, 4) 2 6
(0, 0, 12, 3, 0, 0, 0, 26, 0, 4, 3, 0, 0, 2, 4) 2 6
(0, 0, 12, 0, 0, 0, 16, 0, 18, 2, 0, 0, 0, 6, 0) 2 6
(0, 0, 12, 0, 0, 0, 6, 24, 0, 6, 0, 2, 0, 0, 4) 2 6
(0, 0, 9, 4, 2, 0, 0, 22, 0, 11, 2, 2, 2, 0, 0) 2 6
(0, 0, 8, 0, 20, 4, 0, 0, 0, 0, 10, 0, 0, 12, 0) 2 6
(0, 0, 8, 0, 20, 0, 0, 8, 0, 0, 6, 0, 0, 12, 0) 2 6
(0, 0, 6, 24, 0, 0, 0, 0, 0, 6, 0, 8, 0, 0, 10) 2 6
(0, 0, 5, 27, 0, 0, 0, 0, 0, 3, 3, 2, 0, 0, 14) 2 6
(0, 0, 4, 27, 0, 0, 0, 0, 6, 0, 0, 4, 0, 0, 13) 2 3
(0, 0, 4, 24, 4, 0, 0, 4, 0, 0, 3, 0, 0, 0, 15) 2 6
(0, 0, 4, 24, 0, 4, 4, 0, 0, 0, 3, 0, 0, 0, 15) 2 6
(0, 0, 4, 24, 0, 0, 8, 0, 0, 4, 0, 0, 0, 0, 14) 2 6
(0, 0, 1, 0, 27, 0, 0, 0, 1, 14, 11, 0, 0, 0, 0) 2 6
(0, 0, 0, 12, 0, 18, 0, 0, 0, 12, 12, 0, 0, 0, 0) 2 6
(0, 0, 0, 10, 0, 22, 4, 4, 0, 0, 0, 4, 10, 0, 0) 2 3.

.
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Vertex v # |G · v|
(0, 0, 0, 10, 0, 20, 12, 0, 0, 0, 0, 0, 8, 0, 4) 2 6
(0, 0, 0, 6, 18, 8, 0, 0, 8, 0, 0, 6, 8, 0, 0) 2 6
(0, 0, 0, 6, 0, 26, 8, 0, 0, 0, 0, 8, 6, 0, 0) 2 3
(0, 0, 0, 4, 0, 23, 0, 18, 0, 0, 5, 0, 4, 0, 0) 2 3
(0, 0, 0, 2, 8, 20, 12, 0, 0, 0, 0, 0, 12, 0, 0) 2 6
(0, 0, 0, 0, 32, 0, 4, 0, 0, 4, 2, 0, 10, 0, 2) 2 3
(0, 0, 0, 0, 28, 4, 0, 0, 0, 8, 10, 0, 0, 4, 0) 2 6
(0, 0, 0, 0, 28, 1, 14, 0, 0, 0, 0, 0, 1, 0, 10) 2 6
(0, 0, 0, 0, 26, 6, 6, 0, 2, 0, 0, 6, 0, 8, 0) 2 6
(0, 0, 0, 0, 26, 2, 6, 0, 10, 0, 0, 6, 0, 0, 4) 2 6
(0, 0, 0, 0, 26, 0, 2, 0, 12, 6, 4, 4, 0, 0, 0) 2 6
(0, 0, 0, 0, 26, 0, 0, 10, 0, 10, 6, 0, 0, 2, 0) 2 6
(0, 0, 0, 0, 24, 6, 0, 0, 0, 12, 12, 0, 0, 0, 0) 2 6
(0, 0, 0, 0, 24, 0, 4, 0, 14, 6, 4, 2, 0, 0, 0) 2 6
(0, 0, 0, 0, 24, 0, 2, 12, 0, 10, 4, 0, 0, 2, 0) 2 6
(0, 0, 0, 0, 22, 10, 8, 0, 0, 0, 4, 0, 0, 10, 0) 2 6
(0, 0, 0, 0, 20, 4, 8, 0, 16, 0, 0, 4, 0, 0, 2) 2 6
(0, 0, 0, 0, 16, 16, 0, 8, 0, 0, 6, 0, 8, 0, 0) 2 6
(0, 0, 0, 0, 16, 11, 0, 2, 16, 0, 9, 0, 0, 0, 0) 2 3
(0, 0, 0, 0, 12, 16, 0, 16, 0, 0, 6, 0, 0, 4, 0) 2 6
(0, 0, 0, 0, 2, 22, 20, 0, 4, 0, 0, 0, 0, 6, 0) 2 6
(0, 0, 0, 0, 0, 28, 15, 1, 0, 0, 0, 6, 3, 1, 0) 2 6
(0, 0, 0, 0, 0, 24, 8, 8, 8, 0, 6, 0, 0, 0, 0) 2 6
(3, 0, 4, 0, 0, 10, 0, 28, 0, 0, 4, 0, 0, 0, 5) 1 6
(3, 0, 2, 0, 27, 0, 0, 0, 0, 0, 10, 0, 0, 5, 7) 1 6
(3, 0, 2, 0, 27, 0, 0, 0, 0, 0, 3, 9, 0, 6, 4) 1 6
(3, 0, 0, 0, 25, 0, 0, 0, 8, 2, 3, 9, 0, 0, 4) 1 6
(2, 0, 4, 26, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 16) 1 6
(2, 0, 0, 0, 30, 0, 0, 0, 0, 4, 4, 7, 0, 5, 2) 1 6
(1, 0, 0, 4, 4, 13, 0, 26, 0, 0, 2, 0, 0, 0, 4) 1 6
(0, 9, 11, 0, 0, 0, 12, 0, 0, 0, 0, 9, 0, 0, 13) 1 6
(0, 4, 4, 0, 24, 0, 0, 0, 0, 0, 3, 0, 16, 0, 3) 1 3
(0, 3, 20, 0, 0, 0, 3, 0, 0, 0, 6, 12, 0, 0, 10) 1 6
(0, 2, 9, 2, 0, 0, 0, 28, 0, 7, 2, 0, 0, 2, 2) 1 6

(0, 0, 20, 0, 6, 0, 0, 0, 0, 0, 12, 6, 0, 0, 10) 1 6
(0, 0, 20, 0, 6, 0, 0, 0, 0, 0, 6, 0, 21, 0, 1) 1 6
(0, 0, 20, 0, 3, 0, 6, 0, 0, 0, 0, 15, 0, 6, 4) 1 6
(0, 0, 20, 0, 0, 0, 0, 12, 0, 0, 11, 0, 2, 0, 9) 1 6
(0, 0, 19, 0, 2, 0, 0, 11, 0, 0, 12, 0, 0, 0, 10) 1 6.

.
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Vertex v # |G · v|
(0, 0, 18, 0, 0, 2, 0, 14, 0, 0, 11, 0, 0, 0, 9) 1 6
(0, 0, 17, 0, 0, 0, 12, 0, 9, 0, 0, 9, 0, 0, 7) 1 6
(0, 0, 16, 9, 0, 0, 0, 0, 6, 0, 0, 16, 0, 0, 7) 1 3
(0, 0, 15, 0, 0, 0, 0, 23, 0, 4, 6, 0, 0, 2, 4) 1 6
(0, 0, 15, 0, 0, 0, 0, 21, 0, 6, 6, 2, 0, 0, 4) 1 6
(0, 0, 14, 0, 9, 0, 12, 0, 0, 0, 0, 9, 0, 0, 10) 1 6
(0, 0, 14, 0, 2, 0, 0, 16, 10, 0, 7, 0, 0, 0, 5) 1 6
(0, 0, 12, 18, 0, 0, 0, 0, 0, 0, 4, 0, 0, 20, 0) 1 6
(0, 0, 12, 9, 0, 0, 0, 18, 0, 0, 3, 2, 0, 0, 10) 1 6
(0, 0, 12, 3, 0, 0, 0, 24, 2, 4, 3, 0, 2, 0, 4) 1 6
(0, 0, 12, 0, 9, 0, 6, 0, 12, 0, 0, 11, 0, 0, 4) 1 6
(0, 0, 12, 0, 2, 0, 0, 22, 0, 10, 6, 0, 0, 2, 0) 1 6
(0, 0, 12, 0, 0, 2, 0, 23, 0, 9, 6, 0, 0, 2, 0) 1 6
(0, 0, 12, 0, 0, 0, 16, 0, 20, 0, 0, 0, 0, 4, 2) 1 6
(0, 0, 12, 0, 0, 0, 4, 18, 0, 14, 6, 0, 0, 0, 0) 1 6
(0, 0, 12, 0, 0, 0, 2, 20, 2, 12, 6, 0, 0, 0, 0) 1 6
(0, 0, 11, 3, 0, 2, 0, 25, 0, 4, 4, 0, 0, 0, 5) 1 6
(0, 0, 11, 2, 0, 0, 2, 26, 0, 7, 2, 0, 0, 2, 2) 1 6
(0, 0, 10, 9, 2, 0, 0, 20, 0, 0, 3, 0, 0, 0, 10) 1 6
(0, 0, 10, 5, 0, 0, 0, 17, 0, 15, 7, 0, 0, 0, 0) 1 6
(0, 0, 10, 0, 14, 0, 14, 0, 0, 0, 0, 0, 0, 16, 0) 1 6
(0, 0, 9, 7, 0, 0, 0, 21, 0, 10, 4, 0, 0, 0, 3) 1 6
(0, 0, 9, 7, 0, 0, 0, 18, 0, 13, 4, 0, 3, 0, 0) 1 6
(0, 0, 9, 4, 2, 0, 0, 26, 0, 7, 2, 0, 0, 2, 2) 1 6
(0, 0, 8, 24, 0, 0, 0, 0, 0, 0, 1, 0, 0, 20, 1) 1 6
(0, 0, 8, 3, 0, 8, 0, 26, 0, 0, 3, 0, 0, 2, 4) 1 6
(0, 0, 8, 0, 24, 0, 0, 0, 0, 0, 10, 0, 0, 8, 4) 1 6
(0, 0, 8, 0, 24, 0, 0, 0, 0, 0, 8, 0, 8, 0, 6) 1 6
(0, 0, 6, 6, 20, 0, 0, 2, 0, 0, 0, 8, 0, 12, 0) 1 6
(0, 0, 6, 4, 22, 0, 2, 0, 0, 0, 0, 8, 0, 12, 0) 1 6
(0, 0, 6, 0, 22, 0, 2, 8, 0, 0, 4, 0, 0, 12, 0) 1 6
(0, 0, 4, 25, 0, 0, 6, 0, 4, 0, 0, 0, 0, 0, 15) 1 6
(0, 0, 4, 24, 0, 4, 0, 4, 0, 0, 4, 0, 0, 0, 14) 1 6
(0, 0, 4, 21, 4, 0, 6, 4, 0, 0, 0, 0, 0, 0, 15) 1 6
(0, 0, 4, 21, 0, 4, 10, 0, 0, 0, 0, 0, 0, 0, 15) 1 6
(0, 0, 4, 16, 0, 0, 0, 0, 25, 3, 3, 0, 0, 3, 0) 1 6
(0, 0, 3, 20, 0, 0, 0, 0, 0, 23, 8, 0, 0, 0, 0) 1 6
(0, 0, 3, 18, 0, 0, 8, 0, 0, 19, 0, 0, 6, 0, 0) 1 6.

.
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Vertex v # |G · v|
(0, 0, 3, 7, 0, 22, 0, 5, 0, 0, 0, 16, 0, 0, 1) 1 6
(0, 0, 2, 0, 26, 4, 6, 0, 0, 0, 0, 6, 0, 10, 0) 1 6
(0, 0, 2, 0, 0, 20, 24, 0, 0, 2, 0, 0, 0, 0, 6) 1 6
(0, 0, 1, 28, 0, 0, 0, 0, 1, 12, 1, 0, 0, 11, 0) 1 6
(0, 0, 1, 27, 0, 0, 2, 0, 1, 12, 0, 0, 0, 11, 0) 1 6
(0, 0, 1, 23, 0, 0, 0, 0, 0, 23, 5, 2, 0, 0, 0) 1 6
(0, 0, 1, 22, 0, 0, 2, 0, 0, 23, 5, 0, 1, 0, 0) 1 6
(0, 0, 1, 0, 0, 27, 15, 0, 0, 0, 0, 6, 4, 1, 0) 1 6
(0, 0, 0, 14, 0, 18, 8, 0, 0, 0, 0, 0, 8, 4, 2) 1 6
(0, 0, 0, 14, 0, 18, 4, 4, 0, 0, 0, 0, 10, 4, 0) 1 6
(0, 0, 0, 14, 0, 18, 4, 0, 0, 4, 0, 4, 10, 0, 0) 1 6
(0, 0, 0, 14, 0, 17, 0, 10, 0, 0, 0, 8, 0, 0, 5) 1 6
(0, 0, 0, 12, 0, 18, 12, 0, 0, 0, 0, 0, 0, 12, 0) 1 6
(0, 0, 0, 10, 4, 18, 4, 4, 0, 0, 0, 0, 14, 0, 0) 1 6
(0, 0, 0, 10, 0, 20, 8, 4, 0, 0, 0, 0, 10, 0, 2) 1 6
(0, 0, 0, 10, 0, 19, 0, 14, 0, 0, 0, 8, 0, 0, 3) 1 6
(0, 0, 0, 9, 0, 21, 0, 12, 0, 0, 0, 10, 0, 0, 2) 1 6
(0, 0, 0, 8, 0, 22, 4, 8, 0, 0, 2, 0, 10, 0, 0) 1 6
(0, 0, 0, 8, 0, 22, 0, 12, 0, 0, 4, 0, 8, 0, 0) 1 3
(0, 0, 0, 6, 20, 6, 0, 2, 6, 0, 0, 8, 0, 6, 0) 1 6
(0, 0, 0, 6, 8, 18, 8, 0, 0, 0, 0, 0, 14, 0, 0) 1 6
(0, 0, 0, 6, 0, 26, 8, 0, 0, 0, 0, 12, 0, 0, 2) 1 6
(0, 0, 0, 6, 0, 19, 0, 22, 0, 0, 4, 0, 0, 0, 3) 1 6
(0, 0, 0, 6, 0, 19, 0, 22, 0, 0, 3, 0, 0, 4, 0) 1 6
(0, 0, 0, 4, 0, 28, 8, 0, 0, 0, 2, 8, 4, 0, 0) 1 3
(0, 0, 0, 1, 0, 25, 20, 0, 0, 0, 0, 1, 0, 7, 0) 1 6
(0, 0, 0, 0, 29, 0, 1, 0, 0, 13, 10, 0, 0, 0, 1) 1 6
(0, 0, 0, 0, 28, 4, 6, 0, 0, 2, 0, 6, 0, 8, 0) 1 6
(0, 0, 0, 0, 28, 0, 2, 8, 0, 6, 4, 0, 0, 6, 0) 1 6
(0, 0, 0, 0, 28, 0, 0, 8, 0, 8, 6, 0, 0, 4, 0) 1 6
(0, 0, 0, 0, 28, 0, 0, 6, 0, 10, 6, 0, 4, 0, 0) 1 6
(0, 0, 0, 0, 27, 0, 7, 0, 0, 11, 6, 0, 0, 0, 3) 1 6
(0, 0, 0, 0, 27, 0, 5, 0, 0, 13, 3, 6, 0, 0, 0) 1 6
(0, 0, 0, 0, 26, 6, 2, 0, 6, 0, 4, 4, 0, 6, 0) 1 6

(0, 0, 0, 0, 26, 2, 0, 0, 6, 10, 10, 0, 0, 0, 0) 1 6
(0, 0, 0, 0, 26, 0, 6, 4, 4, 6, 0, 0, 8, 0, 0) 1 3
(0, 0, 0, 0, 26, 0, 0, 8, 2, 10, 6, 0, 2, 0, 0) 1 6.

.
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Vertex v # |G · v|
(0, 0, 0, 0, 26, 0, 0, 8, 0, 12, 6, 2, 0, 0, 0) 1 6
(0, 0, 0, 0, 24, 8, 0, 0, 0, 8, 6, 8, 0, 0, 0) 1 6
(0, 0, 0, 0, 24, 6, 6, 0, 6, 0, 0, 0, 12, 0, 0) 1 6
(0, 0, 0, 0, 24, 2, 0, 8, 0, 12, 8, 0, 0, 0, 0) 1 6
(0, 0, 0, 0, 24, 0, 7, 0, 6, 11, 3, 3, 0, 0, 0) 1 6
(0, 0, 0, 0, 24, 0, 4, 8, 0, 12, 5, 0, 0, 0, 1) 1 6
(0, 0, 0, 0, 24, 0, 4, 8, 0, 12, 2, 4, 0, 0, 0) 1 6
(0, 0, 0, 0, 22, 4, 6, 12, 0, 2, 0, 0, 0, 8, 0) 1 6
(0, 0, 0, 0, 22, 2, 10, 0, 14, 0, 0, 2, 0, 0, 4) 1 6
(0, 0, 0, 0, 20, 4, 12, 0, 12, 0, 0, 0, 0, 4, 2) 1 6
(0, 0, 0, 0, 20, 4, 6, 14, 4, 0, 0, 0, 0, 2, 4) 1 6
(0, 0, 0, 0, 18, 8, 6, 14, 0, 0, 0, 0, 0, 8, 0) 1 6
(0, 0, 0, 0, 18, 6, 14, 0, 0, 10, 0, 0, 6, 0, 0) 1 6
(0, 0, 0, 0, 16, 16, 8, 0, 0, 0, 2, 0, 12, 0, 0) 1 6
(0, 0, 0, 0, 16, 16, 0, 8, 0, 0, 10, 0, 0, 0, 4) 1 6
(0, 0, 0, 0, 16, 8, 10, 0, 14, 0, 0, 0, 6, 0, 0) 1 6
(0, 0, 0, 0, 14, 10, 7, 17, 0, 0, 0, 1, 0, 0, 5) 1 6
(0, 0, 0, 0, 12, 20, 6, 0, 0, 2, 0, 14, 0, 0, 0) 1 6
(0, 0, 0, 0, 12, 20, 0, 8, 0, 0, 10, 0, 0, 4, 0) 1 6
(0, 0, 0, 0, 12, 12, 6, 18, 0, 0, 0, 0, 0, 6, 0) 1 6
(0, 0, 0, 0, 8, 20, 14, 0, 2, 0, 0, 0, 10, 0, 0) 1 6
(0, 0, 0, 0, 6, 21, 12, 6, 0, 0, 0, 0, 9, 0, 0) 1 6
(0, 0, 0, 0, 2, 22, 14, 0, 10, 0, 0, 6, 0, 0, 0) 1 6
(0, 0, 0, 0, 1, 24, 21, 0, 1, 0, 0, 0, 0, 7, 0) 1 6
(0, 0, 0, 0, 0, 28, 15, 1, 0, 0, 3, 3, 0, 4, 0) 1 6
(0, 0, 0, 0, 0, 27, 9, 9, 0, 0, 0, 9, 0, 0, 0) 1 3
(0, 0, 0, 0, 0, 25, 20, 2, 0, 0, 0, 0, 4, 0, 3) 1 6
(0, 0, 0, 0, 0, 25, 19, 3, 0, 0, 0, 3, 0, 0, 4) 1 6
(0, 0, 0, 0, 0, 25, 16, 0, 6, 0, 0, 6, 0, 0, 1) 1 6
(0, 0, 0, 0, 0, 24, 20, 2, 2, 0, 0, 0, 0, 6, 0) 1 6
(0, 0, 0, 0, 0, 24, 18, 6, 0, 0, 0, 0, 3, 0, 3) 1 6
(0, 0, 0, 0, 0, 24, 16, 3, 0, 5, 0, 6, 0, 0, 0) 1 6
(0, 0, 0, 0, 0, 24, 15, 9, 0, 0, 0, 3, 0, 0, 3) 1 6
(0, 0, 0, 0, 0, 24, 12, 9, 0, 3, 0, 6, 0, 0, 0) 1 6.

.
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8. SOLVING SPARSE DECOMPOSABLE SYSTEMS

We describe how to use a numerical homotopy to solve polynomial systems corresponding to

fibers of decomposable branched covers. Recall that a branched cover π : X → Z is decomposable

if there is a dense open subset V ⊂ Z over which π factors as

π−1(V ) −→ Y −→ V (8.1)

with ϕ and ψ both nontrivial branched covers. As discussed in Section 4.4, a result of Pirola and

Schlesinger [25] states that the Galois group Gπ acts imprimitively if and only if π is decompos-

able.

Améndola and Rodriguez [28] explained how to use an explicit decomposition to compute

fibers π−1(z) using monodromy. They also showed how several examples from the literature in-

volve a decomposable branched cover; for these, the variety Y and intermediate maps were deter-

mined using invariant theory as there was a finite group acting as automorphisms of π : X → Z.

In general, it is nontrivial to determine a decomposition (8.1) of a branched cover π : X → Z with

imprimitive Galois group, especially when the cover has trivial automorphism group.

Esterov [3] determined which systems of sparse polynomials have an imprimitive Galois group.

One goal was to classify those which are solvable by radicals. He identified two simple structures

which imply that the system is decomposable. In these cases, the decomposition is transparent.

He also showed that the Galois group is full symmetric when neither structure occurs. We use

Esterov’s classification to give a recursive numerical homotopy continuation algorithm for solving

decomposable sparse systems.

The first such structure is when a polynomial system is composed with a monomial map. For

example, if f(x) = g(x3) then to solve f(x) = 0, first solve g(y) = 0 and then for each solution
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y, extract its third roots. The second structure is when the system is triangular, such as

f(x, y) = g(y) = 0 .

To solve this, first solve g(y) = 0 and then for each solution y, solve f(x, y) = 0.

In general, Esterov’s classification leads to a sequence of branched covers, each corresponding

to a sparse system with symmetric monodromy or to a monomial map. Our algorithm identifies

this structure and uses it to recursively solve a decomposable system. We give some examples

which demonstrate that, despite its overhead, this algorithm is a significant improvement over a

direct use of the polyhedral homotopy (Algorithm 6.3.6).

By the Bernstein-Kushnirenko Theorem (Proposition 5.3.1), a general system of sparse poly-

nomials has the same number of solutions as a system whose supports have the same convex hull.

When the system supported on the vertices is decomposable, we propose using it as a start sys-

tem in a parameter homotopy to solve the original system. This is similar in spirit to the Bézout

homotopy (Algorithm 6.3.2).

We remind the reader of the general background we developed in Section 4 on Galois groups

of branched covers as well as our explanation of the relation between decompositions of branched

covers and imprimitivity of the corresponding Galois groups.

In Section 8.1, we explain Esterov’s classification and describe how to compute the correspond-

ing decompositions in Section 8.2. We present our algorithms for solving sparse decomposable

systems in Section 8.3, and give an application to furnish start systems for parameter homotopies.

Section 8.5 gives timings and information on the performance of our algorithm. Much of the ma-

terial in this section appears in the paper of the same name [67] with Rodriguez, Sottile, and Yahl.

8.1 Decompositions of sparse polynomial systems

Let A• = (A1,A2, . . . ,An) be a collection of supports Ai ⊂ Zn. We describe two properties

that a collection A• may have, lacunary and (strictly) triangular, and then state Esterov’s theorem
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about the Galois group GA• . We then present explicit decompositions of the projection π : XA• →

CA• when A• is lacunary and when A• is triangular. These form the basis for our algorithms.

Assume that MV(A•) > 1. We say that A• is lacunary if ZA• 6= Zn (it has rank n as

MV(A•) 6= 0). We say thatA• is triangular if there is a nonempty proper subset ∅ 6= I ( [n] such

that rank(ZAI) = |I|, or equivalently, the defect of the collection of polytopes {conv(Ai)}i∈I is

zero. As we explain in Section 8.2, we may change coordinates and assume that ZAI ⊂ Z|I| so that

MV(AI) is defined using conv(Ai) ⊂ R|I| for i ∈ I . A systemA• of triangular supports is strictly

triangular if for some ∅ 6= I ( [n] with rank(ZAI) = |I|, we have 1 < MV(AI) < MV(A•). It is

elementary that if A• is either lacunary or strictly triangular, then the branched cover XA• → CA•

is decomposable and therefore GA• is an imprimitive permutation group. We do this explicitly in

Sections 8.1.1 and 8.1.2.

Proposition 8.1.1 (Esterov [3]). LetA• be a collection of supports with MV(A•) 6= 0. The Galois

groupGA• is equal to the symmetric group SMV(A•) if and only ifA• is neither lacunary nor strictly

triangular.

8.1.1 Lacunary support

Let us begin with an example when n = 2. Let

A1 =

0 0 3 6 12

0 4 3 6 0

 and A2 =

0 3 6 9 9

0 7 2 1 5


be supports in Z2. Then ZA• has index 12 in Z2 as the map ϕ(a, b)T = (3a, 4b − a)T is an

isomorphism ϕ : Z2 ∼−→ ZA•, and det( 3 0
−1 4 ) = 12. If we set Bi = ϕ−1(Ai), then

B1 =

0 0 1 2 4

0 1 1 2 1

 and B2 =

0 1 2 3 3

0 2 1 1 2

 .

We display A1, A2, B1, and B2 in Figure 8.1. Then the map Φ = ϕ∗ : (C×)2 � (C×)2 is given by
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Figure 8.1: The lacunary image (A1,A2) of the support (B1,B2) under the map ϕ.

Φ(x, y) = (x3y−1, y4) = (z, w). If

f1 = 1 + 2y4 + 4x3y3 + 8x6y6 + 16x12

f2 = 3 + 5x3y7 + 7x6y2 + 11x9y + 13x9y5 ,

which is a polynomial system with support A•, then fi = gi ◦ Φ, where

g1 = 1 + 2w + 4zw + 8z2w2 + 16z4w

g2 = 3 + 5zw2 + 7z2w + 11z3w + 13z3w2 ,

is a polynomial system with support B•. Therefore, the branched cover XA• → CA• factors as

XA• → XB• → CB• = CA• with the map XA• → XB• induced by Φ. Consequently, this implies

that GA• ⊂ (Z/12Z)10 o S10, as Z2/ZA• ' Z/12Z, B• is neither lacunary nor triangular, and

MV(B•) = 10.

We generalize this example. Suppose that A• = (A1, . . . ,An) is lacunary. Then ZA• has

rank n but ZA• 6= Zn. Let ϕ : Zn ∼−→ ZA• be an isomorphism. Then the corresponding map

Φ = ϕ∗ : (C×)n → (C×)n is a surjection with kernel Hom(Zn/ZA•,C×). For each i = 1, . . . , n,

set Bi = ϕ−1(Ai). Then B• = (B1, . . . ,Bn) is a collection of supports with ZB• = Zn. Since ϕ is

a bijection, we identify CBi with CAi and CB• with CA• . Given a system F ∈ CA• , let ι(F ) ∈ CB•

be the corresponding system with support B•.

Lemma 8.1.2. Suppose thatA• is lacunary, ϕ : Zn ∼−→ ZA• is an isomorphism with corresponding
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surjection Φ: (C×)n → (C×)n. Let B• = ϕ−1(A•) and suppose that MV(B•) > 1. Then the

branched cover XA• → CA• is decomposable and XA• → XB• → CA• = CB• is a nontrivial

decomposition of branched covers induced by the map Φ.

Proof. If g is a polynomial with support B ⊂ Zn, then the composition g ◦ Φ is a polynomial

with support ϕ(B), with the coefficient of xβ in g equal to the coefficient of xϕ(β) in g ◦ Φ. Since

ϕ(Bi) = Ai, this gives the natural identifications ι : CAi ∼−→ CBi and ι : CA• ∼−→ CB• mentioned

before the lemma. Under this identification, we have ι(f)(Φ(x)) = f(x).

Since MV(B•) > 1, the branched cover XB• → CB• is nontrivial by definition. The identifica-

tion ι : CA• → CB• extends to a commutative diagram

ι× Φ
XA• XB•

π π

ιCA• CB•

(8.2)

where ι × Φ is the restriction of the map ι × Φ: CA• × (C×)n → CB• × (C×)n to XA• . The

map ι × Φ: XA• → XB• is a map of branched covers with ker Φ acting freely on the fibers. If

we restrict the diagram (8.2) to the open subset V of CB• over which XB• → CB• is a covering

space, we obtain a composition of covering spaces with ker Φ acting as deck transformations on

π−1(V ) ⊂ XA• . Thus XA• → CA• is decomposable.

8.1.2 Triangular support

This requires more discussion before we can state the analog of Lemma 8.1.2. Let us begin

with an example when n = 3. Suppose that

A1 = A2 = A =


0 1 1 1 2 2 2 3

0 0 1 2 0 1 2 1

0 1 2 3 2 3 4 4

 and A3 =


0 0 0 0 1 1

0 0 0 1 0 1

0 2 4 5 3 4

 .

The span ZA of the first two supports is isomorphic to Z2, with ϕ(a, b)T 7→ (a, b, a + b)T an

isomorphism ϕ : Z2 ∼−→ ZA•. Set B = ϕ−1(A). We display A, A3, and B in the horizontal
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plane together on the left in Figure 8.2, and B on the right. Consider the polynomial system

Figure 8.2: An example of triangular support.

F = (f1, f2, f3) ∈ C[x, y, z] with support A•,

f1 = 1 + 2xz + 3xyz2 + 4xy2z3 + 5x2z2 + 6x2yz3 + 7x2y2z4 + 8x3yz4

f2 = 2 + 3xz + 5xyz2 + 7xy2z3 + 11x2z2 + 13x2yz3 + 17x2y2z4 + 19x3yz4

f3 = 1 + 3z2 + 9z4 + 27yz5 + 81xz3 + 243xyz4 .

Let Φ: (C×)3 → (C×)2 be given by Φ(x, y, z) = (xz, yz) = (u, v). If

g1 = 1 + 2u+ 3uv + 4uv2 + 5u2 + 6u2v + 7u2v2 + 8u3v

g2 = 2 + 3u+ 5uv + 7uv2 + 11u2 + 13u2v + 17u2v2 + 19u3v ,

then fi = gi ◦ Φ for i = 1, 2. To compute V(F ), we first may compute V(g1, g2) which consists of

eight points. For each solution (u0, v0) ∈ V(g1, g2), we may identify the fiber Φ−1(u0, v0) with C×
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by z 7→ (u0z
−1, v0z

−1, z). Then the restriction of f3 to this fiber is

1 + (3 + 81u0 + 243u0v0)z2 + (9 + 27v0)z4 ,

which is a lacunary univariate polynomial with support {0, 2, 4}, and has four solutions (counted

with multiplicity) when v0 6= −1/3.

This example generalizes to all triangular systems. Suppose that A• = (A1, . . . ,An) is trian-

gular. Let ∅ 6= I ( [n] be a proper subset witnessing the triangularity, so that rank(ZAI) = |I|.

Set J = [n] r I . Let

ZI = QAI ∩ Zn = {v ∈ Zn | ∃m ∈ N with mv ∈ ZAI} ,

be the saturation of ZAI , which is a free abelian group of rank |I|. As it is saturated, ZJ = Zn/ZI

is free abelian of rank n− |I| = |J |.

Applying Hom(•,C×) to the short exact sequence ZI ↪→ Zn � ZJ gives the short exact

sequence of tori (whose characters are ZJ , Zn, and ZI) with indicated maps,

(C×)|J | ' TJ := Hom(ZJ ,C×) ↪−−→ (C×)n
Φ
−−� TI := Hom(ZI ,C×) ' (C×)|I| . (8.3)

A polynomial f with support in ZI determines polynomial functions on (C×)n and on TI with the

first the pullback of the second. Let f be a polynomial on (C×)n with support A ⊂ Zn. Then

its restriction to a fiber Φ−1(y0) of Φ is a regular function f on the fiber, which is a coset of TJ .

Choosing an identification of TJ ' Φ−1(y0), we obtain a polynomial f on TJ whose support is

the image A of A in ZJ = Zn/ZI . This polynomial f depends upon the identification of the fiber

with TJ . Let AJ be the image in ZJ of the collection AJ of supports. Then we have the product

formula (see [68, Lem. 6] or [3, Thm. 1.10])

MV(A•) = MV(AI) ·MV(AJ) . (8.4)
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Since A• = AI t AJ , we have the identification CA• = CAI ⊕ CAJ . Suppose that F ∈ CA•

is a polynomial system with support A•. Write FI ∈ CAI for its restriction to the indices in I , and

the same for FJ . We have the diagram

pI × Φ
XA• XAI

π π

pICA• CAI

(8.5)

where pI × Φ is the restriction of the map pI × Φ: CA• × (C×)n → CAI × TI to XA• .

Let VA• ⊂ CA• be the dense open subset over which XA• is a covering space. This is the

set of polynomial systems F with support A• which have exactly MV(A•) solutions in (C×)n.

Similarly, let VAI ⊂ CAI be the subset where XAI → CAI is a covering space. We will show that

under the projection CA• → CAI , the image of VA• is a subset of VAI . Define YA• → VA• to be the

restriction of XA• → CA• to the dense open set VA• . Also define YAI → VA• to be the pullback of

XAI → CAI along the map VA• → VAI . Write Φ: YA• → YAI for the map induced by Φ.

Lemma 8.1.3. Suppose that A• is a triangular set of supports in Zn witnessed by I ( [n]. Then

YA• → YAI → VA• a composition of covering spaces. If 1 < MV(AI) < MV(A•), then this

decomposition is nontrivial, so that XA• → CA• is decomposable.

Furthermore, each fiber of the map YA• → YAI may be identified with the set of solutions of a

polynomial system with support AJ .

Proof. Let F ∈ VA• . Then its number of solutions is #V(F ) = MV(A•). If x ∈ V(F ), then

Φ(x) ∈ TI is a solution of fi = 0 for i ∈ I . Thus Φ(V(F )) ⊂ V(FI), the latter being the solutions

of FI on TI . For any y ∈ V(FI), if we choose an identification TJ ' Φ−1(y) of the fiber, then

the restriction of F to Φ−1(y) is the system FJ = {fj | j ∈ J}. By the Bernstein-Kushnirenko

Theorem, this has at most MV(AJ) solutions. By the product formula (8.4) and our assumption

on #V(F ), we conclude that the system FI has MV(AI) solutions, and for each y ∈ V(FI), the

system FJ has MV(AJ) solutions.

In particular, this implies that the image of VA• in CAI is a subset of VAI . As VA• is open
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and dense in CA• , its image contains an open dense subset. This proves the assertion that YA• →

YAI → VA• is a decomposition of covering spaces. We have already shown that each fiber of the

map YA• → YAI is a polynomial system with support AJ with exactly MV(AJ) solutions. Thus

when 1 < MV(AI) < MV(A•), we have MV(AJ) > 1, which shows that this decomposition is

nontrivial.

8.2 Computing the decompositions

We show how to compute the decompositions of XA• → CA• from Section 8.1 when A• is

either lacunary or strictly triangular.

Let us consider the Smith normal form (see Section 5.1.3),

A = PDQ, (8.6)

whenA is the matrix whose columns are the vectors inA• and MV(A•) > 0. Then dn > 0 as ZA•

has rank n, and A• is lacunary when dn > 1. In this case, an identification ϕ : Zn ∼−→ ZA is given

by PDn, where Dn is the principal n×n submatrix of D. Recall that the corresponding surjection

ϕ∗ = Φ: (C×)n → (C×)n has kernel Hom(Zn/ZA•,C×). Let ψ = P−1. Then ψ ◦ ϕ = Dn, so

that if we set Ψ = ψ∗, then Φ ◦Ψ: (C×)n → (C×)n is diagonal,

Φ ◦Ψ(x1, . . . , xn) = (xd1
1 , . . . , x

dn
n ) . (8.7)

Let y = (y1, . . . , yn) ∈ (C×)n. If we set ρi = |yi| and ζi = arg(zi) so that yi = ρie
√
−1ζi , then

(Φ ◦Ψ)−1(y) is the set

{(
ρ

1/d1

1 e
√
−1θ1 , . . . , ρ1/dn

n e
√
−1θn

) ∣∣∣ θi = ζi+2πj
di

for j = 0, . . . , di−1
}

(8.8)

as explained in Section 5.1.3.

Suppose that A• is triangular, and let us use the notation of Section 8.1.2. We suppose that

I = [k] = {1, . . . , k} and J = {k+1, . . . , n}. Given a polynomial f on (C×)n, its restriction f
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to a fiber of Φ: (C×)n → TI is a regular function on the fiber, which is isomorphic to TJ . To

represent f as a polynomial on TJ depends on the choice of a point in that fiber. Indeed, suppose

that f =
∑

α∈A cαx
α. Let y ∈ TI and y0 ∈ Φ−1(y) be a point in the fiber above y, so that

TJ 3 z 7→ y0z ∈ Φ−1(y) parameterizes Φ−1(y). If we write α for the image of α ∈ Zn in

ZJ = Zn/ZI , then

f(z) =
∑
α∈A

cα(y0z)α =
∑
β∈A

zβ
( ∑
α∈A with α=β

cαy
α
0

)
. (8.9)

A uniform choice of a point in each fiber is given by fixing a splitting TI ↪→ (C×)n of the map

Φ: (C×)n � TI . This gives an identification (C×)n = TI ×TJ . Then points y ∈ TI are canonical

representatives of cosets of TJ . As k = |I|, we may further fix isomorphisms TI ' (C×)k giving

ZI ' Zk and TJ ' (C×)n−k giving ZJ ' Zn−k.

Suppose now that A = AI , and we compute a decomposition (8.6). Since ZAI has rank k,

the diagonal matrix D has k nonzero invariant factors. The saturation L of ZAI is the image of

PIk, where Ik is the n× n matrix whose only nonzero entries are in its principal k× k submatrix,

which forms an identity matrix. Then ϕ = PIk and Φ = ϕ∗. Applying the coordinate change

ψ = P−1 to Zn identifies this saturation as the coordinate plane Zk ⊕ 0n−k and the lattice ZAI as

d1Z⊕ d2Z⊕ · · · ⊕ dkZ⊕ 0n−k. As in Section 8.1.2, this identifies Z/L with the complementary

coordinate plane, 0k ⊕ Zn−k. Setting Ψ = ψ∗ , the composition Φ ◦Ψ is the projection to the first

k coordinates,

Φ ◦Ψ : (C×)n −−� (C×)k (8.10)

and we identify TJ = 1k × (C×)n−k and TI = (C×)k × 1n−k.

8.3 Solving decomposable sparse systems

We describe algorithms that use Esterov’s conditions to solve sparse decomposable systems

and suggest an application for computing a start system for solving a general (not necessarily

decomposable) sparse polynomial system. In each, we let SOLVE be an arbitrary algorithm for
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solving a polynomial system. We assume that the system F to be solved is general given its

support A• in that it has MV(A•) solutions in (C×)n. If not, then one may instead solve a general

polynomial system with support A• and then use a parameter homotopy together with endgames

to compute V(F ). Recall the identification in (8.2) for Algorithm 8.3.1 and the notation FI ∈ CAI

used in (8.5) for Algorithm 8.3.2.
.

Algorithm 8.3.1 (SolveLacunary).
Input:
• A general polynomial system F whose support A• is lacunary.
Output:
• All solutions V(F ) ⊂ (C×)n

Steps:
1 Compute the Smith normal form (8.6) of A•, giving ϕ = PDn, Φ = ϕ∗, ψ = P−1,

and Ψ = ψ∗, so that Φ ◦Ψ is diagonal (8.7)
2 Use SOLVE to compute V(ι(F )) ⊂ (C×)n

3 Using the formula (8.8) to compute (Φ ◦Ψ)−1(y) for y ∈ V(ι(F )), returnΨ(w)

∣∣∣∣∣∣ w ∈
⋃

z∈V(ι(F ))

(Φ ◦Ψ)−1(z)


.

Proof of Correctness. By Lemma 8.1.2, V(F ) = Φ−1(V(ι(F ))). We apply Ψ to the points of

(Φ ◦Ψ)−1(z) for z ∈ V(ι(F )) to obtain points of V(F ) in their original coordinates.

.
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Algorithm 8.3.2 (SolveTriangular).
Input:
• A general polynomial system F whose support A• is triangular, witnessed by 0 < k < n
such that rank(ZA[k]) = k
Output:
• All solutions of V(F ) ⊂ (C×)n

Steps:
1 Compute the Smith normal form (8.6) of A[k], giving ϕ = PIk, Φ = ϕ∗, ψ = P−1,

and Ψ = ψ∗, so that Φ ◦Ψ is the projection (8.10)
2 Use SOLVE to compute V(F[k]) ⊂ (C×)k

3 Choose y0 ∈ V(F[k]) Use SOLVE to compute the points of the fiber (Φ ◦Ψ)−1(y0) in
YA• , which are V(FJ) ⊂ {y0}×(C×)n−k, where FJ has supportAJ and J = [n]r [k]

4 for each y ∈ V(F[k]) use a parameter homotopy with start system V(FJ) to compute
(Φ ◦Ψ)−1(y) and returnΨ(w)

∣∣∣∣∣∣ w ∈
⋃

y∈V(F[k])

(Φ ◦Ψ)−1(y)


.

Proof of Correctness. By Lemma 8.1.3, every solution x ∈ V(F ) lies over a solution y = Φ(x)

to F[k] in (C×)k. As explained in Section 8.2, the map Φ ◦ Ψ is a coordinate projection and

(Φ ◦ Ψ)−1(y) = V(FJ). Here, FJ = (fk+1, . . . , fn) where fj has support Aj and is computed

using (8.9). We apply Ψ to convert these points to the original coordinates.

Our main algorithm takes a sparse system and checks Esterov’s criteria for decomposability. If

the system is decomposable, the algorithm calls Algorithm 8.3.1 (if lacunary) or Algorithm 8.3.2 (if

triangular), and in each of these algorithms calls to the solver SOLVE are assumed to be recursive

calls back to Algorithm 8.3.3. If the polynomial system is indecomposable, then Algorithm 8.3.3

calls a black box solver BLACKBOX.
.
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Algorithm 8.3.3 (SolveDecomposable).
Input:
• A generic polynomial system F with support A•
Output:
• All solutions of V(F ) ⊂ (C×)n

Steps:
1 Compute the Smith normal form PDQ (8.6) of A•
2 if dn > 1, then return SolveLacunary(F )
3 if dn = 1, then

3.1 for all ∅ 6= I ( [n] compute the Smith normal form PDIQ (8.6) of AI
3.2 if rank(DI) = |I| for some I , reorder so I = [k] and return

SolveTriangular(F, k)
3.3 else neither of Esterov’s conditions hold and return BLACKBOX(F )

.

Proof of Correctness. First note that if the algorithm halts, then it returns the solutions V(F ).

Halting is clear in Case (3), but the other cases involve recursive calls back to Algorithm 8.3.3. In

Case (1), SolveLacunary will call Algorithm 8.3.3 on a system ι(F ) whose mixed volume is less

than MV(A•). In Case (2), SolveTriangular will call Algorithm 8.3.3 on systems F[k] and FJ , each

involving fewer variables than F . Thus, in each recursive call back to Algorithm 8.3.3, either the

mixed volume or the number of variables decreases, which proves that the algorithm halts.

8.4 Start systems

The start system in the Bézout homotopy (Algorithm 6.3.1) is a highly decomposable sparse

polynomial system consisting of supports which are subsets of the original support of F , but have

the same mixed volume. We propose a generalization, in which Algorithm 8.3.3 is used to compute

a start system.

Example 8.4.1. Suppose that we have supports A1 = A2 = A, shown in Figure 8.3 which are

given by the columns of the matrix ( 0 0 1 1 2 3 3 3 4 5 5 6
0 2 0 1 3 0 1 4 2 3 4 4 ). Then MV(A1,A2) = 2! vol(conv(A)) =

30. Let B1 = B2 = ( 0 0 3 3 6
0 2 0 4 4 ) be the set of vertices of conv(A). Given a general system F ∈ CA• ,

let G ∈ CB• ⊂ CA• be obtained from F by restriction to the monomials in B. (That is, we

set coefficients of monomials xα in F to zero if α 6∈ B.) Then B• is lacunary with the map
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Figure 8.3: A support A such that (A,A) is neither triangular nor lacunary.

Φ(x1, x2) = (x3
1, x

2
2), and ι(G) has five solutions. We may use Algorithm 8.3.3 (more specifically,

Algorithm 8.3.1) to compute V(G), and then compute V(F ) using the straight-line homotopy

H(t;x) with start system G = H(1;x) and tracking from the solutions V(G) at t = 1. �

Example 8.4.1 motivates our final algorithm. For a collection A• = (A1, . . . ,An) of supports,

let vert(A•) = (vert(A1), . . . , vert(An)) where vert(Ai) = vert(conv(Ai)). Note that if G ∈

Cvert(A•) is a regular value of the branched cover π|Xvert(A•)
: Xvert(A•) → Cvert(A•) then G is also

a regular value of π : XA• → CA• . As such, G may be taken as a start system for a straight-line

homotopy and used to compute V(F ) for any F ∈ CA• with V(F ) finite. The benefit of this

approach is that π|Xvert(A•)
decomposes if π does. Therefore, as seen in Example 8.4.1, π|Xvert(A•)

is more likely (and no less likely) than π to be decomposable.
.

Algorithm 8.4.2 (Decomposable Start System).
Input:
• A set A• of supports
Output:
• A start system G for a homotopy coming from πA• and start solutions V(G)
Steps:

1 Choose a general system G ∈ Cvert(A•)

2 Compute V(G) using Algorithm 8.3.3
3 return the pair (G,V(G))

.

Proof of Correctness. As G ∈ Cvert(A•) is general, it has MV(vert(A•)) solutions. Since for each
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i, conv(Ai) = conv(vert(Ai)), we have MV(vert(A•)) = MV(A•). Finally, Cvert(A•) is the

subspace of CA• where the coefficients of non-extreme monomials in each polynomial are zero.

Thus G ∈ CA• , which shows that (G,V(G)) is a start system for A•.

Remark 8.4.3. The Bézout homotopy motivated Algorithm 8.4.2. However, if we apply Algo-

rithm 8.4.2 to the system of supports A•, where Ai consists of all monomials of degree at most di,

then we will not get the start system for the Bézout homotopy. For example, when n = 2, d1 = 2,

and d2 = 3, the supports are as shown in Figure 8.4. Here, B1 and B2 are the supports of the start

system for the Bézout homotopy.

Figure 8.4: Dense support (A1,A2), the support (vert(A1), vert(A2)), and the support of the Bézout start
system.

We leave open the challenge of finding a simple, general method to replace each set Ai by a

subset (or superset) Bi of Ai, so that MV(A•) = MV(B•) and π : XB• → CB• is decomposable.

A possible first step would be to take advantage of the results on monotonicity developed in

Section 2.5. For example, ifA1 = ( 1 3 1 3 2
1 1 3 3 4 ) andA2 = B1 = B2 = ( 2 0 2 4

0 2 4 2 ) thenA• = (A1,A2) is

neither lacunary nor triangular, but B• = (B1,B2) is lacunary. Moreover, MV(A•) = MV(B•) = 8

and so a general sparse polynomial system supported on A• corresponds to a regular value of πB• .

Thus, one may solve a general sparse decomposable system onB•, and subsequently solve a system

supported on A• via a parameter homotopy. �
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8.5 A computational experiment

We explored the computational cost of using Algorithm 8.3.3 to solve sparse decomposable

systems, comparing timings to PHCPack [49, 69] on a family of related systems.

Let A1 = ( 0 1 2 0 1
0 0 0 1 1 ), A2 = ( 1 0 1 2 1

0 1 1 1 2 ), B1 = ( 0 2 0 2
0 0 1 3 ), and B2 = ( 0 1 2 0 2 0

0 0 0 1 1 2 ). We dis-

play these supports and their convex hulls in Figure 8.5. Let C = {0, 1}5 be the vertices of

Figure 8.5: The four supports involved in a computational experiment.

the five-dimensional cube. We construct sparse decomposable systems from A• = (A1,A2),

B• = (B1,B2), and C as follows.

Choose two injections ı,  : Z2 → Z5 such that ı(Z2) ∩ (Z2) = {0}. For example, choose four

linearly independent vectors ı1, ı2, 1, 2 ∈ Z5, and define ı(a, b) = aı1 + bı2, and the same for .

Let us set

A(ı, ) =
(
ı(A1) , ı(A2) , (B1) , (B2) , C

)
.

Example 8.5.1. We now illustrate Algorithm 8.3.3 in detail on A(ı, ) by considering the case

when ı1, ı2, 1, 2 are the first four standard unit vectors e1, . . . , e4. Suppose F = (f1, f2, g1, g2, h)

is a system of polynomials C[x1, x2, y1, y2, z] with supportA(e1, e2, e3, e4). We use superscripts to

distinguish different calls of the same algorithm. When SolveDecomposable(1)(F ) is called,

it first checks if F is lacunary (it is not as ZC = Z5), and then recognizes that F is triangu-

lar witnessed by (f1, f2). As such, it calls SolveTriangular(1)(F, 2) which computes the
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MV(A•) = 5 solutions p1, . . . , p5 to V(f1, f2) with PHCPack, our choice of BLACKBOX.

As its penultimate task, SolveTriangular(1) computes a fiber of the first solution p1

by performing the substitution (x1, x2) = p1 in g1, g2 and h, and recursively calls Solve-

Decomposable(2) on the system (g1(p1, y, z), g2(p1, y, z), h(p1, y, z)) ∈ C[y1, y2, z]. This sys-

tem is recognized to be triangular witnessed by (g1, g2) and SolveTriangular(2)(g1, g2) com-

putes the MV(B•) = 10 solutions q1, . . . , q10 using PHCPack. Next, SolveTriangular(2)

computes a fiber above q1 by performing the substitution y = (y1, y2) = q1 in h(p1, y, z) pro-

ducing the univariate polynomial h(p1, q1, z) of degree 1 which has solution (p1, q1, z1). Finally,

SolveTriangular(2) performs a parameter homotopy from q1 to qi to populate the fibers above

each qi. Thus SolveTriangular(1) populates the fiber above p1 consisting of 10 · 1 = 10 so-

lutions. As its final step, SolveTriangular(1) uses parameter homotopies from p1 to pi to

populate all fibers producing all 5 · 10 = 50 solutions of V(F ).

Figure 8.6: A schematic of the process in Example 8.5.1.

Figure 8.6 depicts a schematic of this process. Red objects correspond to the function solve-

Decomposable(1) and blue objects correspond to solveDecomposable(2). The largest points

181



represent solutions which were computed directly. The dotted lines represent the use of mon-

odromy to move fibers. �

The overhead of this algorithm includes the computation of Smith normal forms and the search

for subsets witnessing triangularity. Additionally, it often requires more path-tracking than a direct

use of PHCPack. Nonetheless, the overhead seems nominal, and compared to the paths tracked

in PHCPack, the paths tracked in our algorithm either involve fewer variables or polynomials of

smaller degree.

For example, in Example 8.5.1, our algorithm called PHCPack to solve two sparse polynomial

systems with 5 and 10 solutions respectively. A parameter homotopy was called 10− 1 = 9 times

on a system with 1 solution, then a different parameter homotopy was called 5− 1 = 4 times on a

system with 10 solutions. In total, 5 + 10 + 9 + 40 = 64 individual paths were tracked. In contrast,

a direct use of PHCPack involves tracking exactly MV(A(e1, e2, e3, e4)) = 50 paths, albeit in a

higher dimensional space.

For more general ı and , the recursive structure of our computation is similar to Example 8.5.1.

Some notable differences include

(1) ı(A•) or (B•) may be lacunary which induces further decompositions.

(2) Monomial changes must be computed as ı(A•) or (B•) could involve all variables.

(3) For most ı,  the univariate polynomial obtained from h has degree 5 and is solved by com-

puting eigenvalues of its companion matrix.

For example, if we choose e1−e2, e2−e3, e3−e4, e4−e5 for ı1, ı2, 1, 2, then again, no system in the

algorithm is lacunary, but the univariate polynomial obtained from h has support {0, 1, 2, 3, 4, 5},

so that MV(A(ı, )) = 250.

In our computational experiment, we produced 13563 instances of A(ı, ) and solved each

instance using our implementation of Algorithm 8.3.3 as well as with PHCPack. Due to ill-

conditioning and heuristic choices of tolerances, some computations failed to produce all solutions.
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Figure 8.7: Scatter plot of timings

Figure 8.8: Box plot of timings
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We only include the 10962 instances such that both PHCPack and Algorithm 8.3.3 computed all

solutions.

We give a scatter plot of the elapsed timings in Figure 8.7 with respect to the mixed volume

of the system. Figure 8.8 displays box plots of the timings of each algorithm grouped by sizes of

mixed volumes. The boxes range from the first quartile q1 to the third quartile q3 of the group data

with whiskers extending to the smallest and largest data points which are not outliers. Outliers are

the data points which are smaller than q1 − 1.5I or larger than q3 + 1.5I where I is the length of

the interquartile range (q1, q3).

A more detailed account of these computations, along with our implementation in Macaulay2,

may be found at the website [70].
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9. SUMMARY

Newton polytopes provide a rich combinatorial structure by which we may delineate polyno-

mials and thus polynomial systems. The geometric nature of numerical algebraic geometry lends

itself to algorithms which can extract and use this combinatorial data via the HS-algorithm and

polyhedral homotopy algorithm, respectively. We augment both of these algorithms.

Using the HS-algorithm as a subroutine, we develop a tropical membership algorithm. We

implement both the HS-algorithm and the tropical membership algorithm in a computer algebra

system and analyze their convergence rates. We use the HS-algorithm to completely identify a

large polynomial defining a hypersurface from algebraic vision. With the same software, we also

determine many vertices of the Lüroth polytope.

We augment the polyhedral homotopy by developing and implementing an algorithm which

recognizes when a sparse polynomial system is decomposable. It then uses this decomposition to

numerically and recursively solve the sparse system. We compare timings of our software against

the use of a polyhedral homotopy.
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