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ABSTRACT

With industry 4.0, a new era of the industrial revolution with a focus on automation, inter-

connectivity, machine learning, and real-time data collection and analysis are emerging. The smart

digital technology which includes smart sensors, data acquisition, processing, and control based

on big data, machine learning, and Artificial Intelligence (AI) provides boundless opportunities for

the end-users to operate their plants under more optimized, reliable, and safer conditions. During

an abnormal event in an industrial facility, operators are inundated with information to infer and

act. Hence, there is a critical need to develop solutions that assist operators during such critical

events. Also, because of the obsolescence challenges of typical industrial control systems, a new

paradigm of Open Process Automation (OPA) is emerging. OPA requires a Real-time Operational

Technology (OT) services to analyze the data generated by the sensors and control loops to assist

the process plant operations by developing applications for advanced computing platforms in open

source software platforms.

The aim of this research is to highlight the potential applications of big data analytics, machine

learning, and AI methods and develop solutions for plant operation, maintenance, process safety

and risk management for real industry problems. This research work includes:

1. an alarm management framework integrated with data-driven (Key Performance Indicators)

KPIs bench-marking, and a visualization tool is developed to address alarm management

challenges;

2. a deep learning-based data-driven process fault detection and diagnosis method on cloud

computing to identify abnormal process conditions; and

3. applications such as predictive maintenance, dynamic risk mapping, incident database anal-

ysis, application of Natural Language Processing (NLP) for text classification, and barrier

assessment for dynamic risk mapping,

A unified workflow approach is used to define the data-sources, applicable domains, and develop

ii



proposed applications. This work integrates data generated by field instrumentation, expert knowl-

edge with data analytics and AI techniques to provide guidance to the operator or engineer to

effectively take proactive decisions through “action-boards”.

The robustness of the developed methods and algorithms is validated using real and simulated

data sets. The proposed methods and results provide a future road map for any organization to

deal with data integration with such applications leading to productive, safer and more reliable

operations.
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1. INTRODUCTION

Manufacturing technologies and methods have substantially improved since the first industrial

revolution. We have made giant strides in technological development and are in the midst of smart

manufacturing or ‘Industry 4.0’ which encompasses the word smart by integration of Artificial In-

telligence (AI), Internet of Things (IoT), cyber-physical systems, and cloud computing. By imple-

menting such technology options in part or full, we can build a smart network of machines, smart

and intelligent devices, networks, data and systems. Besides an increase in productivity, users also

achieve increased safety, quality, and reliability of the manufacturing units. While industry 4.0

is about digitalization, in the future we shall be entering the era of Industry 5.0 or fifth industrial

revolution. Industry 5.0 will include defining and establishing a co-operation between human and

machines, which results in a synchronization between the cognitive computing and human intel-

ligence. Technologies such as cloud computing, Internet of Things (IoT), Artificial Intelligence

(AI) and Augmented Reality (AR) / Virtual Reality (VR) are becoming indispensable in improv-

ing operational efficiency to drive profitability, asset reliability and availability, decision support,

process safety and abnormal situation management. The intricacies of these technologies and their

application of various key systems engenders challenges for research and development (R& D).

With the real-time data coming from the field and advanced computing techniques it is easier to

design and adopt new personalized tools and applications in manufacturing and operations.

1.1 Motivation

“Big Data" has transformed from a buzzword to a real value creator in recent years and is serv-

ing as a key enabler in boosting the performance of operations, economy, and businesses. Several

countries and organizations have started various projects to harness the big data. In the United

∗Reprinted in part with the permission from “Application of big data analytics in process safety and risk man-
agement” by Goel et al., 2017. IEEE International Conference on Big Data, (pp. 1143-1152), Copyright 2017 by
IEEE.

†Reprinted in part with the permission from “How Big Data & Analytics can improve process and plant safety
and become an indispensable tool for risk management” by Goel et al., 2019. Chemical Engineering Transactions, 77,
757-762, Copyright 2019 by AIDIC.
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States, The Obama Administration launched the ‘Big Data Research and Development Initiative’

in 2012, and in 2016 the administration released “The Federal Big Data Research and Develop-

ment Strategic Plan". This highlights the emerging big data capabilities and provides guidance for

developing or expanding federal big data research and development (R&D) plans [2, 3]. In China,

Ministry of Industry and Information Technology (MIIT) prepared a five year plan for developing

big data infrastructure through standardized systems [4]. In Japan, big data is a key component of

the national technological strategy since 2012. The United Nations (UN) established the “Global

Pulse initiative" in 2009 to harness big data for development and humanitarian actions and pub-

lished a report [5] highlighting the challenges and opportunities. According to [6, 7], a social,

economic, and technical revolution has emerged around us, resulting in an exponential growth in

the generation of data resulting in an “industrial revolution of data". This data is generated at

different levels in the form of social media information, smart devices, Internet of Things (IoT),

bank services, and reports etc. With the advancements in computing technologies, it is easier to

store data (clouds, data warehouses), and draw insights with the help of tools such as artificial

intelligence (AI), machine/deep learning, granular computing [8], cognitive computing, and com-

puter vision. Big data has been defined differently by different users. The attributes of big data are

defined as 7 V’s and listed as follows [9, 10, 11]:

• Volume: large amounts of data generated from devices.

• Variety: heterogeneity of data types, representation, and semantic interpretation.

• Velocity: data is generated at a rapid rate compared to the traditional systems and requires

processing.

• Value: added value from the information extracted.

• Veracity: uncertainty, accuracy, and reliability of data.

• Variability: number of inconsistencies, variable data sources and data changes (dynamic).

• Valence: inter-connectedness, inter-relation.
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A recent study conducted by IDC in 2019 [12] highlights the market share of evolving mar-

ket of digital transformation worldwide. The data in Figure 1.1 shows that the United States and

western Europe almost constitutes 54% of the market share for digital transformation. With this

evolution, the focus on automation, inter-connectivity, machine learning, and real-time data col-

lection and analysis is emerging. The smart digital technology that includes smart sensors, data

acquisition, processing, and control based on big data, machine learning, and Artificial Intelligence

(AI) provides boundless opportunities for the end users to operate their plants in a more optimized,

reliable, and safer manner. In recent years, there has been an increasing interest in the field of big

data analytics. It has been established that there exist large amounts of data in the energy industry.

However, there is a need to develop methods combining domain knowledge to transform this data

into meaningful information to return business intelligence.

According to a survey conducted in 2019 by KPMG [13], refer to Figure 1.2, 39 % of the par-

ticipants mentioned they have adopted Intelligent automation (robotics process automation (RPA),

artificial intelligence (AI), cloud technologies and smart machines). The other 32 % of the partici-

pants mentioned that they would adopt similar technologies within the next one year.

Also, with the advent of Open Process Automation (OPA), Real-time Operational Technology

(OT) services are required to analyze the data generated by the sensors and control loops to assist

the process plant operations. Hence, there is a critical need to develop solutions and applications

based on open source software platforms that can work on advanced computing platforms either

on-premise or at external data-centers. The existing work on the implementation of such tech-

nologies including big data analytics and AI applications predominantly focuses on applications in

various fields such as healthcare, aviation industry, finance, energy industry, and the supply chain.

However, within the energy industry, the application of big data analytics and AI in plant operation,

maintenance, process safety and risk management is in it’s nascent stages.

1.2 Current status of operation data analytics

In the last two decades, availability of data called for harnessing the data into meaningful

information for Business Intelligence (BI). Big Data is a real value creator and a ‘valuable asset’.
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Figure 1.1: Share of digital transformation market worldwide 2019

Various industry sectors such as retail, social media, finance, banking, healthcare, professional

sports and research and development use big data tools and techniques. Production and processing

facilities in oil & gas are complex to operate. Some of the challenges in operating these facilities

include inherently dangerous work environments, complex design and layouts, several operating

envelopes, and budgetary constraints. Controlling the process on various levels is hampered by

uncertainty. These days due to competition, and environmental constraints (including energy use),

the pressure to operate as efficiently as possible has increased, and this leads in part to higher plant

complexity, entailing again more uncertainty. Reducing uncertainty will lead to better decisions,

and it will increase safety but it will need meaningful information that only can be acquired by

collecting appropriate data and interpreting those. The latter requires reliable analytics. This forms

the vision that will be further detailed below.

With recent technological advancements and adoption, industry operation generates a massive

amount of data daily in various forms, sizes, and dimensions, which includes process plant opera-

tion data, regulatory agencies’ data, and industry consortium data [7, 14] from disparate sources.
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Figure 1.2: Intelligent automation adoption status in enterprise worldwide 2019

Process operation in a manufacturing facility comprises sensors, actuators, and a control system

(Distributed Control System (DCS) or Programmable Logic Controller (PLC)) coupled with a his-

torian to store the continuously generated data consisting of process and production parameters,

alarm and event logs [15], and fault records. In addition to the process operation data, a manu-

facturing facility has data in the form of design data, operational data, Computerized Maintenance

Management System, Laboratory Information Management System, Process Safety Management

data including audit reports, hazard analysis reports, incident investigation reports, etc. The Regu-

latory agency data includes safety data and requirements pertaining to hazardous process materials

and operations from the Department of Transportation (DoT), US Occupational Safety and Health

Administration (OSHA), United States Environmental Protection Agency (USEPA) and similar

agencies in other countries. Industry consortium data includes and not limited to data from Amer-

ican Petroleum Institute (API), Oil and Gas Producers Association (OGP), etc.

Figure 1.3 presents four different types of data-sets, static (remains fixed for a considerable
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Figure 1.3: Process operations data and classification

amount of time), dynamic (changes with time within every few seconds, minutes, or in some cases

in hours), structured (follows a pre-defined structure), and unstructured (no pre-defined structure).

In some cases, there is an overlap or multiple attributes associated with the data-type. As industry

operations are adopting digital solutions, the amount of data we collect has grown significantly.

Approximately 80% of the data we generate from these sources is unstructured and requires ad-

ditional processing and analyzing efforts to derive the results. Hence, in the current scenario, the

challenge is to develop application/solutions to process and analyze the data. Data analytics is

vital for inferring the information from the data and is defined as a systematic application of an

analytical process. While implementing a data analytics solution, the real challenge is to identify

the business requirements which includes identifying the needs for storage, processing, analyzing,

and presenting the data. The overall process involves the ingestion of data through the presentation

of the information. In some organizations, the challenges lie in ingesting a large amount of data,

processing of large amount of data to produce insights, and in some cases analyzing the enormous

data.
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1.3 Data analytics Framework for industry

Figure 1.4 highlights the vision for this work in the process plant operations. As part of data in-

tegration, the data from various sources is ingested and combined together into a master database

in the form of data warehouse (a centralized repository of structured data for business report-

ing and analysis) or data lakes (a centralized repository to store data at any scale). The sources

for this data include on-premises databases, files, and some streaming data from various other

sites/resources. An application domain selection includes selecting the application domain to per-

form data analytics and derive a solution. The last part is the application, which includes process-

ing, calculating actionable insights, and disseminating the information to the end-users to assist in

decision-making.

Figure 1.4: Data analytics framework

Such application methods assist users in making intelligent decisions to solve the real-world
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problems. The results help in enhanced safety and reliable operations of the unit. Considering

the importance of data analytics in the process industry for decision making, the entire analytics

process can be defined by a systems approach with six key stages as shown in Figure 1.5. It is

important to note that the analytics process can start and stop at any stage. Moreover, the tasks can

be addressed in multiple stages at the same time. The main stages of this life-cycle include:

1. Discovery: define goals and plans to achieve the goals, in other words, define the business

requirement.

2. Data Preparation: define data requirements, implement methods involving collection, pro-

cessing, and cleaning of data.

3. Model planning: perform exploratory analysis on data collected in step 2, which may in-

clude transforming data (eliminating noise, removal of dirty data, reducing skewness etc.),

aggregation, integration, and data scrubbing.

4. Model building: identify the best model for the data and execute the model to ensure the

model fits the data.

5. Results dissemination: communicate (within the organization) or publish (to outside entities)

the results.

6. Operationalization: implement the solution in a live operational environment, monitor results

and update any stage actions to get desired results.

The aim of implementing the data analytics life-cycle is to derive information to assist deci-

sion makers in various application domains. The information derived can be classified into four

phases. (1) Descriptive analytics to determine what is happening by converting the data into visu-

ally interpreted information (histograms / charts / graphs) and classify the problem; (2) Diagnostic

analytics to understand the cause of an event; (3) Predictive analytics to analyze the existing data

set to predict the future based on data models; (4) Prescriptive analytics to analyze data and pro-

vide near real-time information to the user and assist in decision making. The complexity level of

8



Figure 1.5: Data analytics life cycle

design, analysis and implementation and impact of the application rises at each phase of analytics

application. The integration of expert knowledge with data is an integral requirement to ensure the

results are addressing a real situation and helps the business needs. On the other hand, shiny new

possibilities should not be adopted without reserve. In existing processes, management of change

is required to investigate whether an item or provision will function well under all circumstances.

This should include quality of system ergonomics, or in other words good interaction between

human and machine.

1.4 Research objectives

The underlying theme of this work is in accordance with the statement: “From uncertainty

how process risks can materialize to more organization resilience through better information from

data”. Our objective is to highlight the potential of big data analytics, machine learning, and AI
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methods in the area of plant operation, maintenance, process safety and risk management in the

energy industry.

Traditionally the data in the process industry is ‘big’ and the industry is data rich and information

poor. Recent evidence suggests that there is a potential opportunity to access the available data

and enable users in accessing data and using it. The big data for the energy industry∗ requires: (1)

Hardware infrastructure (smart sensors, actuators, storage, network, and computing systems), (2)

Data processing and management (extraction, cleaning, normalizing, integrating and storage), (3)

Analytics, and (4) Decision support. The disruptive computing hardware and methods including

advanced data storage and processing, Machine Learning (ML), AI, data analytics, Natural Lan-

guage Processing (NLP) are serving as a key enabler and boosting the performance of operations,

economy, and businesses.

The objectives of this work are divided into three different application areas:

1. Alarm management for industrial facilities (Covered in chapter 2)

(a) To address the challenges of alarm management and develop a framework for alarm

management for industrial applications

(b) To develop a data-driven alarm and event management method to benchmark the alarm

system Key Performance Indicators (KPIs)

(c) To validate the proposed method by evaluating alarm and event logs from an industrial

facility and present insights to the user about improving the alarm management system

as prescribed in standards and guidelines

2. Process Fault detection and diagnosis for industrial processes (Covered in chapter 3)

(a) To develop a data-driven fault detection and diagnosis workflow to identify faulty pro-

cess conditions

(b) To validate the proposed method on a continuous process industrial data set
∗Energy industry includes oil & gas industry, petroleum refining, chemical manufacturing, and power & utility

generation.
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3. Advanced applications in process safety and risk management (Covered in chapter 4)

(a) To identify mechanical equipment failure proactively using data collected from sensors

to reduce unwanted failures and maintenance costs (predictive maintenance monitor-

ing)

(b) To develop a layered approach based integrated dynamic risk mapping tool to highlight

live risk of an operating facility (real-time risk profiles)

(c) To develop a methodology to automate the process of incident database analysis

(d) To develop methodology to automate the process of incident database classification

based on Natural Language Processing (NLP)

1.5 Key Contributions

The key contributions of this work are:

1. A novel framework to categorize the process of the alarm management system in an in-

dustrial facility (design, rationalize, advance and intelligent). This framework can help

end-users categorize their alarm management program. The framework follows a life-cycle

approach, which includes bench-marking the alarm system and follows the re-design and

re-rationalize steps if required.

2. An integrated method to calculate Key Performance Indicators (KPIs) and generate visu-

alization plots. This provides an overall better approach to analyze the Alarm and Event

logs and disseminate information to the user to take corrective actions to improve the overall

alarm management program.

3. A novel data-driven workflow to integrate big data analysis, deep learning-based BiLSTM on

a cloud platform, and reporting for process fault detection and classification. An automated

hyper-parameter optimization method is used to identify the optimal hyper-parameters for a

given data and designed network.
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4. A data analytics and deep learning-based equipment failure prediction model to predict and

classify the equipment failure proactively before an actual failure and help users save money

and time in equipment maintenance.

5. A novel layered approach based dynamic risk mapping tool to integrate data from various

resources in an operating facility and highlights the real-time risk profiles to assist users in

making informed decisions.

6. An NLP based event classification based method to learn the patterns from the unstructured

text generated in the form of reports and classify specific incidents based on the information

provided by the user.

7. The proposed frameworks, workflows, and methods are developed on open-source software

platforms (Python and R) which are cloud-ready. The cloud application enables users with

the required computing power, scalability and flexibility of model design and application to

improve overall decision making.
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2. ALARM MANAGEMENT CHALLENGES, PROPOSED FRAMEWORK, AND

APPLICATION EXAMPLE

Alarm systems play a crucial role in operating a process in the safer region and serve as a layer

of protection in preventing the escalation of a process upset to an abnormal situation. “An alarm is

an audible and/or visible means of indicating to the operator an equipment malfunction, process

deviation, or abnormal condition requiring a response”[16]. In a recently published study [17],

76% of the respondents mentioned alarm rate to be an important factor in determining or predicting

the process upset events. Alarm systems act as an early detection indicator that alerts the operator

about the abnormal process condition [18, 19, 20] or malfunction of equipment in service. De-

signing an alarm system includes understanding the process, developing a master alarm database,

defining operator actions and implementing in process control systems. The process of designing,

implementing, understanding and operating systems of alarms is known as alarm management.

Industrial process systems are monitored and controlled by sensors and actuators. Due to the ease

in configuration techniques available at the software level, most of these sensors are configured as

alarms in the control system. This has resulted in a higher number of alarms, poor system perfor-

mance, additional workload on operators, and in some cases has led to abnormal situations. These

situations can further escalate to catastrophic incidents, if not managed properly [21].

Alarm flooding is one of the causes due to which critical process alarms are being overlooked or

judgmental errors being made by the operator. This results in losses for the operating company

which may include both direct losses such as production loss, equipment damage or indirect losses

such as reputation, fines,etc. which are sometimes humongous. Hence, there is a critical need to

design and develop techniques to manage the alarm flooding challenges using the process infor-

mation and alarm and event data. Both academia and industry have made efforts in addressing

∗Reprinted with the permission from “Industrial alarm systems: Challenges and opportunities” by Goel et al.,
2017. Journal of Loss Prevention in the Process Industries, 50, 23-36, Copyright 2017 by Elsevier.

†Reprinted with the permission from “A data-driven alarm and event management framework.” by Goel et al.,
2019. Journal of Loss Prevention in the Process Industries, 103959, Copyright 2019 by Elsevier.
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the issues of reducing alarm flooding and operator work-load, enhance alarm design and effective

alarm management strategies. The literature survey shows there are several methods derived in

the past related to developing tools for operator assistance [22], methods for alarm shelving [23],

co-relation analysis [24], finding redundant alarms [25], alarm flood classification [26, 27, 28],

similarity analysis [29, 30, 31, 32], visualization [33], pre-processing of alarm data [34], pattern

mining and detection of alarm flood sequence [35, 36], integrating process data into alarm analysis

with the help of a tool developed in matlab [37]. A detailed list can be found in [19, 38].

From the discussion above, we can conclude that there are very few integrated tools/solutions

available to address the issues related to alarm management based on analyzing the alarm and

event logs generated from the control system. In this chapter we highlight the details of alarm sys-

tem management, existing regulations, standards and guidelines, and challenges related to alarm

management. In addition, some of the open research problems in the area of effective alarm man-

agement are highlighted. To address these, an alarm management framework is proposed, that

integrates the alarm management life-cycle concept provided in ANSI/ISA-18.2 with data mining

and analysis methods applied on alarm and event logs generated from a control system.

2.1 Alarm Management

Alarm management collectively refers to the process of understanding, designing, implement-

ing and operating a system of alarms. According to the International Society of Automation (ISA)

“Alarm management is the set of processes that ensures an effective alarm system.” The alarm

system notifies operators about abnormal processes, conditions or malfunctions of the plant equip-

ment [39]. Alarm systems serve as the backbone for ensuring the safe operation of a facility and

meeting its production targets. Alarms also play an important role in ensuring the safety of the

plant, and act as a layer of protection [40, 41], (a means of risk reduction) to prevent the escalation

of an abnormal event to possibly catastrophic levels [1]. Figure 2.1 (adopted from [1] shows the

different ‘Layers of Protection’ associated with a typical industrial process. A properly function-

ing alarm in addition to timely intervention by an operator can go a long way towards averting an
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Figure 2.1: Layers of protection [1]

abnormal situation. When such intervention is delayed, the situation can escalate leading to plant

shutdown, production loss or, in some cases, minimal or catastrophic incidents.

In a typical industrial setting, the information related to the alarms is communicated to the

operator via a Human Machine Interface (HMI) or an Annunciator Panel. Systems such as alarm

loggers or historians are used to create and save the data related to the alarms for future evaluations.

A good alarm management program can help in operating the process closer to its optimal oper-

ating point resulting in lower production costs, higher quality, higher throughput and eventually

safer operations. On the other hand , poor alarm management leads to downtime, unsafe situations

and can also lead to industrial incidents as evident from past historical records [42]. For instance,

during the investigation of the Milford Haven refinery explosion [43] , the Health and Safety Ex-

ecutive (HSE) found that the major causes of the incident were generation of too many alarms,

poor prioritization, poor control room display design and alarm flood (275 alarms in 11 minutes)

prior to the explosion [44, 45]. In another incident, BP Texas City [46] the major causes were the
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failure of key alarms to warn operators about the unsafe conditions in the tower and the nearby

blowdown drum which led to an explosion and fire, killing 15 people and injuring 180. Some of

the major incidents in the past that can be traced back to alarm management issues are listed in

Table 2.1. Clearly, the entries in this table highlight the link between poor alarm management and

process safety incidents. One can reasonably infer that an effective and robust alarm system would

lead to better Process Safety Management (PSM) at manufacturing plant facilities. On the other

hand, a poor alarm system reduces the overall ability of an operator to act on critical alarms during

abnormal situations [47, 48].

2.2 Evolution of the area of alarm management

During the early developmental stages of the control systems associated with chemical and

petroleum industries, wall-mounted process indicators, lamps, switches, and recorders were used

to monitor, control and record process parameters. A rectangular array with slotted, labeled win-

dows also known as a “lightbox” was used to indicate alarm occurrence to the operator with a

flashing light (visual signal) and a horn (audio signal) [49]. Due to the limited space capacity

of the panel and the hardware availability, the designers were able to configure only a limited

number of alarms. With the advances in modern control, Distributed Control Systems (DCS) and

Supervisory Control and Data Acquisition (SCADA) were introduced. These systems facilitated

simplified reconfiguration, ease of operation and maintenance for current alarms as compared to

their predecessors. Computerized scrolling lists and graphics screens associated with these systems

essentially eliminated the earlier space constraints. Alarm system configuration became easier as

it could be now achieved with just a few clicks as opposed to having to deal with hardware walls.

Limited guidelines, simplified processes for configuring alarms, engineering and organizational

work processes followed during the alarm system design and maintenance activities resulted in

a larger number of configured alarms in a system contributing to the possibility of alarm floods

[50, 51]. Additionally, alarms started being used as a tool to indicate system status instead of being

used solely to detect abnormal situations.

A direct consequence of this was that even during the normal steady state operation, the oper-
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ator would be exposed to various alarms, and sometimes too many to comprehend and act upon.

During an abnormal situation, some of these status monitoring systems can become useless distrac-

tions and pose hindrance for an operator trying to promptly deal with the situation. Indeed, many

of the incident investigation reports [43, 46] have highlighted scenarios of overloaded, bypassed

or ignored alarms as one of the root causes for the incidents. It is also well documented that an

ineffective alarm system can worsen an ordinary process upset which could lead to high financial

and property losses for the organization involved.

Table 2.1: Incident list related to alarm management issues

List of incidents related to Alarm management issues
Incident Detail Consequence

S. no. Incident Year Root cause related to alarms Effect Injuries |
Fatalities

Financial
Loss reported

1 Three Mile Island 1979 Operator were loaded with numerous
alarms, Several key alarms were mis-
leading

Radioactive ma-
terial released

0 | 0 $ 1-2 billion

2 Piper Alpha Oil rig 1988 Inadequate shift handovers, Issues
with false alarms

Fire 0 | 167 $ 3.4 billion

3 Texaco Milford Haven
refinery, UK

1994 Poorly prioritized alarms & design of
displays, alarm flood

Explosion 26 | 0 £48 million

4 Channel tunnel fire, UK 1996 Rail control centers were flooded with
alarms

Fire 0 | 0 £200 million

5 Tosco Avon Accident,
Martinez. California

1997 No alarm on temperature indication
and control system with high priority
alarms

Auto-ignition of
flammable hydro-
carbon and hy-
drogen

46 | 1 Unknown

6 Longford gas explo-
sion, Australia

1998 Inappropriate response for critical
alarms

Fire and explo-
sion

8 | 2 Unknown

7 Grangemouth refinery
Scotland

2000 Significant alarm floods Steam leakage 0 | 0 Unknown

8 First chemical corpora-
tion, Pascagoula Mis-
sissippi

2002 No action taken for alarm, System was
not protected with enough layers of
protection including alarms, safety in-
terlocks and over pressure protection

Steam leakage 3 | 0 Unknown

9 BP Texas refinery inci-
dent

2005 Failed management of instruments and
alarms

Fire and explo-
sion

180 | 15 $1.5 billion

10 Bunce field oil storage,
Hemel, Hemstead

2005 Shortcomings in design, provision and
operation of the protection alarms and
shutdown systems

Fire and explo-
sion

40 | 0 £700 million

11 Kalamazoo River oil
spill

2010 Numerous alarms from the affected
Line 6B, but controllers thought the
alarms were from phase separation,
and the leak was not reported

Crude oil leakage
into environment
and nearby creek

326 | 0 $782.9 million

12 Columbia gas trans-
mission corporation
pipeline rupture Sis-
sonville, West Virginia

2012 Controller didn’t recognize the alert of
leak

Explosion 0 | 0 $8.69 million
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With the advances in automation, software and technology, the industrial facilities of today

are becoming increasingly integrated. The number of devices in a plant monitoring and control

system has increased dramatically over the past few decades. An increase in the number of devices

has in turn led to an increase in the amount of data that the operator must assess and act upon

as can be seen in Figure 2.2. This has not only increased the overall complexity of the plant but

it also puts additional demands on the human operator. This becomes all the more challenging

because the critical actions have to be taken within minutes to avoid an abnormal situation (“a

plant operation deviates from its normal operating state”). During upsets, these systems affect the

operators adversely and require a higher degree of response to monitor alarm systems and operate

the process. These upsets sometimes result in alarm floods, which in turn can lead to incidents if

not handled properly [52].

Figure 2.2: Automation pyramid

Before talking about alarm flooding and its consequences, it would be appropriate to nail down

this concept using some quantifiable measures. Towards this end various authors have described

an alarm flood situation as one where several hundreds of alarms appear on the screen within min-

utes of the upset condition and the appearance of these alarms has an adverse cascading effect on
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the complete plant operation [53, 54, 55]. Other researchers have also defined alarm flooding as

a problem resulting from the inability of operators to take prompt actions mandated by the alarms

appearing on the screen [56]. Ineffective operator alarm response during alarm flooding can have

a significant impact on safety operations [57, 58] . Wilson [59] explained how the effect of high

alarm load and high nuisance alarm can adversely affect the operator action and 50% of the oper-

ators surveyed indicated that the alarms during process upset were appearing too fast to handle. A

human performance modeling study conducted by researchers [60] has also highlighted that opera-

tors can effectively handle an alarm rate of at most 11 alarms per ten minutes. A similar benchmark

of 10 alarms per 10 minutes has been established in Engineering Equipment and Materials Users

Association [44] guidelines.

According to a study conducted by [61] for a total of 15 facilities (4 oil refineries, 6 chemi-

cal plants, 1 pharmaceutical plant, 1 gas terminal and 3 power stations), with sizes ranging from

medium ( £50 million) to large (£500 million) facilities, the number of alarms installed were sig-

nificantly high with a minimum of 500 alarms and a maximum of 10,470 alerts plus 4700 alarms.

During normal operation, the alarms reported were in the range of 60 to 120 alarms per hour and

in some cases, the operator estimate was as high as 200 alarms per hour. During upset conditions,

the alarm load on the operators was in the range of approximately 390 to 3750 alarms per hour. In

another study by Matrikon and published by Rothenberg [62] as shown in Table 2.2, the number

of alarms appearing in various industries was significantly high as compared to the benchmarks

given in the EEMUA guidelines. These studies have also highlighted and emphasized the need for

proper alarm management.

Table 2.2: Cross-industry activation study

EEMUA Oil&Gas Petrochem Power Other
Average alarms per day 144 1200 1500 2000 900
Average standing alarms 9 50 100 65 35
Peak alarms per 10 min 10 220 180 350 180
Average alarms per 10 min 1 6 9 8 5
Distribution % (Low/Med/High) 80/15/5 25/40/35 25/40/35 25/40/35 25/40/35
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To improve the overall alarm system, various methodologies have been introduced and im-

plemented industry wide. These include alarm rationalization, alarm configuration procedure and

practices, and design & maintenance methodologies [63, 64]. Although these methods have had

a significant effect on reducing alarm floods, they have not succeeded in eliminating them com-

pletely [53, 65].

The various incidents listed in Table 2.1 make it clear that alarm processing techniques and

presentation are in need of improvement. The industry has already made some improvements in

this area by developing and publishing certain guidelines and standards to be followed while de-

signing and managing alarm systems during the plant life cycle. The evolution of these documents

is shown in the timeline in Figure 2.3. The guidelines and standards mentioned in Figure 2.3 have

been compiled and developed with the help of various stakeholders and experts from industry from

all over the world which makes them comprehensive, consistent and widely accepted. It is perti-

nent to note that these documents provide a set of guidelines or instructions to the user on the

design of alarm systems with certain key performance indicators (KPI’s) (discussed in detail in

Section 2.7.2) against which all alarm systems are required to be benchmarked. However, these

documents do not provide any detailed technical methodologies or steps to be followed to achieve

these requirements. Therefore, there is a critical need for developing such techniques for effective

and efficient alarm management.

2.3 Alarm systems and Current status

By definition, “an alarm system is the collection of hardware and software that detects an

alarm state, communicates the indication of that state to the operators, and records changes in

the alarm state” and an alarm is “an audible and/or visible means of indicating to the operator an

equipment malfunction, process deviation, or abnormal condition requiring a response.” [16].

According to the Engineering Equipment and Materials Users Association (EEMUA, 2013),

the basic characteristics of an alarm are (refer to Figure 2.4):

1. Uniqueness: each alarm should indicate a unique process parameter; no duplicate alarm
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Figure 2.3: Evolution of alarm management

should be designed or defined in the control system

2. Prioritization: each alarm should be prioritized in such a way that the operator can clearly

ascertain the criticality level of the alarm and respond accordingly

3. Timeliness: each alarm needs to appear on time; designing an alarm that appears too early or

too late may have adverse consequences on the process operation and the operator response

4. Understandability: the alarm should have a suitable description which is easy to understand

and use for diagnosing the triggering problem

5. Relevance: the alarm should be relevant to the process being monitored and should also

have operational value

6. Requiring response: each alarm should require a definitive response from the operator

Alarms have been identified as effective tool for early detection of a process upset [18, 21] and

are helpful in identifying the near misses followed by the appropriate actions to bring the process
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Figure 2.4: Characteristics of an alarm

back to normal operation [66]. Alarm systems are required for the correct, safe and efficient

operation of plants and facilities [67]. When a variable moves above or below defined operating

limits known as the Emergency Shut down System (ESD) limits; usually far apart from high/low

and high-high /low-low alarm thresholds, the ESD system takes over from the DCS and brings

process to a safe shutdown state. This is to ensure that the ESD acts as an independent protection

system, uninfluenced by a malfunctioning DCS [66].

In a process control system, the alarm is generated by comparing the process variable (PV)

value at a specific time with already configured set points (low or high) also known as alarm

settings. An electronic circuit is used to actuate an alarm [68]. With a pre-configured priority

level, the alarms are displayed in the alarm display window and dynamically stored in the DCS

database [53, 69].

Alarms serve as the primary channel of communication between the automated control systems

and the operator [70].The automation in an industrial process is used to transport, store and process

the data generated into human-usable information. This information is used by the operator to

monitor the process and take the required actions as needed. In a plant system, sensors (Resistance
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temperature detector, (RTD), a pressure detector, gas detector etc.), are used to measure the process

parameters such as temperature, pressure or concentration of the gas respectively. The output from

the sensor (analog or digital) is transmitted through the dedicated cable to the control system

(PLC or DCS). These control systems are made up of various electronic circuits, logic and control

structures and serve as the brain for the automated control system. The information is processed in

the control system and is displayed on an HMI (Human Machine Interface) display. These displays

have real-time process monitoring information and process parameters distributed over several

screens depending on the size of the plant and the number of process inputs/output parameters.

One such screen is the alarm display screen where all the alarms are displayed for the operator to

notice and take subsequent corrective action. As shown in Figure 2.5, in the case of an activated

alarm state, the operator needs to review the plant information, understand the current plant state,

diagnose the problem and decide the sequence of actions before actually carrying them out. In

certain cases, additional process display access and information is required before an action can

be taken [71]. After the operator’s action, the controller transmits the information to the actuator

(Control valves, dampers etc.) in the field with the goal of setting the actuator variable to a desired

value and bringing the process back to the normal state.

Figure 2.5: Alarm generation loop

Improperly designed alarm systems can escalate an abnormal situation.
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1. Some of the major symptoms associated with an unhealthy/ineffective alarm system

are:

(a) Inappropriate or No master alarm database;

(b) No operator action required in an alarm condition;

(c) No clear guideline /specification for adding or deleting alarms;

(d) Poor alarm testing procedures and records;

(e) Operating procedures are not written considering alarms;

(f) Change in alarm settings during shift changeovers;

(g) Important alarms are missed during incidents;

(h) Minor upsets result in a significant number of alarms that the operator cannot keep up

with;

(i) Alarms appear for a considerable amount of time (even 24 hours) or alarms are acti-

vated even when there is no upset condition;

(j) Too many alarms with high priority.

2. The root cause of these symptoms are:

(a) No approved design basis or plant wide/site-wise philosophy and alarm management

procedures in place;

(b) Alarms are constantly added (during Hazard and Operability Study (HAZOP) , Layers

of Protection Analysis (LOPA), Process Hazard Analysis (PHA) studies) and rarely

deleted;

(c) Inadequate information in plant procedures and practices;

(d) Inadequate operator training;

(e) The alarm system and displays/ HMI’s in use lack simplicity;
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(f) Incorrect prioritization of alarms;

(g) Alarm limits and priorities are rarely reviewed during the operation of the plant;

(h) Ineffective corrective actions, plant equipment not in service and variations in plant

operating conditions

(i) Lack of Management of Change procedures.

2.4 Alarm lifecycle

An alarm lifecycle process includes gathering detailed information about alarms from various

sources. These sources include Front End Engineering Design (FEED), Process Hazard Analy-

sis (PHA), historical data from process documents, manufacturer recommendations etc. On the

basis of these sources, alarm limits and values are decided and instrument selection is done. All

these alarm specifications are configured in automated systems such as Distributed control sys-

tem (DCS), Programmable Logic Controllers (PLC) etc. for the monitoring and operation of the

manufacturing process. The process information and deviation messages are then routed through

computer systems to the operators in the form of process display and alarms. The alarm data is also

sometimes recorded in the historian system with time mapping for future reference. To summa-

rize, an alarm is an audio/visual announcement and messages (a buzzer/beep sound or flashing text,

background color change or colored text) to the plant operator which is a result of process parame-

ters crossing the safe or desired limit. The appearance of an alarm calls for the operator’s attention

or action. Once an alarm appears, the operator needs to perform either the action “silence the

alarm” or “acknowledge the alarm” and take appropriate action using the Process Control System

(PCS), keyboard or screen. ANSI/ ISA18.2 [39] defines the processes and procedures required to

create an effective alarm management system. The general principles and processes in ANSI/ISA-

18.2 are intended to be used in the life cycle management of an alarm system which is based on a

programmable controller and a computer based Human Machine Interface (HMI). These require-

ments are presented as a standard, using the alarm management lifecycle as summarized in Table

2.3.
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2.5 Regulatory approaches towards alarm management

Although using alarm systems is not a direct mandated requirement, nevertheless in Envi-

ronmental Protection Agency (EPA), Occupational Safety and Health Administration (OSHA),

Pipeline and Hazardous Material Safety Administration (PHMSA) and Currently Good Manu-

facturing Practice (CGMP) documents, one can find specific references to alarms. When alarm

systems are used to monitor regulatory compliance values, they need to be managed and config-

ured appropriately. Historically, alarm systems have not been considered during the early phases

of the projects. They were usually introduced during the final stages of the project as an adden-

dum to a typical vendor–offered package. In addition, alarms were designed without taking into

account the uncertainties that are invariably present in the measurements. These issues have led to

a lack of formal testing of the systems and excessive potential for nuisance alarms built into the

system, which may cause issues related to safety and environment incidents, product quality and

loss [47, 55, 72].

In the United States, OSHA CFR 29 1910 regulations [73] mention certain regulatory require-

ments specific to process safety and alarm management. Some of these include:

• "Recognized and Generally Accepted Good Engineering Practices" (a regulatory acronym

for which is RAGAGEP) (1910.119(d)(3)(ii)),

• Engineering and administrative controls applicable to the hazards and their interrelation-

ships such as appropriate application of detection methodologies to provide early warning of

releases (acceptable detection methods might include process monitoring and control instru-

mentation with alarms and detection hardware such as hydrocarbon sensors) (1910.119(e)(3)(iii)),

• Written procedures (1910.119(d)(3)(ii)), maintenance training to plant personnel (1910.119(j)(3)),

inspection and testing (1910.119(j)(4)), and

• Mechanical Integrity program for controls (including monitoring devices and sensors, alarms,

and interlocks) (1910.119(j)(1)(v)).
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Table 2.3: Summary of alarm management lifecycle

Stage/Phase Tasks Inputs required Desired Outputs

Philosophy Define Philosophy and require-

ments for the alarm management

Industry standards and prac-

tices, corporate standards and

engineering practices

Alarm philosophy and

requirement document

Identification Find and list down potential

alarms

Alarm database, Operating

ranges/limits, PHA/LOPA re-

ports, P& ID’s, Operating pro-

cedures and safety specifica-

tions

List of all potential

alarms for the facility

Rationalization Alarm classification, prioritiza-

tion, rationalization and docu-

mentation

Alarm philosophy document

and list of all potential alarms

Master alarm database

with design require-

ments

Detail design Alarm design, HMI design Master alarm database and de-

sign requirements

Completed alarm design

Implementation Alarm testing and training Completed alarm design and

alarm database

Operational alarms and

procedures for response

to alarms

Operation General plant operation where

operator responds to alarms and

plant is running in normal condi-

tion

Operational alarms and proce-

dures for response to alarms

Alarm History/data

Maintenance Inspection and testing Alarm reports, alarm philoso-

phy and inspection and testing

procedures

Alarm reliability data

Monitoring and

Assessment

Monitor alarms Alarm history and alarm phi-

losophy

Alarm monitoring re-

ports and proposed

changes

Management Of

Change

Process to change, modify and

delete alarms

Alarm philosophy and

changes proposed

Approval for alarm

changes

Audit Periodic audits for alarm man-

agement processes and update

philosophy document if required

Standards, audit protocols and

alarm philosophy documents

Recommendations
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This is further echoed by the EPA in EPA 112 (r) 40CFR 68 Risk Management Plan – Preven-

tion program, Emergency response program and 40 CFR 68.67 (c) (3) and 48 CFR 68.73 (a) (5)

respectively.

Also, OSHA has recognized the relevance of alarm management standards and best practices

such as ANSI/ISA 18.2 and ANSI/ISA S84.01-1996. Lately, the OSHA Regional PSM Coordi-

nators and Chemical Safety Board (CSB) now have approval to internally distribute ANSI/ISA-

18.2 to their inspectors [74]. As an example of this, we refer to, the report of the U.S. Chemical

Safety and Hazard Investigation Board about the Methyl Chloride Release (January 22, 2010) in

the DuPont Belle plant in West Virginia [75] which found that problems with alarms were a major

factor contributing to this incident. As a response to the incident, the US Chemical Safety Board

recommends to “Establish and implement a corporate alarm management program as part of the

DuPont PSM Program, including measures to prevent nuisance alarms and other malfunctions in

those systems” .

Further, the American Petroleum Institute (API) has recently released API RP-1167 [76],

Alarm Management Recommended Practices for Pipeline Systems. This API document is in full

alignment with ANSI/ISA-18.2, and the Pipeline and Hazardous Materials Safety Administration

(PHMSA) generally adopts API recommended practices in their regulatory language.

2.6 Cost benefits of alarm management

In the United Kingdom , the recent Control of Major Accident Hazards (COMAH) regulations

[77] published in 2015 by UK Health and Safety Executive (HSE), mentions alarm management in

various clauses related to design, prevention and mitigation measures for the plant. The (European

Commission) EC Seveso III directive [78, 18] also mentions alarm management but doesn’t con-

tain any specific requirements. Hence, for safety critical alarms in Europe, alarm management is

required by law [79]. With increased awareness in the area and stringent regulatory requirements,

one may not be surprised to see negligence in plant management resulting in citations in the future.

As reported by the Honeywell abnormal situation management group estimates, a petrochemi-

cal company with six facilities can have $ 50 to $ 100 million annual losses resulting from upsets
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and abnormal situations. It was also concluded that the net losses due to plant upsets are in the

range of 3-5% of the total output of the plant. According to the US National Institute of Standards

and Technology (NIST), $ 20 billion of losses result annually due to plant upsets. Another paper

[41] implicates poor alarm management as a leading cause of unplanned downtime and approx. $

20 billion in production losses each year.

A study based on heuristic approaches, financial models and engineering judgment published in

Hydrocarbon Processing [80] also discusses the financial payoff from improved alarm management

in a 100000-bpd refinery. The annual benefits were calculated under various scenarios such as

reduction is abnormal situations ($ 2.88 million), an increase in plant throughput ($ 1.68 million),

reduction in avoidance maintenance ($ 1.11 million), and reduction in capital equipment repair ($

0.22 million). These values are significant as compared to the expenses involved in implementing

proper alarm management techniques.

2.7 Challenges in alarm management

During the early stages of evolution of alarm management techniques and procedures, many of

the alarm systems were configured and implemented with limited guidance, and hence poor prac-

tices were implemented which continued to prevail. This approach has not only made alarm sys-

tems unmanageable but has also led to various incidents. A detailed analysis of these events/incidents

makes one realize the cost of poor alarm management as highlighted in Table 2.1. With the recent

establishment of standards and good engineering practices , and some of the major research work

in this area, issues of alarm management have been resolved to make systems safer and more reli-

able. As a part of this work, the following challenges have been identified as ones that still need to

be addressed for developing more advanced and effective AM systems:

2.7.1 Alarm variables and settings

During the era when hardware devices were used to show abnormal situations, only a few

critical instruments could be deployed to show alarms and process deviations. This was due to

the prohibitively high cost of the instruments and the size of the plant. As the control systems
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became modernized and computerized, configuring an alarm became increasingly easy. Nimmo

[81] highlighted a situation where the number of alarms was increased from 150 (hardware alarms)

to 14000 (software) alarms. Hollifield and Habibi [49] also noted a similar increase in one of the

plants by mentioning that the increase over a period of 40 years was exponential from 100 to 4000.

In another study [82], it was pointed out that with the help of the alarm rationalization methodology,

a 50% reduction in the number of configured alarms could be achieved, while simultaneously

reducing the nuisance alarms.

During the design of a plant, certain process setting values are provided by the licensor or

by the engineering company. These settings are a part of the design documentation of the plant,

which is used to configure the process parameters for control loop operation, alarms, trips etc. in

a control system. Over a period of time, such settings may change due to changes in the process,

equipment or other related factors. In some cases, the plant operation and maintenance teams make

some changes to the settings without proper documentation, which could result in confusion at a

future point in time. Hence, from time to time verification of all such settings should be carried

out to ensure proper functioning of the alarm system. Another general practice usually followed

during engineering is the configuration of multiple sensor alarms for a single process variable. In

this case, all the sensors (required by process design safety considerations) are configured for the

same setting. When an alarm appears, multiple alarms for the same process value will appear on

the screen. This results in an increase in the number of alarms, and imposes an additional burden

on the operator as he or she tries to diagnose and respond to the problem. A better way would be

to have a common alarm configured for multiple sensors used for same fault (voting logic 1oo2 or

2oo3) by negating any fault of the sensor (such as BAD PV: Bad Process Variable) while applying

the voting logic.

2.7.2 Key performance indicators (KPIs) bench-marking and alarm flooding

Key performance indicators are used in defining the performance level of an alarm system. The

KPIs relate to basic usability metrics and benchmarking as defined in EEMUA 191 guidelines and

ANSI/ISA 18.2 standard. These KPIs are defined over a period of time. These KPIs are used to
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measure features of the system against some pre-determined goals. Table 2.10 presents various

KPIs as defined in the guidelines and standards. The values indicated should be the target KPIs for

a plant. Initially, these target values may appear somewhat demanding, but they are achievable over

a period of time. It is important to have a system of continuous improvement (Plan-Do-Check-Act,

PDCA cycle) similar in nature to the Quality Management system to achieve these targets.

One of the main causes behind not meeting these KPI specifications is ‘alarm flooding’. During

complete alarm system management, alarm flooding is one of the major challenges that has to be

overcome. The phenomenon of alarm flooding can occur due to several different causes such as im-

proper engineering and work processes [51], incorrect configurations of alarm variables, problems

in wiring connections of instruments, chattering and standing alarms, too many alarms configured

for a single equipment or too many process parameters. We next provide some formal definitions

of alarm flooding.

“Alarm flooding is a condition during which the alarm rate is greater than what the operator

can effectively manage (e.g. more than 10 alarms per 10 minutes)” [44, 62, 49]. According to the

ASM consortium, “Alarm flooding is the phenomenon of presenting more alarms in a given period

of time than a human operator can effectively respond to” .

Alarm flooding results in additional workload on the operator and increases the likelihood of a

critical alarm being missed [83, 84, 54]. The main reasons for alarm flooding are:

1. Standing alarms: alarms which remain in the alarm state for a long period of time. About

6% of them correspond to an actual plant problem [61, 85]

2. Chattering alarms: alarms which come on, then go off and come on again during a small

period of time (e.g. 1 min). Chattering alarms are also defined as alarms which repeatedly

toggle between the normal and activated states within a short period of time [39]. Chattering

alarms, which are also known as cyclic alarms, are one of the major causes of nuisance

alarms [84, 86] which account for almost 60% of the alarms in some cases [62]. Due to

the presence of such a chattering alarm, the operator may not have enough time to detect,

diagnose and take appropriate action. Some of the main causes of chattering alarms are:
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(a) Noise/disturbances acting on the process variables [44]; and

(b) Repeated on-off actions of the control loop.

3. Fleeting and/or momentary alarms: alarms which turn on and off very quickly, but do not

necessarily repeat [39].

4. Repeating alarms: alarms rising and clearing repeatedly over a period of time [44].

5. Stale alarms: “alarms which go into an activated state and do not return to the normal state

for at least 24 hours” [16].

As mentioned in Section 1, alarm flooding has led to incidents which were caused because of

important alarms being overlooked or judgmental errors being made. The direct and indirect losses

due to such incidents are sometimes very huge. Hence, there is a critical need to come up with

detailed procedures and techniques to deal with alarm flooding issues. Table 2.4 summarizes the

efforts by several researchers to reduce alarm flooding and operator workload, and enhance alarm

design, effective alarm management and its overall beneficial effect on process operations.

Table 2.4: Summary of research efforts to reduce alarm flooding and operator workload, and ef-
fective alarm management

Reference Objective Method/Result

(Carrera & Easter, 1991) [87] Eliminate alarm flooding in

power plants

Designed a system named ‘AWARE’ to assist the

operator and provide action guidance

(Burnell & Dicken, 1997) [84] Reduce operator workload in

alarm conditions

Introduced techniques of auto-shelving and display

shelving of repeating alarms

(Brooks, Thorpe, & Wilson,

2004) [88]

Clear an alarm during opera-

tions

Proposed an algorithm to identify the changes re-

quired for a process variable using historical data

(Hugo, 2009) [89] Reduce alarm chattering Proposed a method based on time series analysis to

determine measurement and time alarm dead bands
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Table 2.4 Continued

Reference Objective Method/Result

(Higuchi, Yamamoto, Takai,

Noda, & Nishitani, 2009) [90]

Reduce the number of alarms Used event correlation analysis technique to reduce

the number of alarms

(Kondaveeti, Izadi, Shah, &

Chen, 2011) [91]

Reduce chattering and nui-

sance alarms

Explained effective use of delay timers and latches

to reduce such problems

(Arjomandi & Salahshoor,

2011) [92]

Alarm management Introduced a state based approach based on differ-

ent operational states for alarm management in a

software framework

(Ahmed, Gabbar, Chang, &

Khan, 2011; Dalapatu, Ahmed,

& Khan, 2013) [93, 94]

Reduce number of alarms Provided a methodology to group alarms on the ba-

sis of variable types, plant unit, correlations etc. by

following a risk-based approach

(Folmer & Vogel-Heuser,

2012) [95]

Find redundant alarms Developed an automatic analysis hybrid method

based on finite automata

(Adnan, Cheng, Izadi, & Chen,

2013) [96]

Delay timer for alarms Introduced generalized delay timer for triggering

of alarm

(Adnan & Izadi, 2013) [97] Delay timer for alarms Studied the effect of filtering on delay of an alarm

(Butters, Guttel, Shapiro, &

Sharpe, 2014) [98]

Find redundant alarms Proposed a method based on statistical cluster anal-

ysis to identify redundant alarms in a system.

(Ahmed, Dalpatadu, & Khan,

2014) [94]

Assist operator during criti-

cal events

Used Bayesian network and inference event based

methodology to calculate the probability of an

event and used risk priority basis to assist opera-

tors to focus on critical events.
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Table 2.4 Continued

Reference Objective Method/Result

(Cai, Zhang, Hu, Yi, & Wang,

2015) [99]

Find root causes of an alarm

and reduce false/redundant

alarms

Introduced a multi-round alarm management sys-

tem (MRAMS) which is used to improve the diag-

nosis of root causes of an alarm and reduce false

and redundant alarms.

(Lai & Chen, 2015) [100] Predict root causes and lo-

cate bad designs

Developed an algorithm to find correlation be-

tween alarms during alarm flood and predict root

causes, locate bad designs and predict future alarm

floods

(Jia Wang, Li, Huang, & Su,

2015) [29]

Identification of consequen-

tial alarms

Identified the consequential alarms on the basis of

data similarity analysis and process data causality

analysis.

(Ahmed et al., 2011; Dal-

patadu, Ahmed, & Khan, 2015)

[93, 101]

Alarm annunciation Introduced a Bayesian network event-based alarm

system method for alarm annunciation.

(Zeng, Tan, & Zhou, 2016)

[102]

Compute expected dead band

and delay timers for an alarm

Proposed a method based on Markov-chain to

compute the expected dead band and delay timers

(Zhu, Wang, Li, Gao, & Zhao,

2016) [103]

Predict alarm occurrence Proposed a probabilistic model base n-gram model

to predict the probability of an alarm using data

stored in the DCS

(Rodrigo, Chioua, Hagglund,

& Hollender, 2016) [104]

Alarm flood reduction Determined the causal alarms of an alarm flood

by analyzing alarm log, historical process data and

performing process connectivity analysis
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Table 2.4 Continued

Reference Objective Method/Result

(Chen & Wang, 2017) [105] Multivariate alarm system to

detect abnormal condition in

process variable

Used adaptive time gradient (ATG) approach to

find variations in the process variables

(Tan, Sun, Azad, & Chen,

2017) [106]

Univariate alarm system de-

sign

Rank order filter method proposed for calculating

false alarm rate (FAR), missed alarm rate (MAR)

and expected detection delay (EDD) for an alarm

system design

(Jiandong Wang, Yang, Chen,

& Zhou, 2017) [107]

Detect and remove nuisance

alarms

Developed a method to detect, reduce nuisance

alarms and designed delay timers for nuisance

alarm caused by noises and disturbance

(Hu, Wang, Chen, & Shah,

2017)[108]

Cause and effect relationship

among alarm variables

Developed a method based on transfer entropies

with considering random occurrence delays and

mutual independence of alarms

(Yu, Zhu, Wang, & Zhao,

2017) [109]

Abnormal data detection for

multivariate alarm systems

Proposed a method to detect abnormal data from

historical data by determining key turning points

with spearman’s rank correlation coefficients

(Hu, Chen, & Shah, 2017)

[110]

Association rules for mode-

dependent alarms

Proposed an automated data-driven method to find

association rules between alarms by using alarm

and event logs

2.7.3 Human Machine Interface (HMI) design

A display monitor also known as a Human Machine Interface (HMI) is used to monitor and

change control process parameters and to take appropriate actions in order to manage the process.

It is a critical part of an alarm management system and is one of the primary interfaces [58]. Alarms
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are displayed as a part of the HMI which acts as a signal to the operator to take appropriate action

to run the process safely [88]. A poorly designed operator display may interfere with the operator’s

ability to take action during upsets. One of the key requirements for an HMI is to provide an alarm

display to assist operators during the abnormal situations or unplanned plant upsets [57, 111].

Traditionally, alarms are shown on an HMI in the form of a list-display. [112, 55]) have explained

the problem with these traditional list-based displays, in which during abnormal situations, the

operator needs to scroll down to view alarms and could sometimes miss important alarms in the

process. Indeed, [113] performed an analysis of near-misses and non-conformance and concluded

that operator error was one of the main causes of such scenarios in 50-65% of the cases, resulting

in 15-20% annual operational losses.

It has been repeatedly observed that poorly designed process display/graphics interfere in the

handling of any significant disturbances. HMI’s need to be designed to assist the operators rather

than distracting them. A crowded HMI can lead to confusion during an abnormal situation and can

form the perfect recipe for generating erroneous responses. Sometimes, the information of a single

section of a unit could be scattered over two or three HMI screens which could also contribute to

operator errors. Hence, it is essential to ensure that the HMIs provide the operators with quick

and easy access to pertinent information so that abnormal situations can be averted. Kim [114]

provided details about the computerized operator support system for online management of failures

and emphasized man-machine systems for operator support and the incorporation of human factors

principles while designing control rooms . Choi et al. [115] developed an on-line fuzzy expert

system, called alarm filtering and diagnostic systems (AFDS), to provide operators assistance in

understanding abnormal situations when they occur. Laberge et al. [58] performed a study which

compared the operator response of a traditional list-based alarm summary display to that of an

alarm tracker summary display (showing alarms as time series icons and short alarm descriptions).

It was found that operators were able to perform much better (overall increase of 6% ) with the

newer displays in comparison to standard list based displays. In summary, by incorporating the

human factors study approach, appropriate alarm management can be used to achieve maximum
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operator efficiency [116].

2.7.4 Lack of comprehensive philosophy document

The alarm philosophy document is the main guiding document for an effective alarm manage-

ment system. This document contains the details of design, operations, and maintenance of the

alarm management system [68]. For a new project, alarm philosophy document is prepared and

approved during the design stage. In practice, it has been observed that although the philosophy

document is available with the individual plant users (operators, maintenance personnel) it has

rarely been used by them. Indeed, many of these users are not aware of the existence of such a

document, let alone know its content. The document also lacks periodic revision which is essential

after rationalization and implementation to record any learning, area of improvement, etc. The ma-

jor use of the philosophy document is to provide guidance to people unfamiliar with the original

alarm management scheme.

2.7.5 Inadequate operating procedures

As described in earlier sections, the appearance of an alarm usually calls for an operator action.

The role of the plant operator is to make real-time decisions which are crucial for safe operation

of the plant [59]. Many alarm problems arise due to not taking into consideration the operator’s

role and the overall alarm philosophy. Operators not only monitor the plant but also make deci-

sions based on interpreting large volumes of information in real-time using their knowledge and

experience [117]. It can be said that the operator’s roles and actions have a significant impact on

plant production and safety. Operating procedures have a significant impact on the operator’s de-

cision making during plant operation. These procedures can be treated as master documents for a

plant facility. Such documents may be referred to by the operators during the day to day routine

operation of the plant for the purpose of taking appropriate actions in response to both normal and

abnormal situations. In general, standard operating procedures of a plant include details about the

actions/next steps to be taken during startup, shutdown or normal operation. However, they do

not provide specific guidance about actions to be taken during the occurrence of various alarms or
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alarm flooding.

2.7.6 Lack of resource management and allocation

The successful accomplishment of any task requires the committed buy in from all the stake-

holders. The same is true in the case of alarm management. Indeed, alarm management is a

continual process and needs commitment and participation from people at all levels. This process

not only requires technical resources but needs proper planning, time and financial support. The

management of an organization can play an important role in securing all these resources for the

establishment of effective Alarm Management systems. Justifying the cost of alarm management

to some of the stakeholders can sometimes be a challenge. Plant users (operators & engineers)

usually understand the seriousness of the issues that come up in the context of alarms, but it is dif-

ficult to convince senior level management to plan and invest in strategies of alarm management.

Sometimes even during the implementation stages, the participation from operators and engineers

on the floor may be minimal due to other competing job responsibilities. This can hamper the

overall schedule of activities and create a lackadaisical environment.

2.8 Identified research problems

An effective alarm system is one which provides relevant and required alarms for operator

action. The process of alarm management can be initiated by following the alarm life cycle man-

agement. Studies have been carried out to improve the performance of alarm systems with the

help of alarm rationalization, system maintenance and development of best practices [63, 64].

Some authors have described the following seven steps for an effective alarm management system:

(1) developing and adopting alarm philosophy, (2) Bench-marking the alarm system, (3) Finding

bad actors, (4) Performing alarm documentation and rationalization, (5) Implementing alarm audit

and enforcement technology, (6) Implementing real-time alarm management, (7) Controlling and

maintaining the improved alarm system. These steps have been utilized in the industry and are an

effective way of managing alarms. A great amount of work has been carried out by researchers as

summarized in Table 2.4. However, there is a need to develop these techniques further which can
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assist the user in implementing effective alarm management strategies. Some of the focus areas

are listed in the following subsections. For each focus area, we will first list specific problems

requiring attention and then proceed to elaborate on those problems.

2.8.1 Configuration of an alarm and identifying incorrect alarm variables

Two specific problems requiring attention under this focus area are: Problem 1: Selection of

alarm variables for a process to achieve efficient, safer and reliable operation; and

Problem 2: Identifying incorrectly configured alarm variables and settings for an alarm system.

Selection of alarm variables for a process to achieve efficient, safer and reliable operation: An

alarm is used to inform the operator about an abnormal situation. However, as a general practice

alarms are configured for almost all the process variables without identifying the criticality or

consequence of a missed alarm. It is therefore necessary to identify the relationship between the

process variables and abnormal events. Once this relationship is identified, then the configuration

of alarms will be more effective. Dalapatu et al., Takeda et al., Yang et al. [118, 119, 120, 121]

have all explained this relationship based on historical data or process knowledge. With data-

mining techniques, an integrated relationship between process knowledge and historical data can

be explored to get the desired effective alarm system.

Identifying incorrectly configured alarm variables and settings for an alarm system: Incorrect

alarm variables are also one of the major causes of alarm system problems. These issues need to be

addressed as they create hindrance in the normal day to day operation. To ensure that each alarm

is configured correctly, it has to be ensured that every alarm activation calls for an operator action.

If there is no action required, then the alarm in question should be categorized as an alert. One of

the challenges to identify such scenarios is to record and understand each operator action which

requires a significant amount of infrastructure to store and analyze the operator actions.

2.8.2 Priority setting of an alarm

Two specific problems requiring attention under this focus area are:

Problem 3: Selection of alarm priority for a configured alarm variable; and
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Problem 4: Design and selection of dead bands and delay timers for alarm variables.

Selection of alarm priority for a configured alarm variable: During a process upset there are

hundreds of alarms which appear on an operator’s screen. On the basis of the configured priority,

the operator can take necessary corrective action. The general guideline for alarm priorities are

[39] as shown in Table 2.5.

Table 2.5: Priority settings

Priority Type Level Range

3-priority levels low, medium, high ∼ 80% | ∼ 15% | ∼ 5%

4- priority levels Low, medium, high, highest ∼ 80% | ∼ 15% | ∼ 5% | ∼ <1%

Currently, the assignment of alarm priorities is static and there is a need for experimenting with

dynamic alarm priorities and their implementation. Some of the work done in this area has been

reported in the literature [122, 123, 124, 125].

Design and selection of dead bands and delay timers for alarm variables: In addition to the

priority, configuration and design of the alarm system are also very important. By diligently fol-

lowing the recommendations in the standards, some of the alarm issues can be eliminated. Table

2.6 highlights the recommendations for alarm dead bands and delays which are useful in preventing

“nuisance” alarms from popping up during plant operation.

Table 2.6: Delay times and dead bands

Signal Type Delay Time (On/Off timer) Dead band (% of range)

Temperature 60 seconds 1%

Flow Rate 15 seconds 5%

Level 60 seconds 5%

Pressure 15 seconds 2%
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With the use of correct priorities, dead band and delay timer configurations, the alarm overload

on the operator can be considerably reduced [49].

2.8.3 Handling nuisance alarms

A specific problem requiring attention under this focus area is:

Problem 5: Identifying nuisance alarms and generating solutions to reduce or eliminate such

conditions: Designing a system to minimize the occurrence of nuisance alarms is one of the most

important aspects of ensuring the proper operation of a plant. Nuisance alarms not only create

trouble during normal operation, but they are also one of the main reasons for operator workload.

Both fleeting and repeating alarms are also considered to be closely related to nuisance alarms.

One way to eliminate nuisance alarms is to check and compare the normal process operation data

with abnormal data. Some of the methods currently designed and developed to handle chattering

and nuisance alarms are summarized in Table 2.4. However, it is to be noted that each alarm has a

different cause and characteristics. Therefore, it is necessary to develop a methodology such that

the nuisance alarms are either eliminated during the design, filtered or masked in order to make the

alarm system more effective.

2.8.4 Developing advanced alarming techniques

A specific problem requiring attention under this focus area is:

Problem 6: Designing methodologies to reduce the alarm flooding in case of an abnormal con-

dition: To reduce alarm flooding, some of the advanced alarming techniques can be used which

are available with the different control systems in the market. Vernon et al. [65] concluded that

meeting the EEMUA recommendations for the peak alarm rates during a plant upset is a challeng-

ing target and requires advanced practices, techniques and technology to assist plant operations.

The alarm system in this case is able to track the process and decide when to present an alarm and

when to suppress. Suppression is a technique used to assist in handling a high volume of alarms,

occurring due to the inadvertent shutdown of equipment or an unplanned shutdown. The principle

is to hide or mask alarms which no longer have any value to the operator and may result in the
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operator missing critical alarms, operator error, production loss and sometimes incidents. A good

alarm system requires that a lot of process knowledge be integrated into the system to optimize

the alarm generation, suppression and presentation, based on process expertise and operational ex-

perience [126]. Modern control systems can be selected with features and tools to configure the

dynamic suppression of alarms on the basis of the state of the process or equipment (automatic

alarm hiding). An example of successful suppression of alarms could be a situation where a com-

pressor tripping would flood the operator screen in the absence of alarm suppression. However, by

suppressing all alarms except for a few critical ones for the machine, the overloading of alarms can

be decreased significantly. Advanced alarming is a technique to manage alarm rates and ensure the

appearance of relevant alarms by dynamic modification of alarm behavior. In one instance, with

the help of dynamic alarm management the total number of alarms during an upset in a 7 hour time

frame period was reduced from 1450 to a much more manageable number [127]. Additional logic

modeling is generally required to modify alarms. In general, alarm suppression is a valuable tool

and there are three different types of suppression defined in the alarm management standards.

1. Alarm shelving (manual suppression): This process is typically initiated by the operator

action, to temporarily suppress an alarm.

2. Designed suppression (automatic suppression): This process suppresses alarms with re-

spect to operating conditions or plant states. A control logic is defined in the system which

is used to determine the relevant alarms.

3. Out of Service: An alarm is considered to be out of service when it is manually suppressed

for maintenance or testing.

Some of the current suppression techniques are summarized in Table 2.7. These techniques are

followed in industry to avoid alarm flooding and overload on an operator.
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Table 2.7: Alarm suppression types

Type of Suppression Description & Characteristics Example Problem

State-based Suppression (Static

Suppression)

Suppress alarms with pre-defined states

of operation, equipment and process

during a planned event:

• Manually initiated transition

• Time Frame: Short term

(hours),long terms (months)

Reactor startup,

Distillation col-

umn in start-up

mode.

State alarms

Alarm Flood Suppression (Dynamic

Suppression)

Suppress alarms which are not relevant

and meaningful in case of an event and

when the same process can lead to a

hazardous situation

Compressor trip Alarm flooding

Another technique is First-out alarming, which is prominently used in the industry for many

years. In this technique a group of alarms are designed with a latching logic that latches in case

of any single alarm trigger from the group. In this case only the first alarm is displayed and

annunciated to the operator. The scan time for the grouped variables may affect the first-out logic

and hence should be considered while designing such systems. In summary, there is a need to

understand and design approaches applicable to the advanced alarming methods. An organization

can achieve the required KPI’s for an alarm system with the help of advanced alarming techniques

(such as shelving, suppression etc.).

2.8.5 Assisting operator in decision making

Two specific problems requiring attention under this focus area are:

Problem 7: Identifying root causes for an alarm and using a decision support system to provide

guidance to the operator to take the appropriate action.

Problem 8: Designing HMI screens to ensure ease in detection, diagnosing and responding
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to the normal or abnormal conditions. Identifying root causes for an alarm and using a decision

support system to provide guidance to the operator to take the appropriate action: The operator is a

key player in the running of a plant. All the decisions are taken by the operator after observing and

assessing the situation. Alarms constitute a means to assist the operator in operating the process

within safe limits and maintaining the production rate. With advances in automation, the number

of alarms appearing on the operator screen have gone up. Hence, it is a big challenge to ensure

that the operator is assisted, instead of being hindered, by the alarm system during an abnormal

situation. To do so, it is necessary to identify the abnormal conditions in the process, find the

root cause of an alarm generated and provide directed guidance to the operator to take appropriate

action. While developing such systems, plant operating states, complexity of both process and

automation, and the dynamic nature of the process operations should be considered. It should be

noted that individual process events can cause several alarms. The guidance related to an individual

variable may not remain valid and should be accounted for. Methods should be developed on the

basis of process variable measurements, settings, alarm series and/or historical data recorded. This

can be achieved by developing decision support systems for the operators.

Designing HMI screens to ensure ease in detection, diagnosing and responding to the normal

or abnormal conditions: HMI displays act as an interface between the operator and automated sys-

tems. It is very important that the design of the alarms and operator display screens are carried

out simultaneously. HMI displays inform the operator about the abnormal situation with visual

annunciation. HMI displays should be designed to fulfill various requirements such as clear in-

formation for understanding, situational awareness resulting in optimum efficiency of operations.

These can be achieved with the help of proper layout design, color selection, ensuring the span

of control (“assists operator by showing the overall picture of the plant and provides details about

potential problems while working on other tasks using different display screens), proper selection

of the required content, and linking the information from other systems such as enterprise resource

planning systems (ERP), asset management systems, etc. While developing new methods, it is

required to ensure that the HMI does not lose its primary function of being the process display.
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In summary, the status of alarm systems has improved over the past two decades with the de-

velopment of new guidelines, standards and academic research. However, there is still a critical

need to address some of the major challenges related to alarm management. Industrial plants are

suffering from poor performance and alarm flooding situations leading to minor or catastrophic in-

cidents. With advancement in technology and new theoretical concepts, more advanced design and

analysis methods which make use of process and alarm data, and process and operator’s knowledge

are called for. Hence, a holistic socio-technical approach is required for these systems. An effec-

tive alarm management framework can be designed with the help of existing standards, guidelines

and technology available. A step-wise approach is required to achieve the desired outcomes and re-

duce alarm floods during normal and transient conditions. This process can start by developing the

alarm philosophy document and rationalizing the alarm system. Once the bad actors and nuisance

alarms are eliminated, advanced alarming techniques such as first-out logic, static and dynamic

suppression can be used to eliminate alarm floods. Methods focused on reducing alarm flooding

are still in the early stages of development and need more reliable and effective research solutions,

before implementation in an industrial operation becomes feasible. Currently, industry is leaning

towards cyber-physical systems for achieving industrial automation and therefore it is necessary to

also design methods by focusing on such systems. Implementation of new mathematical tools, sta-

tistical tools and data analytics are required to provide support during plant operations to address

the alarm design, alarm flooding, and poor performance issues. The role of the operator should

always be taken into consideration while designing and implementing solutions to these problems.

Section 2.9 highlights the proposed framework to address the challenges identified. A strategy to

integrate the alarm system implementation and operational practices into the existing management

systems is vital to make the plant operations safer and more profitable.

2.9 Alarm management framework

International Society of Automation (ISA) defines an alarm system as:“the collection of hard-

ware and software that detects an alarm state, communicates the indication of that state to the
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operators, and records changes in the alarm state”[16]. Alarm management is defined as “set

of processes that ensures an effective alarm system”. A typical industrial facility is operated by

a control system (DCS or PLC or both), a Human- Machine Interface (HMI) is used to display

the information related to process variables, operation and alarms. In some special cases such as

in safety systems or a critical equipment the alarms and some critical controls are duplicated on

an annunciator panel. Alarm historians are used to record and store the information comprising

of alarms messages, process changes, and operator actions for future records and references. An

effective alarm management program can help the users in operating the plant at both optimum

and safer levels resulting in lower losses, increased throughput and higher quality.

One of the biggest challenges in alarm management for industrial facilities is the alarm floods.“Alarm

flooding is a condition during which the alarm rate is greater than what the operator can effec-

tively manage (e.g. more than 10 alarms per 10 minutes)”[16, 44]. Alarm floods result in abnormal

situations and in some cases the situation may escalate to catastrophic incidents. In past few years,

there have been several standards and guidelines developed comprising of instructions for the users

to design and manage the alarm systems. Additionally, these documents provide detailed require-

ments related to certain KPIs for bench-marking the alarm systems. Some guidelines related to

technical methodologies and steps are provided as a part of separate technical reports. Usually,

the alarm management process in an industrial facility includes designing and rationalizing the

systems. Advanced alarming techniques are used in only few cases. The use of data mining and

analysis systems to harness the information from historians to improve alarm management system

is very scarce.

Figure 2.6: Alarm management framework
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To address the various issues of alarm management, we propose an integrated alarm man-

agement framework based on ANSI/ISA 18.2 alarm management life-cycle and data mining and

analysis methods as shown in Figure 2.6, which consists of four stages: design, rationalize, ad-

vance and intelligent. It is important to note that different actions and stages are required to be

performed and implemented sequentially. The life-cycle is not a one time process and requires

continual improvement and implementation. The four stages of the proposed alarm management

framework are described below:

• Design: The design stage is the most critical part of an effective alarm management pro-

gram. During the design stage, users design their alarm systems based on available stan-

dards, guidelines and best practices used in the industry, their own organization. It includes

developing the philosophy document and the design requirements. A preliminary master

alarm database is generated which includes the potential list of alarms for a facility. While

designing alarm systems the important characteristics to be built into the design are [19]:

1. Action - every designed alarm should require an operator action.

2. Priority - priority selection for the alarms according to the rule of 85/15/5 for(Low/Medium/High)

priorities.

3. Uniqueness - alarm indicates the details about a single unique process parameter with

a suitable description to understand the alarm.

4. Timeliness - alarm appears on time and provides appropriate time for the operator to

detect, diagnose and act.

5. Relevance - alarm relevance for the operational value.

• Rationalize: The rationalize stage includes tasks of alarm classification, prioritization, ra-

tionalization and documentation. The rationalization process requires inputs such as alarm

philosophy document and list of all potential alarms (initial master alarm database) which is

generated during the design phase. The rationalization step provides the result in the form of
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master alarm database with design requirements. There may be a significant reduction in the

configured alarms and the nuisance alarms after rationalization. The rationalization process

can be implemented both during the design of a new system or to an existing running system

to improve the installed alarm system.

• Advance: This stage includes advanced alarming techniques to manage the alarm floods in

case of process changeover conditions such as start-up and shut-down. In such situations,

suppression techniques are used [128], which work on the principle of hiding or masking the

alarms which are not relevant to the operator after a particular process event. These tech-

niques include: alarm shelving (manual suppression) initiated by the operator, designed sup-

pression (automatic suppression) based on operating states or plant conditions (also known

as static suppression) such as a reactor start-up and out of service alarms (also known as

dynamic suppression) such as a compressor trip or an out of service equipment.

Table 2.8: Advanced alarming techniques

Suppression type Description Example case

Suppression based on state

(Static)

Suppress alarm sequence when a pre-

defined operation or equipment state is

observed

Reactor start-up

Alarm flood suppression (Dy-

namic)

Suppress irrelevant alarms in case of an

event while it can lead to a hazardous

situation

Compressor trip

• Intelligent (based on data analytics): With advancement in digitization more data is being

collected and stored daily by the operating companies. The energy industry is becoming

‘data rich’. Data analytics is the key enabler to find out insights from the raw data for more

informed business and operational decisions. Enormous amounts of data are generated by
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sensors and actuators for process operations, automatic or manual actions and safety that are

stored in ‘data-warehouses’ or ‘data lakes’. Data mining and analysis methods can be used to

reveal the relationships between the data sets. The information generated from such methods

can be shown to the user with the help of visualization tools. This provides an opportunity

to derive business intelligence from the data and improve overall system performance [14].

Figure 2.7 highlights key phases of analysis to support improved operations, process safety

and risk management. The process starts with collecting data and performing descriptive

analysis to understand what is going on; a diagnostic analysis to understand why it is hap-

pening. In certain cases we can use a predictive approach to predict the future and the last

step is prescriptive analysis involving real-time analysis and reporting. The value contribu-

tion and complexity of the solution increases at each step. The use of advanced analytics and

expert knowledge is required in these cases to derive informed decisions and business intelli-

gence. To perform analytics on a problem we need to follow a life-cycle approach as shown

in Figure 2.8. The process starts with identifying the purpose of the study and questions

which require answer or analysis. After this step the data is collected from various sources

and aggregated to ensure the availability of required data and information for the study. The

next step includes developing the methodology and performing analysis to find meaningful

information and results. The obtained results are interpreted by experts and then dissemi-

nated to the end users for final evaluation. After evaluation if there are any changes required

in the approach, the appropriate information is shared to update the purpose or evaluation.

For the purpose of this study the data analysis life-cycle stages are defined as: (1) Purpose

definition: address the issue related to alarm management, develop a methodology that can

be used for analyzing alarm and event log; (2) Data Collection : For this study the data is

collected from a DCS historian of a real industrial plant in appropriate template or format;

(3) Data analysis : various methods developed for this stage are shown in Section 2.10; (4)

Interpretation, dissemination and evaluation of results which are described in Section 2.11.

In case of alarm management, the use of analytic tools can provide an opportunity to find out
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the bad-actors, improve the overall alarm management system and operate the plant systems

at an optimized level. In this work, a method is developed for offline analysis for alarm and

event logs and explained in next sections. The information generated from this stage can be

used in other stages to enhance the alarm management program.

Figure 2.7: Data to Business Intelligence

2.10 Problem Formulation

An alarm serves as a medium to communicate the abnormal process event to the operator. A

sensor is used to measure the process value and the output is wired as an analog or digital signal

to the control system (DCS, PLC or ESD system). The transmitted signal is processed by the

programs written and stored in electronic circuits, logic boards (also known as controllers) serving

as the automated brain of the system. Post-processing the generated information is displayed to

the operator on HMI displays in the form of process operations screens and alarm display screen.

The operator uses the information to assess the process operation and takes necessary actions

when needed. During the alarm activation state (equation 2.1), the operator reviews the state of
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Figure 2.8: Data analysis as a life-cycle

process variables and other related plant information, comprehends the current plant state, detects

and diagnoses the abnormal process situation and carries out the required actions to bring the

process back to normal state. The operator’s action activates a sequence of automated operations

including a desired control action from the controller to the final control element (also known as

the actuator) which brings back the process to a desired operating range [129]. These events are

captured in Alarm & Event logs of a control system (DCS/PLC) historian as:

• ALM : alarm appeared,

• ACK : alarm acknowledged by an operator,

• RTN : process variable returned to a normal state.
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Figure 2.9: Methodology framework

Alarm and Event log data captured can provide very relevant and useful information regarding

bad actors (“an alarm that is suspect and cannot be relied upon to deliver accurate information

to the operator, such as stale, chattering, duplicate or suppressed alarms" [130]), flood sequences

which will result in better alarm management performance. To demonstrate this, we have devel-

oped a methodology that uses an Alarm and Event log information and the previous knowledge of

the process operation. This methodology includes following steps:

• Step 1: Acquire and validate the data-set from alarm historian : Alarm and Event log is

stored in a historian of a process control system. This step includes acquiring the data from

the historian in a relevant file format. The generated file is used in the next step.

• Step 2: Pre-process the data-set to ensure correctness : The alarm data-set not only

includes the information of the process alarms, in some cases they include other information

such as system failure alarms, hardware failure alarms too. It is important to filter these

alarms from the process alarms. Also, time stamping needs to be checked to ensure the date

and time stamp for each alarm is captured in the system. This process is shown in Algorithm

1. The output of this level is an Alarm and Event log which is used in subsequent steps.
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Figure 2.10: Alarm and Event log pre-processing

• Step 3: Analyze and evaluate alarm flood clusters, patterns and KPI information : The

next step is to find the alarm floods from the Alarm and Event log generated in the pre-

processing step. To ensure the correct values are collected and used again the data-set is

checked for quality and flood sequences are identified and KPIs for the alarm system are

calculated as mentioned in ISA 18.2 standard and EEMUA 191 guideline.

• Step 4: Provide information to the users with visualization tools: This information is

necessary to understand the system performance. This step includes selection of appropriate

methods and designing the visualization screens post analysis of the complete alarm and

event logs.

Figure 2.9 highlights the complete process presented in this paper. For the purpose of the study,

an alarm event (ai) is defined as a binary-valued variable such that

ai(t) =


0, if O(t) ∈ Op,

1, otherwise
(2.1)

which means that the alarm is inactive (0) whenever the value of the operating condition O(t)

is in the normal operating condition Op and active (1) in the case of a deviation. An alarm can
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be configured as Low or Low-Low alarm (where the value of the measured variable is below the

operating condition limit) or High or High-High alarm (where the value of the measured variable

is higher than the operating condition limit). A flood event, in this case, is defined as:

A = [a1, a2, . . . , an], (2.2)

where symbol [.] indicates a sequence, |A| is the cardinality of the sequence, the number of alarms

is denoted by (n), and ai is the alarm event occurring in a chronological order with a time stamp

(t). ai can be represented by a tuple with multiple attributes

ai = (ei, ti, ati, pi,mi) (2.3)

where

• (ei) is the alarm tag (such as FT, PT, TT, etc.),

• (ti) is the time stamp of the alarm that occurred (HH:MM:SS or 11:00:25 format),

• (ati) is the alarm type (Low, Low-low, High, HIgh-High etc.),

• (pi) is the priority setting for each alarm (Low, Medium, High),

• (mi) is the message type generated (ALM, ACK, RTN).

An alarm rate is calculated to identify the alarm floods in the alarm and event log database. Alarm

rate is defined as number of alarms during a time period. The alarm rate R(t) at a time t is defined

as:

R(t) =

|A|∑
n=1

t∑
k=∆T+1

ai(k) (2.4)

Here, ∆T is the difference between time stamp of a alarm tag in seconds and 600 seconds (10

minutes interval)

By using this alarm rate, the identification of alarm floods can be done by comparing the rate

with a pre-defined threshold.
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An indexing variable (ζ) can be used to show the presence of an alarm flood as:

ζ(t) =


1, if R(t) ≥ τs and ζ(t− 1) = 0

0, if R(t) < τe and ζ(t− 1) = 1

(2.5)

here, 0: No alarm flood condition

1: Alarm flood condition

R(t): is the rate calculated from equation 2.4

τs: alarm count threshold (10 alarms over ten minutes)

τe: alarm count threshold (five alarms over ten minutes) with threshold conditions as defined in [16]

Algorithm 1: Pre-processing algorithm
Input: Alarm & Event dataset from an industrial process
Output: Processed Alarm & Event log (AE)

Read←− file with A = [a1, a2, . . . , an]
Check - an for (en, tn, ati, pi, mi)
Remove - an with missing values
Remove - an if an ∈ SYS OR Non-process tag

Return −→ Processed Alarm & Event log (AE)

When an Alarm and Event log is captured from a control system, it includes alarms other

than process variables (Non-process tags), such as system alarms, hardware alarms, etc. It is

required to remove such alarms to obtain the correct picture of the process system. Hence, these

alarms are removed as a part of the pre-processing of the database. The date and time stamps

for each alarm and event are checked. While performing the analysis, it is important to check

and validate the correct data format too. The available data is checked for data format accuracy

after converting it into the data-frames. Any unnecessary rows and columns which don’t contain

complete information or with bad values are removed after consultation with an expert. The overall
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pre-processing method is shown in Figure 2.10. Once the pre-processing is complete an alarm log

with only process variables is available for analysis. This log includes both normal sequence and

the flood sequence of alarms. With the help of data mining and analysis methods, the KPIs are

calculated .

Figure 2.11: Illustrative motivating example

The average alarm rate per day is calculated by finding the total number of alarms appearing

per day

R(t)avg. =

|A|∑
n=1

1440∑
t=0

ai(k) (when ai(k) = ALM) (2.6)

The peak alarm rate is calculated as the largest value of alarm rate R(t) over a period of 10-minute
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interval

R(t)peak = Max.

( |A|∑
n=1

10∑
t=0

ai(k)

)
(when ai(k) = ALM) (2.7)

The priority distribution for the data-set is calculated by counting the number of alarms appearing

for a particular priority

Adis. =

|A|∑
n=1

pi(k) (when pi(k) = Low, Medium, High) (2.8)

Algorithm 2: Flood sequences and plotting algorithm
Input: Processed alarm & Event log (AE)
Output: Clustered alarm flood sequences

Read←− file (AE),
Check - an for (en and tn)
Cluster Ck : k = 1, 2, 3, ..., K such that Ck = (Ai : i ∈ 1, 2,. . . , N )
for each (Ck) find similarity

Return −→ Clustered alarm sequences

The flood sequences generated from Algorithm 2 are used to find out the similarity between

the alarm floods for a pair of alarm flood sequences. The normalized similarity index (normalized

between 0 and 1) for the alarm sequences is calculated based on the Jaccard index as given in

[131], where given two alarm sequences X and Y, the alarm similarity index is calculated by:

SI(X, Y ) =
|X ∩ Y |
|X ∪ Y |

(2.9)

The normalized similarity index is plotted in the form of heat maps, where darkest color depicts

the highest similarity between two alarm sequences.

A motivating illustrative example depicting the proposed method including data acquisition,

pre-processing, KPI evaluation, and visualization is shown in Figure 2.11.
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2.11 Industrial case study and results

This section demonstrates the implementation of the developed method. An industrial Alarm

and Event log is used to demonstrate the functionality. The sample data-set details are given in

Figure 2.12. The Alarm and Event log has various attributes such as event stamp (date and time

of activation), tag Name (provide the instrument tag details), description, alarm type, priority and

msgtype. The data for three days of a plant is used for analysis with 8793 alarms and events in

three days for 192 unique instrument tags. The processed data-set is reduced to 4513 after removal

of the system alarms and other undesired events as shown in Table 2.9 .

Table 2.9: Data-set details

Details Values

Total items (alarms+events) before pre-processing 8793

Total items after pre-processing 4513

Total number of process tags 192

Total number of days 3

The pre-processed items were analyzed to find the KPIs such as average alarms per day, peak

alarms/10 minutes, average alarms/10 minutes and priority distribution. These values were com-

pared against the values prescribed in EEMUA 191 guideline [44] and ISA 18.2 standard [16]. The

results are summarized in Table 2.10.

The following major observations can be made from the results:

• There are a significant number of average alarms on day 2 and day 3 operations (almost more

than 3 times as specified in the standard).

• The number of peak alarms/10 minutes being considerably high on these days suggests alarm

floods during these days.
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• The average alarms/10 minutes are also high, signifying a poor alarm management strategy

being followed.

• The prioritization captured in this case is observed as 63/30/5 for low/medium/high priority

settings.

Table 2.10: KPI analysis for the alarm and event log

KPI EEMUA-191 ISA 18.2 Analysis result

Average alarms/day <144 ∼155 Day1:142

Day2:504

Day3:526

Peak alarms/10 mins <10 ≤10 Day1:11

Day2:39

Day3:41

Average alarms/10 mins 1 ∼1 Day1:1

Day2:2.1

Day3:2.2

Priority distribution (L/M/H) 80/15/5 80/15/5 60/30/5/5(E)

After the pre-processing and KPI calculation, the visualization plots are generated for the data-

set. The visualization provides the user with an opportunity to understand the system performance

at a glance and address the issues related to alarm management. The key visualization methods

used for this study are:

• Alarm rate plot: In order to understand the metrics, alarm rate plots are generated as de-

picted in Figure 2.13. These plots are line graphs which display the trends of alarm rate R(t)

by aggregating the number of alarms during a period of 10 minutes. The shaded dark area

under the line represents the KPI alarm flood limit of 10 alarms per 10 minutes. Each day in
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Figure 2.12: Sample data-set attributes

the plot is colored with a different color for easy interpretation. Day1 is depicted with green

color, day2 is depicted with orange, and day3 with blue color. When a user hovers over a

particular period, the details such as date, time and the number of average alarms at that time

can be seen in the top-right corner section of the tool screen. The selection bar at the bottom

of the screen provides the user with the option to zoom-in and zoom-out of the alarm rate

plot and have a better understanding about the system during a given time frame.

• Tree map: The tree maps (depicted in Figures 2.14, 2.15) are used to show the bad actors

(alarm tags appearing multiple times) during an operation. The darker color and bigger size

of the block indicates the presence of the alarm tag multiple times. By hovering over a block,

the user can see the number of times the alarm tags have appeared. This is very useful for

the user to get a summary of all the tags on one screen with relevant tag activation count

information while performing the analysis.
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(a) Three days data (b) Two days data

(c) Dot depicting count number (d) Zoomed in Day-2 data

(e) Selection feature bar at bottom (f) Zoomed in Day-3 data

Figure 2.13: Interactive alarm/day plots showing alarm information for three days
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Figure 2.14: Tool screen shot

Figure 2.16: Day 1 tag information
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Figure 2.15: Tree map showing tag information

Figure 2.17: Day 2 tag information
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Figure 2.18: Day 3 tag information

Figure 2.19: Similarity analysis for alarm flood clusters (part I)
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Figure 2.20: Similarity analysis for alarm flood clusters (part II)

Figure 2.21: Similarity analysis for alarm flood clusters (part III)
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• Heat map: The heat maps for the top 45 alarms tags with the highest count appearing during

the 24-hour time period are plotted in Figures 2.16, 2.17, 2.18. The data values in the heat

map are shown as colors; color bar on the right side of the heat map provides the number of

times the alarm occurred on each day. The rectangular block shows the count of alarms per

10 minutes for each tag.

Some conclusions that can be drawn from Figures 2.16, 2.17, 2.18 are as follows:

– For Day 1 that there are some bad actors which appear as alarms several times during

a 10-minute interval. e.g., tag 142 appeared during 1040-1050 minutes 6 times alone.

– During the same time frame, there are a few other tags which appeared multiple times

resulting in a total number of alarms per 10-minutes as >10 alarms. Hence, such maps

can be used to perform tag-wise detail analysis and observe the patterns and bad actors

during an alarm flood or normal sequences. These tag values can be cross-checked with

the tree map plots generated earlier.

• Similarity plots: A similar analysis is illustrated which shows a significant number of flood

patterns due to several tags activating alarms in a 10 minutes time frame. The similar pattern

was observed during the KPI calculation for Day 2 and Day 3. To understand the relationship

between the alarm flood sequence, the correlation plots are developed as shown in Figures

2.19, 2.20, 2.21. A correlation test is used to evaluate the association between two or more

variables. In this case, we are using the correlation test to find an association between the se-

quences of alarm floods as described in equation 2.9. As observed from the figure, sequence

203 & 189 and 204 & 190 are highly correlated. On further investigation, it is observed that

these sequences have similar tags which appeared in these sequences. Similar, analysis is

performed on different alarm flood sequences to find the similarity between the sequences.
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2.12 Summary

Industrial alarm system management has improved over the past few years. However, there

are still some critical challenges related to alarm management that need to be addressed. The ad-

vancement in automation technology and the increase in connected devices has resulted in a higher

number of alarms, poor system performance, additional workload on operators, and in some cases

has led to abnormal situations. To provide a solution to these challenges, we showed an alarm

management framework with four distinct levels - design, rationalize, advance, and intelligent. In

addition, this paper proposed a method to reduce alarm flooding by the use of data mining methods

on Alarm and Event logs from an industrial control system which can be integrated to ANSI/ISA

18.2 alarm management life-cycle process. A real industrial data set is used to demonstrate the

proposed method. As the data-set size increases it is more challenging to calculate the metrics for

alarm management manually. The metrics for alarm management also known as KPIs were calcu-

lated with the proposed method and bench-marked against the available guidelines and standards.

The KPIs were used to understand the alarm system performance and identify gaps at a glance.

The visualization tools in the form of alarm rate plots, tree maps, heat map and similarity maps

plotted for the data set to infer the data with ease and provide meaningful information related to the

bad actors and assist in the overall decision making. The information generated from the proposed

method can be used during the different stages of the alarm management life-cycle process for

an operating plant with a well established alarm philosophy document and a plan in place. These

can be used in either step of the proposed framework e.g., to re-design or re-rationalize the alarm

system by revisiting the master alarm database and address the requirement of each tag identified

as a bad actor; design advanced alarm suppression rules based on the results obtained as similar

tag sequences and thereby address issues related to the bad actors and alarm flooding.
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3. PROCESS FAULT DETECTION: A DEEP LEARNING CLOUD BASED SOLUTION

3.1 Introduction

With advancements in modern industrial measurement and control technologies, operating in-

dustrial processes is becoming complex and challenging. The swift evolution of sensor and data

acquisition technologies aids in better and higher resolution of data measurement, collection, and

overall process monitoring. In addition to these benefits, such technologies provides a challenging

environment for the individuals operating the facilities. With a high amount of signals to interpret

and respond to in case of an abnormal event, the probability of missing a critical action increases

which may ultimately lead to a process safety incident.

To enhance the overall process operation, there has been a substantial progress made in the areas of

process monitoring, fault detection and diagnosis, and root cause identification. On the other hand,

industry has started an initiative Open Process Automation Forum (OPAF) that will make process

control and automation systems more modular and open to address challenges related to the ob-

solescence. Open Process Automation (OPA) requires a Real-time Operational Technology (OT)

services on Advanced Computing Platforms (ACP) to analyze the data generated by the sensors

and control loops to assist the process plant operations. Hence, there is a critical need to develop

solutions and applications based on open source software platforms that can work on ACPs either

on-premise or external cloud servers.

This work provides a basic introduction and theory of LSTM networks. A deep learning based

BiLSTM model with auto-tuning of hyperparameters and adaptive optimizer to detect process

fault conditions. The developed method is applied to a well known industrial case study (TEP) for

fault detection and diagnosis. The proposed method is developed in Jupyter Notebooks (locally

run web applications containing live code, figures, results, and mark-up text) in Python language.
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3.2 Long-Short Term Memory (LSTM)

Traditional neural networks have been used by various researchers in the area of supervised

fault detection and diagnosis. For a chemical process operation the value of a process variable at

current time (t) is dependent on the value observed at a previous time step (t− 1), because of the

time dependent characters tics of the variables under under monitoring and control. Traditional

neural networks lack the ability to capture such dependencies and reasoning about the previous

time step events. Generic RNNs also encounter the problem of vanishing/exploding gradient. This

problem arises due to multiplicative gradient that exponentially increases or decreases with the

number of layers selected i.e., small wrights can lead to the situation of vanishing gradient and

large weights can lead to the situation of exploding gradients. Due to this the network has a limited

ability to learn high temporal relationships between the data. To address this, a Recurrent Neural

Network (RNN) known as Long-Short Term Memory (LSTM) inspired by logic gates of computer

for this study. LSTM is a special type of RNN designed by [132].

Figure 3.1: LSTM data requirements

The input data to a LSTM network is a three-dimensional tensor (batch size, time-steps, features

or input dimensions) as shown in Figure 3.1. Where,

• batch size comprises of one or more samples/sequences;
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Figure 3.2: LSTM cell

• time-steps is an observation in the sample;

• feature or input dimensions is one observation at a time step.

LSTM cell as shown in Figure 3.2 is the basic building block of a LSTM network as shown in

Figure 3.3. LSTM network has a chain like structure integrated with different repeating modules.

The LSTM cell has gated memory cells known as input gate, forget gate and output gates. These

gates are non-binary gates, but are mapped by a sigmoid (σ) activation function in [0, 1] range,

where 0 indicates inhibition and 1 indicates activation of the cell. These gates help cells learn

and remember information for a substantial time. The equations governing the LSTM network are

shown in Equations 3.3, 3.4, and 3.5 derived from the equation 3.1 (used to calculate an activation

for RNN). LSTM networks can be used to predict future based on the values from current and

past by using an inherent property of LSTM cell that is ‘learning non-linear dependencies among

multiple inputs’.
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Figure 3.3: LSTM network with multiple cells

Activation for RNN

a<t> = g(Wa[a
<t−1>, x<t>] + ba) (3.1)

where,

• a<t> is an activation at time (t);

• g is the activation function used for the network;

• Wa is the weight vectors for the gates;

• a<t−1> is the activation at previous time step (t-1);

• x<t> is the input vector;

• ba is the bias.

Candidate value for updating memory cell

c̃<t> = tanh(Wc[a
<t−1>, x<t>] + bc) (3.2)
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Where,

tanh =
ez − e−z

ez + e−z

Update Gate

Γu = σ(Wu[a<t−1>, x<t>] + bu) (3.3)

Where,

σ(sigmoind) =
1

1 + e−z

Forget Gate

Γf = σ(Wf [a<t−1>, x<t>] + bf ) (3.4)

Output Gate

Γo = σ(Wo[a
<t−1>, x<t>] + bo) (3.5)

Update value to the memory cell

c<t> = Γu ∗ c̃<t> + Γf ∗ c<t−1> (3.6)

Where, c<t−1> is the previous cell memory; and * is element-wise multiplication between two

vectors

Output activation at time (t)

a<t> = Γo ∗ c<t> (3.7)

The hyperparameters used in LSTMs are:

(a) Epochs and batch size which decides the quality of prediction,
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(b) Learning rate which controls the model weights, model learning speed, and ultimately the

model performance.

In addition to the tuning requirements, selecting the best optimizer for the problem is also an

important criteria. The data shuffling should not be performed during either of the steps of testing,

validation, or fitting of the model to ensure the temporality is preserved in the data. For this study

we have used a deep BiLSTM which includes multiple layers of the LSTM cell networks. The

hyperparameters are tuned automatically to identify the optimum values and the desired model

performance. The details of the method are shown in Section 3.3.

3.3 Proposed workflow

Figure 3.4: Proposed deep learning based method

For any AI model development and application, we need three things:

1. Input data that include the raw information related to the problem in hand
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2. Expected output that includes the information about the correct output at a given instance

of the data

3. Algorithm effectiveness that include a method to measure if the algorithm is performing at

the desired level and accuracy.

The derived models help in transforming the input data to meaningful outputs by learning relations.

A deep learning model uses successive layers for representation of data.

In case of process monitoring in an industrial setting, such data is collected and stored in plant

historian or IP-21 system for future analysis. This data has various key information and parameters

that can depict both the normal and abnormal behavior of the process. For this study we use similar

data set to highlight the application of the proposed workflow. For any such industrial system the

overall methodology can be classified into four steps:

• Step 1: Data collection: One of the most important aspect for a data-driven methodology

and application is the availability and quality of the data. This means that the model devel-

oped in such instances is as good as the available data at user disposal. Hence, it is very

important to collect data that depicts the true conditions of the problem being addressed.

This involves the details of each process variable (measured or manipulated) with respective

time-steps.

• Step 2: Pre-processing and data generation: Once the data is collected and stored the next

step involve performing data quality assessment. This step involves methods such as

1. Data cleaning that constitutes outlier identification, removal of outliers and noisy data,

and incase there are missing sensor values then perform missing value imputation.

2. Data transformation that constitutes scaling and normalization to ensure equal weights

for each variable and to reduce biasing during the model building step.

• Step 3: Model building: The basic principle and structure for the LSTM network used in

this study is described in Section 3.2. A multi-input problem can be modeled easily with the
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LSTMs. In this case we have developed a model with multi-input and single output (binary

classifier) depicting the presence (1) or absence (0) of a process fault condition.

Figure 3.5: Loss function to adjust weights

We start with defining the layers of LSTM network and the input shape parameter. To reduce

the overfitting we have used dropout regularization method. A trick used in deep learning

is to use the loss score as feedback for the optimizer to adjust the weights of the network

to ensure the loss is minimized as shown in Figure 3.5. The optimizer uses a back prop-

agation algorithm to find the best weights for the designed network. The optimizer used

for this study is Adam optimizer (an adaptive learning rate method) instead of the classical

stochastic gradient descent (SGD) method. It is a combination of two algorithms RMSprop

and SGD with momentum. Adam is designed for training deep neural networks, which uses

adaptive learning rate methods to identify learning rate for each parameter by using first and
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second moments of gradients to adapt the learning rate for each weight used for the network

following the rules below:

For Momentum

VdW = β1VdW + (1− β1)dW ; (3.8)

Vdb = β1Vdb + (1− β1)db; (3.9)

V corrected
dW =

VdW
(1− βi

1)
; (3.10)

V corrected
db =

Vdb
(1− βi

1)
; (3.11)

For RMSprop

SdW = β2SdW + (1− β2)dW 2; (3.12)

Sdb = β2Sdb + (1− β2)db2; (3.13)

Scorrected
dW =

SdW

(1− βi
2)

; (3.14)

Scorrected
db =

Sdb

(1− βi
2)

; (3.15)

The weight update is given as:

W = W − α. V corrected
dW√

Scorrected
dW + ε

(3.16)
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b = b− α. V corrected
db√

Scorrected
db + ε

(3.17)

where,

– α is the learning rate

– V is the exponential average of gradient along the parameter

– S is the exponential average of squares of gradients along the parameter

– β1, β2 are the hyperparameters with values 0.9 and 0.99 respectively.

By using these equations the overall objective is to minimize the cost function given by:

J(W,B) =
1

m

m∑
i=1

L(y
′i, yi) (3.18)

• Step 4: Model implementation:

Typical deep learning networks require higher order of computational power. A normal com-

puter CPU is not able to address such requirements. For this study due to the magnitude of data and

problem in hand we have used multiple GPU’s with CUDA interface. The complete model code

is written in Python 3 with tensorflow backend installed on Keras. The overall code is a Jupyter

notebook which can be used on other cloud services such as Amazon Web-services (AWS).

3.4 Industrial case study and results

Based on the theory and methodology provided in Sections 3.2, 3.3 is applied on a public

benchmark, Tennessee Eastman Process (TEP) case study (widely used for plant-wide control,

fault detection and diagnosis research, and statistical process monitoring) to demonstrate the ef-

fectiveness. The details are available in Section 3.4.1.

3.4.1 Process description and data-set details

TEP is an industrial process with five main units: a reactor (where exothermic reaction occurs),

Vapor-liquid Separator, Stripper, Compressor, and a mixer. The overall process flow diagram is
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shown in Figure 3.6. There are total of 52 variables with 41 measured shown in Table 3.1 and 11

manipulated variables shown in Table 3.2.

The reaction occurring in the reactor are given by:

A(g) + C(g) +D(g) → G(l),

A(g) + C(g) + E(g) → H(l),

A(g) + E(g) → F(l),

3D(g) → 2F(l).

(3.19)

Figure 3.6: The Tennessee Eastman process
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Table 3.1: TEP measured variables

Variable Number Description Measurement type

1 Feed A (Stream 1) Process

2 Feed D (Stream 2) Process

3 Feed E (Stream 3) Process

4 Total Feed (Stream 4) Process

5 Recycle Flow (Stream 8) Process

6 Reactor Feed Rate (Stream 6) Process

7 Reactor Pressure Process

8 Reactor Level Process

9 Reactor Temperature Process

10 Purge Rate (Stream 9) Process

11 Product Separator Temperature Process

12 Product Separator Level Process

13 Product Separator Pressure Process

14 Product Separator Underflow Process

15 Stripper Level Process

16 Stripper Pressure Process

17 Stripper Underflow (Stream 11) Process

18 Stripper Temperature Process

19 Stripper Steam Flow Process

20 Compressor Work Process

21 Reactor Cooling Water Outlet Temperature Process

22 Separator Cooling Water Outlet Temperature Process

23 Component A (Stream 6) Composition

24 Component B (Stream 6) Composition

25 Component C (Stream 6) Composition

26 Component D (Stream 6) Composition

27 Component E (Stream 6) Composition

28 Component F (Stream 6) Composition

29 Component A (Stream 9) Composition

30 Component B (Stream 9) Composition

31 Component C (Stream 9) Composition

32 Component D (Stream 9) Composition

33 Component E (Stream 9) Composition

34 Component F (Stream 9) Composition

35 Component G (Stream 9) Composition

36 Component H (Stream 9) Composition

37 Component D (Stream 11) Composition

38 Component E (Stream 11) Composition

39 Component F (Stream 11) Composition

40 Component G (Stream 11) Composition

41 Component H (Stream 11) Composition
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Table 3.2: TEP manipulated variables

Variable Number Description

42 D Feed Flow (Stream 2)

43 E Feed Flow (Stream 3)

44 A Feed Flow (Stream 1)

45 Total Feed Flow (Stream 4)

46 Total Feed Flow (Stream 4)

47 Purge Valve (Stream 9)

48 Separator Pot Liquid Flow (Stream 10)

49 Stripper Liquid Product Flow

50 Stripper Steam Valve

51 Reactor Cooling Water Flow

52 Condenser Cooling Water Flow

The data-set for this study is taken from Harvard dataverse [133] that contains simulated data

from both normal and abnormal events (IDV(1) to IDV(20)) as shown in Table 3.3. Each simulated

set involves 500 simulations with total of 10,500 simulations for the complete data-set. The training

data-set sample range us 1 to 500 with each measurement sampled at 3 minutes for a total duration

of 25 hours, and testing data-set sample range is 1 to 960 with same sampling at training data for a

total duration of 48 hours. The distribution details of the selected data-set are shown in Annexure

A.
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Table 3.3: Process faults and types in the Tennessee Eastman Process data set

Fault number Process Variable Type

IDV(1) A/C feed ratio, B composition constant Step

IDV(2) B composition, A/C ration constant Step

IDV(3) D feed temperature Step

IDV(4) Reactor cooling water inlet temperature Step

IDV(5) Condenser cooling water inlet temperature Step

IDV(6) A feed loss Step

IDV(7) C header pressure loss-reduced availability Step

IDV(8) A, B, and C feed composition Random variation

IDV(9) D feed temperature Random variation

IDV(10) C feed temperature Random variation

IDV(11) Reactor cooling water inlet temperature Random variation

IDV(12) Condenser cooling water inlet temperature Random variation

IDV(13) Reaction kinetics Slow drift

IDV(14) Reactor cooling water valve Sticking

IDV(15) Condenser cooling water valve Sticking

IDV(16) Unknown Unknown

IDV(17) Unknown Unknown

IDV(18) Unknown Unknown

IDV(19) Unknown Unknown

IDV(20) Unknown Unknown

IDV(21) The valve fixed at steady state position Constant position

3.4.2 Analysis and results

The data-set described in Section 3.4.1 is used for implementation and testing of the the deep

BiLSTM network for the fault classification. This section highlights the key results obtained for

this study. The following steps were performed:

• Step 1: Data collection: The data for this study was collected and transformed in the form

of dataframes.

• Step 2: Pre-processing and data generation: Once the data is stored in the dataframes,

a data quality check is performed to fins out any missing values. There were no missing
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values, hence no data inputation was performed. As shown in Table 3.3 there are total of

21 faults in the data-set. We have selected Fault numbers (1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13,

14, 16, 17, 18, 19, 20) for this study. The complete data-set was divided using 70-30 rule

for generating training and testing data. Also, the data was transformed and normalized to

reduce the bias due to variable weights in the model building step.

• Step 3: Model building: This step includes designing and testing of the deep learning

model and test the designed model. It involves transforming the data into tensors, model

building including selecting the loss function, optimizer to be used during training of the

model and selecting the learning rates. These selections help in ensuring the method will

work at the desired level of accuracy and classification.The layers of LSTM network were

defined. The network was trained and tested multiple time by tuning the hyper-parameters to

find the best results. To reduce the over-fitting we have used dropout regularization method.

The optimizer used for this study is adam optimizer.

• Step 4: Model implementation:

Once the model was trained the overall model was tested on the testing data. The overall

accuracy of two best models obtained is shown in Figures 3.7 and 3.8. The overall accuracy

of the model is approximately 91% for model 1 and 93% for model 2. Model 2 is used in

next steps to check the individual fault classification. The fault classification accuracy heat

map is shown in Figure 3.9. As evident from the figure, some of the faults (Fault numbers: 1,

2, 5, 6, 7, and 14) were classified with highest precision (99%). Other faults (Fault numbers:

4, 8, 11, 12, 13, 17 and 18) were classified with an accuracy in the range of 81% - 94%.

The model generated here can be used to classify the faults online as well with similar input

data-sets providing an overall accuracy of 93%. Also, the model accuracy can be improved by

adding more data to the model. This will help model in generalizing the data and provide more

accurate results.
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Figure 3.7: Model 1 accuracy

Figure 3.8: Model 2 accuracy
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Figure 3.9: Map depicting fault classification accuracy values (model2)

3.5 Summary

In this work we provide the basic introduction and theory of LSTM networks. A deep learning

based BiLSTM model with auto-tuning of hyperparameters and adaptive optimizer is developed to
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detect process fault conditions from process variable data values. The developed method is applied

to a well known industrial case study (TEP) for fault detection and diagnosis. The proposed method

is developed in Jupyter Notebooks (locally run web applications containing live code, figures,

results, and mark-up text) in Python language. Google Cloud Platform is used for demonstration of

the method. The proposed method can classify the faults for the given data-set with 93% accuracy.

This information can be used to classify the process fault condition in an industrial facility and

develop a guidance tool to provide prescriptive corrective information to the operator.

The main contributions of this work include:

1. A novel data-driven workflow to integrate the big data analysis, deep learning based BiLSTM

on cloud platform, and reporting for process fault detection and classification.

2. An automated hyper-parameter optimization method is derived and used to identify the op-

timal hyper-parameters for the given data and designed network.

3. The proposed workflow and method is developed entirely on an open source software plat-

form (Python). We use well know industrial plant problem to demonstrate the features and

capabilities of proposed method.

4. The proposed workflow is cloud-ready and highlights the use of cloud computing to process

data and run the proposed models in an effective manner. The cloud application enables

users with the required computing power, scalability and flexibility of model design and

application to improve overall decision making.
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4. APPLICATIONS IN PROCESS SAFETY AND RISK MANAGEMENT

Emerging sensors, computers, network technologies, and connected platforms result poten-

tially in an immeasurable collection of data within plant operations. The data can be captured

in various types, sizes, and dimensions. Most of the data in these cases is unstructured or semi-

structured. (Big) data and analytics have appealed to both practitioners and researchers in industry

and academia with a promising potential to provide insights by uncovering invisible patterns and

trends from this data. The application of data analytics is in its early stages and there is a need

for organizations to design and adopt data strategy and architectures with data analytics including

machine learning tools and artificial intelligence techniques to design and prototype solutions by

processing voluminous data generated from disparate sources. This information is the key for an

organization to improve the operational efficiency by reducing downtime and making operations

more reliable and safer. In this work, we discuss the prospects of using (big) data analytics in-

tegrated with cloud services to improve plant operations. The chapter outlines the vision and a

systematic framework highlighting the data analytics life-cycle in the area of process safety, risk

management, and environmental protection.This work provides the basis of application of big data

analytics in process safety that would provide valuable insights. This would result in more in-

formed policy, strategic, and operational risk decision-making leading to a safer and more reliable

industry. Different case studies in process safety and risk management area are used to demon-

strate the application areas. It is concluded that a well-balanced integrated approach including

machine supporting decisions integrated with expert knowledge and available information from

various key resources is required to enable more informed policy, strategic, and operational risk

decision-making leading to safer, reliable and more efficient operations.

∗Reprinted in part with the permission from “Application of big data analytics in process safety and risk man-
agement” by Goel et al., 2017. IEEE International Conference on Big Data, (pp. 1143-1152), Copyright 2017 by
IEEE.

†Reprinted in part with the permission from “How Big Data & Analytics can improve process and plant safety
and become an indispensable tool for risk management” by Goel et al., 2019. Chemical Engineering Transactions, 77,
757-762, Copyright 2019 by AIDIC.
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4.1 Big Data Analytics and Application

In addition to the attributes of big data mentioned in Section 1.1, it is essential that mechanisms

exist for visualization and understanding of the information and relations between the data and the

inference of meaningful information out of it returning, what is called, business intelligence (BI).

This requires data storage and management, hardware and software resources, appropriate domain

knowledge, and new methods and technologies. Combining big data with analytics can provide

a significant advantage to make timely and efficient decisions related to 1) cost, 2) time, 3) prod-

uct development, and 4) optimization. A humongous amount of data is captured and stored in

different formats (structured, semi-structured and unstructured), from different sources (sensors,

machines, applications, web, IoT) and stored by the organizations. The data is captured, stored,

processed in batches or real-time with the help of algorithms or mechanical processes. Application

of these methods vary for different sectors, ranging from aviation, automotive industry, banking

and capital investments, communications , energy, utilities and mining, government, health indus-

try, insurance, retail, technology etc. It is important for these industries to make most out of the

weak signals from several key data sources both structured and unstructured and deliver a real time

impact for an easy, quick and efficient decision making. Organizations and industries are explor-

ing data analysis methods to discover insights and prepare personalized solutions to the challenges

faced [134]. Some of the potential key areas and big data methods applications related to them are

highlighted in Table 4.1.

Table 4.1: Big Data application by industry

Energy industry Health-care Supply chain Finance Customer focused
Regulation and pol-
icy

Clinical decision
support

Supply chain opti-
mization

Advanced forecast-
ing

Customer segmenta-
tion

Frauds, cybersecu-
rity, risk manage-
ment

Individual analytics Customer satisfac-
tion

Governance, risk and
compliance

Brand & Sentiment
analysis

Operational perfor-
mance, optimization

Personalized
medicine

Product reviews,
profitability

Financial perfor-
mance, frauds

Pricing, Profitability,
satisfaction
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4.2 Process Safety Big-Data Management System

4.2.1 System introduction

Considering the significance of big data in process safety, this study establishes the Process

Safety Big Data Management System (PSBDMS). As shown in Figure 4.1, this system is a two-

pronged approach comprising of Challenges and Elements. The challenges are policy related,

strategic, and operational that act as Drivers for big data analytics in process safety and risk man-

agement. The elements include data, stakeholders, methods, and technology that act as Enablers.

Each of these elements has sub-elements to contribute to the overall process of PSBDMS.

Figure 4.1: Process Safety Big Data Management System

4.2.2 Process Safety Data

Within the energy industry, data is generated continuously from various sources and available

in different formats. Process safety related data can be broadly categorized into three different
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Figure 4.2: Process safety data sources

levels as depicted in Figure 4.2.

• Data collected by regulatory agencies such as Department of Transportation (DoT), Occu-

pational Safety and Health Administration (OSHA), United States Environmental Protection

Agency (USEPA) and similar agencies in other countries. Some examples of databases are

incident statistics, statutory fines;

• Data collected by industry consortiums such as American Petroleum Institute (API), Oil and

Gas Producers Association (OGP), and many more. Some examples of databases are metrics

system, injury records, production data;

• Data collected by organizations (manufacturing facilities) such as chemical plants, oil and

gas exploration units etc. These databases are further classified into seven areas based on the

source and type of data. These are as follows:

– Historian: process parameters, production data, machine monitoring, system fault records.

– Design data: process flow diagrams (PFDs), piping and instrumentation diagrams (P&IDs),

plant layouts, standard operating procedures (SOPs), insturment and equipment data-
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sheets.

– Operational data: work permits, mechanical integrity and quality insurance data.

– Computerized Maintenance Management System (CMMS): maintenance and reliabil-

ity records, risk-based inspections and filed visit records.

– Laboratory Information Management System (LIMS): quality reports, lab test reports.

– Process Safety Management (PSM) system: audit reports, Learning From Incident

(LFI) communications, training records, safety culture assessments.

– Process safety studies: process hazard analysis (PHA)/ hazard and operability studies

(HAZOP), emergency response plan evaluation studies, incident investigation reports.

4.2.3 Process Safety Challenges

Many authors have established that one major challenge in process safety is that incidents con-

tinue to occur [18, 116, 135, 136]. Also there is an increase in the development of different process

safety and risk assessment methodologies and tools over the past few decades (1970-2020) [18].

From the data application viewpoint, we believe that in each of those development stages, data

was collected and utilized in some form in the past. However, a systematic approach has not been

established to implement process safety big data management. This gap can be filled with the

incorporation of PSBDMS in addition to current risk assessment and mitigation methods. Some

of the critical questions, which most risk assessors deal with are as follows - what is the right

or uniform format for data collection?, what data are relevant and important to collect?, are our

plants/facilities becoming any safer?, which metrics are significant and have an impact on safety?,

can we analyze the health or effectiveness of safety barriers in plants?, and what will be an ef-

fective maintenance schedule? The incorporation of PSBDMS will address the above-mentioned

questions at different levels. Challenges related to these questions can be categorized into policy,

strategic, and operational as presented in Figure 4.3. It provides the three different levels of pro-

cess safety challenges based on the stakeholders (regulatory agencies, industry consortiums, and

manufacturing facilities) of the PSBDMS:
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• Policy: This refers to the policy or rule making related challenges. These can be addressed

by the regulatory agencies. Analysis of current databases can help infer knowledge on which

other data may be relevant to collect, or effective usage of collected data, or prioritizing the

inspection schedule for some facilities based on the analysis of collected data.

• Strategic: This refers to the industry consortiums such as API, and OGP, which collect data

for industrial sectors. Analysis of these databases can help in the identification of robust

metrics that influence the process safety significantly, or improvement of data collection and

management structure, or improvement in monitoring with insights on new metrics

• Operational: This refers to the manufacturing plants/facilities, which collect a wealth of data

within the organization. Analysis of these databases can help in the identification of weak

signals, or evaluation of the effectiveness of safety barriers, or recognition of optimal main-

tenance schedule, or barriers prioritization and resource allocation for emergency response

based on dynamic risk profiles.

Figure 4.3: Challenges in process safety
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4.2.4 Data analytics application and benefits

As explained in previous sections, there exist huge amounts of data that is being generated re-

lated to process safety at different levels-regulatory agencies, industry consortiums, and plant/facility.

Based on data science, this raw data needs to be subjected to the process of pre-processing or

cleaning in order to organize it into information. The data in the form of information or devel-

oped databases is then available for use by analysts to extract value from it and convert it into

intelligence. These then lead to appropriate actions and support decision-making. Figure 4.4 high-

lights PSBDMS items for various phases to support improved process safety and risk management.

These phases are established following the [137] model with steps: data understanding, data prepa-

ration, modeling, evaluation, and deployment. After the first phase of collection of process safety

databases, the following phases help in answering process safety questions:

• Descriptive analytics: deals with determining what happened and converting the data into

information such as pattern charts or histograms.

• Diagnostic analytics: refers to data presentation to understand why something happened or

underlying causes for undesirable situations or events.

• Predictive analytics: refers to developing models on existing datasets to extract information

on what will happen or predict future trends.

• Prescriptive analytics: refers to support decision-making or what should be done by use of

advanced analytics.

Some of the significant benefits of implementing PSBDMS are as follows:

• Dynamic evaluation of risk profile of a facility with the support of real time visualization.

• Safer and reliable operations by incorporation of insights from data analytics enabling opti-

mal maintenance schedules to avoid unplanned shutdowns.
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Figure 4.4: PSBDM model phases

• Resource allocation towards risk reduction and mitigation utilizing information on risk rank-

ing for various areas in the facility.

• Effective action items from trending and analysis of process safety indicators.

• Improve monitoring by the introduction of new metrics and/or revision of existing metrics.

• Correlation development and use of detailed analysis (structured and unstructured data) to

improve audits, incident investigations, hazard evaluation studies.

• Development of visualization dashboards for personnel from different levels within the or-

ganization.

For the above mentioned challenges and benefits, some of the application examples are described

in Section 4.3 as case studies.
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4.3 Case studies

In plant operations, data is captured from various heterogeneous sources which requires pre-

processing and data-integration for further analysis and insight generation. In this section, we

represent data-driven tools for maintenance and reliability, process safety, and text mining appli-

cations in process safety and risk management domains. To demonstrate the application of data

analytics, deep learning, machine learning, and NLP, we have used different application areas to

show the effectiveness of proposed methods to achieve goals of automated intelligent decision

making leading to enhanced safety and more reliable operations.

4.3.1 Case study I: Pipeline and Hazardous Materials Safety Administration (PHMSA) in-

cident database analysis

Table 4.2: Details of PHMSA datasets used for analysis

Details Dataset-A
(2002-2009)

Dataset-B (2010-
2017)

Number of data points 3029 2969

Number of missing val-
ues

81 0

Number of states for re-
ported incidents

48 33

Property damage
range for reported
incidents(millions)

$0 to $150 $0 to $ 840

Number of unique com-
modities

4 5

Number of unique
causes of incidents
reported

8 8

Most of the organizations in the oil & gas industry have implemented process safety manage-

ment which involves capturing the details related to near-misses or an incident along with other
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PSM elements. Similarly, several federal agencies such as DoT capture similar information related

to their jurisdictions. From these databases important trends, areas of concerns and improvement

methods can be derived to reduce the losses due to downtime, injuries, property damage and envi-

ronmental impact. A detailed analytics plan can be used to address the challenges and derive the

information for the stakeholders. One of the main challenges during analysis is how to select spe-

cific variables from hundreds of variables and draw meaningful conclusions [138]. To demonstrate

the application of such analysis on an incident reporting database, we used a publically available

dataset of HAZMAT incident from PHMSA website [139], processed it to build a predictive model

and validated it with the help of Python [140] and IBM SPSS Modeler [141]. The summary of the

database is described in Table 4.2. Two datasets A and B have been used in this analysis. In general

the missing data is imputed during the analysis; however, in this case it is not possible since the

database is an incident database, based on actual scenarios and investigations. Hence, the missing

values observed were discarded. For ease in visualization following changes were made to the

datasets:

1. The description for commodity classification was made short.

2. The description of commodities and causes for both datasets were made universal.

The data analytics methods were used to analyze the data and machine learning techniques to cat-

egorize and predict the significance of the incident. This was based on the available data, model

generation and application of the model. For this purpose, one of the significance criteria was used

based on property loss>=$50,000USD [139]. First a descriptive analysis was performed in Python

to understand the datasets available and understand the nature of the incidents, types of commodi-

ties involved as illustrated through a graphic in Figure 4.5 and to categorize the states based on

number of incidents, a choropleth map shown in Figure 4.6 is prepared using ‘Python’[140] and

‘Plotly’[142]. To prepare a predictive model for the incident significant classification, first the

dataset from 2002-2009 was used to train the model and generate various decision rules with IBM

SPSS Modeler. The details observed from different methods used for the purpose of model gen-
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Figure 4.5: No. of accidents by commodity

Figure 4.6: Choropleth incident map (developed from PHMSA database: 2002-2017)
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Figure 4.7: CHAID tree for dataset A

eration and deployment are show in Table 4.3and a chi-squared automatic interaction detection

(CHAID) tree is shown in Figure 4.7. Out of the mentioned models, classification and regression

tree (C&RT) was selected as it was providing the predictions at a higher accuracy according to the

significance rule defined prior to the study.

Table 4.3: Models tested on datasets

Model Lift Overall Accuracy
No property loss selected
CHAID 1.916 75.91

Random tree 1.882 72.8

C&R tree 1.831 75.916

Property loss selected
CHAID 3.333 96.4

Random tree 3.333 96.4

C&R tree 3.333 100

The C&RT results are shown in Figures 4.8 and 4.9 for dataset A and dataset B respectively.
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Figure 4.8: Tree for datset A Figure 4.9: Tree for datset B

Figure 4.10: Predicted significance of dataset B

The predicted significance result for dataset B is shown in Figure 4.10. It is observed that for

dataset B, the generated model based on C&RT is able to predict the significance of the event

with 96% accuracy. As there was no missing information the model was able to predict with great

accuracy. Such studies and models are useful in identifying the areas of concern both from the

organization’s and regulatory authorities’ perspective. At the same time, such systems can be used

to interpret the historical data available as reports, notes and copies to understand the importance

of reporting and learning from incidents. Similar results could be further utilized by agencies to

allocate resources optimally towards prioritization of inspections and understanding the key focus

98



areas.

4.3.2 Case study II: Predictive model for equipment failure

A key element in Process Safety Management is Mechanical Integrity (MI) that is associated

with equipment reliability and maintenance. Equipment reliability has been studied by many re-

searchers in the field due to its significance in avoiding mechanical problems [143, 144, 145].

Predictive maintenance is an important component in the MI system and plays a key role in im-

proving reliability to reduce the probability of unexpected shutdowns, production losses due to

equipment downtime, and safety incidents. Prediction of these problems would improve opera-

tions and support effective maintenance. Various kinds of operational data for equipment such

as vibration and other condition monitoring data, planned or unplanned maintenance event data,

fault occurrence, failures are collected from different systems such as CMMS, historian etc. in the

manufacturing facility. With the use of this historical data and application of data analytics, model

based failure predictions of equipment or equipment parts can be made.

A case study of a pump is used to demonstrate the application of data analytics for failure pre-

diction. The data types used for this study are – time-series data which consists of vibration and

voltage (hourly), fault logs (vibration, voltage) for two parts (rotor, motor), planned and unplanned

maintenance records, and failure of the parts. Synthetic datasets were generated following certain

statistical distributions in programming language R for the year 2016 [146]. For these datasets,

complexities were added and certain reasoning was followed to make them similar to real situ-

ations. For example, outliers were placed in the time series vibration and voltage data; actual

failures were assigned for the higher number of days since last replacement of a part. Features

to predict the health of the pump are extracted from these data sources by using the time-stamps

from time-series data. Table 4.4 shows the different extracted features to develop the prediction

model [147, 148, 149]. Figure 4.11 provides the snapshot of all features that are incorporated in

the training formula.

For the modeling process, features dataset is divided into training and testing datasets. The
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Figure 4.11: Extracted features snapshot

Table 4.4: Details of features extracted for the dataset

Variable Extracted features
Vibration 3-h and 24-h rolling meand and standard deviation

Voltage 3-h and 24-h rolling meand and standard deviation

Faults Number and type of faults

Maintenance Days since last replacement of pump parts

Failures Actual failures

training dataset comprises of the first eight months of data and the testing data comprises of the

last four months. Figures 4.12 and 4.13 illustrates the results of pump predictive maintenance

model for three classes– ‘None’ represents no failure, ‘Part_1’ represents failure of the rotor, and

‘Part_2’ represents failure of motor. Table 4.5 represents the confusion matrix, which gives the

true positives (TP), true negatives (TN), false positives (FP), false negatives (FN) for classes. It is

observed from this matrix that 964 of the 967 ‘None’, 2 of the 3 ‘Part_1’, and 3 of the ‘Part_2’

classes were predicted correctly. Table 4.6 provides the metrics such as precision, recall, F fac-

tor,overall accuracy,and kappa score to interpret the robustness of the model.It is observed that for

prediction of ‘Part_2’ failures, the model does not yield good results. This could be due to the use

of synthetic data in the model, real datasets would provide a more accurate analysis and prediction

of the failures. Application of similar studies would aid in the early recognition of failures, time

for operations to adapt, cost reduction in maintenance by following a good strategy and improve
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safety by reducing unexpected failures.

Figure 4.12: Actual vs Predicted (Part_1, Part_2 class)

Figure 4.13: Actual vs Predicted (None class)
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Table 4.5: Evaluation Metrics for confusion matrix

Actual Predicted
None Part_1 Part_2

None 964 0 3

Part_1 1 2 0

Part_2 3 0 3

Table 4.6: Evaluation Metrics for confusion matrix

Precision Recall F
None 0.99587 0.99689 0.96388

Part_1 1 0.67 0.8

Part_2 0.5 0.5 0.5
Overall accuracy: 0.99283

Kappa score: 0.58539

4.3.3 Case study III: Dynamic risk mapping

Manufacturing facilities such as chemical plants, offshore platforms have been recognized as

complex socio-technical system by researchers [18]. Facilities have various subsystems and/or

components that have complex interactions, which result in changing operations environment. This

affects the risk profile of the facilities and hence it is important to study the emergent behavior of

these interactions within the complex systems. So far, the body of literature that is concerned with

dynamic risk profiles due to emergent behavior of complex process systems using big data analytics

is small. In this section, a systematic methodology is described and developed. For this purpose,

the process unit system is reproduced as a system of layers as illustrated in Figure 4.14. Based

on this system of layers, a dynamic risk profile is obtained by the incorporation of the wealth

of data generated in the facility from various sources such as historic information, Centralized

Maintenance Management System (CMMS), operational data, and Process Safety Management

(PSM) system in the form of indicators [17]. With the real plant data, the risk could be assessed
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also applying contributions from safety culture survey data, audit reports and more.

Figure 4.14: Big data dynamic risk analysis framework

The dynamic risk evaluation involves different steps similar to a Layer of Protection Analysis

(LOPA) study. As illustrated in Figure 4.17, the following is a step-wise methodology that involves

layer-wise analysis from plant layer to safeguards layer to calculate the final risk as low, medium

or high as indicated in the matrix of Figure 4.14:

Step 1 Scenario identification: To define a scenario in details applying basic fault and event tree.

Fault tree analysis helps to identify the initiating and basic events leading to the top event. Event
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tree analysis supports the identification of safety barriers in place to prevent and mitigate the con-

sequence. F1 (see Figure 4.17, layer 2) is evaluated from the scenario analysis in the form of

initiating scenario probability leading to a risk of major consequence. Depending on the scenario,

this follows different combinations of AND/OR gate calculations.

Step 2 Plant operations assessment: This step deals with identification of the dynamic factors

based on the operational hazard layer. These could be from issued work permits, ongoing SIMOPS

(simultaneous operations), transient operations, previous events, and hazardous area classification.

Outcome of this step is Operations Hazards Factor F2 acting as an additional factor leading to in-

creased event probability: in the conventional case it is not considered, in the dynamic case F2≤ 1.

Contributions to F2 by various operational activities are time-averaged, composed as AND gates,

while the smaller the value the larger the effect.

Step 3 Barrier health assessment: This step is a combination of identifying the existing con-

trol and recovery barriers available for the scenario and assessment of their health, based on the

conditions of items from the safety barriers layer. Here, F3 is evaluated after dividing the prob-

ability of failure on demand (PFD) of each protection layer, assumed independent of the others

(IPLs), by a corresponding penalty factor. The penalty factors are determined based on indicators

of maintainability, availability, replacement and audit (see Figure 4.15). F3 is derived from the

product of penalty factors adapted PFDs (LOPA approach).
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Figure 4.15: Penalty factors

Step 4 Calculation: The final step is to calculate the risk of a major consequence occurring

from the collected operations data. The proposed method follows LOPA approach, incorporating

additional factors based on the data from dynamic operations. Equation 4.1 is used to calculate

risk of a major consequence as shown below:

R = F1 ∗
F3

F2

(4.1)

4.3.3.1 Example case study

An accident scenario is considered to analyze and map the dynamic risk profile. This type

of dynamic risk profile analysis would support more informed operational decisions, improved

maintenance plans, work execution strategies, and overall safer and more reliable operations. The
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way data mining is performed is as follows: At any moment in time discrete parameter values

(true [1] or false [0]) will be read by the risk calculation module at a suitable time frame sequence.

Beside the parameter values inputs to the risk calculation module are user defined weights for the

fourth layer parameters expressing the degree of effectiveness of the relevant parameter.

Figure 4.16: Knock Out drum with piping

The example scenario as shown in Figure 4.16 concerns a knock out drum (K.O.D.) which

includes a level switch and a level transmitter indicator. During the normal operation the process

stream is captured in the K.O.D. The liquid from the process stream is discharged with the help

of pumps as soon as the level reaches a set point measured by the level switch. High level occurs

2 to 3 times per day. If at high level increase continues a hazard situation of a major risk event

is due to liquid discharge to the flare stack causing liquid-carryover and spreading of fire or even

explosion. For the purpose of the study, we assume that level indication may malfunction, that of

the two pumps in the process stream one is under maintenance and the other may fail to start, and

that the upstream process may be under upset condition (isolation valve fails). In this case, the
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following three barriers are available:

1. Barrier 1: High level switch (LSH) and Basic Process Control System cutting off flow to

K.O.D. with an operator response;

2. Barrier 2: Operator checking that BPCS is working; and

3. Barrier 3: Pressure Relief Valve connected to the vent line.

In conventional risk assessment analysts do not explicitly consider various variables related to hu-

man and organizational factors, nor do they consider changes in the conditions and in input data.

The latter, such as component failure data may have been determined over the years in the plant but

are often estimates based on information from elsewhere. The effect of correlation and dependen-

cies are usually ignored. Even for this simple scenario variants are imaginable which may worsen

the situation, such as the sticking of the pressure relief valve. Anyhow, for this simplified example

in the static QRA maintenance influences, which can appear as issuing work permits, simultaneous

nearby maintenance operations, which can be a threat to the plant or others, are not considered ([1]

in layer 3 of the left table of Figure 4.17). Hence, due to ignoring operational hazards and health

or robustness of barriers the calculated risk seems Low (rounded value 2.10−5/yr).

However, the dynamic risk mapping approach developed in this study is using data from the

plant informing us on various parameters for the operations (layer 3), such as whether hot work

occurs. Also, results of health of barriers by maintenance inspection and testing results (layer 4)

can be monitored. If needed this can be followed by repair, or e.g. replacement with a similar

instrument, hence confirming availability or not. In case activities are on, hazard values for dif-

ferent operations are assigned based on experience, for example, a value of 0.4 for hot work. For

these values expert estimates can be used applying methods described earlier. In the course of time

updates may be established. This way we get a different value of risk depending upon the actual

daily operations in the plant. In this example scenario the value of risk at a certain time and given

conditions is calculated to be Medium (rounded value 6.10−4/yr).

Hence, we can see that with the help of dynamic risk mapping by considering more realistic sce-

107



Figure 4.17: Conventional vs dynamic risk mapping

narios and failure values we have a very different and more realistic value of risk. This risk value

is not constant and may change depending on various key scenarios during the plant operations. In

reality even more factors can be taken into account.

4.3.4 Case Study IV: Failure prediction for mechanical equipment (Predictive Maintenance

Monitoring)

Heavy rotating equipment such as pumps, compressors, etc. play an important role in the pro-

cess plant operation. These are the prime movers in the plant required to transport and maintain

the required pressure and flow to the process equipment. Failure to maintain the integrity of the

equipment may lead to downtime, production loss, or sometimes safety incidents. Usually for

plant maintenance, team follows following strategies for any mechanical, electrical or instrumen-
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tation equipment, (1) Preventive maintenance (PM), which includes performing routine inspection,

maintenance, and replacement of parts to ensure the equipment is available for the operation; (2)

Corrective maintenance (CM), which includes performing maintenance once the equipment breaks

down. (3) Predictive maintenance (PdM), [150] which includes performing maintenance by pre-

dicting and reducing failure conditions of the equipment via monitoring performance and condition

of the operating equipment through sensor measurements. Industry uses PM and CM as a part of

routine maintenance processes. With the advancement in sensor technology, digital and computing

technologies, industry is exploring opportunities to improve the plant operation with the help of

PdM. PdM provides an opportunity for the end-user in establishing an effective maintenance strat-

egy by providing information about the predicted failure occurrence. This helps in reducing the

offline time of the equipment, and production loss time, and hence increasing the overall Return

on Investment (ROI). With PdM analysis users can pre-order the spare required for the upcoming

maintenance by advance planning. PdM requires periodic condition monitoring, which involves

monitoring optimal use of machines via sensors during process operations. Condition monitoring

involves online (continuous monitoring), periodic (at a certain period), and remote (from a remote

location). Condition monitoring help collect data from the process and machines to perform the

analysis. In this work, we propose a method for PdM based on data mining and deep learning.

We use the sensor data from equipment to predict the failure of the equipment and program it in

python (an open source software platform) [151]. Figure 4.18 shows the overall proposed method

that involves the following two steps,

∗Keras (open-source neural-network library written in Python) with Microsoft Cognitive Toolkit

CNTK as backend [152]; RNN is Recurrent Neural Network, LSTM is Long Short-Term Memory.

1. Data collection and processing: This step includes acquiring the dataset, loading and basic

pre-processing. The data is often noisy, incomplete (having missing values), inconsistent and

erroneous. The pre-processing step helps in resolving these issues. Pre-processing involves

checking the quality of data and ensure that enough data values are available for further

processing including feature engineering and model building.
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Figure 4.18: Data mining and deep learning based predictive maintenance model

2. Model generation and implementation: This step includes designing and testing of the deep

learning model and test the designed model. It involves transforming the data into tensors,

model building including selecting the loss function, optimizer to be used during training of

the model and selecting the learning rates. These selections help in ensuring the method will

work at the desired level of accuracy and classification. Once the model is built, the same

can be used for additional analysis on similar datasets.

It is challenging to get industry data to show the functionality of the proposed method. Unfortu-

nately, industry is reluctant to share, but we could use a dataset from NASA from a turbo engine

available for public use and analysis [153]. This dataset is similar to the sensor measurements

recorded during the condition monitoring of equipment in a process plant. The dataset used for

this study comprises multiple multivariate time series reading with total 33,631 readings. The mea-

surement readings are from total of 100 engines. In this scenario, the engine operates normally and

110



develops a fault over a period. With the help of the proposed method, we are predicting if a specific

engine will fail within (a) cycles? The number of fault conditions during the operation based on

measured sensor values. Figure 4.19 shows a snapshot of the dataset.

Figure 4.19: Dataset snapshot

The data-set includes three different files training, testing and ground truth data. The training

and testing data included engine_id, settings, and sensor reading information. Failure information

was included in training data and not in testing data. The ground truth data provided RUL (remain-

ing useful life)/ working cycles for the test data details. We checked the data types of each variable

and found no missing values. For the exploratory analysis of the data, we performed checks on the

relevance of features by conventional statistical operation such as standard deviation, log standard

deviation and an ordered list of top variance features. We can observe that some features stand out.

Furthermore, we generated a heat map to understand the correlation between each variable. Figure

4.20 shows a heat map, a higher value (>0.75) shows a higher correlation between the variables.

Next, we performed data pre-processing, which involved creating labels based on RUL for

failure. As we have a task to classify only two equipment states, fault and no-fault, we defined a

binary classification process. We normalized the data (with min-max normalization) to address the

issue arising from different ranges of features during model training. This in return improved the

overall accuracy of the model and we moved to the analytics step.
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Figure 4.20: Correlation heatmap of features

For a traditional machine learning model, feature engineering is performed manually (Identify

features∗. This method limits the use of a same model in other applications. A deep learning model

performs feature engineering and extract features automatically. In this problem, we use LSTM

( Long Short Term Memory). LSTM is an RNN (Recurrent Neural Network), which can learn

through long term dependencies between the variables due to the network ability of keeping results

∗Feature, measurable property of the object to be analyzed, in this case it is the measured variables or sensor
readings
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of many time steps. For any LSTM network, we use window size (number of measurements) to

look back the number of values to identify dependencies with current measured value and perform

feature engineering. We perform the model building in Keras with Microsoft’s Cognitive toolkit

(CNTK) as backend [154]. The structure of the network is a stacked LSTM network and includes,

the first LSTM layer (100 units) with a dropout layer, second LSTM layer (50 units) with a dropout

layer (A dropout technique involves ignoring randomly selected neurons during training. We have

used a dropout rate of 20% .), the last layer with a sigmoid activation based dense layer (1 unit). We

compile the model with Adam optimizer with binary_crossentropy loss. This algorithm optimizes

stochastic objective functions in a first-order gradient-based fashion. Next, we fit the model and

the design the model with 97% accuracy. Figure 4.21, shows the classification details of the trained

model.

Accuracy

No fault 12459 72
Fault 337 2763

No Fault Fault

Model Training 
0.9738

Figure 4.21: Confusion matrix for trained model

To test the developed model for classification we use the test data to predict the failure con-

dition by selecting data from last cycle data of each engine. We calculate various parameters to

understand the correctness of the model by the following measures,

Accuracy = (TP+TN)
(TP+FP+FN+TN)

Precision = (TP )
(TP+FP )

, measure of model to yield only relevant instances

Recall = (TP )
(TP+FN)

, measure of model to yield all relevant instances

F1Score = 2 ∗ (PrecisionxRecall)
(Precision+Recall)

, single metric combining recall and precision using harmonic

mean
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Where,

TP (True Positive), labeled data positive and actual data positive

FP (False Positive), labeled data positive and actual data negative

TN (True Negative), labeled data negative and actual data negative

FN (False Negative), labeled data negative and actual data positive

The model can predict the fault condition with 95.69% of accuracy. The Figure 4.22 provides

the detail results including precision, recall and F1 score.

Accuracy 0.9569
Precision 0.9565

Recall 0.88
F1-Score 0.9166

Model Testing

Figure 4.22: Model measures and Confusion matrix for testing of model

Similar to this example, we can perform analysis on other datasets using deep learning to

predict the failure of equipment and plant equipment maintenance. For any such application, we

need to understand the data and select function parameters of the network. The developed LSTM

network model as shown in Figure 4.18 can be used to predict the fault conditions in future based

on the sensor measurements captured and inserted as input to the network.

4.3.5 Case Study V: Classification of text based on Natural Language Processing (NLP)

Text data is unstructured data and unique to a user. Text mining or text data mining is generat-

ing information from the text by the use Natural Language Processing (NLP) [155] and machine

learning methods. One of the most adopted NLP applications in various fields is text classifica-

tion. We use text classification to classify the text/text documents into a user-defined category.

An application of these methods in other domains include classifying an e-mail as spam or non-

spam, sentiment analysis on social media, categorizing of user reviews or categorizing articles
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into pre-defined groups, etc. In process industry, we can use similar methods to perform analysis

on unstructured safety related text data of different type and generated in various formats. ‘We

have used an example of incident data published by US Occupational Safety and Health Agency

(OSHA).’

Figure 4.23: Model building and implementation for text classification on US OSHA incident data

A text classification method involves following three steps,

1. Data exploration and preparation: This step includes acquiring the data-set, loading and

basic pre-processing. The data is noisy, incomplete, and erroneous. The pre-processing

step helps in resolving these issues. Pre-processing involves transforming text data into

vectors understandable by computers, checking the quality of data and ensure that enough

data values are available for further processing including feature engineering and model

building.

2. Feature engineering: This step includes identifying various key-features from the data-set

and generate a comprehensive machine learning model. In case of NLP the feature engineer-

ing steps includes tokenizing and vectorizing the text into computer readable format. After
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this step the data is divided into training and testing dataset. The training data is used to train

several machine learning models to find the best model for the problem and testing data is

used to check the accuracy of the designed models.

3. Model generation and implementation: This step includes designing and testing of various

machine learning models and identifying the best suited-model for similar given datasets.

Once the best model is picked, it can be used to classify the similar text which is never used

earlier.

In this case study, we demonstrate a supervised text classification method to categorize the data

downloaded from the online database (OSHA, 2019) as shown in Figure 4.24. We pre-process the

data, perform feature engineering, generate the classification model and implement the model for

the future classification of entered text data into a relevant category as shown in Figure 4.23.

Figure 4.24: Snapshot of the OSHA dataset of in total 556 incidents for model training

The dataset used for this study covers a total of 556 incidents, each having 70 columns of data.

However, for the event classification as a process or personnel incident, we are using information

from event description. First, we remove the missing value rows and add a column (category_id)

depicting the Event classification as an integer (in this case we have only two classes hence the

116



classification is in 0 or 1/ binary). After cleaning the data as shown in Figure 4.25, we use it for the

next steps. Figure 4.26 shows the complete classification of the downloaded dataset as personnel

or process incidents. We can see classes in this case are imbalanced and we have more details for

the process classification than personnel classification. In such cases, we cannot use the standards

algorithms as it will bias them towards the process classification in this case. Hence, we will use

careful consideration to ensure the classifier model predicts the values with higher accuracy.

Figure 4.25: Cleaned dataset
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Figure 4.26: Classification of dataset

4.3.5.1 Representing text

Computer algorithms cannot process the text in its original form and requires a vector form of

the document text. Hence, the text analytics task includes text conversion into a desired, manage-

able and machine interpretable depiction. During pre-processing, the first step involves converting

the text into the lower case to have all the data in same format e.g., Process and process becomes

same as process and process. The second step involves removing the punctuations to have a re-

duced data size and higher computing efficiency. The last step involves tokenizing the text to have

minimal meaningful word units.

After pre-processing we perform feature engineering, which is the foundation of NLP. The

common approaches used to extract features from the text includes, bag of words, n-gram models,

tf, tf-idf (term frequency inverse document frequency). For our study, we used the tf-idf method in
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python by writing code and using Pandas [156], Scikit-Learn [157], and matplotlib [158] libraries.

A tf-idf method involves statistically calculating the word importance to a document or text collec-

tion [159]. We calculated the term frequency (tf), the number of times a word appears and inverse

document frequency (idf) the measure of importance of the term. The word importance is propor-

tional to the number of times a word appears and is offset by the word frequency in the document.

After, calculating the tf-idf weight vectors and the data transformation, we trained the classifier to

predict the classification into a process or personnel incident. We benchmarked Logistic regres-

sion, Linear Support Vector Machine, Naïve Bayes, and Random Forest based machine learning

models for the classification as represented in Figure 4.27.

Figure 4.27: Benchmark results for machine learning models
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Figure 4.28: Model accuracy

As we can see from Figures 4.27 and 4.28, both Linear Support Vector Machine classifier

and Logistic regression has considerably better prediction accuracy than the other two machine

learning models. Hence, we will use the most suited model with highest accuracy to predict the

class of the testing dataset. As seen in Figure 4.29, most of the test data is accurately classified into

the respective classes as a process (152), and personnel (25) (refer to the diagonal values). There

are 4 values which were mis-classified as a process (4) instead of personnel by the model. We

can see that overall accuracy of the model for the dataset is 98% . Figure 4.30 shows the detailed

classification report for the test dataset.
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Figure 4.29: Classification results of Linear SVC

Figure 4.30: Classification report for Linear SVC model

Similar to this example, we can use NLP methods to analyze the unstructured data type such

as a text to infer the information necessary for decision making. The proposed solution for text

analysis can work on pdf files, word files, or text files and not on handwritten documents or scanned

documents as this requires more robust models and Optical Character Recognition (OCR) methods

to infer and understand the text.
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4.3.6 Case Study VI: Barriers assessment for dynamic risk mapping (DRA)

In this case study, a barrier assessment model that is quantitative and data-driven is described.

Often, we take credit for these barriers without assessing the effectiveness of these measures. In

this study, we use Bayesian methods to evaluate the health of barriers by incorporating both the

technical and social aspects in an integrated way [21]. It may be less known but causation modeling

Bayesian approach and Bayesian network have largely been developed for artificial intelligence

purposes. So, in this case study emphasis is on analytics and not on big data, although when

considering a longer time span cloud stored data is needed. The scenario utilized for this case

study is the flash drum in an offshore oil and gas platform represented in Figure 4.31. The level

control valve is bypassed manually and fully opened. The isolation block valves are closed. Due

to this, there is gas accumulation resulting in over-pressure and loss of containment. After the loss

of containment has happened, two mitigation barriers gas detector and operator response are being

analyzed.

Figure 4.31: Flash drum scenario

In this barrier assessment model, following three items are considered,

• Uncertainty quantification
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• Plant and operations data

• Consideration of social factors.

4.3.6.1 Gas detector model

For the gas detector model, the flow diagram consisting of the procedural steps, which are taken

to calculate the posterior distribution of parameters using Bayes theorem are depicted in Figure

4.32. The Bayesian methodology provides a way to update our prior information about the model

parameters using sample information. Generally, the prior information is summarized in the form

of a probability rule called the prior distribution of the model parameters. The posterior distribution

of the parameters is proportional to the product of the likelihood and the prior distribution.

Figure 4.32: Flow diagram for the gas detector model

The objective is to estimate the probability of failure for gas detector given the detector’s oper-
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ating characteristics and information from plant data or in other words infers the statistical param-

eters of posterior distribution of failure. Here, we aim to adequately quantify the uncertainty. We

use two variables current load (I1) and number of unplanned maintenance jobs (I2).

Following are the steps for this analysis,

1. Obtain data for current load (I1) and unplanned maintenance (I2) from process historian and

CMMS (Computerized maintenance management system).

2. Model joint distribution for I1 and I2 when gas detector is working normal.

3. Model joint distribution for I1 and I2 for the condition when gas detector is likely to fail

by incorporating the information from resilience metrics µ (X) such as successful tests on

emergency equipment, emergency procedures being current, mock drills, and maintenance

backlogs. Resilience metrics are not common yet and are to be collected over a longer time

similar to KPIs, see [17].

4. Define prior distributions on parameters that explain the joint distribution of I1 and I2based

on domain knowledge.

5. Apply Bayes theorem to calculate the posterior distributions for parameters.

6. Introduce latent variables for the two conditions, normal working and likely to fail.

7. Use Gibbs sampling algorithm to obtain posterior samples drawn from the posterior distri-

bution of parameters.

Synthetic datasets were generated following certain statistical distributions in programming

language R. For these datasets, complexities were added and certain reasoning was followed to

make them similar to real situations. Figure 4.33 summarizes the results with boxplots of prior and

posterior samples of gas detector failure probability. It is also observed here that the concentration

of the posterior distribution centers around the truth with a very small spread.
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Figure 4.33: Gas detector results for prior and posterior probability of failure

4.3.6.2 Operator error probability model

The objective is to enhance the operator error probability base distribution using performance

data. Following are the steps for this analysis, also shown in Figure 4.34,

1. Obtain data for operator error probability.

2. Identify relevant resilience metrics such as emergency plans reassessment, corrective actions

taken, competency, and training sessions.

3. Estimate a model for operator error with weakly informative priors.
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4. Applying Bayes regression, simulate from the posterior distribution of the model to obtain

posterior distribution for operator error failure probability.

Figure 4.34: Flow diagram for the operator error model

Table 4.7 summarizes the results for two operator actions – alarm acknowledgement and alarm

evaluation and action. Both prior and posterior probabilities are listed in the Table.

Table 4.7: Operator error probability

Results of operator error probabilities
Operator Action Prior error probability Posterior error probability
Alarm acknowledgement 0.28 0.36
Alarm evaluation and action 0.42 0.49

Overall, this study strengthens the idea described in the previous sections to utilize data for

enhanced intelligence and also emphasizes the incorporation of both technical and social aspects.

Such applications would lead to safer, reliable, efficient, and profitable process systems.
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4.4 Implementation challenges

As shown with the examples, there are exciting opportunities available to implement various

key data analytics methods to the data generated in the operating facilities. However, these op-

portunities come with some challenges.The key characteristics related to implementation of these

technologies include objectivity, accuracy, resiliency, privacy, interpretability, reliability, security,

and privacy. In this section, we have compiled current research and implementation challenges

of data analytics including ML and AI applications [7, 160]. Among these, some are due to data

characteristics, some are caused by available models and methods, and some by data processing

technology limitations. Another major cause is the lack of strategic initiative in business plans

and clear strategy of an organization. This section provides an overview of the challenges and

classifies the research and implementation challenges related to data analytics, machine learning,

AI into three broad categories, technology, methodology and business challenges which can either

occur in isolation or in groups.

4.4.1 Technology Challenges

• Data Complexity : Some of the challenges arise from the characteristics of the data itself.

The data collected from various resources has seven attributes as described in Section 1. The

data complexity challenge involves, (1) large heterogeneous, ubiquitous volume and dynam-

ically updating datasets generated from the connected devices, (2) Complex data-structures

including some inconsistencies (missing values or noise) in both structured and unstructured

datasets, (3) non-homogenous data generated at high frequency, (4) data storage in distinct

sources including plant historians, e-mails, handwritten memos, etc. (5) rapidly and con-

stantly changing data, (6) extracting value out of the structured, semi-structured and unstruc-

tured datasets efficiently with minimum to no loss, and (7) disseminating the information to

the user in comprehensible format. Consequently, these challenges pose questions to man-

age, integrate, process and derive information. Hence, due to data complexity it becomes a

significant task for users to derive intelligence from the data.
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• Infrastructure and data management: The data collected in an organization comes from

different sources which usually is disorganized and located in dispersed silos. In some in-

stances, the information is duplicated. The industrial applications of (big) data and analytics

at large scale requires network, storage and software infrastructure to implement the technol-

ogy and the application. Additionally, the data collected from various resources in industry

is complex and large in size, which warrants for software/tools to clean, normalize, extract

and integrate data for further processing. The technologies such as cloud services, remote

servers, data warehouses and data lakes can be explored to find appropriate solutions to man-

age and process data. A balance between ‘quality of data’ vs ‘quantity of data’ is required to

ensure the available data for analysis is relevant, has necessary features to support the human

users. While a proof-of-concept is easy to design and develop, for a real-time access and as-

sessment of the data a fast and reliable network system is needed. A careful evaluation of

the available options between generic software and application specific custom-made tools

is required.

• Analytics and decision support: The aim of developing new data-based tools in an organi-

zation is to perform analysis on big datasets and derive information based on various analy-

sis techniques. This information is further used for identifying the weak signals, evaluating

safety barriers, dynamic risk mapping [161], and assisting the users in taking appropriate

decisions. The key requirements for this is data quality and loading. Additionally, relevant

computing resources are required to perform required steps on the data. A real-time (near)

analysis is required to assist operators in decision support [14]. Integrating the prior do-

main knowledge and information to the analysis is the key to ensure the value generation for

decision support.

• Data Security and Privacy: Data security and privacy is one of the key challenges to be

addressed while developing data-based solutions and encompasses both technological and

business challenges. In industry sensors, actuators and controllers allow users to operate and
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collect real-time data related to operations, actions and business metrics. Data and analytical

tools are becoming the new value creators in the industry. Implementing new technologies

and methods requires addressing the risks related to security, privacy, including unauthorized

access of infrastructure including control systems and network devices by third parties with

a criminal intent. This in return will help the organizations to keep their business advantage

and operate safely, securely, and reliably [162].

4.4.2 Methodology and Process Implementation Challenges

Applying advanced computer analysis to harness information is a daunting task which involves

data collection, integration, analysis and provide information in a comprehendible form. These

steps are a part of a data lifecycle process as explained in Section 1.3. The key challenges related

to the process are the process of data recording and managing ownership of data. While for a

smaller organization this task is easier, for larger organization with business operations in multi-

ple cities, states, countries it requires a huge time, effort, and resources to manage data recording

and ownership. Integrating such data in single location also poses challenges related to infrastruc-

ture, security, privacy, and sometimes regulatory matters. Another, key challenge is managing the

knowledge available within the organization and affiliates for competitive advantage [163]. While

using data analytics and AI can help such organizations in marketing, supply chain, customer ac-

quisitions; an integration with models based on physics and data, working with interdisciplinary

teams, and defining the methods to solve a problem can help in plant operations. While developing

prototypes is a better way to infer the impact on the business needs, identifying and addressing

the issues related to scaling the technology or methodology are the key steps for success of de-

signing and implementing the solutions. Use of cloud computing infrastructure can also provide a

new dimension to the businesses. While data analytics and AI methods have tremendous potential

and benefits to the end users, there are potentially huge risks. Integration and inter-connectivity

of different data sources increases vulnerability to sabotage and manipulation of the data and in-

formation. Hence, organizations and governments must create regulations and policies to address

these concerns while adopting new policies.
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4.4.3 Business Challenges

• Business plan and mission: Big data and analytics are becoming one of the large value

contributors to an organization’s business footprint. Organizations need to create a strate-

gic plan and business case to identify the potential opportunities and design outcome-based

solutions. An enterprise wide practical, relevant, evolutionary and integrated strategy is re-

quired to be implemented. This requires a holistic review of the initial plan and collaboration

within the individuals from business, IT, operations, and other relevant teams. The strategic

planning helps in setting the priorities, developing and rationalizing the data management

architecture, outlining road map to phase out legacy systems and adopt new technology, im-

proving effectiveness of data processing, and anticipating the benefits of big data analytics

to help current business needs. Additionally, identifying the use cases and prioritizing them

to support the business plan is required to achieve the desired goals.

• Cost of technology infrastructure: While data-driven methods empowers the end users to

analyze large and diverse volume of data to make key operational and business decisions,

they all come at an expense to the user. This includes the costs associated with managing

the data recording, storage, analysis, and information dissemination [164]. It is important to

understand the business needs, data infrastructure and management systems, the value such

technology brings, and overall direct/indirect impact on the efficiency. These factors will

assist in predicting the cost associated with implementing and maintaining such solution

applications.Another important factor to keep in mind is competency and domain knowl-

edge. It is very important that application developers’ working on the potential solutions

have the required domain knowledge and competency to understand the problem, solution

requirements, and ensure the analysis/results are comprehendible.

• Governance and privacy: The privacy of data for any organization is critical. As discussed

earlier, this is due to the fact that the data is one of the key business drivers, and can bring

competitive edge to the business. Hence, there is a need to develop the data management
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and governance strategy, which may include data linking from different sources, operational

sites in various geographical locations safely to ensure the value of the data is harnessed and

retained as a part of the organization. Another important concept in future may appear as to

aggregate and share or sell data, while retaining control and competitive advantage.

4.5 Summary

The application of big data analytics in process safety and risk management is evolving. Its

application would provide valuable insights for more informed policy, strategic, and operational

risk decision-making leading to a safer and more reliable industry. This work represents a be-

ginning in gathering process safety related data and harnessing the value of the data collected to

improve process safety at these facilities. A system framework called PSBDMS on process safety

big data is presented and various sources and types of data and challenges that can be solved using

big data analytics are described. Large amounts of data are and will continue to be generated and

collected in this area in the three different levels of PSBDMS - regulatory, industry consortiums,

and manufacturing facilities. The challenge is to develop ideas and methods for analyzing data for

detecting abnormal situations, optimizing processes, bench marking performance and preventing

catastrophic failures. Different case studies in process safety and risk management area are used to

demonstrate the application areas. These applications can be further developed into mature models

and methods.
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5. CONCLUSIONS AND FUTURE WORK

Big data and analytics comprise a variety of software and hardware technologies that can be

applied in numerous ways in a diversity of applications. The focus on digital infrastructure in-

cluding IoT in the industry creates an unprecedented amount of data. The data is stored in various

types, sizes, and dimensions. This has warranted a powerful and streamlined approach, demand

for new technologies, and intelligent analytics to boost competitive insights and efficiency within

an organization.

5.1 Conclusions

Big data and analytics have appealed to both practitioners and researchers in industry and

academia with a promising potential to lower uncertainty and discover insights from this data, and

hence increase quality of decision making. The application of these technologies is in its early

stages and requires solution development and deployment. The information generated from such

solutions is the key for an organization to unlock the power of data and improve the operational

efficiency by reducing downtime, managing risks, and making operations more reliable and safer.

Data-driven methods are used to address the challenges related to alarm management in indus-

trial facilities, process fault detection and diagnosis, and in various application areas in process

safety and risk management. A unified workflow approach is used to define the data-sources, ap-

plicable domains, and develop proposed applications. This work integrates data generated by field

instrumentation, expert knowledge, data analytics and artificial intelligence techniques to provide

guidance to the operator or engineer to effectively take proactive decisions through “action-boards”

The key contributions of this research work are:

1. A novel framework to categorize the process of the alarm management system in an in-

dustrial facility (design, rationalize, advance and intelligent). This framework can help

end-users categorize their alarm management program. The framework follows a life-cycle

approach, which includes bench-marking the alarm system and follows the re-design and
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re-rationalize steps if required.

2. An integrated method to calculate Key Performance Indicators (KPIs) and generate visu-

alization plots. This provides an overall better approach to analyze the Alarm and Event

logs and disseminate information to the user to take corrective actions to improve the overall

alarm management program.

3. A novel data-driven workflow to integrate big data analysis, deep learning-based BiLSTM on

a cloud platform, and reporting for process fault detection and classification. An automated

hyper-parameter optimization method is derived and used to identify the optimal hyper-

parameters for a given data and designed network.

4. A data analytics and deep learning-based equipment failure prediction model to predict and

classify the equipment failure proactively before an actual failure and help users save money

and time in equipment maintenance.

5. A novel layered approach based dynamic risk mapping tool to integrate data from various

resources in an operating facility and highlights the real-time risk profiles to assist users in

making informed decisions.

6. An NLP based event classification based method to learn the patterns from the unstructured

text generated in the form of reports and classifies specific incidents based on the information

provided by the user.

7. The proposed frameworks, workflows, and methods are developed on open-source software

platforms (Python and R) which are cloud-ready. The cloud application enables users with

the required computing power, scalability and flexibility of model design and application to

improve overall decision making.

5.2 Future Directions

Within the specific research areas, following aspects could be looked into for further develop-

ment:
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1. Alarm management for industrial facilities

(a) Additional visualization options can be identified and added to the proposed visualiza-

tion directory to enhance the dissemination of information and the overall user experi-

ence.

(b) The process operation data can be integrated to enhance the classification of the alarm

and event messages and find the correlations. This will help in designing more ad-

vanced and informed solutions for operator assistance in decision making.

2. Process Fault detection and diagnosis for industrial processes

(a) The proposed method can be extended to classify a process failure or a malicious cyber-

security attack. Once the event is classified, the appropriate remedial actions can be

recommended to avoid undesired events.

(b) The root cause analysis can be integrated with process fault detection to identify the

variable/s causing the process upset and disseminate the information of root-causes to

the operator on HMI screen.

3. Advanced applications in process safety and risk management

(a) Prescriptive maintenance methods can be designed by integrating predictive mainte-

nance with optimization theory to identify the best maintenance schedule and prescribe

actions once the equipment failure is predicted.

(b) Interactive dashboards on HMI screens can be created to highlight the risk of each

process unit. This will help the users in taking more informed decisions and preventing

incidents in the facility.

(c) NLP with deep learning can be used to create a text generator that can assist users in

writing information and reports. This will help in standardizing the writing style of

users, documentation, and record keeping.
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APPENDIX A

PROCESS FAULT DETECTION NETWORK AND DATA

Figure A.1: LSTM model
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Figure A.2: Distribution of measured variables
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Figure A.3: Distribution of measured variables
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Figure A.4: Distribution of measured variables

155



Figure A.5: Distribution of manipulated variables
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APPENDIX B

RUN WINDOW FOR LSTM NETWORK

Train on 201280 samples, validate on 80480 samples

Epoch 1/50 201280/201280 [==============================] - 105s 521us/step - loss:

1.7669 - acc: 0.4440 - val_loss: 1.2474 - val_acc: 0.6153

Epoch 2/50 201280/201280 [==============================] - 103s 511us/step - loss:

1.1229 - acc: 0.6338 - val_loss: 1.0718 - val_acc: 0.6633

Epoch 3/50 201280/201280 [==============================] - 103s 511us/step - loss:

0.8394 - acc: 0.7284 - val_loss: 0.6933 - val_acc: 0.7967

Epoch 4/50 201280/201280 [==============================] - 103s 511us/step - loss:

0.6219 - acc: 0.8047 - val_loss: 0.5305 - val_acc: 0.8458

Epoch 5/50 201280/201280 [==============================] - 103s 511us/step - loss:

0.5395 - acc: 0.8339 - val_loss: 0.4734 - val_acc: 0.8635

Epoch 6/50 201280/201280 [==============================] - 103s 511us/step - loss:

0.4560 - acc: 0.8601 - val_loss: 0.4508 - val_acc: 0.8701

Epoch 7/50 201280/201280 [==============================] - 103s 511us/step - loss:

0.4284 - acc: 0.8704 - val_loss: 0.3765 - val_acc: 0.8944

Epoch 8/50 201280/201280 [==============================] - 103s 511us/step - loss:

0.3826 - acc: 0.8848 - val_loss: 0.3866 - val_acc: 0.8924

Epoch 9/50 201280/201280 [==============================] - 103s 511us/step - loss:

0.3696 - acc: 0.8897 - val_loss: 0.3798 - val_acc: 0.8957

Epoch 10/50 201280/201280 [==============================] - 103s 511us/step - loss:

0.3729 - acc: 0.8895 - val_loss: 0.3513 - val_acc: 0.9058

Epoch 11/50 201280/201280 [==============================] - 103s 511us/step - loss:

0.3522 - acc: 0.8963 - val_loss: 0.3439 - val_acc: 0.9099
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Epoch 12/50 201280/201280 [==============================] - 102s 506us/step - loss:

0.3206 - acc: 0.9054 - val_loss: 0.3460 - val_acc: 0.9115

Epoch 13/50 201280/201280 [==============================] - 102s 507us/step - loss:

0.3200 - acc: 0.9060 - val_loss: 0.3395 - val_acc: 0.9074

Epoch 14/50 201280/201280 [==============================] - 102s 507us/step - loss:

0.3068 - acc: 0.9103 - val_loss: 0.3376 - val_acc: 0.9135

Epoch 15/50 201280/201280 [==============================] - 103s 511us/step - loss:

0.3261 - acc: 0.9045 - val_loss: 0.3296 - val_acc: 0.9130

Epoch 16/50 201280/201280 [==============================] - 103s 511us/step - loss:

0.2973 - acc: 0.9133 - val_loss: 0.3294 - val_acc: 0.9163

Epoch 17/50 201280/201280 [==============================] - 103s 512us/step - loss:

0.2916 - acc: 0.9149 - val_loss: 0.3274 - val_acc: 0.9146

Epoch 18/50 201280/201280 [==============================] - 103s 512us/step - loss:

0.2878 - acc: 0.9163 - val_loss: 0.4358 - val_acc: 0.8807

Epoch 19/50 201280/201280 [==============================] - 103s 511us/step - loss:

0.2811 - acc: 0.9189 - val_loss: 0.3117 - val_acc: 0.9187

Epoch 20/50 201280/201280 [==============================] - 103s 511us/step - loss:

0.2732 - acc: 0.9205 - val_loss: 0.3171 - val_acc: 0.9159

Epoch 21/50 201280/201280 [==============================] - 103s 511us/step - loss:

0.2742 - acc: 0.9204 - val_loss: 0.3709 - val_acc: 0.9019

Epoch 22/50 201280/201280 [==============================] - 103s 511us/step - loss:

0.2717 - acc: 0.9208 - val_loss: 0.3108 - val_acc: 0.9230

Epoch 23/50 201280/201280 [==============================] - 103s 511us/step - loss:

0.2640 - acc: 0.9233 - val_loss: 0.3136 - val_acc: 0.9182

Epoch 24/50 201280/201280 [==============================] - 103s 511us/step - loss:

0.2595 - acc: 0.9249 - val_loss: 0.3211 - val_acc: 0.9135

Epoch 25/50 201280/201280 [==============================] - 103s 511us/step - loss:
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0.2571 - acc: 0.9255 - val_loss: 0.3230 - val_acc: 0.9161

Epoch 26/50 201280/201280 [==============================] - 103s 510us/step - loss:

0.2579 - acc: 0.9258 - val_loss: 0.2829 - val_acc: 0.9276

Epoch 27/50 201280/201280 [==============================] - 102s 507us/step - loss:

0.2492 - acc: 0.9275 - val_loss: 0.3833 - val_acc: 0.8904

Epoch 28/50 201280/201280 [==============================] - 101s 502us/step - loss:

0.2463 - acc: 0.9286 - val_loss: 0.3044 - val_acc: 0.9218

Epoch 29/50 201280/201280 [==============================] - 101s 504us/step - loss:

0.2430 - acc: 0.9297 - val_loss: 0.3146 - val_acc: 0.9237

Epoch 30/50 201280/201280 [==============================] - 102s 505us/step - loss:

0.2402 - acc: 0.9309 - val_loss: 0.2709 - val_acc: 0.9319

Epoch 31/50 201280/201280 [==============================] - 102s 505us/step - loss:

0.2392 - acc: 0.9309 - val_loss: 0.2748 - val_acc: 0.9309

Epoch 32/50 201280/201280 [==============================] - 102s 505us/step - loss:

0.2352 - acc: 0.9325 - val_loss: 0.3005 - val_acc: 0.9240

Epoch 33/50 201280/201280 [==============================] - 102s 505us/step - loss:

0.2344 - acc: 0.9324 - val_loss: 0.2957 - val_acc: 0.9248

Epoch 34/50 201280/201280 [==============================] - 102s 504us/step - loss:

0.2345 - acc: 0.9324 - val_loss: 0.2921 - val_acc: 0.9273

Epoch 35/50 201280/201280 [==============================] - 102s 506us/step - loss:

0.2290 - acc: 0.9336 - val_loss: 0.3143 - val_acc: 0.9208

Epoch 36/50 201280/201280 [==============================] - 102s 506us/step - loss:

0.2283 - acc: 0.9341 - val_loss: 0.2892 - val_acc: 0.9284

Epoch 37/50 201280/201280 [==============================] - 102s 506us/step - loss:

0.2286 - acc: 0.9348 - val_loss: 0.3018 - val_acc: 0.9237

Epoch 38/50 201280/201280 [==============================] - 102s 506us/step - loss:

0.2236 - acc: 0.9357 - val_loss: 0.3053 - val_acc: 0.9245
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Epoch 39/50 201280/201280 [==============================] - 102s 505us/step - loss:

0.2214 - acc: 0.9361 - val_loss: 0.3038 - val_acc: 0.9275

Epoch 40/50 201280/201280 [==============================] - 102s 506us/step - loss:

0.2184 - acc: 0.9370 - val_loss: 0.2905 - val_acc: 0.9304

Epoch 41/50 201280/201280 [==============================] - 102s 506us/step - loss:

0.2153 - acc: 0.9376 - val_loss: 0.2912 - val_acc: 0.9285

Epoch 42/50 201280/201280 [==============================] - 102s 507us/step - loss:

0.2160 - acc: 0.9372 - val_loss: 0.2997 - val_acc: 0.9297

Epoch 43/50 201280/201280 [==============================] - 102s 505us/step - loss:

0.2141 - acc: 0.9379 - val_loss: 0.2833 - val_acc: 0.9348

Epoch 44/50 201280/201280 [==============================] - 102s 505us/step - loss:

0.2132 - acc: 0.9382 - val_loss: 0.3010 - val_acc: 0.9282

Epoch 45/50 201280/201280 [==============================] - 102s 505us/step - loss:

0.2077 - acc: 0.9400 - val_loss: 0.2869 - val_acc: 0.9303

Epoch 46/50 201280/201280 [==============================] - 102s 505us/step - loss:

0.2058 - acc: 0.9402 - val_loss: 0.2797 - val_acc: 0.9314

Epoch 47/50 201280/201280 [==============================] - 101s 503us/step - loss:

0.2058 - acc: 0.9400 - val_loss: 0.2976 - val_acc: 0.9279

Epoch 48/50 201280/201280 [==============================] - 101s 503us/step - loss:

0.2011 - acc: 0.9414 - val_loss: 0.2872 - val_acc: 0.9327

Epoch 49/50 201280/201280 [==============================] - 101s 502us/step - loss:

0.2002 - acc: 0.9417 - val_loss: 0.3083 - val_acc: 0.9268

Epoch 50/50 201280/201280 [==============================] - 101s 503us/step - loss:

0.2037 - acc: 0.9408 - val_loss: 0.3294 - val_acc: 0.9214
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