
 

 ANALYSIS OF SUPPORT VECTOR MACHINE REGRESSION FOR 

BUILDING ENERGY USE PREDICTION 

 

 

 

 

A Thesis 

by 

SHINWOO LEE 

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

 

 

Chair of Committee,        Juan-Carlos Baltazar 

Committee Members,      Jeff S. Haberl 

David E. Claridge 

 

Head of Department,       Robert R Warden 

 

 

August 2020 

 

Major Subject: Architecture 

 

Copyright 2020 Shinwoo Lee 



ii 

 

ABSTRACT  

 

There are many inverse modeling methods to model the whole building energy use. 

Multiple linear regression (MLR) and change-point liner regression (CPLR) have been 

some of the most common methods due to their direct interpretation concerning building 

energy modeling and their fair accuracy.  

Recently, as machine-learning techniques have become more accessible, there have been 

many attempts to apply these techniques to building energy modeling. However, no 

studies have conducted an in-depth comparison with the conventional inverse model 

methods using large buildings sample size.   

This study conducted a comprehensive comparative study based on Support Vector 

Machine (SVM), one of the most widely used machine-learning methods for flexibility 

and accuracy, with enough cases to draw a reasonable conclusion between models 

generated from conventional methods such as MLR and CPLR, and those from SVM. 

This work, besides the comparative analysis, included a thorough SVM performance 

analysis for building energy modeling. It described in detail its implementation, and 

showed its performance as a regression technique for building energy modeling under 

the influence of different variables. 

The comparative study focused on modeling whole building chilled water use (CHW) 

and heating hot water use (HHW), and analyzed the influence of such variables as the 

outdoor dry-bulb temperature (OAT), the outdoor dew-point temperature (DPT), the 
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outdoor air enthalpy (OAE), and the operational effective enthalpy (OEE). The 

numerical experiments were based on a sample of 41 whole year daily and hourly 

building energy use datasets that were converted from hourly data.  

According to the comparative analysis between SVM and MLR, based on CHW data, 

SVM consistently showed higher performances by an average of 6.8% on daily and 

2.0% on monthly models, respectively. For the SVM and CPLR performance analysis, 

four pairs of dependent and independent variables were considered: CHW-OAT, CHW-

OAE, CHW-OEE, and HHW-OAT. On daily modeling, SVM demonstrated consistently 

higher performance, although most of the cases resulted in a marginal advantage by less 

than 1% for all variables utilized. Despite such marginal gains in mean performance, 

SVM showed advantages by up to 3% for some datasets. On the monthly model, 

however, SVM did not exhibit better results for any dependent-independent variable 

pair. 
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CHAPTER I INTRODUCTION 

Energy consumption in buildings takes up approximately 40% of the world’s energy use. 

[1] Thus, many governments promoted energy-efficient retrofits for all types of 

buildings: residential, commercial, institutional and industrial one. Unfortunately, most 

building owners do not support energy efficient retrofits just for the good of mankind 

when it does not make sense financially. Therefore, no matter how many social-

environmental benefits, most buildings owners will decline the implementation of 

retrofits unless they can make sure that the cost savings outweigh the implementation 

cost. In other words, unless the amount of potential energy savings can be quantified, the 

financial benefits also will not be able to be calculated, ending up with no motivation to 

carry out energy-saving retrofits. Once buildings retrofits have been performed, it is not 

possible to measure how much energy would have been consumed had it not been for 

retrofit implementation using before-after whole building data. The only available 

records after retrofit are post-retrofit data. In such cases, a baseline model that simulates 

pre-retrofit energy consumption can be used. Regarding this issue, ASHRAE Guideline 

14 [2] provides a thorough guidance about how to measure energy savings in a reliable 

manner, covering different approaches and instrumentation. There are two ways to create 

building energy models: forward and inverse models. [3] Forward modeling uses a 

comprehensive model of the whole-building energy consumption process that use 

engineering principles of heat transfer and thermodynamics. Although it is expected to 

be highly accurate, forward modeling requires a huge number of parameters that are 

usually not always easy to identify. On the other hand, when a certain period of energy 
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consumption data is available, inverse modeling is more convenient since it does not 

require as many inputs as forward modeling, and it can provide a highly accurate 

prediction over a longer period of time. This study focuses on the latter category, the 

inverse modeling.  

Inverse modeling is a broad term that encompasses linear regression, time-series 

analysis, and a variety of machine-learning methods. Among these, multiple linear 

regression and change-point regression have become the best practices in building 

energy measurement and verification, thus they are suggested in ASHRAE Guideline-14 

[2]. Change-point regression is a type of piecewise linear regression that consists of two 

or three pieces of line connected at the points called changed points. Change-point 

regression can provide the physical interpretation about how a building consumes 

energy. Multiple linear regression is mathematically an extension of simple linear 

regression. Unlike a simple linear regression, the multiple linear regression uses more 

than one independent variables. The coefficients of the multiple linear regression 

provide the insight as to which independent variable is relatively more influential than 

other independent variables.  

Recently, as more complicated techniques or machine-learning algorithms have become 

increasingly user-friendly, many researchers have attempted to apply the new techniques 

to their area of research interest. In the building energy inverse model research, Artificial 

Neural Networks (ANNs) and Support Vector Machine (SVM) are the two most popular 

machine-learning methods [4],[5]. Nonetheless, few studies of this kind conducted an in-
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depth comparison of the conventional inverse model methods with a large number of 

samples.   

To fill this gap, this study selected one of the two machine-learning methods mentioned 

above and conducted an in-depth comparison between the conventional methods and the 

new method. Between the two machine-learning candidates, SVM was selected for two 

reasons. First, the predictive ability of SVM outperformed the Artificial Neural 

Networks (ANNs) model, according to the studies of Li et al. [6], Zhao and Magoulès 

[7], and Massana et al. [8]. Second, it is easier to implement than ANNs as they have 

fewer parameters to tune. After SVM was chosen as a representative machine-learning 

method, a comparative study was conducted with Change-point regression and multiple 

linear regression with enough samples to draw a reasonable conclusion. Although the 

idea of a comparative study initiated this research, this study also covers the contents to 

better understand the SVM itself from fundamentals, implementation, observation of 

resultant SVM regression models, and the influence of different independent variables 

on the performance of SVM. 

  

1.1 Objectives 

SVM is a machine learning algorithm that can capture diverse patterns with high 

accuracy due to its flexibility. The main objective of this study is to investigate the 

performance of SVM as a whole-building energy inverse modeler in comparison to other 
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conventional methods in terms of accuracy and feasibility. The study also includes other 

types of experiments to better understand the intrinsic part of SVM. 

Specifically, the following tasks were addressed to achieve the objective: 

Task 1. Investigate the characteristics of SVM with varying conditions, such as different 

kernel functions and different patterns of input data. 

Task 2. Determine the appropriate SVM implementation methodology.  

Task 3 Implement a SVM with different independent variables and observe the influence 

of the use of different independent variables.  

Task 4 Perform a comparison of the SVM regression model against multiple linear 

regression and change-point linear regression. Analyze the case where SVM can be a 

good alternative to conventional statistical methods. 

 

1.2 Study Limitations 

This research has the following limitations. 

1) The study is based on commercial buildings, specifically buildings on the Texas 

A&M University campus. These buildings are located in a hot-humid climate. 

2) The study was performed on building chilled water and heating hot water energy use 

data sets. 
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3) The detailed information needed to explain the actual consumption patterns of 

buildings was not considered, such as HVAC operation strategies, detailed operational 

schedules, and events that could change the energy consumption patterns of buildings. 

Additionally, given the broad spectrum of options of the SVM hyper-parameter tuning 

methods, only the Exhaustive Grid Search (EGS) and another approach on One 

Dimensional Grid Search with recommended initial values (ODGS) were considered. 
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CHAPTER II BACKGROUND 

To analyze how buildings consume energy, quantitative building energy simulation 

models are used to calculate the hourly energy use over the year. The accuracy of such a 

model is directly related to the reliability of the building energy models used. In general, 

there are two different approaches to create models: One uses building characteristics 

information and engineering principles to simulate the building annual energy use. The 

other uses the measured building energy consumption data to establish an empirical 

model. The former is called forward modeling and the latter is called inverse modeling. 

 

2.1 Forward Modeling  

This approach can be used to predict peak loads and annual energy consumption of 

buildings by establishing an energy model. It does not necessarily require an actual 

building, but can be used with building design information. To ensure accuracy, a 

forward model requires as many buildings characteristics as possible such as the U-

values of each material, internal loads, and operating schedule. It also requires multiple 

models that describe the performance of the Heating Ventilating and Air Conditioning 

(HVAC) equipment such as air handling units, fans and pumps, and main plant chillers 

and boilers. Such parameters and equipment models make possible the generation of a 

complete whole-building energy model. Major simulation software used for this 

approach includes DOE-2, EnergyPlus, ESP-r, and TRNSYS [3]. The details of 

simulation methodologies vary software by software. However, all of them can be 
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explained with similar categories: space loads, system components, and plant energy 

use. Space loads indicate cooling, heating, or ventilation loads that need to be met to 

provide the zonal set point temperatures, humidity, and air quality. Such systems serve 

to satisfy such space loads either mechanically or passively. In general, such a system 

connects the load to the heat sources or cooling sources. This is carried out by means of 

ducts, dampers, heating coils, cooling coils, and control devices. Through the heat 

transfer between heating/cooling coils, return air, and outdoor air, air is conditioned as 

needed to be supplied to the space in demand. How systems are arranged affects the 

thermal comfort and energy consumption of a building. HVAC plants serve as a heat 

source or cooling source for an individual building or multiple buildings. The typical 

major equipment in a plant are boilers and chillers. Although various sources of energy 

can be used as an input to these devices, natural gas is often used for boilers and 

electricity is used for chillers. As previously mentioned, this model can be applied to 

buildings that exist, or to new buildings during the design phase. [3]  

 

2.2 Inverse Modeling  

When input and output variables are known, a functional or mathematical description of 

a system can be estimated with statistical approaches, this is called inverse modeling. In 

an inverse building energy model, the energy consumption patterns of buildings can be 

explained if coincidental weather data is available alongside the actual energy 

consumption data. Inverse modeling methods have different traits than forward 
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modeling. An inverse model can make relatively accurate prediction since it is based on 

data obtained from the actual building operation. In addition, inverse models are simple 

to establish since the method does not require buildings physical or descriptive 

parameters such as those required by the forward modeling. It is also possible to 

establish an inverse model using the output of building energy simulation. The validity 

of the inverse model can be assessed using statistical criteria such as the coefficient of 

determination (r2), the standard error or the root mean square error (RMSE), and related 

indexes with statistical t-test. [9]. A few examples of famous inverse modeling methods 

are summarized in the following subsections.  

 

2.2.1 Linear Regression  

Linear regression is the simplest form of the regression methodologies and characterized 

by its simplicity and ease of automation. It relates a dependent variable to a linear 

combination of independent variables multiplied by each coefficient. When it comes to 

the application as building energy use forecast, single-variate piecewise linear regression 

(i.e. change-point linear regression) and multiple linear regression models are perhaps 

the most straightforward options.  
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2.2.1.1 Single-variate Piecewise Linear Regression (Single-variate Change-point 

Linear Regression) 

Compared to simple linear regression, change-point regression can provide more 

accurate models. More importantly, with the addition of one or two parameters the 

physical interpretability noticeably increases. For building energy use prediction, as an 

independent variable, outdoor temperature is the most important one (see Figure 1) [3]. 

How a building consumes energy significantly changes when the outdoor temperature or 

other independent variables passes a change point. The numerical value of slopes implies 

information of the heating or cooling efficiency of air-conditioning equipment and the 

building thermal capacity, ventilation rate, infiltration rate of buildings. The best 

explained equations of change-point linear regression are expressed as below: 

𝐸 =  𝑏0+𝑏1(𝑇 − 𝑏2)
+  (EQ. 1) 

𝐸 =  𝑏0+𝑏1(𝑏2 − 𝑇)
+ (EQ. 2) 

𝐸 =  𝑏0+𝑏1(𝑏2 − 𝑇)
+ − 𝑏3(𝑇 − 𝑏2)

+ (EQ. 3) 

𝐸 =  𝑏0−𝑏1(𝑏2 − 𝑇)
+ + 𝑏3(𝑇 − 𝑏2)

+ (EQ. 4) 

𝐸 =  𝑏0+𝑏1(𝑏2 − 𝑇)
+ + 𝑏3(𝑇 − 𝑏4)

+ (EQ. 5) 

Where E is energy, T is outside temperature, b0, b1, b2, b3, and b4 are parameters to 

specify the form of a regression model. Three-parameter and five-parameter models are 

based on Princeton scorekeeping methods (PRISM), which Fels [10] derived from the 

concept of variable-base degree day. Three parameters (3-P) models, which is expressed 

by Eq.1 and Eq.2, generally fit well for buildings having a clear distinction between 
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weather-dependent and weather independent outdoor temperature ranges. (See Figure 1 

(a)) Five parameters (5-P) models fit well for buildings which use electricity for both 

heating and cooling (See Figure 1 (c)). Ruch and Claridge [11] developed a four-

parameter (4-P) model for commercial buildings (See Figure 1 (b)). The four parameter 

models are described by Eq.3 and Eq.4. These models usually fit well for buildings that 

have complex HVAC features. Commercial buildings generally have a high internal 

load, thus the weather factor alone is usually not sufficient to explain the building energy 

consumption [12]. The slope of energy use begins to change in some cases when the 

total airflow reaches a minimum airflow set- point or when there is a change in the hot 

deck temperature (i.e. heating coil). In addition, different load characteristics between 

internal and external zones can make a change point more distinct.  

Although the change-point regression models were introduced around 1980s and early 

1990s, they are still very popular and a subject of research. For example, Kim and 

Haberl [13] developed a methodology for building energy simulation calibration using a 

sensitivity analysis of data from a case study house on a case model with a change-point 

regression model. In the study, they showed the parameters from the change-point model 

helped them to develop an easy-to-use home energy audit procedure. Park et al. [14] 

quantified the thermal performance of buildings and the potential savings from monthly 

bills, using change-point regression models, and partial building physical characteristics 
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    (a) 3P Change Point Liner Regression Model (left: cooling, right: heating) 

 

    (b) 4P Change Point Liner Regression Model (left: cooling, right heating) 

 
    (c) 5P Change Point Liner Regression Model  

Figure 1 - Representations of Change Point Linear Regression Models. (Adapted from 

ASHRAE Fundamentals, 2017 [3]) 
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2.2.1.2 Multiple Linear Regression  

Multiple linear regression can be seen an extension of simple linear regression in terms 

of its mathematical expression. Unlike simple linear regression, multiple linear 

regression uses more than one independent variable to describe a dependent variable. 

The concept of a change-point can also be applied to multiple linear regression using 

indicator variables, the values of which varies between 1 or 0 depending on whether the 

outdoor temperature is above or below the change-point temperature [15]. Energy 

consumption in buildings is not only dependent on outdoor air temperature, but also on 

multiple variables such as humidity, solar insolation, occupancy levels, and HVAC 

equipment operating schedules. Thus, using more than one variable can generate more 

accurate models if inputs are chosen properly. Katipamula et al. [16] showed that 

multiple linear regression models were generally superior to simple regression models 

(2P) in terms of accuracy. Haberl and Claridge [17] used multiple linear regression to 

predict the energy consumption of the Recreation Center of Texas A&M university 

campus. A variety of independent variables were used including ambient temperature, 

solar radiation, day of the week and scheduled operating hours. This model was fed into 

an expert system that was designed to makes suggestions concerning the possible causes 

of abnormal operation. However, there are some drawbacks. Since it requires more 

meters, the possibility of data being unavailable due to meter errors is higher. They 

showed it is still not strong in describing non-linear patterns. Finally, there is a chance 

that one input variable is dependent on another input variable, which is called 

multicolinearity. This can disturb the model, making model unreliable [9].The impact of 
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multicolinearity could be significant if the correlation between independent variables is 

stronger than the correlation between a dependent variable and any of independent 

variable [16, 18]. According to ASHRAE Fundamentals [3], the general form of 

equation for a steady-state, multi-variate model is shown below:  

𝑄𝑏𝑙𝑑𝑔 = 𝑎 + 𝑏𝑇𝑜 + 𝑐𝐼 + 𝑑𝐼𝑇𝑜 + 𝑒𝑇𝑑𝑝
+ + 𝑓𝑞𝑠𝑜𝑙 + 𝑔𝐸𝑖𝑛𝑡  (EQ. 6) 

where I is an indicator variable having a value of either 1 or 0 to make different slopes 

based on a change-point outdoor temperature. Accordingly, the terms having the 

coefficient c and d will be zero when a change point does not exist. Tdp
+ indicates the 

dew point of outdoor air and becomes zero when the dew point of the outdoor air is 

lower than the average supply temperature of the cooling coil. This variable exists 

mostly to account for the influence of latent loads. Specifically, most latent loads of 

commercial buildings are generated from outdoor ventilation air rather than infiltration 

or occupancy. When outdoor air is drawn into an air handling unit, and if the dew point 

of the outdoor air is higher than the surface temperature of cooling coils, condensation 

occurs. Since the driving force of this condensation is the cooling effect of cooling coils, 

this causes an additional load to the cooling coil. This load is also called a latent load. 

This latent load does not appear if the dew point of the outdoor air is lower than the 

surface temperature of cooling coil because there is no condensation. qsol indicates solar 

radiation effect and Eint indicates internal heat gain from electric equipment and lighting.  
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2.2.2 ARIMA (Autoregressive Integrated Moving Average) 

ARIMA is one of the most general methods to predict time series data. ARIMA model is 

specified by three elements: The number of lag terms for autoregressive (p), the order of 

difference (d), the number of lag terms for moving average (q). The AR (Autoregressive) 

part of the equation displays how the variable of interest is regressed on its own past 

values. AR(p) with p lags is expressed as below [19]: 

𝑥𝑡 − 𝜇 = ∑ 𝛾𝑖𝑥𝑡−𝑖 + 𝜔𝑡
𝑝
𝑖=1  (EQ. 7) 

Where 𝑥𝑡 is the output of a time series function in time t, 𝜇 is the mean of 𝑥𝑡, 𝛾𝑖 is the 

coefficient for the lagged variable in time t-i, and 𝜔𝑡 is assumed to be a white noise with 

mean zero. 

The MA (Moving Average) part shows a linear combination of residuals from past 

periods. MA(q) with q lags is expressed as below: 

𝑥𝑡 = 𝜔𝑡 + ∑ 𝜃𝑖𝜔𝑡−𝑖
𝑞
𝑖=1  (EQ. 8) 

Where, 𝑥𝑡, is the output of a time series function in time t, 𝜔𝑡, is a white noise with 

mean zero, 𝜃𝑖, is the coefficient for the lagged error term in time t-i.  

The integrated part, I, is needed to remove trends that lead the data far from its mean 

value over time. As a result of this term, the trend changes to a stationary value. For 

example, when a variable 𝑦𝑡 is not stationary and has a linearly increasing trend, 

inserting the following first order of differences can effectively eliminate the trend 

effect:  



15 

 

∆𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−1 (EQ. 9) 

Abdel-Aal and Al-Garni [20] used ARIMA with 5 years of data to forecast monthly 

domestic electric energy consumption for the next year in the Eastern Province of Saudi 

Arabia. They used Abductive Network Machine Learning (AIM) and multiple linear 

regression for the comparison of performance. The AIM can be seen as a generalized 

version of the artificial neural network. However, the structure of AIM is not limited to 

neuron analogies. AIM can take diverse forms of structure that connects inputs to 

outputs depending on the context. This characteristic can be useful in simplifying a 

complex task. Compared to multi-variate regression and Abductive Network Machine-

learning(AIM) models previously developed on the same data, the ARIMA models 

require less data, fewer coefficients, yet shows more accurate results. The optimum 

ARIMA model created in their study revealed a mean percentage error or 3.8%, while 

the MLR and AIM showed 8.1% and 5.6%, respectively.  

Kandananond [21] used ARIMA, ANN, and MLR to predict electricity demand in 

Thailand and compared their performance. The ANN outperformed the other two 

models, showing a Mean Absolute Percentage Error (MAPE) of 0.996% while the 

ARIMA model showed 2.810% and the MLR model showed 3.260%. Despite the result, 

the research concluded that the ARIMA or MLR might be preferable to ANN in terms of 

the balance between performance and simplicity. Pasapitch et al. [22] used the 

Autoregressive Moving Average (ARMA) and ARIMA to forecast electricity 

consumption and compared the results. As previously stated, the role of I in the ARIMA 

model is to remove the impact of trends in the data. Hence, the effectiveness of ARIMA 
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over ARMA depends on whether the data has non-seasonal difference. The results 

showed that the ARIMA model was more suitable for monthly and quarterly forecasting 

periods whereas the ARMA model showed improved results for daily and weekly 

forecasting periods.  

 

2.2.3 Fourier Series 

Fourier series modeling works well for capturing temporal patterns of building energy 

consumption. Thus, it is useful for buildings that have a distinct schedule or periodic 

patterns such as commercial buildings. In addition, although it is more complex than 

simple linear or multilinear regression models, it can effectively model a nonlinear 

relationship that possibly exists between outside air temperature and energy 

consumption of buildings. The generalized model equation proposed for weather 

dependent energy use takes the following form [23]: 

𝐸ℎ,𝑑 = ∑ ( 𝑋𝑘 + 𝑌𝑘 + 𝑍𝑘)𝑘=1  (EQ. 10) 

𝑋𝑘 = 𝑘∑ [𝛾𝑘,𝑖 (𝑎𝑠𝑖𝑛 
2𝜋

𝑃𝑖
𝑑) + 𝛿𝑘,𝑖 (𝑎𝑐𝑜𝑠 

2𝜋

𝑃𝑖
𝑑)]

𝑖𝑚𝑎𝑥
𝑖=0  (EQ. 11) 

𝑌𝑘 = 𝑘∑ [𝛼𝑘,𝑗 (𝑎𝑠𝑖𝑛 
2𝜋

𝑃𝑖
ℎ) + 𝛽𝑘,𝑗 (𝑎𝑐𝑜𝑠 

2𝜋

𝑃𝑖
ℎ)]

𝑗𝑚𝑎𝑥
𝑗=0  (EQ. 12) 

𝑍𝑘 = 𝑘∑ ∑ [∅𝑘,𝑖 (𝑎𝑠𝑖𝑛 
2𝜋

𝑃𝑖
𝑑) + 𝜑𝑘,𝑖 (𝑎𝑐𝑜𝑠 

2𝜋

𝑃𝑖
𝑑)] × [𝜂𝑘,𝑗 (𝑎𝑠𝑖𝑛 

2𝜋

𝑃𝑗
ℎ) +

𝑗𝑚𝑎𝑥
𝑗=0

𝑖𝑚𝑎𝑥
𝑖=0

𝜍𝑘,𝑗 (𝑎𝑐𝑜𝑠 
2𝜋

𝑃𝑗
ℎ)] (EQ. 13) 
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Where k is an index denoting the series corresponding to the internal loads or weather 

variables, d is the day-of-year representing the annual cycle, h is the hour-of-day 

representing the daily cycle, X is the Fourier Series representing seasonal cycle, Y is the 

Fourier Series representing diurnal cycle, Z is the Fourier Series accounting for 

interaction effects. Seem and Braun [24] also used a Fourier series model to forecast the 

electric demand in a building on an hourly basis. Dhar et al. [25] separated days of the 

year when buildings operate differently and showed improved statistical fits. 

 

2.2.4 Machine Learning 

Numerous attempts have been made to apply machine learning techniques to building 

energy modeling. Among them, the Artificial Neural Network (ANN) has been the most 

popular technique [26], followed by Support Vector Machine (SVM).  

 

2.2.4.1 Artificial Neural Networks – ANNs 

The ANN learns the relationship between the input variable and the output variable in a 

similar way as human brains learn and it does not necessarily require as many 

parameters as detailed simulations. Although ANNs can look similar to multi-variate 

regression models, it does not necessitate any form of the presumed models. Instead, it 

learns the key information patterns within a multidimensional information domain [27]. 

To be specific, ANN structures are made of layers that contains neurons. Neurons in 

different layers are connected to each other. Although neurons can receive multiple 



18 

 

signals from inputs, each neuron discharges only one signal, and the intensity of the 

signal is adjusted by a weighting factor assigned to the connection [28]. Since the ANN 

can make models in a flexible way, it is good for handling non-linear energy patterns. 

There are various types of ANN models, including: Back-propagation neural network 

(BPNN); Radial Basis Function Neural Network (RBFNN); and General Regression 

Neural Network (GRNN) models. The BPNN is the most widely used. It is arranged to 

minimize the mean square error between the predicted output and a target value(s). 

RBFNN does not use weighting factor for the connection between the inputs and hidden 

layer. In the RBFNN Gaussian function is usually used as the transfer function. Finally, 

the GRNN uses a dynamic structure. Its merits lie in its quick learning and its ability to 

convergence to the optimum model [29]. 

 

Figure 2 - Artificial Neural Network Structure 

 

2.2.4.2 Support Vector Machines - SVM 

Support vector machine (SVM) offers one of the most robust and accurate methods 

among all well-known machine learning algorithms. The SVM was identified as one of 
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the top-ten algorithms in data mining by IEEE International Conference on Data Mining 

[30]. Support vector machine (SVM) is known to be higher accuracy than ANN. Unlike 

ANN, the solution of the SVM is unique. The solution depends only on a set of training 

data points, namely support vectors. What should be noted is that the unique solution in 

a SVM depends on the selection of hyperparameters and kernel function. The main 

drawback of a SVM is calculation time. It increases in proportional to approximately the 

square or cube of the samples size [31]. To overcome this drawback, other types of 

SVMs have appeared. For example, Suykens and Vandewalle [32] proposed a least 

squares SVM (LS-SVM). Their LS-SVM is a reformulation of the standard SVM. 

Whereas the standard SVM requires a quadratic programming calculation, the LS-SVM 

operates only with a linear equation as a result of a modified optimization function. 

Thus, the LS-SVM has an enhanced calculation efficiency. Yet, this advantage comes 

with a loss of the sparseness of support vectors. This results in an increase in model 

complexity, difficulty in generalizing data patterns, and in an increase in the demand of 

computer memory space.  

 

2.2.5 The Great Energy Predictor Shootout 

In an attempt to identify the most accurate inverse modeling method for predicting 

building energy consumption given hourly measurement data, ASHRAE TC 1.5 and TC 

4.7 opened a competition in the summer of 1993 [33]. The contestants were given two 

sets of data. The A dataset included hourly whole-building chilled water, heating hot 
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water and electricity use along with weather data. The B dataset consisted of the 

measurement from four different pyranometers at different orientations and one 

measurement from a pyrheliometer. The contestant was tasked with creating a model 

using the training dataset without any further information about the data file. In each of 

the dataset, only the training data were available to the contestant. A test dataset from the 

same data file was not available to the contestant that was used to test the models. The 

performance was assessed by comparing the actual and predicted values during the 

testing period. The result showed that neural networks were the most widely used 

methods among the top entrees. However, it is also used by many lower ranking 

contestants as well. That implies the performance of the neural network depended not 

only on the capacity of the ANN itself, but also on how strategically the modelers 

organized the given data before using the ANN. For instance, the first-place winner of 

the competition, Mackay, used the Automatic Relevance Determination (ARD) model 

before applying the ANN. The ARD is a Bayesian model to distinguish the relevant 

independent variables from the irrelevant one. [34] By using ARD, Mackay could 

successfully prevent overfitting and won the competition. Similarly, the second-place 

winner Ohlsson et al used a technique called delta test to determine relevant independent 

variables [35]. The third-place winner, Feuston and Thurtell,used the Principal 

Component Analysis (PCA) before using the ANN [33]. Through the PCA, they 

transformed the independent variables to smaller numbers of orthogonal independent 

variable sets that cover most of the information in the original input data. By doing so, 

they could generate the model, the implementation time of which was much faster than 
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the other winners. Another noteworthy result was that none of the models could 

successfully predict the energy consumption when unexpected events or a different 

schedule appeared in the test dataset that could not be predicted by the training dataset. 

In 1994, ASHRAE TC 1.5 and TC 4.7 held a second competition [36]. In the second 

shootout, the contestants were asked to train models based on pre-retrofit period building 

energy use data. Similar to the previous ASHRAE competition, the trained models were 

assessed by the difference between actual and predicted values. Unlike the first 

competition, the different savings during the post-retrofit periods that were calculated by 

different trained models were compared against the measured savings. As in the first 

competition, neural networks were the most popular method among the top ranked 

contestants. However, in contrast to the first competition, a well-assembled multiple 

linear regression model showed comparable performance with the neural network 

models [37]. In addition, although there were small differences in the Coefficient of 

Variation (CV) among the different models, large variations in the predicted savings 

were observed. This was most likely caused by different assumptions between the 

models. This also implies the difficulty of calculating savings in a reliably manner as 

models that have a small CV might not necessarily be indicative of better models.  In 

2019, ASHRAE held a third competition [38]. The contestants were given hourly energy 

consumption data that includes electricity, steam, chilled water, and hot water from 1448 

buildings with meteorological data and building information such as primary use of 

building and gross floor area. Most winners used ensembles of multiple machine 

learning algorithms. Unlike the last two competition, a technique called gradient 
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boosting was used most dominantly. In addition to the selection of methodology, 

preprocessing of the given data played a key role that differentiated top performing 

methods from others.  

 

The summary of the background is as below:  

1. There are two methods of building energy modeling: forward modeling and inverse 

modeling. Forward modeling uses the principles of thermodynamics and heat transfer, 

and requires a large number of parameters related to building properties. Inverse 

modeling uses statistical methods, and requires smaller numbers of inputs than the 

forward modeling. The building energy inverse model is made using the building end 

use energy.    

2. There are a wide variety of methods for the inverse modeling of building energy use 

that include simple linear or multiple linear regression, time-series analysis, and machine 

learning.  

3. To test the performance of different building energy inverse modeling methods, 

ASHRAE held three competitions. In the two competitions, the majority of winners used 

ANN. However, there was a large difference in the performance for the same ANN users 

depending on how they preprocessed and organized the given input data. In the second 

competition, a contestant using the multiple linear regression had the second highest 

score, showing that a well-prepared conventional regression could be as good as or 
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better than more complicated and labor-intensive new methods.  In the third competition, 

gradient boosting was most dominantly used, and most winners used ensembles of 

multiple machine learning algorithms. Similar to the last two competitions, 

preprocessing of the given data critically affected the effectiveness of models.  
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CHAPTER III LITERATURE REVIEW OF SVM FOR BUILDING ENERGY 

MODELING 

Numerous researchers have applied SVM to building energy use modeling or to compare a 

variety of inverse modeling.  

Dong et al.[31] introduced the SVM for building energy estimation in 2005. In this study, 

Monthly outdoor air temperature, relative humidity, and solar radiation were used as inputs 

to predict the energy use of 4 commercial buildings. More than 2 years of data was used 

for training the SVM model, and one year of data was used for testing. Although it is 

significant in that it is considered to be one of the first papers using a SVM on building 

energy modeling, the performance of SVM was difficult to analyze because they did not 

compare the result with other existing methods on the same dataset. 

Many studies have shown that the performance of SVM is better than or similar to that of 

ANN. For instance, Li et al. [6] used SVM and a Back Propagation ANN to predict hourly 

office building cooling loads. Outdoor air temperature, relative humidity, and solar 

radiation were used as independent variables. SVMs showed better performance than the 

ANN. Li et al. [28] used three types of ANNs, namely back propagation neural network 

(BPNN), the radial basis function neural network (RBFNN) and general regression neural 

network (GRNN), along with a support vector machine (SVM) to predict hourly cooling 

consumption of an office building. For the inputs of each model, current and past outdoor 

air temperatures, current relative humidity, and current and past solar radiation were used. 

Cooling load values were generated from building energy simulation. The results showed 

that the SVM and the GRNN methods achieved improved accuracy and generalization 
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when compared to the BPNN and RBFNN methods. Li et al. [39] used LS-SVM to predict 

hourly cooling loads of an office building. In their study, Present and historical outdoor air 

temperature, present humidity, present and historical solar radiation were used as inputs. 

When the performance of LS-SVM was compared to that of BPNN, the LS-SVM showed 

better results. Zhao and Magoulès [7] classified prediction methods into five categories: 

engineering methods, statistical methods, neural networks, support vector machines, grey 

models. Their study also showed SVMs showed superior performance over ANNs in many 

cases. In addition, the level of accuracy of the SVM was in the same range as elaborate 

engineering simulation models. 

In addition to the previously mentioned studies, one study run SVM with a large number of 

independent variables. Zhao and Magoulès [40] used SVM to predict hourly office 

building electricity and district heating energy use. In their study, 24 independent variables 

were used, including schedules, weather conditions, infiltration, zone mean temperatures, 

and heat gain from lights. Five months of data were used for training, and for testing, two 

days of data were used. The R2 for the electricity prediction was 0.9599, and the R2 for the 

district heating was 0.9277. Although the testing period was short, this is a good example 

that shows SVM can make an excellent hourly inverse model with numerous independent 

variables.  

Selecting which independent variables to use can be a topic within itself for an of inverse 

model, this process is also called feature selection. Massana et al. [8] compared MLR, 

Multilayer Perception (MLP) and SVR for non-residential building forecasting of hourly, 

daily and monthly electricity use. In this work, they also analyzed which attributes were 

most relevant. The result showed MLR and MLP provided the best result with temperature, 
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calendar and occupancy as independent variables. SVR provided the best results with only 

temperature and occupancy data. The MLR model, unlike the other models, offers 

coefficients that have physical significance, which informs the relevance of each 

independent variable. However, MLR had a lower goodness of fit versus MLP and SVR; 

and the SVR model provided the highest accuracy. All the models showed higher accuracy 

with real occupancy data versus assumed calendar data. Surprisingly, the indoor ambient 

data did not enhance the performance. Finally, the feature selection process did make it 

possible for models with few independent variables to indicate an accuracy similar to the 

ones with more independent variables.  

 

Recently, many researchers reviewed and did comparative studies of many different types 

of machine learning inverse models including a couple of traditional statistical ones. Deb 

et al. [41] reviewed 9 time series forecasting techniques for building energy consumption: 

ANN, ARIMA, SVM, CBR, Fuzzy, Grey, Moving Average & Exponential Smoothing 

(MA & ES), K – Nearest Neighbor prediction method (kNN), and Hybrid. According to 

the assessment, SVM performs well for long-term data with small data frequency and for 

non-linear data, but time-consuming calculation was pointed out as its weakness. This 

assessment of SVM is in line with Wei et al. [42] who also pointed out low processing 

efficiency as drawback of SVM. Contrarily, Wang et al. [4] mentioned another aspect of 

SVM as its advantage, which is relatively fewer number of inputs to tune as an advantage 

of SVM. Yildiz, et al [43] compared several models to predict day ahead hourly and daily 

peak electricity load: Multiple Linear Regression (MLR), Neural Network with Levenberg 

Marquitd (NN LM), Neural Network with Bayesian Regulation Backpropagation (NN 
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BR), Nonlinear Autoregressive Network with Exogenous Inputs with Levenberg Marquitd 

(NARX LM), Nonlinear Autoregressive Network with Exogenous Inputs with Bayesian 

Regulation Backpropagation (NARX BM), Regression Trees (RT), Support Vector 

Regression (SVR). Most machine learning models used in the study indicated a better 

forecast performance than the MLR models. However, there is a study that showed the 

opposite result. For instance, Tereshchenko et al. [44] assembled a couple of linear 

regression models of different schedules for temperature dependent period and hourly 

temporal profiles for temperature independent period to predict the hourly domestic hot 

water plus space heating energy. This method showed better results than SVM although 

the comparison was not entirely fair in the sense it the input of schedule information was 

used only to the linear regression.  

 

There are studies that has provided a valuable insight into how machine learning-related 

building energy model study has proceed so far. For instance, Wang et al. [4] reviewed 35 

papers and derived statistical figures on several basis. In the research, 42% is for 

educational and research space and 33% is for commercial space. Residential accounts for 

only 17%. As for the chosen inverse modeling method, ANN takes up the largest portion 

(42%), followed by statistical regression (26%), and SVR is used in 12% of the papers. 

Regarding energy type, whole building electricity takes up the biggest portion (57%), 

followed by cooling (13%), heating (11%), combined heating and cooling (11%), and 

others (8%). In terms of prediction time scale, hourly prediction is most dominant, 

followed by daily (19%), and yearly (8%). Remaining portion include monthly, weekly, 

15-minute, and minute data. The research divides input data into three types: meteorology, 
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occupancy, others. Meteorological data occupies the largest portion (60%). Occupancy 

takes up only 29% despite its impact on building energy use. This stems from difficulty in 

data acquisition. Others (54%) includes historical energy consumption data, indoor 

environmental information, building characteristics, operational schedule and day type. 

Similarly, Amasyali and El-Gohary [5] compares 63 papers related to machine learning 

application to building energy and sorts out them according to several attributes. 81% of 

the reviewed papers worked on non-residential buildings and 19% on residential ones. 

Regarding temporal granularity, 12% did research on sub-hourly data, 57% on hourly, 15% 

on daily, 4% on monthly, and 12% annual data. Concerning the type of inverse modeling 

methodologies, ANN takes up the most portion of 47%, followed by SVM of 25 %. 

Decision Tree constitute 4%. Others methodologies include General Linear Regression, 

Polynomial Regression, Exponential Regression, Multiple Linear Regression, and so on. 

The size of input data set varies from 2-week to 4 year. 56% uses one month to one-year 

long data. 31% uses longer-than one year. Only 9% uses shorter-than on month data.  

 

The conclusion of literature review is summarized as below:  

• SVM has been the second most widely used machine learning algorithms in 

building energy inverse model research after ANN  

• SVM has fewer parameters to determine compared to ANN, but in many cases, it 

has been reported to show higher accuracy than ANN.  
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• Despite usually higher accuracy of machine learning techniques, linear regression 

models still popular because of its relative simplicity, interpretability, and fair 

accuracy.  

• Outdoor air temperature is by far the most frequently used input to SVM as well as 

other inverse models. Other meaningful meteorological data include humidity and 

solar radiation. Occupancy and schedule data also can add accuracy to models. 

When a large number of attributes are used as input to SVM, its performance is 

comparable to elaborate engineering models. 

• SVM and other machine learning methods have been usually applied to hourly and 

daily application.  

• Given the large amount of comparative study involving SVM, change-point 

regression has been rarely considered.  

 

Table 1 - Summary of the Literature Review on SVM Application to Building Energy 

Modeling 

 Description 

Popularity of SVM in 

building energy modeling 

area 

1. Within machine learning application area, SMV has 

been second most popular after ANN. 

2.Including all forms of inverse modeling methods, 

traditional statistical methods such as change point 

linear regression or multiple linear regression are still 

popular due to its ease of use and fair accuracy 

Typical independent variables 

used 

1. Meteorological data is by far most widely used; 

within this category, temperature, humidity, and solar 

radiation are generally used.  
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Table 1 Continued  

 Description 

Typical independent variables 

used 

2. Building schedule and occupancy can be added to 

increase the predictability. Between these two, the 

effects of the former have been more widely studied 

due to data availability. 

3. Historical weather and consumption data can be 

used for times series data to account for time-lag 

effects if the data frequency is smaller than daily.  

4. With further detailed data, the SVM performance 

can be closer to that of forward modeling. 

Data frequency Hourly and daily application is general. Annual, 

monthly, and sub-hourly application was less 

frequently mentioned in the research field.  

Advantages   1) High accuracy 

2) Flexibility (SVM can be applied both linear and 

non-linear data) 

3) Ease of use (due to relatively fewer number of 

parameters to adjust compared to other machine 

learning algorithms)  

Disadvantages 1) Expensive computational cost (Calculation time 

increases in proportional to the square of data size, 

and it even with smaller data, it cannot be faster 

traditional statistical methods)  

2) Inconvenient to apply to big size data (caused by 

the first issue) 

3) Lack of interpretability (which is the limit of 

machine learning algorithm) 

Others Change-point regression has been rarely considered in 

the studies of SVM application to building energy 

inverse modeling.  
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CHAPTER IV PROCEDURE AND METHODOLOGY 

The key principle of SVM regression consists of a couple of steps. First, the basic 

regression model is expressed as follow: 

 𝑓(𝑥) = 𝝎 ∙ 𝒙 + 𝑏 (EQ. 14) 

Second, the user must determine the size of a boundary, which is supposed to deviate from 

the future regression model by the length of ɛ. Third, an ɛ-insensitive loss function is set 

up. This function measures how each data set deviates from the regression model, and if 

the deviation is lower than ɛ, it results in zero; otherwise, deviation minus ɛ becomes the 

function value. Fourth, the sum of ω and the loss function for all given data sets is 

minimized. Moreover, the relative weight of the term can be adjusted by another user-

defined parameter, C. This minimization function is expressed as follows:  

Min 
1

2
‖𝝎‖2 + 𝐶 ∑ (ξ𝑖 + ξ𝑖

∗)𝑛
𝑖=1   (EQ. 15) 

 

 

 

 

(a) ε-insensitive Loss Function                             (b) SVM regression plot and ε 

Figure 3 - SVM Linear Regression 
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The resultant regression plot is attained as a result of this minimization function. By using 

a technique called Kernel Trick, SVM can also cover a non-linear dataset. For a more 

detailed explanation of the SVM fundamentals, see Appendix A.  

SVM has many parameters, and those that must be determined by the user before running 

SVM are called hyperparameters. A variety of options can search for optimal 

hyperparameters. This search procedure is called tuning. The performance of SVM 

depends on the appropriate choice of hyperparameters and tuning methods. Thus, the first 

section of the experiment will select the tuning method used in the remaining sections.  

SVM is well known for its flexibility and high accuracy. Observing these characteristics 

constitutes the second part of the experiment. The experiment will expose SVM to many 

different types of data sets. The data is either actual building energy data or synthetic data 

that resembles actual data.  

SVM is a supervised learning algorithm. Therefore, it requires training to make a model. 

The training data set is a combination of independent and dependent variables. If the 

relationship between independent and dependent variables of the training data set is not 

strong, SVM cannot produce a good model, because SVM is supposed to capture the 

pattern-connecting independent variables to dependent ones, which are assumed to exist. 

Hence, if the link is weak in the first place, there is little for SVM to learn from the given 

training data set. In this sense, the third section of the experiment will investigate the 

influence of different independent variables on building-energy modeling.  

In the last part, the performance of SVM regression is compared to two other statistical 

regressions, which are multiple linear regression and change-point linear regression. 
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Attention should be paid when comparing the performance. Unlike traditional statistical 

methods, the performance of the machine-learning algorithm is assessed by the 

performance in the training period and the testing period, as the machine-learning 

algorithm can exponentially raise its training period performance merely by memorizing 

the data. This risk can be effectively eliminated by using a new data set that was not used 

during the training period. The performance measure derived from this new data set is 

called testing-period performance or simply testing performance. However, the testing-

period performance also has limitations because a new energy consumption pattern may 

have started during the testing period. In this case, the reliability of the testing period will 

also be limited. Moreover, the performance of SVM depends on many factors, such as 

hyperparameters, tuning methods, and the quality of the given data set. Therefore, a 

qualitative comparison is essential in addition to the quantitative comparison. As a 

platform to operate SVM, the programming language R is used. R is a free and open-

source programming language and environment for statistical computing, initially written 

by Ross Ihaka and Robert Gentleman at the Department of Statistics of the University of 

Auckland in Auckland, New Zealand [45]. The functionality of R can be easily extended 

by installing a variety of packages available online, and it can be also used to implement 

machine-learning algorithms. The functions in R can be written in R itself, but for 

computationally intensive tasks, other languages such as C and Fortran code can be used.  

To implement the SVM in R, a package named ‘e1071’, which contains many statistical 

and machine-learning functions, such as fuzzy clustering and SVM, was used [46]. In the 

package ‘e1071’, the SVM library, which is called LIBSVM, was written by Chang and 

Lin [47] 
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Concerning what is stated above, the experiment consists of the following sections: 

1) Determination of the SVM Implementation Settings 

2) SVM Regression Pattern Observation 

3) Investigation of the influence of different independent variables  

4) Comparative study 

 

4.1 The Procedural Description of Experiments   

4.1.1 Determination of the SVM Implementation Settings  

The performance of SVM depends on the choice of kernel function and hyperparameters. 

The choice of kernel predetermines the expected shape of the regression model. The 

selection of hyperparameters determines the regression quality.  

 

4.1.1.1 Kernel Function 

As for kernel, radial basis function (RBF) is predominant for regression purposes. This is 

because its high flexibility allows the SVM algorithm to fit any form of data. Unlike RBF, 

linear kernel constraint the shape of its model to be linear. Likewise, polynomial kernel 

also limits its model only to the shape that can be expressed by polynomial expression. 

These two may be appropriate where the given data set neatly falls under these categories 

or the dataset should be limited to those shapes. However, this study selected SVM 
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because of its flexibility, thus limiting the flexibility is against the object. Hence, RBF is 

used as a kernel by default.  

  

4.1.1.2 Hyperparameters Selection and Tuning 

RBF kernel SVM has three hyperparameters to specify: epsilon, cost, and gamma. (See 

Appendix B for details) When selecting the optimal hyperparameter set, or tuning, there 

are many methods to search for optimal parameters. Each method has its benefits and 

drawbacks. Essentially, the competition between different methods centers on the trade-off 

between accuracy and speed. The efficient selection of hyperparameters is another 

significant research topic. In this research, two methods are used for comparison. The first 

is the most conservative method and the other is a newly proposed modified grid-search 

method. 

 

4.1.1.2.1 Exhaustive Grid Search (EGS) 

An exhaustive grid search, or more simply stated, a grid search, is the most conservative, 

robust, but generally used tuning method. The principle is straightforward. It defines a grid 

in which each dimension represents one hyperparameter. In the cases of RBF SVM, the 

grid has a total of three dimensions, which will check every possible combination of 

hyperparameters represented by a point in the grid, one at a time. Although it is very time 

consuming, it guarantees robust performance.  
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4.1.1.2.2 One Dimensional Grid Search with Recommended Initial Values (ODGS) 

This is a newly proposed method in this research. However, most of the key ideas are from 

other literature.  

Tang et al. [48] took an analytical approach, the golden section search algorithm 

specifically, to determine the initial gamma and therewith to conduct a one-dimensional 

grid search to find the optimal C. With the obtained C, the grid search is repeated to 

determine the optimal gamma. However, they did not mention epsilon. 

Cherkassky et al. [49] proposed a formula to obtain C based on statistical reasoning: 

𝐶 = 𝑚𝑎𝑥(𝑦̅ + 3𝜎𝑦  , 𝑦̅ − 3𝜎𝑦) (EQ. 16) 

Where 𝑦̅ is the mean of training data, 𝜎𝑦 is the standard deviation of training data, and 𝜎 is 

the standard deviation of input noise.  

Kaneko and Funatsu [50] referenced the literature of Tang et al. [48] and Cherkassky et al. 

[49]. and proposed a procedure to efficiently find the hyperparameters epsilon, C, gamma. 

It uses the Eq.16 to find an initial C and uses the analytical approach suggested by Tang et 

al. [48] to determine an initial gamma. With two initial hyperparameters, it conducted a 

one-dimension grid search to find the optimal epsilon. With the optimal epsilon and initial 

gamma, the optimal C is attained by a one-dimension grid search. The optimal gamma is 

obtained in the same way. This method demonstrated almost the same performance as 

exhaustive grid search. 
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Figure 4 - Flow of Hyperparamter Tuning Method Proposed by Kaneko and Funatsu [50] 

 

The proposed method in this research is a simpler version of the method suggested by 

Kaneko and Funatsu [50]. The difference is the method to obtain the initial gamma. Instead 

of using the analytical approach, an empirical value is used. The empirical value is shown 

as follows and it references the literature of Louw and Steel [51]: 

𝛾 =
1

𝑝
     (EQ. 17)        

where p is the number of the input attribute. 

The motive for using the empirical value instead of an analytical approach lies in its 

simplicity and reduced calculation time.  
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Figure 5 - Flow of Hyperparamter Tuning Method Used in This Research 

 

Repeated K-Fold Cross Validation 

A grid search usually accompanies cross-validation (CV) to prevent optimistically biased 

tuning, in other words, overfitting. Overfitting occurs because the SVM algorithm is 

created to make sense of given data in its way without any explanatory equations. This 

may result in the regression model fitting the given data perfectly but result in a far worse 

performance with new data. CV effectively addresses this by dividing the data into k folds, 

training a model with k-l fold data, validating it with the other fold, and repeating it k times 

with a different fold for validation, and averaging the result to specify the optimal result. 

Although CV is usually robust by itself, it may return an inconsistent performance. This 

happens in the stage when the training data set is divided into k-fold because there are 

many partitioning cases. The inconsistency caused at this stage is not significant when the 
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data set is clean, but it can affect the result if the data set is not clean, such as having many 

outliers. The partition is usually done by a random computer algorithm by default. To 

minimize this inconsistency, CV is often repeated multiple times to reduce the bias in the 

result. In this study, 5-fold cross-validation is used by default, and 10-repeated 5-fold 

cross-validation is used for comparative study.  

 

4.1.2 Pattern Observation 

The fitting performance of the SVM regression is visually investigated with synthetic and 

actual data. The purpose is to graphically understand the way in which the SVM algorithm 

regresses data points and to check whether the pattern looks reasonable. SVM regression 

generally works with multiple independent variables. However, for the ease of visual 

observation and considering that a single input attribute SVM regression is the main option 

of this research, the number of independent variables is limited to one. As a kernel 

function, the radial basis function is used by default because it is predominantly used for 

non-linear regression. If the given pattern is linear, the linear kernel option is also used for 

comparative purposes. The number of cross-validations is set to five unless noted 

otherwise. For tuning, a one-dimensional grid search with recommended initial values 

(ODGS) is used. The validity of this method is tested in the next section.  

The observation consists of the following three parts: linear, piecewise linear (two pieces), 

and special cases. For the linear case, both linear kernel and RBF kernel are used for 

comparative purposes. The piecewise linear case consists of two parts: the case of one 

piece constrained to a zero slope and of both pieces having no constraint. The former 
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corresponds to a 3P model of change point linear regression and the latter 4P. The special 

case parts handle various cases: piecewise linear (three pieces) patterns, hourly data (8760 

data points), data showing different patterns according to schedules, scattered data, and 

data with breakpoints. Fu et al. [52] introduced the concept of break point was introduced 

to describe the case where the whole building’s heating hot water consumption spikes in 

the moderate temperature range. The linear, 2-piecewise linear, and 3-piecewise linear 

patterns are investigated with synthetic data with both ideally clean data and noisy data. 

Different levels of noise are used to observe how SVM regression responds to varying 

noise (10%, 30%, 50%, and 100%). Two types of noise are used: homoscedastic and 

heteroscedastic noise. The former refers to the noise that is consistent throughout the 

whole range of independent variables. The latter refers to the noise that varies throughout 

the range of the independent variables. The degree of noise is calculated based on the 

deviation from the line where the ideal data would lie divided by the mean of the 

dependent variable. They are analyzed according to a monthly and daily frequency. For 

hourly, scheduled, scattering and breakpoint patterns, actual building energy use data with 

daily frequency is used. The following Table 2 is the summary of the pattern observation 

plan.  

 

 

 



41 

 

Table 2 - SVM Pattern Observation Plan 

Data 

Patterns 
Description 

Data 

Frequency 
Data Type 

Linear  

Use RBF kernel* Daily - Ideally clean synthetic data 

- Synthetic data with 10% noise 

 1) homoscedastic noise  

 2) heteroscedastic noise 

- Synthetic data with 30% noise 

 1) homoscedastic noise  

 2) heteroscedastic noise 

- Synthetic data with 50% noise 

 1) homoscedastic noise  

 2) heteroscedastic noise 

- Synthetic data with 100% noise 

 1) homoscedastic noise  

 2) heteroscedastic noise 

Use RBF kernel* Monthly 

Use Linear kernel Daily 

Use Linear kernel Monthly 

Piecewise 

Linear 

(2 pieces) 

one piece no slope 
Daily 

Monthly 

both pieces sloped 
Daily 

Monthly 

Special 

Piecewise (3 pieces) 

Daily 

Monthly 

Hourly data Hourly Actual data 

Scheduled data Daily Actual data 

Scattering data Daily Actual data 

break pointed data Daily Actual data 

* RBF kernel function is used by default in this research unless noted otherwise. 

 

4.1.3 Investigation on the Influence of Different Independent Variables  

SVM is a supervised learning algorithm, and its performance depends on how relevant the 

input data attributes are to response data. Thus, it should be noted that it does not 

automatically fit the data to its regression model without relevant categorical information. 

In this sense, using proper attributes as input is essential. As dependent variables, whole 

building chilled water (CHW) and heating hot water (HHW) are used. As stated in Chapter 

3, SVM input attributes include outdoor weather conditions, indoor environmental 

conditions, time features, past weather conditions, energy consumption, occupancy 

schedule, building operation schedule, and physical information regarding the building. 

While more information is usually better than less, unnecessary or excessive attributes only 

increase the calculation time. In building energy baseline modeling, meteorological data is 
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the most influential factor and is relatively easy to collect. Concerning the meteorological 

data, outside air temperature (OAT) is the most dominant factor. 

Both chilled water and heating hot water are sensitive to OAT. When the outdoor dry-bulb 

temperature is high, the use of chilled water increases. When the outdoor dry-bulb 

temperature is low, the use of heating hot water increases. However, in the case of chilled 

water, outdoor dry-bulb temperature alone does not provide enough of a clue about its 

energy usage pattern. Considering both temperature and humidity provides a clearer 

explanation. The main source of humidity is usually outdoor air entering the building 

through ventilation. Different buildings have different ventilation design strategies and 

requirements depending on their type. In this research, humidity is considered in three 

different forms. For the first form, dew point temperature is added as an additional 

independent variable (OAT + DPT). Although this is a straightforward manner to consider 

humidity, collinearity between these two factors makes this method less reliable. The 

second form is to use outdoor air enthalpy (OAE). Enthalpy is calculated by summing the 

sensible heat and latent heat of the moist air in the atmosphere. The following is the 

equation for deriving OAE. 

ℎ = ℎ𝑎 + 𝑋ℎ𝑤 (EQ. 18) 

where h is specific enthalpy of moist air, ha is specific enthalpy of dry air, hw is specific 

enthalpy of water vapor, and X is humidity ratio. 

ℎ𝑎 = 𝑐𝑝𝑎𝑡 (EQ. 19) 

Where cpa is the specific heat of air at constant pressure and t is air temperature. 

https://www.engineeringtoolbox.com/air-properties-d_156.html
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ℎ𝑤 = 𝑐𝑝𝑤𝑡 + ℎ𝑤𝑒 (EQ. 20) 

Where cpw is the specific heat of water vapor at constant pressure, t is water vapor 

temperature, and hwe is evaporation heat of water at 32°F. The third form is to use 

operational effective enthalpy (OAE). Li and Baltazar [53] introduced this term and 

showed that regression performance can be further improved using this OAE as a 

regressor. The idea is to adjust the inclusion of humidity by considering what range of 

temperature and humidity practically affect the use of chilled water. Latent loads increase 

the chilled water consumption only when condensation occurs at cooling coils. In this 

sense, typical cooling coil leaving air temperature of 55F and 95% RH was chosen as a 

reference to decide whether to take humidity into the consideration of the analysis of 

chilled water use. The following is the equation for deriving the OEE. 

ℎ𝑜𝑒𝑒 = ℎ𝑠 + (ℎ𝑙 − ℎ𝑟𝑒𝑓)
+ (EQ. 21) 

Where hs is specific enthalpy of dry air, hl is specific enthalpy from moisture, and href is 

reference enthalpy. For evaluation metric and sample size related to this investigation, see 

4.2 and 4.3, respectively. 

 

4.1.4 Comparative Study 

Multiple linear regression and change point linear regression are widely used models for 

establishing building energy baselines. Multiple linear regression is the simplest type of 

regression methods, yet still commonly used in many fields because of its robustness. As a 
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dependent variable, CHW is used. HHW is excluded because it is affected mostly by one 

meteorological variable, outdoor dry-bulb temperature.  

The change-point regression model, or piecewise linear regression model, in other words, 

fits well with the application to creating building energy baseline models because buildings 

consume energy that way. Hence, the strongest advantage of the method is that it provides 

a physical interpretation of modelers. The drawback, however, is that it cannot catch non-

linear or complex patterns. As dependent variables, CHW and HHW are used. Although 

the change point linear regression models include 3P, 4P, and 5P models, only 4P is used 

as an object of comparison. This is because 4P usually shows better performance than 3P 

in terms of reported accuracy even when buildings consume energy on the 3P model. 5P is 

excluded because it is not a generally applied model when the dependent variable is CHW 

or HHW. The performance of these two models are compared to that of SVM models in 

many different levels such as in terms of data frequency, energy type, and input attributes. 

As dependent variables, whole building chilled water (CHW) and heating hot water 

(HHW) are used. To implement the Change Point Linear Regression, an algorithm 

proposed by Kissock et al. [15] is used. For evaluation metric and sample size related to 

this study, see 4.2 and 4.3, respectively. 

 

4.2 Evaluation Metric   

Establishing clear criteria of assessment is essential so that experiments can be considered 

reliable. The experiment in this research is measured by two different types of criteria. One 
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is for assessing the fitting performance of the model and the other is to evaluate the 

significance of the different fitting performances.  

 

4.2.1 Fitting Performance 
 

1) Coefficient of Variance (CV)  

CV measures the gap between the actual values and predicted values regardless of being 

positive or negative. The value is relative to the mean of actual values.  

𝐶𝑉 =
√

1

𝑁−1
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑁
𝑖=1

𝑦̅
× 100 (EQ. 22) 

Where 𝑦̂𝑖is the predicted energy consumption, 𝑦𝑖 is the actual energy consumption, 𝑦̅ is the 

average energy consumption, N is the number of samples 

2) Coefficient of Determination (R2) 

R2 is an index to indicate how much the variance of total data can be dealt with by the 

regression model. The formula of R2 is as follows. 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)

2
𝐼

∑ (𝑦𝑖−𝑦̅)
2

𝐼
=× 100  (EQ. 23) 

Where 𝑦̂𝑖is the predicted energy consumption, 𝑦𝑖 is the actual energy consumption, 𝑦̅ is the 

average energy consumption, If the regression model successfully explains the pattern of 

dependent variables well, the variance of the independent variable from the regression 

model will be much smaller than the variance from the mean of the dependent variable. 

This will make R2 close to 1. On the contrary, if the regression model does not describe the 
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data pattern well, the variance of dependent variables from the regression model will not 

be much different from that from the mean of the dependent variables. This will make R2 

smaller.  

There is an important factor to note when reporting the performance of machine-learning 

methods. Unlike statistical regressions, the performance of the machine-learning algorithm 

is assessed in two levels. This is because there is a chance that the algorithm raises its 

performance not by learning, but by aimlessly memorizing the training data set. The data 

of the testing period is supposed to catch it if it happens. Thus, it is the testing performance 

that counts as the ‘actual’ performance of a machine-learning algorithm. However, testing 

data does not always work as it is intended when it is used for building energy baseline 

modeling, unfortunately. The energy use patterns of a building varies for many reasons, 

such as a change in operational strategy, renovation, and unexpected events. In this case, 

the testing period performance would be much different from trading period performance 

even when the SVM model catches the pattern of training data well without overfitting. 

Concerning such an issue, it is worthwhile to pay attention to the fact that except for the 

one case, all other experiment is conducted with one input attribute. There are advantages 

when only one categorical data is used as input. First, it provides a clear description of 

what the SVM algorithm generated out of training data set because they can be clearly 

displayed on a two-dimension plot. The second benefit comes from the first one. The 

prevention of overfitting becomes easier. Without using testing data, which is independent 

of training data set, implementers can intuitively check if the regression is reasonable. 

These two benefits make the training period performance as significant as or even more 

significant than the testing period performance. 
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4.2.2 Significance of Different Fitting Performance 

To quantitatively assess the difference in fitting performances among the different 

independent variables or different regression models, a t-test is adopted. The t-test is a 

statistical method that compares the mean between different groups. It is a type of 

hypothesis test. With limited information from samples, experimenters quantify the 

significance of their observation, and either reject or accept the null hypothesis. Depending 

on the case, three different types of t-test can be used: a one-sample t-test, a two-sample t-

test, and a paired t-test. A one-sample t-test is used to compare the mean of one sample 

group to another hypothetic mean value. A two-sample t-test compares the means from 

two groups. A paired t-test compares the mean of two groups and the samples from two 

groups are not independent, such as the case where two different treatments are applied to 

the sample object. Regardless of such the differences, the way each t-test assesses the 

significance from observation is fundamentally the same. As a first step, t-value is 

calculated as follows: 

𝑡 =
𝑥̅−𝜇0
𝑠

√𝑛

  (EQ. 24) 

Where 𝑥̅ is a sample mean, 𝜇0 is the mean value of the null hypothesis, s is the standard 

deviation of a sample, and n is a sample size. A more intuitive approach to the formula is 

to view it as a signal-to-noise ratio. The purpose of experiments, in general, is to find or 

prove a significant difference, or sometimes non-difference, between groups. The extent of 

this difference, or signal, is located on the numerator. However, for any experiments that 

involve sampling groups, there is a risk of being misled by what happens by chance. The 
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extent of the risk, or in other words, noise, can be quantified by the standard deviation of 

the sample. Such a risk reduces as the sample size increases, as seen in the Eq.24 

However, just deriving the t value is not sufficient to provide meaningful information. This 

value should be interpreted in a broader context. It is t-distribution that provides the 

context. (See Figure 6) 

 

 

 

 

 

Figure 6 - Generic t-distribution Representation 

 

For a given t value, t-distribution indicates the probability for the null hypothesis to be 

true. What should be noted about the interpretation of the distribution graph is the way to 

calculate the probability. It is attained by the area under the curve, not by the value of the 

vertical axis. The probability calculated from the distribution curve can be translated to a 

more generally well-known term, p-value. The shape of the probability distribution varies 

depending on the sample size. The more the sample size is, the more probability 

distribution is concentrated on the center, and t-distribution becomes closer to normal 

distribution. This trend stems from the premise of t-distribution, which assumes that the 
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null hypothesis is true. With this premise, it is natural that more data changes the 

distribution in a way that supports the null hypothesis.  

The experiment of this study is carried out in such a way as to apply two different methods 

to the same sample buildings. In other words, samples from different groups are not 

independent. Thus, a paired t-test is used to assess the result of the following set of 

experiments.  

a. Input Attribute study  

• Outdoor Air Temperature (OAT) vs Outdoor Air Enthalpy (OAE) 

• Outdoor Air Temperature (OAT) vs Operational Effective Enthalpy (OEE) 

• Outdoor Air Enthalpy (OAE) vs Operational Effective Enthalpy (OEE) 

 

b. Comparative study  

• SVM vs MLR 

• SVM vs CPLR 

 

4.3 Sample Size Determination 

The sample size is related to the reliability of experiments. Since a paired t-test is adopted 

as an evaluation metric, the sample size is determined in connection with that. To 

effectively reject or accept the null hypothesis of a paired t-test, which states that there is 

no significant difference between groups, a reasonably high number of samples is needed. 

However, increasing the number of sampling comes with increased calculation cost and 

time. Thus, the optimal sampling number needed to be determined before the experiment.  
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Type I Error (α) 

Type I error, generally passing for α, is the case where the null hypothesis is rejected when 

it is true. 

 

Type II error (β) 

Type II Error, generally passing for β, is the case where the null hypothesis is not rejected 

when it is false.  

 

Effect Size  

Effect size is a measure of how far the mean of one group is from that of another, or how 

far the mean of a treatment group is from that of a controlled group on a standardized 

scale. This is equivalent of the numerator of t-value or t-statistic. If the effect size is small, 

the more number of sample is needed to prove the significance of the difference between a 

treatment group and a controlled group. Likewise, if the effect size is substantial, then a 

small sample is enough to prove the significance of the experiment. 

Power  

Power is the probability of rejecting the null hypothesis when it is false. In other words, it 

can be described as the probability of not making a type II error. Thus, mathematically, it 

is equal to 1- β. Higher power means a higher chance of the alternative hypothesis being 

correct. The typical value of β is 0.2, which corresponds to 0.8 of power.  
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Table 3 - Comparative Table of Type I Error, Type II Error, and Power 

  

Null Hypothesis 

Correct Wrong 

Decision 
Fail to Reject the Null Hypothesis   Type II Error (β) 

Reject the Null Hypothesis Type I Error (α) Power 

 

Power increases when a sample size increase, effect size increases, and when alpha 

decreases. The relation can be seen in the Figure 7 below.  

 

Figure 7 - The Relation between Sample Size, Effect Size and Power. (Adapted from         

Krzywinski and Altman, 2013 [54])     

 

Cohen [55] listed numerous sample size equations and tables for different cases including 

different statistics, confidence, and the number of factors. For the determination of the 

paired t-test, significance level (α), power (p), and effect size (d) must be specified first. 

Once they are decided, a recommended sample size can be found on the sample table [55]. 
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The level of significance (α) is called Type 1 Error and it is equal to one minus confidence. 

For instance, the confidence level of 95% corresponds to the level of confidence of 0.05.  

In the application to sampling size determination, an effect size must be estimated based on 

a general understanding of the particular area. Thus, it varies area by area and feature by 

feature. Larger d means a larger probability of largely different responses from different 

groups. In the paired t-test, the effect size is marked as dz’ that is supposed to be equal to 

𝑚𝑧

𝜎𝑧
 , where Z = X – Y and X and Y are a pair. When referencing the sample size table to find 

the value d in the reference book, it should be multiplied by √2. That is, 𝑑 =  𝑑𝑧’√2. 

For alpha, a typical value of 0.05 is used, which corresponds to a 95% confidence level. 

For a power, a moderate value of 0.8 is used. In the research, the moderate value 0.5 is 

used for an initial value. Thus, d is approximately 0.7. If the effect size attained during the 

pilot experiment is far smaller than the initial value, it may be adjusted to reduce the 

sample size.  

With inputs, the needed sample size can be attained in the table of the reference book [55].  

To achieve a 95% significance level and 80% power, at least 34 samples are needed.
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4.4 Description of Input Files 

Descriptions of the input files used for the four different experiments are mentioned in the 

following section 4.4.1 and 4.4.2. In the 4.4.2, the selection of input files is compared to 

the condition of Great Energy Predictor Shootout I. 

 

4.4.1 Input Files for Pattern Observation 

For the pattern observation, both synthetic and actual data are used. (See the Table 2 for 

details). The actual energy consumption data is from the Texas A&M University main 

campus is used. The data is provided by the utility office.  

 

4.4.2 Input files for Determination of the SVM Implementation Settings, Investigation 

on the Influence of Different Independent Variables, and Comparative Study 

Energy consumption data of buildings on Texas A&M University main campus is used. 

The data is provided by the utility office. The data is provided by the utility office. The 

energy use data is measured on an hourly basis. Daily data and monthly data are derived by 

summing these hourly records. In this research, monthly consumption is normalized by 

rearranging it daily. This effectively prevents the different number of days of the month 

from biasing the result. Similar to the Great Energy Predictor Shootout I, the data from the 

earlier period is used for training, and the data from the later period is used for testing. 

Whereas four months of data were used for training and two months of data were used 

testing in the Great Energy Predictor Shootout I, twice longer periods of data are used for 

both training and testing in this study. Specifically, one year of data, from 1 February 2018 
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to 31 January 2019 is used for training, and four months of data, from 1 February 2019 to 

31 May 2019, are used for testing Apparent outliers during the training period are removed 

as needed. Testing data is used mostly for SVM models because it is a typical practice of 

checking the possibility of overfitting, which happens when a machine-learning algorithm 

reduces the error by aimlessly memorizing the data for the training period, not by learning 

the patterns of the data. However, there is a limit to this method. The actual energy use of 

buildings does not always neatly follow the pattern that they showed during the training, or 

baseline period. Hence, there is a chance that even if the machine-learning algorithm 

captures the patters of the data of the training period, it can give far worse results during 

the test period. Fortunately, except for the experiment for the comparative study with 

MLR, most of the SVM experiments conducted in the study use only one independent 

variable. This means that whether the SVM-trained models make sense or not can be 

checked quite accurately just by using eyes because what patterns the SVM algorithm 

generates is seen on a two-dimensional plot.  

 

Dependent Variables: Energy Use 

Two types of energy are used as a dependent variable of the experiment: chilled water 

(CHW) and heating hot water (HHW). Both CHW and HHW energy are calculated by the 

product of the water flow rate and the temperature difference between the inlet and outlet 

of the water system.  

Most buildings on Texas A&M campus use chilled water for cooling and heating how 

water for heating. In general, each building has one CHW meter and one HHW meter for 
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its own, but some buildings share the same CHW and HHW meter and other buildings 

have more than one CHW or HHW meter per building.  

 

Independent Variables: Weather data 

Whereas the outdoor air dry-bulb temperature, absolute humidity ratio, wind speed, and 

horizontal insolation are given to the contestants Great Energy Predictor Shootout I, this 

study is conducted using smaller numbers of independent variables: outdoor air dry-bulb 

temperature (OAT) and dewpoint temperature (DPT). The hourly OAT and DPT data in 

the Easterwood Airport, College Station, TX, obtained from the National Center for 

Environmental Information is used. The daily and monthly OAT and DAT are generated 

by combining the hourly data. The OAE and OEE data are generated based on OAT and 

DPT. Table 4  is the list of the samples used.  

Table 4 - Sample Table for Experiments 

No. 
TAMU 

BLDG# 
Building Name 

Bldg. 

Typea 

Meter 

ID  

Energy  

Type 

Experiment Type 

DISb IIDc 
CSd 

MLR CPLR 

1 275 
Liberal Arts and Arts & 
Humanities Building 

O 7717 HHW   O   O 

2 291 Rudder Residence Hall D 2132 CHW   O O O 

3 325-385 
CE TTI Office & Lab 

Building 
O 

9123 CHW O O O O 

9124 HHW   O   O 

4 353 Bright Aerospace Building O 
2746 CHW O O O O 

2757 HHW   O   O 

5 358 
Davis Football Player 

Development Center 
G 7699 CHW O O O O 

6 359-432 Architecture Building B&C O 
6419 CHW O O O O 

6423 HHW O O   O 

7 376 
Chemistry Building 
Addition 

L 7119 HHW O O   O 

8 383 Koldus Building O 2863 CHW O O O O 

9 384 
Sanders Corps of Cadets 

Center 
G 

2583 CHW   O O O 

2587 HHW   O   O 

10 386 
Jack E. Brown Chemical 
Engineering Building 

L 
2250 CHW O O O O 

2254 HHW   O   O 

11 387 
Richardson Petroleum 

Engineering Building 
L 5805 CHW   O O O 
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Table 4 Continued 

No. 
TAMU 

BLDG# 
Building Name 

Bldg. 

Typea 

Meter 

ID  

Energy  

Type 

Experiment Type 

DISb IIDc 
CSd 

MLR CPLR 

12 394 Underwood Residence Hall O 2117 CHW   O O O 

13 405 Lacy Hall - Dorm 6 D 
7918 CHW   O O O 

7789 HHW   O   O 

14 405-407-1402  

Lacy Hall - Dorm 6, 

Harrell Hall and Leadership 
Learning Center 

D 

7722 CHW O O O O 

7723 HHW   O   O 

7919 HHW O O   O 

15 408 Whitely Hall - Dorm 9 D 10036 HHW   O   O 

16 420 Milner Hall O 9146 HHW   O   O 

17 425 Henderson Hall O 2611 HHW   O   O 

18 426-427-428 FHK Complex D 
2848 CHW O O O O 

2859 HHW O O   O 

19 435 
Harrington Education 

Center Office Tower 
O 2796 HHW   O   O 

20 436 Reed-McDonald Building L 2423 HHW O O   O 

21 443 
Oceanography & 
Meteorology Building 

O 6392 HHW O O   O 

22 444 Peterson Building L 
2922 CHW   O O O 

6435 HHW   O   O 

23 445 Teague Research Center O 6415 HHW   O   O 

24 449 
Biological Sciences 

Building – West 
L 

3981 CHW   O O O 

3985 HHW O O   O 

25 454 MSC G 
7584 CHW   O O O 

7585 HHW O O   O 

26 468 Evans Library G 

3895 CHW O O O O 

3903 CHW   O O O 

3899 HHW O O   O 

27 473 
Williams Administration 

Building 
O 7947 HHW   O   O 

28 476 Francis Hall O 8034 HHW O O   O 

29 477 Anthropology Building L 3668 HHW   O   O 

30 478 Scoates Hall L 
7968 CHW O O O O 

7969 HHW O O   O 

31 483 Thompson Hall L 3891 HHW O O   O 

32 484 Chemistry Building L 

7028 CHW O O O O 

7223 CHW O O O O 

7227 HHW O O   O 

33 492 Civil Engineering Building L 5950 CHW   O O O 

34 496 
Utilities & Energy Services 
Central Office 

G 6933 HHW   O   O 

35 508-1026 
Veterinary Teaching 

Hospital 
E 4166 CHW   O O O 

36 513 Doherty Building L 2898 CHW   O O O 

37 517 DPC Annex E 6563 CHW O O O O 

38 520 Beutel Health Center G 3933 CHW   O O O 

39 682 
Wisenbaker Engineering 

Research Center 
L 3879 CHW O O O O 

40 1085 
Veterinary Small Animal 
Hospital 

E 
3656 CHW   O O O 

3660 HHW O O   O 

41 1146 Biological Control Facility L 5887 CHW   O O O 

42 1156 
Physical Plant 

Administration & Shops 
G 7683 HHW   O   O 

43 1184 
Veterinary Anatomic 

Pathology 
E 6999 HHW O O   O 
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Table 4 Continued 

No. 
TAMU 

BLDG# 
Building Name 

Bldg. 

Typea 

Meter 

ID  

Energy  

Type 

Experiment Type 

DISb IIDc 
CSd 

MLR CPLR 

44 1501 Kleberg Center L 
2624 CHW   O O O 

2628 HHW   O   O 

45 1502 Heep Center L 2603 HHW O O   O 

46 1503 Cater-Mattil Hall L 8001 CHW   O O O 

47 1504 
Reynolds Medical Sciences 
Building 

L 
3989 CHW O O O O 

3993 HHW   O   O 

48 1506 
Horticulture-Forest Science 

Building 
L 3967 CHW O O O O 

49 1507 
Biochemistry-Biophysics 
Building 

L 3025 CHW   O O O 

50 1508 
Price Hobgood Ag. 

Engineering Research Lab 
L 6005 CHW   O O O 

51 1513 
Borlaug Center for 
Southern Crop 

Improvement 

L 
5936 CHW   O O O 

5895 HHW   O   O 

52 1530 
Interdisciplinary Life 

Sciences Building 
L 6290 CHW   O O O 

53 1537 

Wildlife Fisheries & 

Ecological Sciences 

Building 

E 
9983 CHW   O O O 

9984 HHW   O   O 

54 1600 Gilchrist TTI Building O 2649 CHW   O O O 

55 1611 
Engineering Research 

Building 
E 8467 HHW   O   O 

56 1800 General Services Complex O 5472 HHW   O   O 

57 1811 
Vet Med Research Bldg 
Addition 

L 6706 CHW   O O O 

58 1904 
Texas A&M Institute for 

Preclinical Studies A 
E 6366 HHW   O   O 

59 1911 
Multi-Species Research 
Building 

E 
9129 CHW   O O O 

9133 HHW   O   O 

 

a: Building Types: D - Dorms/Residence Hall , G – General/Dining/Sport, L – Lab/Classroom, O – Office/Classroom, E- 

Others 

b: Determination of SVM Implementation Settings 

c: Investigation on the Influence of Different Independent Variables  

d: Comparative Study  
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CHAPTER V RESULTS ANALYSIS AND DISCUSSION 

The experiment was conducted as described in Chapter 4. For SVM regression pattern 

observation, synthetic data have been used mostly. For the determination of the SVM 

implementation settings, investigation on the influence of different independent variables, 

and comparative study, the actual building energy data has been used. (See Table 4).  

 

5.1 Determination of SVM Implementation Settings  

The performance of the exhaustive grid search (EGS) method and the one-dimensional grid 

search with recommended input values (ODGS) method are compared in terms of 

forecasting capacity and running time. The comparison of forecasting capacity is carried 

out both for the training dataset and testing data set. This is needed due to the nature of 

machine learning that can result in overfitting. More specifically, even if both methods 

achieve the same level of accuracy for the given training data set, the way they fit the 

model may be quite different. If that is the case, they will achieve a different level of 

accuracy when they are tested with a testing data set. In the testing data part, the 

comparison of the running time is excluded because it is the training stage that takes up a 

significant portion of the time.  

In addition to the issue of accuracy and efficiency, how each method has selected a set of 

hyperparameters is reviewed as well as the resultant number of support vectors. This 

information may reveal how the SVM performance is sensitive to the choice of 

hyperparameters. The number of samples is 32. The half of the sample, 16, are attained 

from CHW consumption data having OAT as input. The other half of the sample is 
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obtained from HHW consumption having OAT as input. (See TABLE 5) The results are 

shown in the graphs below. 

1) Training Data 

 

Figure 8 - Comparative Performance between EGS and ODGS (CV) 

 

 

Figure 9 - Comparative Performance between EGS and ODGS (R2) 
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Figure 10 - Comparative Performance between EGS and ODGS (running time, sec) 

 

2) Testing Data 

 

Figure 11 - Comparative Performance between EGS and ODGS (CV) 
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Figure 12 - Comparative Performance between EGS and ODGS (R2) 

 

3) The result of hyperparameter selection 

The combination of hyperparameters selected by the two tuning methods and the number 

of support vector for each case are listed in the Table 5 below. 

Table 5 - Hyperparameters and the Number of Support Vector from EGS and ODGS 

SP  

No 

Bldg 

No. 

Meter  

ID 

Eng  

Type 

EGS ODGS Same? * 

ɛ [2ɛ] C [2C] [2γ] nSV ɛ [2ɛ] C [2C] [2γ] nSV ɛ C γ nSV 

1 325-385 9123 CHW -4 14 -3 280 -4 -2 0 282 Y N N N 

2 353 2746 CHW -2 12 -3 168 -2 5 -1 166 Y N N N 

3 358 7699 CHW -3 13 1 141 -4 -2 -1 246 N N N N 

4 359-432 6419 CHW -2 3 -2 110 -2 4 -2 109 Y N Y N 

5 383 2863 CHW -2 0 -1 137 -2 2 -1 138 Y N Y N 

6 386 2250 CHW -3 8 1 158 -3 5 1 154 Y N Y N 

7 405-407-1402 7722 CHW -3 3 0 157 -3 5 0 158 Y N Y N 

8 426-427-428 2848 CHW -3 11 0 145 -3 13 -3 147 Y N N N 

9 468 3895 CHW -2 2 -2 159 -4 -1 -1 298 N N N N 

10 478 7968 CHW -9 -2 -1 359 -4 -1 -1 284 N N Y N 
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Table 5 Continued 

SP  

No 

Bldg 

No. 

Meter  

ID 

Eng  

Type 

EGS ODGS Same? * 

ɛ [2ɛ] C [2C] [2γ] nSV ɛ [2ɛ] C [2C] [2γ] nSV ɛ C γ nSV 

11 484 7028 CHW -4 -1 2 230 -4 3 0 231 Y N N N 

12 484 7223 CHW -4 -1 2 221 -4 14 0 218 Y N N N 

13 517 6563 CHW -2 14 1 136 -2 8 -1 133 Y N N N 

14 682 3879 CHW -3 4 -2 198 -3 0 -2 202 Y N Y N 

15 1504 3989 CHW -4 1 1 293 -4 11 -2 291 Y N N N 

16 1506 3967 CHW -4 13 1 269 -6 0 -1 342 N N N N 

17 359-432 6423 HHW -4 15 -7 237 -7 6 -3 335 N N N N 

18 376 7119 HHW -2 7 -1 183 -2 4 0 181 Y N N N 

19 405-407-1402 7919 HHW -2 15 -5 151 -7 8 -3 346 N N N N 

20 426-427-428 2859 HHW -7 2 -4 339 -3 2 -4 116 N Y Y N 

21 436 2423 HHW -2 15 -7 103 -2 3 -2 100 Y N N N 

22 443 6392 HHW -3 2 -3 213 -3 0 -2 206 Y N N N 

23 449 3985 HHW -14 1 0 306 -8 2 -5 297 N N N N 

24 454 7585 HHW -9 15 -5 351 -3 5 -1 139 N N N N 

25 468 3899 HHW -2 5 -2 191 -2 2 -2 196 Y N Y N 

26 476 8034 HHW -4 15 -5 189 -3 8 -4 150 N N N N 

27 478 7969 HHW -15 8 -5 355 -1 4 -2 58 N N N N 

28 483 3891 HHW -7 12 -6 297 -3 5 -1 133 N N N N 

29 484 7227 HHW -11 9 -2 358 -3 4 -3 151 N N N N 

30 1085 3660 HHW -4 15 -9 247 -5 3 -4 297 N N N N 

31 1184 6999 HHW -2 5 0 86 -2 9 -1 86 Y N N Y 

32 1502 2603 HHW -2 15 -11 219 -2 12 -9 220 Y N N N 

*Y: Yes, N: No 

 

Conclusion of the comparison 

The ODGS has shown nearly the same performance as EGS in both training data set and 

testing data set for significantly less time. This result implies two significant clues. First, 

ODGS would be much more useful at least for the condition in which this research is. 

Second, the performance of SVM for this research may not be much sensitive to the 

selection of hyper-parameters compared to other applications. This is different from a 

general understanding of SVM, the performance of which is highly sensitive to the 

combination of a set of hyperparameters. This difference may be attributed to the fact that 
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the regression condition for this research is quite simple. Only a single attribute is used as 

an input for one regression. Another possible reason could be the number of training data 

set, which is at most 365. This number may not be said small, but also cannot termed 

substantial.  

Despite the result, it may be too early to state that the ODGS is always a better choice 

because the case is limited and the space between grids is also limited to the scale of log 

base 2. However, the result would be strong enough to use ODGS as a default option at 

least for the application of this research.  

 

5.2 SVM Regression Pattern Observation  

The plots in Appendix C show how SVM confronts different patterns of data, such as ideal 

linear, noisy linear, piecewise linear, scattering, and so on. For some portion of data, two 

different data frequencies, daily and monthly, are considered separately. This section 

reviews the SVM regression pattern observation results. 

 

5.2.1 Linear Patterns 

Two different kernel functions, linear and RBF, are used for comparative purposes. Even 

when the data set is linear, the performance of RBF kernel SVM is close to that of linear 

SVM. When the given data is perfectly linear, the regression plot from RBF kernel SVM is 

also almost linear to that extent that it is nearly impossible to distinguish it from the plot of 

linear SVM. When noise is imposed, the linearity of RBF kernel SVM is weakened, but it 

still maintains its linear form fairly well with a large noise. Thus, unless there is a specific 
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reason to constrain the SVM regression plot to a line, using the RBM kernel SVM for 

linear data would not be a problem.  

 

How RBF kernel SVM generates a line 

The regression plot made from RBF kernel SVM shows a slightly bumped shape even on 

the part where the given data is perfectly linear. This implies how RBF kernel SVM makes 

a line. This phenomenon can be understood by examining the mathematical representation 

of RBF kernel SVM regression.  

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑒−𝛾‖𝒙−𝒙𝒊‖

2𝑁
𝑖=1 + 𝑏 (EQ. 25) 

N is a total number of data set used for SVM training, i represents the index for the training 

data set, and thus, xi represents the ith training dataset. x represents a new data set. If the 

ith data set xi is not a support vector, the corresponding coefficient parts (𝛼𝑖 − 𝛼𝑖
∗) 

becomes zero. Thus, the number of remaining exponential function, which is symmetrical 

about xi, is the same as that of the support vector. By examining the equation, it is clear 

that the exponential part generates the bump in the regression plot. This can be intuitively 

understood by using a graph with simplified parameter settings for the RBF kernel SVM 

function. For instance, let us assume that there are three support vectors and that the 

number of independent variables for the dataset is just one, that x and xi can remain as 

scalar with x1, x2, and x3 being 1, 3, and 6, respectively. If the (𝛼𝑖 − 𝛼𝑖
∗) corresponding to x1, 

x2, and x3 are one, b is zero, and γ is one, the regression model takes the following 

mathematical representation, and the corresponding plot is as follows.    
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𝑓(𝑥) = 𝑒−(𝑥−1)
2
+ 𝑒−(𝑥−3)

2
+ 𝑒−(𝑥−6)

2
 (EQ. 26) 

 

Figure 13 - Graph of a Combination of Exponential Functions 1 

As stated above, the number of bumps corresponds to that of support vectors. In addition, 

the center of each bump corresponds to the location of each support vector. Upon 

observing the plot and mathematical representation, it can be deduced how RBF kernel 

SVM regression forms linear or flat patterns. The RBF kernel SVM regression is formed 

by a group of spikes, which is formed by the corresponding support vectors. To make a flat 

line out of spikes, the logical approach is to increase the number of spike for a given data 

range. That is equivalent to increase the number of support vector. For example, increasing 

the number of support vectors from three to six and having them equally spaced by one 

while keeping other conditions same, the equation takes the following mathematical form, 

and the corresponding plot is as follows.  
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𝑓(𝑥) = 𝑒−(𝑥−1)
2
+ 𝑒−(𝑥−2)

2
+ 𝑒−(𝑥−3)

2
+ 𝑒−(𝑥−4)

2
+ 𝑒−(𝑥−5)

2
+ 𝑒−(𝑥−6)

2
 (EQ. 27) 

 

Figure 14 - Graph of a Combination of Exponential Functions 2 

However, there is another aspect to consider. That is computational efficiency. More 

support vectors mean more computational cost because it makes the mathematical 

representation of SVM regression longer. Given a linear-patterned data set, RBF kernel 

SVM takes much more support vector than linear SVM does. This is confirmed in Figure 

C1 and Figure C15 where the number of support vector is displayed. To perform what 

appeared to be the same task, RBF kernel SVM needed 350 support vectors whereas the 

linear SVM used just two support vectors.  

 

5.2.2 Piecewise Linear Patterns 

When the data is ideally clean or have just a little noise, SVM regression models show two 

distinct pieces. As the noise is larger, it becomes closer to a curve. Compared to the case 

with daily data, when performance from monthly input data is inconsistent and more 

affected by noise. This characteristic may or may not be advantageous for building energy 

baseline modeling. If a building is certainly supposed to take a piecewise pattern, this will 

be disadvantageous, generating a false impression of how the building consumes energy 

0

1

2
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regardless of its reported performance. On the contrary, if the energy-use pattern of 

buildings does not necessarily need to be constrained by a connection of lines and if they 

follow or are close to a curved one, this trait would be useful, successfully visualizing a 

pattern that cannot be realized by the piecewise linear regression models. 

 

5.2.3 Daily vs Monthly  

SVM from daily data (365 data points) shows much more robust results than monthly data 

(12 data points), not easily distracted by noise. This is because more input means more 

hints about what a regression plot is supposed to look like. Even if a data point fall under a 

category considered a noise range, it may still help to prevent the SVM algorithm from 

making worse prediction unless the data is severely outrageous. The 365 points of a single 

attribute input appear to be sufficient for SVM to show a stable performance unless the 

noise is severe whereas 12 points of monthly data could lose its way even with a moderate 

noise level.  

 

5.2.4 Scattered Patterns 

When scattered input is given to SVM, it is more likely to lose its way and make a 

complex shape than it is under other cases. This demonstrates that SVM would not be a 

good option if the portion of scattering is large enough to blur the distinctness of the data 

pattern.  
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5.2.5 Break Point patterns 

Data with breakpoints have some scattering potions in the middle part. Despite its 

weakness to scattering input stated above, it made sense of the given data and generated a 

plot that smoothly goes through the middle of the scattering. From a different perspective, 

it demonstrates that the breakpoint pattern is distinct enough for the SVM algorithm not to 

lose its way despite the scattering.  

 

5.2.6 Scheduled Patterns 

When the given data set is schedule-dependent, but SVM does not have a schedule as an 

input attribute, it demonstrates much lower performance than the case with the schedule 

input, or lose its way. Since SVM is supervised learning, without guidance in the form of 

input attributes, it has no way to catch the schedule by itself.  

 

5.2.7 Hourly Data 

Hourly data has more data points, 8760, than daily or monthly data, and has thick patterns. 

However, SVM has no problem making sense of the pattern and generating a meaningful 

plot. This is in line with the previous observation that SVM from daily data shows more 

robust performance confronting noise than the monthly counterpart. This demonstrates that 

when the number of data points increases, SVM is less like to lose its way. 
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5.3 Investigation on the Influence of Different Independent Variables   

Experiments have been conducted to understand the influence of different inputs on SVM 

performance. Daily data and monthly data were considered separately. According to the 

typical format of machine-learning performance indication, both training period 

performance and testing period performance were recorded. The significance was checked 

with paired t-test in terms of both CV and R2  

 

5.3.1 Daily 
 

The Table 6 and Table 7 are the result of attribute study for daily data. Relevant SVM 

regression plots are listed in the Appendix. D.1. As the regressor of CHW changed from 

OAT through OAE and OEE to OAT+DPT, the performance slightly increased. The 

CHW-OAT data set resulted in the most varying shape of the SVM regression plot 

whereas the other three data set resulted in more consistent and simpler SVM regression 

forms. This variety of SVM regression plots from the CHW-OAT dataset would be mostly 

caused by humidity, another important factor of CHW use. The simpler and consistent 

forms from CHW-OAE and CHW-OEE compared to the CHW-OAT dataset would be an 

indication that they can be a good predictor of CHW use by themselves. Although the 

mean difference in performance between CHW-OAE and CHW-OEE was just 0.5% in CV 

and 0.004 in R2, the plot from CHW-OEE appears cleaner in general. In addition, whereas 

many plots from CHW-OAE are closer to a smoother version of the piecewise linear 

regression model, many of those from CHW-OEE are close to a linear pattern. That would 

the reason why the small difference was shown to be significant by the paired t-test. 

Although most CHW-OAT data sets became more stable in the corresponding CHW-OAE 
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and CHW-OEE plots, there are two exceptional cases, which are sample No. 6 and No. 7. 

Even when the predictors changed to OAE or OEE, the data patterns were not stabilized, 

and SVM also generated complex forms. The reason is unclear due to the limited 

information available. It may or may not be improved with modified SVM implementation 

settings. At least it teaches that switching the predictor from OAT to OAE or OEE does not 

always lead to a more stable data distribution although it does in most cases.  

When it comes to OAT+DPT although it demonstrated the highest performance, its 

feasibility would be limited for the two reasons. First, the shape of the model is difficult to 

understand intuitively because it takes two independent variables. This may cause the 

implementer to hesitate to choose despite the highest performance. Second, humidity is not 

free from the chance of collinearity with temperature, thus likely to give optimistically 

biased information.  

Although the SVM regression from HHW-OAT data demonstrated less performance than 

CHW-OAT in terms of CV and R2, they appear to take simpler forms than CHW-OAT. 

For instance, whereas many SVM plots from CHW-OAT have abruptly changed slope in 

the extreme range of OAT, it is often not the case with HHW-OAT plots. Compared to 

CHW-OAT, SVM generated more clean curved models. As stated above, such a complex 

form from CHW-OAT data can be attributed to the influence of humidity, which does not 

matter with the use of HHW. Hence, comparing CHW-OEE with HHW-OAT in this 

regard, there is still a noticeable difference. Whereas linear SVM plots are dominant in the 

CHW-OEE plots, curved plots are dominant in the HHW-OAT plots. 
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Table 6 - The Result of SVM Regression with Different Input Attributes (Daily) 

  Training Period Performance Testing Period Performance 

Energy Input Attributes CV R2 CV R2 

CHW OAT 12.2% 0.938 18.2% 0.871 

CHW OAE 11.2% 0.941 16.9% 0.880 

CHW OEE 10.7% 0.945 16.2% 0.889 

CHW OAT + DPT 9.32% 0.958 15.34% 0.896 

HHW OAT 19.52% 0.903 25.89% 0.884 

 

Table 7 - The Comparison among of SVM Regressions with a Single Input Attribute 

(Daily) 

  Energy 
Training (Baseline) Period Performance 

Paired  
t-test 

Testing Period Performance 
Paired  
t-test 

CV R2 CV R2 - CV R2 CV R2 - 

1 CHW 
OAT OAE 

95% 

Confidence? 
OAT OAE 

95% 

Confidence? 

12.2% 0.938 11.2% 0.941 CV 18.2% 0.871 16.9% 0.880 None 

2 CHW 
OAT OEE 

95% 

Confidence? 
OAT OEE 

95% 

Confidence? 

12.2% 0.938 10.7% 0.945 CV 18.2% 0.871 16.2% 0.889 CV, R2 

3 CHW 
OAE OEE 

95% 
Confidence? 

OAE OEE 
95% 

Confidence? 

11.2% 0.941 10.7% 0.945 CV, R2 16.9% 0.880 16.2% 0.889 CV, R2 

 

 

5.3.2 Monthly 

The Table 8 and Table 9 are the result of attribute study for monthly data. Relevant SVM 

regression plots are listed in the Appendix. D.2. The performance of regressing the use of 

CHW increased as the regressor changed from OAT to OAE and from OAT to OEE. 

However, there is no significant difference in performance between the use of OAE and 

that of OEE as a regressor. Unlike the case with daily data, the performance with 

OAT+DPT is the worst. By observing the plots, it is clear that, contrary to the SVM plot 

from daily data, there are no noticeable differences among the plots with different 

regressors. Most of them take loosely linear forms and a few of them appear to lose their 
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way slightly. There may be two reasons for this. First, the pattern of original data is 

supposed to be simple because there is a chance that the impact of weekdays/weekends 

scheduled or other unidentified, yet existing schedule-dependent patterns might have been 

averaged out, causing the corresponding the pattern of monthly consumption to be simpler 

in terms of the regressors. Second, the number of data is not large enough for the SVM 

algorithm to effectively catch the actual pattern. This issue continues to be handled in the 

next part, comparative study.  

Table 8 - The Result of SVM Regression with Different Input Attributes (Monthly) 

  Training Period Performance Testing Period Performance 

Energy Input Attributes CV R2 CV R2 

CHW OAT 8.0% 0.973 14.2% 0.971 

CHW OAE 5.4% 0.987 12.8% 0.978 

CHW OEE 5.4% 0.985 12.4% 0.977 

CHW OAT + DPT 5.27% 0.983 13.40% 0.966 

HHW OAT 19.52% 0.903 25.89% 0.884 

 

Table 9 - The Comparison among of SVM Regressions with a Single Input Attribute 

(Monthly) 

  Energy 
Training (Baseline) Period Performance 

Paired  

t-test 
Testing Period Performance 

Paired  

t-test 

CV R2 CV R2 - CV R2 CV R2 - 

1 CHW 
OAT OAE 

95% 

Confidence? 
OAT OAE 

95% 

Confidence? 

8.0% 0.973 5.4% 0.987 CV, R2 14.2% 0.971 12.8% 0.978 None 

2 CHW 
OAT OEE 

95% 
Confidence? 

OAT OEE 
95% 

Confidence? 

8.0% 0.973 5.4% 0.985 CV, R2 14.2% 0.971 12.4% 0.977 CV 

3 CHW 
OAE OEE 

95% 

Confidence? 
OAE OEE 

95% 

Confidence? 

5.4% 0.987 5.4% 0.985 None 12.8% 0.978 12.4% 0.977 None 
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5.4 Comparative Study  

The performance of SVM was compared to that of multiple linear regression and change 

point linear regression. Daily data and monthly data were considered separately. As in the 

same way as chapter 5.4, both training period performance and testing period performance 

were recorded. The detailed record of performance for each building and meter is listed 

below. The significance was checked with paired t-test in terms of both CV and R2 

 

5.4.1 Multiple Linear Regression Model 

With daily data, SVM showed better performance in almost all sample buildings. With 

monthly data, although SVM still showed better performance, the difference in 

performance reduced and some sample buildings did not demonstrate better results with 

SVM. The difference in performance is thought to be caused by the constraint MLR has. 

Although MLR has better performance than simple linear regression, it is still limited to a 

linear expression. Because of the decreased performance in the monthly application, it 

would be reasonable to state that monthly data has less of a problem being described as 

linear. 

 

5.4.1.1 Daily Data 

The Table 10, Figure 15 and Figure 16 are the results of the attribute study for daily data. 

Relevant SVM regression plots are listed in the Appendix. D.1. 
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Table 10 - Mean Difference in Performance between SVM and MLR (Daily) 

  

Training (Baseline) Period Performance Testing Period Performance 

SVM MLR 95%  

Confidence? 

SVM MLR 95%  

Confidence? 
Energy Regressor CV R2 CV R2 CV R2 CV R2 

CHW OAT + DPT 9.3% 0.958 16.1% 0.896 CV, R2 15.3% 0.896 24.3% 0.797 CV, R2 

 

 

Figure 15 - SVM vs MLR for Training (Baseline) Period Performance (Daily) 

 

 

 

Figure 16 - SVM vs MLR for Testing Period Performance (Daily) 
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Results Based on Building Type 

The difference in performance is arranged in terms of building types. 

 

Table 11 - Difference in Performance between SVM and MLR for the Training period 

(Daily) 

  
Performance Difference* 

R2 CV 

Dorms/Res Hall  0.050 5.74% 

General/Dining/Sport  0.066 5.28% 

Lab/Classroom  0.066 8.16% 

Office/Classroom  0.064 4.86% 

Others 0.052 6.56% 

*SVM showing higher performance is indicated positive. 

 

Table 12 - Difference in Performance between SVM and MLR for the Testing Period 

(Daily) 

  

Performance Difference* 

R2 CV 

Dorms/Res Hall  0.014 1.54% 

General/Dining/Sport  0.010 1.07% 

Lab/Classroom  0.020 3.34% 

Office/Classroom  0.019 2.51% 

Others 0.017 3.35% 

*SVM showing higher performance is indicated positive. 
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5.4.1.2 Monthly Data  

The Table 13, Figure 17, and Figure 18 are the result of attribute study for daily data. 

Relevant SVM regression plots are listed in the Appendix. D.2. 

Table 13 - Mean Difference in Performance between SVM and MLR (Monthly) 

  

Training (Baseline) Period Performance Testing Period Performance 

SVM MLR 95%  
Confidence? 

SVM MLR 95%  
Confidence? 

Energy Regressor CV R2 CV R2 CV R2 CV R2 

CHW OAT + DPT 5.3% 0.983 7.3% 0.970 CV, R2 13.4% 0.966 15.8% 0.950 CV 

 

 

Figure 17 - SVM vs MLR for Training (Baseline) Period Performance (Monthly) 

 

 

Figure 18 - SVM vs MLR for Testing Period Performance (Monthly) 
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Results Based on Building Type 

The difference in performance is arranged in terms of building types. 

 

Table 14 - Difference in Performance between SVM and MLR for the Training Period 

(Daily) 

  

Performance Difference* 

R2 CV 

Dorms/Res Hall  0.073 4.50% 

General/Dining/Sport  0.092 6.78% 

Lab/Classroom  0.108 9.25% 

Office/Classroom  0.106 14.31% 

Others 0.092 8.50% 

*SVM showing higher performance is indicated positive. 

 

Table 15 - Difference in Performance between SVM and MLR for the Testing Period 

(Daily) 

  

Performance Difference* 

R2 CV 

Dorms/Res Hall  -0.026 -0.38% 

General/Dining/Sport  0.071 1.23% 

Lab/Classroom  0.031 2.64% 

Office/Classroom  -0.030 2.76% 

Others 0.045 3.45% 

*SVM showing higher performance is indicated positive. 
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5.4.2 Change Point Linear Regression Model 

 

Daily 

Table 16 is the summary of the comparative study with CPLR (4P) regression with daily 

data.  

 

Table 16 - Summary of SVM vs CPLR Performance for Daily data 

  

Training (Baseline) Period Performance Testing Period Performance 

SVM CPLR (4P) 95%  

Confidence? 

SVM CPLR (4P) 95%  

Confidence? 
Energy Regressor CV R2 CV R2 CV R2 CV R2 

CHW OAT 12.2% 0.938 13.1% 0.930 CV, R2 18.2% 0.871 17.7% 0.872 CV 

CHW OAE 11.2% 0.941 11.4% 0.940 CV, R2 16.9% 0.880 17.2% 0.878 CV 

CHW OEE 10.7% 0.945 10.9% 0.944 CV, R2 16.2% 0.889 16.3% 0.889 None 

HHW OAT 19.5% 0.903 20.1% 0.897 CV, R2 25.9% 0.884 26.6% 0.879 CV, R2 

 

SVM shows slightly better performance in all the experiments for training (or baseline) 

period. This is somewhat expected results because SVM is an algorithm, which is designed 

in a way to fit the given data without any constraint on what the regression plot is supposed 

to look like as opposed to CPLR being constrained to a connection of two lines. Examining 

each case closely demonstrates that the SVM regression plots that have a form that is 

difficult to be described by CPLR tend to show relatively larger performance differences 

than others do. Such a form includes curved patterns and ones having an abrupt change in 

slope in the extreme range of regressor. 

What should be noted with CHW is that, as the regressor changes from OAT through OAE 

to OEE, the difference in performance during the baseline period is reduced. In other 



79 

 

words, as the regressor changes in such an order, the CHW patterns becomes closer to the 

shape that is effectively described by CPLR. 

In the testing data, CPLR demonstrates a better result when it fits CHW with OAT 

although the performance assessed by R2 has not passed the paired t-test. SVM showed 

marginally better performance with the CHW-OAE testing data set. This is not much 

different from the result form the training data. Thus, it can be guessed that the CHW 

pattern described by OAT is more likely to change than CHW described by OAE. In other 

words, it indicates the limit of using OAT as a regressor for predicting CHW.  

In the cases of OEE, although SVM shows marginally better performance in the training 

(baseline) period, there is no significant difference between the two when they were 

assessed with the training data set. Neither CV nor R2 has passed the paired t-test. This will 

be more intuitively understandable as the plots are generated by both of them (See 

Appendix. D.1.3). Many of CHW-OEE data take clean linear patterns, and a significant 

portion of SVM and CPLR overlaps to the extent that it would be difficult to distinguish 

one from the other. This demonstrates how powerful OEE is as a regressor of CHW. 

HHW-OAT is the only case where SVM showed better performance in terms of CV and R2 

in both training period performance and testing period performance. As stated in Chapter 

5.4, SVM plots from HHW-OAT data are characterized by dominant portions of the clean 

curve. Judging from the even better performance in the testing period, it may not be by 

chance that the original data during the training period appears to be a curve. Rather, it 

would not be unreasonable to assume that the curve generated by SVM actually may be 

closer to the pattern those buildings that actually consume HHW than a combination of 

two parts of the line.  
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Monthly 

Table 17 summarizes the comparative study with CPLR (4P) regression with monthly data.  

 

Table 17 - Summary of SVM vs CPLR Performance for Monthly Data 

  

Training (Baseline) Period Performance Testing Period Performance 

SVM CPLR (4P) 95%  
Confidence? 

SVM CPLR (4P) 95%  
Confidence? 

Energy Regressor CV R2 CV R2 CV R2 CV R2 

CHW OAT 8.02% 0.973 7.63% 0.977 CV 14.2% 0.971 12.4% 0.977 CV 

CHW OAE 5.38% 0.986 5.34% 0.987 None 12.8% 0.978 12.3% 0.979 None 

CHW OEE 5.44% 0.985 5.27% 0.987 R2 12.4% 0.977 12.2% 0.982 R2 

HHW OAT 8.4% 0.970 8.8% 0.970 None 22.0% 0.918 20.5% 0.935 CV, R2 
 

In almost all experiments, SVM showed worse performance than CPLR. More than half of 

the performance was significant, according to the paired t-test. This result is contrary to the 

case with daily data where SVM demonstrated better results in most cases although the 

degree of difference is marginal. Two things can be determined from this result. First, the 

number of input data for monthly baseline modeling, 12, is not enough for SVM to make 

sense of the pattern. This claim may be supported by the plot in the Appendix.D.2 where 

many SVM plots resemble a loosely drawn straight line when the corresponding CPLR 

generated two lines that have two distinctly different slopes. Second, cross-validation has a 

robust performance of preventing aimless fitting. Had the SVM algorithm and 

implementation settings been arranged in such a way that it focused only on minimizing 

errors aimlessly without concern for catching patterns, the training (baseline) period 

performance of SVM would have been higher than CPR in all cases. However, the 

opposite was observed. Although the reported performance is worse than CPLR in all 

cases except for HHW-OAT, it implies that cross-validation worked as intended.  
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5.4.2.1 Daily Data 

The Table 18 through Table 25, and Figure 19 through Figure 28 display the result of 

comparative study for daily data. Relevant SVM regression and CPLR(4P) are listed in the 

Appendix. D.1. 

Table 18 - Mean Difference in Performance between SVM and CPLR (4P) (CHW-OAT) 

(Daily) 

  

Training (Baseline) Period Performance Testing Period Performance 

SVM CPLR (4P) 95%  

Confidence? 

SVM CPLR (4P) 95%  

Confidence? 
Energy Regressor CV R2 CV R2 CV R2 CV R2 

CHW OAT 12.2% 0.938 13.1% 0.930 CV, R2 18.2% 0.871 17.7% 0.872 CV 

 

 

Figure 19 - SVM vs CPLR (4P) (CHW-OAT) for Training (Baseline) Period Performance 

(Daily) 

 

 

Figure 20 - SVM vs CPLR (4P) (CHW-OAT) for Testing Period Performance (Daily) 
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Table 19 - Difference in Performance between SVM and CPLR (4P) (CHW-OAT) for the 

Training Period (Daily) 

 
Sampl. 

No. 

Building  

No. 

Meter  

ID 

No. of 

data 

SVM CPLR (4P) Difference 
Remark (on SVM Model) 

 R2 CV R2 CV R2 CV 

 1 291 2132 338 0.963 9.4% 0.961 9.7% 0.002 0.3%   

 2 325-385 9123 355 0.946 12.5% 0.942 13.1% 0.004 0.5%   

 3 353 2746 317 0.857 13.5% 0.854 13.5% 0.003 0.0%   

 4 358 7699 362 0.970 10.4% 0.965 11.4% 0.005 0.9%   

 5 359-432 6419 362 0.939 8.3% 0.934 8.7% 0.005 0.3%   

 6 383 2863 362 0.912 13.7% 0.909 14.1% 0.003 0.4%   

 7 384 2583 361 0.926 8.0% 0.924 8.1% 0.002 0.1%   

 8 386 2250 357 0.963 11.6% 0.953 13.2% 0.010 1.6% wavering SVM regression model 

 9 387 5805 346 0.916 14.0% 0.909 14.6% 0.006 0.6%   

 10 394 2117 358 0.924 15.4% 0.924 15.1% 0.000 -0.3%   

 11 405 7918 360 0.954 11.4% 0.948 12.1% 0.006 0.6%   

 12 
405-407-

1402 
7722 358 0.967 11.5% 0.962 12.2% 0.004 0.7%   

 13 
426-427-

428 
2848 358 0.963 9.0% 0.962 9.1% 0.001 0.1%   

 14 444 2922 360 0.953 7.3% 0.946 7.8% 0.006 0.5%   

 15 449 3981 310 0.953 9.5% 0.941 10.7% 0.012 1.2% decrease in slope in the high temp. 

 16 454 7584 362 0.871 17.6% 0.861 18.1% 0.010 0.5%   

 17 468 3895 362 0.896 16.3% 0.887 16.9% 0.008 0.6%   

 18 468 3903 353 0.967 8.9% 0.955 10.3% 0.012 1.4%   

 19 478 7968 362 0.936 15.8% 0.932 16.4% 0.004 0.6%   

 20 484 7028 362 0.939 18.5% 0.921 21.3% 0.018 2.8% decrease in slope in the high temp. 

 21 484 7223 362 0.960 13.7% 0.948 15.7% 0.012 2.0% decrease in slope in the high temp. 

 22 492 5950 357 0.922 15.9% 0.913 16.9% 0.009 0.9%   

 23 508-1026 4166 359 0.962 5.7% 0.954 6.3% 0.008 0.6%   

 24 513 2898 359 0.897 11.3% 0.883 12.1% 0.014 0.8%   

 25 517 6563 361 0.921 15.5% 0.918 15.8% 0.002 0.3%   

 26 520 3933 362 0.876 9.8% 0.874 9.9% 0.002 0.1%   

 27 682 3879 362 0.953 11.6% 0.949 12.0% 0.003 0.4%   

 28 1085 3656 359 0.962 9.4% 0.952 10.6% 0.010 1.2%   

 29 1146 5887 354 0.972 3.8% 0.968 4.0% 0.004 0.3%   

 30 1501 2624 362 0.897 12.3% 0.892 12.6% 0.005 0.3%   

 31 1503 8001 359 0.928 17.6% 0.908 19.4% 0.020 1.9%   

 32 1504 3989 359 0.923 12.4% 0.909 13.4% 0.014 1.0%   

 33 1506 3967 362 0.943 15.4% 0.936 16.1% 0.007 0.8%   

 34 1507 3025 340 0.925 18.1% 0.916 19.1% 0.009 1.0% wavering SVM regression model 

 35 1508 6005 361 0.921 17.0% 0.914 17.8% 0.007 0.8% wavering SVM regression model 

 36 1513 5936 318 0.975 8.8% 0.964 10.5% 0.010 1.7% wavering SVM regression model 

 37 1530 6290 361 0.970 10.8% 0.945 14.6% 0.025 3.8% decrease in slope in the high temp. 

 38 1537 9983 362 0.969 11.8% 0.956 14.2% 0.013 2.4% decrease in slope in the high temp. 

 39 1600 2649 357 0.932 15.4% 0.930 15.6% 0.002 0.2%   

 40 1811 6706 361 0.967 13.3% 0.954 15.8% 0.013 2.5% decrease in slope in the high temp. 

 41 1911 9129 350 0.969 7.0% 0.963 7.6% 0.006 0.6%   

 Average 0.008 0.93%   
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Additional Comparative Study Experiment with CPLR (3P) 

Although 4P CPLR is used for the comparative experiment, some of the buildings are more 

clearly explained by 3P CPLR model actually. Those buildings are reexamined with 3P 

model.  

                                           

 

 

 

 

 

 

                                           (a)                                                                             (b)  

            CPLR (3P): CV (%) = 11.7, R2 = 0.963                 CPLR (3P): CV (%) = 21.4, R2 = 0.920 

            SVM         : CV (%) = 10.4, R2 = 0.970                 SVM         : CV (%) = 18.5, R2 = 0.939 

 

 

 

 

 

 

 

                     

                                            (c)                                                                              (d)  

            CPLR (3P): CV (%) = 16.9, R2 = 0.913                  CPLR (3P): CV (%) =15.9, R2 = 0.953  

            SVM         : CV (%) = 15.9, R2 = 0.922                  SVM         : CV (%) = 13.3, R2 = 0.967 

 

Figure 21 - SVM Regression vs CPLR (3P) (CHW-OAT) 
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Table 20 - Mean Difference in Performance between SVM and CPLR (4P) (CHW-OAE) 

(Daily) 

  

Training (Baseline) Period Performance Testing Period Performance 

SVM CPLR (4P) 95%  

Confidence? 

SVM CPLR (4P) 95%  

Confidence? 
Energy Regressor CV R2 CV R2 CV R2 CV R2 

CHW OAT 11.2% 0.941 11.4% 0.940 CV, R2 16.9% 0.880 17.2% 0.878 CV 

 

 

 

Figure 22 - SVM vs CPLR (4P) (CHW-OAE) for Training (Baseline) Period Performance 

(Daily) 

 

 

Figure 23 - SVM vs CPLR (4P) (CHW-OAE) for Testing Period Performance (Daily) 
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Table 21 - Difference in Performance between SVM and CPLR (4P) (CHW-OAE) for the 

Training Period (Daily) 

Sampl. 

No. 

Building  

No. 

Meter  

ID 

No. of 

data 

SVM CPLR (4P) Difference 
Remark (on SVM Model) 

R2 CV R2 CV R2 CV 

1 291 2132 338 0.941 11.9% 0.941 12.0% 0.000 0.0%   

2 325-385 9123 355 0.935 13.9% 0.934 14.0% 0.001 0.0%   

3 353 2746 317 0.848 13.7% 0.848 13.8% 0.000 0.0%   

4 358 7699 362 0.960 12.2% 0.959 12.4% 0.002 0.2%   

5 359-432 6419 362 0.937 8.4% 0.937 8.5% 0.000 0.0%   

6 383 2863 360 0.887 15.4% 0.880 16.1% 0.007 0.6% wavering SVM regression model 

7 384 2583 361 0.899 9.4% 0.891 9.7% 0.007 0.3% wavering SVM regression model 

8 386 2250 357 0.987 6.9% 0.985 7.4% 0.002 0.5%   

9 387 5805 346 0.933 12.4% 0.931 12.7% 0.002 0.3%   

10 394 2117 358 0.935 14.0% 0.931 14.5% 0.004 0.5%   

11 405 7918 360 0.953 11.4% 0.954 11.4% 0.000 0.0%   

12 
405-407-

1402 
7722 358 0.970 10.9% 0.968 11.2% 0.002 0.3%   

13 
426-427-

428 
2848 358 0.952 10.1% 0.949 10.5% 0.004 0.4%   

14 444 2922 360 0.941 8.1% 0.939 8.3% 0.002 0.2%   

15 449 3981 310 0.975 7.0% 0.974 7.1% 0.001 0.2%   

16 454 7584 362 0.894 15.9% 0.893 15.9% 0.001 0.0%   

17 468 3895 362 0.896 16.2% 0.895 16.3% 0.001 0.0%   

18 468 3903 353 0.965 9.0% 0.965 9.1% 0.001 0.1%   

19 478 7968 362 0.936 15.8% 0.935 16.0% 0.001 0.2%   

20 484 7028 362 0.986 9.0% 0.984 9.5% 0.002 0.5%   

21 484 7223 362 0.987 7.8% 0.985 8.3% 0.002 0.5%   

22 492 5950 357 0.938 14.1% 0.937 14.4% 0.002 0.3%   

23 508-1026 4166 359 0.960 5.8% 0.960 5.8% 0.000 0.0%   

24 513 2898 359 0.934 9.0% 0.934 9.1% 0.001 0.1%   

25 517 6563 361 0.915 16.0% 0.912 16.4% 0.003 0.4%   

26 520 3933 362 0.851 10.7% 0.849 10.8% 0.002 0.1%   

27 682 3879 362 0.937 13.5% 0.937 13.5% 0.000 0.0%   

28 1085 3656 359 0.972 8.0% 0.971 8.2% 0.001 0.1%   

29 1146 5887 354 0.930 6.0% 0.929 6.0% 0.001 0.0%   

30 1501 2624 362 0.927 10.4% 0.925 10.5% 0.002 0.1%   

31 1503 8001 359 0.954 13.8% 0.954 13.8% 0.001 0.0%   

32 1504 3989 362 0.948 10.1% 0.945 10.4% 0.003 0.3%   

33 1506 3967 362 0.924 17.6% 0.922 17.8% 0.002 0.3%   

34 1507 3025 340 0.964 12.7% 0.962 12.8% 0.001 0.2%   

35 1508 6005 361 0.920 17.0% 0.920 17.2% 0.001 0.2%   

36 1513 5936 318 0.987 6.3% 0.986 6.6% 0.001 0.3%   

37 1530 6290 361 0.984 7.7% 0.983 8.0% 0.001 0.3%   

38 1537 9983 362 0.992 6.1% 0.991 6.6% 0.001 0.4%   

39 1600 2649 357 0.871 21.1% 0.870 21.3% 0.001 0.2%   

40 1811 6706 361 0.992 6.5% 0.991 6.9% 0.001 0.4%   

41 1911 9129 350 0.977 6.0% 0.977 6.0% 0.000 0.0%   

Average 0.016 0.22%   
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Table 22 - Mean Difference in Performance between SVM and CPLR (4P) (CHW-OEE) 

(Daily) 

  

Training (Baseline) Period Performance Testing Period Performance 

SVM CPLR (4P) 95%  
Confidence? 

SVM CPLR (4P) 95%  
Confidence? 

Energy Regressor CV R2 CV R2 CV R2 CV R2 

CHW OEE 10.7% 0.945 10.9% 0.944 CV, R2 16.2% 0.889 16.3% 0.889 None 

 

 

 

Figure 24 - SVM vs CPLR (4P) (CHW-OEE) for Training (Baseline) Period Performance 

(Daily) 

 

 

Figure 25 - SVM vs CPLR (4P) (CHW-OEE) for Testing Period Performance (Daily) 
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Table 23 - Difference in Performance between SVM and CPLR (4P) (CHW-OEE) for the 

Training Period (Daily) 

Sampl. 

No. 

Building  

No. 

Meter  

ID 

No. of 

data 

SVM CPLR (4P) Difference 
Remark (on SVM Model) 

R2 CV R2 CV R2 CV 

1 291 2132 338 0.940 12.1% 0.939 12.2% 0.001 0.1%   

2 325-385 9123 355 0.947 12.5% 0.946 12.6% 0.001 0.1%   

3 353 2746 317 0.853 13.5% 0.854 13.5% -0.001 0.0%   

4 358 7699 362 0.965 11.4% 0.963 11.7% 0.002 0.3%   

5 359-432 6419 362 0.944 8.0% 0.945 8.0% -0.001 0.0%   

6 383 2863 360 0.888 15.4% 0.884 15.8% 0.005 0.4% wavering SVM regression model 

7 384 2583 361 0.900 9.3% 0.895 9.6% 0.005 0.3% wavering SVM regression model 

8 386 2250 357 0.989 6.4% 0.988 6.6% 0.001 0.2%  

9 387 5805 346 0.934 12.4% 0.934 12.4% 0.000 0.1%   

10 394 2117 358 0.938 13.6% 0.936 13.8% 0.002 0.2%   

11 405 7918 360 0.961 10.3% 0.961 10.5% 0.001 0.2%   

12 
405-407-

1402 
7722 358 0.974 10.3% 0.973 10.4% 0.001 0.1%   

13 
426-427-

428 
2848 358 0.955 9.9% 0.954 10.0% 0.001 0.1%   

14 444 2922 360 0.946 7.7% 0.945 7.9% 0.001 0.1%   

15 449 3981 310 0.976 6.8% 0.976 6.8% 0.000 0.0%   

16 454 7584 362 0.899 15.6% 0.897 15.6% 0.002 0.0%   

17 468 3895 362 0.897 16.1% 0.899 16.0% -0.002 -0.1%   

18 468 3903 353 0.968 8.7% 0.968 8.7% 0.000 0.1%   

19 478 7968 362 0.938 15.6% 0.939 15.6% 0.000 0.0%   

20 484 7028 362 0.988 8.2% 0.987 8.6% 0.001 0.5%   

21 484 7223 362 0.989 7.3% 0.988 7.7% 0.001 0.4%   

22 492 5950 357 0.941 13.8% 0.936 14.5% 0.005 0.7%   

23 508-1026 4166 359 0.967 5.3% 0.965 5.4% 0.001 0.1%   

24 513 2898 359 0.933 9.1% 0.930 9.3% 0.002 0.2%   

25 517 6563 361 0.915 15.9% 0.916 16.0% 0.000 0.1%   

26 520 3933 362 0.854 10.6% 0.851 10.7% 0.003 0.1%   

27 682 3879 362 0.946 12.5% 0.945 12.6% 0.001 0.1%   

28 1085 3656 359 0.971 8.1% 0.971 8.2% 0.000 0.0%   

29 1146 5887 354 0.940 5.5% 0.940 5.5% 0.000 0.0%   

30 1501 2624 362 0.930 10.2% 0.928 10.3% 0.002 0.1%   

31 1503 8001 359 0.960 12.7% 0.959 12.9% 0.001 0.2%   

32 1504 3989 362 0.953 9.6% 0.949 10.0% 0.004 0.4%   

33 1506 3967 362 0.925 17.3% 0.925 17.6% 0.001 0.2%   

34 1507 3025 340 0.966 12.1% 0.965 12.4% 0.001 0.3%   

35 1508 6005 361 0.925 16.5% 0.926 16.5% -0.001 0.0%   

36 1513 5936 318 0.989 5.9% 0.988 6.0% 0.001 0.2%   

37 1530 6290 361 0.991 5.9% 0.987 7.0% 0.004 1.1%   

38 1537 9983 362 0.995 4.8% 0.995 5.0% 0.001 0.2%   

39 1600 2649 357 0.873 21.1% 0.874 21.0% -0.001 -0.2%   

40 1811 6706 361 0.994 5.6% 0.994 5.5% 0.000 0.0%   

41 1911 9129 350 0.984 5.0% 0.984 5.1% 0.000 0.1%   

Average 0.0012 0.18%  
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Table 24 - Mean Difference in Performance between SVM and CPLR (4P) (HHW-OAT) 

(Daily) 

  

Training (Baseline) Period Performance Testing Period Performance 

SVM CPLR (4P) 95%  
Confidence? 

SVM CPLR (4P) 95%  
Confidence? 

Energy Regressor CV R2 CV R2 CV R2 CV R2 

HHW OAT 19.5% 0.903 20.1% 0.897 CV, R2 25.9% 0.884 26.6% 0.879 CV, R2 

 

 

Figure 26 - SVM vs CPLR (4P) (HHW-OAT) for Training (Baseline) Period Performance 

(Daily) 

 

 

Figure 27 - SVM vs CPLR (4P) (HHW-OAT) for Testing Period Performance (Daily) 
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Table 25 - Difference in Performance between SVM and CPLR (4P) (HHW-OAT) for the 

Training Period (Daily) 

Sampl. 

No. 

Building  

No. 

Meter  

ID 

No. of 

data 

SVM CPLR (4P) Difference 
Remark (on SVM Model) 

R2 CV R2 CV R2 CV 

1 275 7717 358 0.903 33.3% 0.895 35% 0.008 1.2%   

2 325-385 9124 340 0.941 11.5% 0.938 12% 0.003 0.3%   

3 353 2757 311 0.907 28.1% 0.886 30% 0.021 2.2% curved 

4 359-432 6423 356 0.944 13.9% 0.938 15% 0.006 0.9%   

5 376 7119 360 0.925 16.7% 0.924 17% 0.001 -0.1%   

6 384 2587 361 0.962 6.9% 0.961 7% 0.001 0.1%   

7 386 2254 362 0.954 12.9% 0.95 14% 0.005 0.7%   

8 405 7789 352 0.882 16.3% 0.878 17% 0.004 0.4%   

9 
405-407-

1402 
7723 355 0.911 22.1% 0.905 23% 0.006 0.8%   

10 
405-407-

1402 
7919 349 0.881 16.3% 0.878 17% 0.004 0.3%   

11 408 10036 359 0.933 16.9% 0.933 17% 0.000 -0.1%   

12 420 9146 357 0.912 21.3% 0.913 21% -0.001 0.0%   

13 425 2611 354 0.745 17.4% 0.704 19% 0.041 1.3% Break-points 

14 
426-427-

428 
2859 353 0.963 14.1% 0.962 14% 0.000 0.1%   

15 435 2796 337 0.812 26.8% 0.803 28% 0.009 0.9%   

16 436 2423 361 0.924 13.3% 0.919 14% 0.005 0.2%   

17 443 6392 352 0.914 25.2% 0.913 25% 0.001 0.2%   

18 444 6435 325 0.962 18.7% 0.957 20% 0.006 1.4%   

19 445 6415 355 0.881 27.5% 0.871 29% 0.009 1.4%   

20 449 3985 306 0.964 16.4% 0.964 16% 0.000 -0.7%   

21 454 7585 362 0.920 22.1% 0.899 25% 0.021 3.0% curved 

22 468 3899 347 0.830 21.7% 0.828 22% 0.003 0.1%   

23 473 7947 352 0.895 28.7% 0.895 29% 0.000 0.2%   

24 476 8034 361 0.909 46.6% 0.896 47% 0.013 0.8%   

25 477 3668 356 0.959 13.8% 0.958 14% 0.001 0.2%   

26 478 7969 355 0.865 27.4% 0.864 28% 0.001 0.4%   

27 483 3891 311 0.921 26.7% 0.907 29% 0.015 2.3% curved 

28 484 7227 358 0.959 8.6% 0.957 9% 0.002 0.3%   

29 496 6933 353 0.836 58.8% 0.83 59% 0.005 0.0%   

30 1085 3660 351 0.904 14.3% 0.905 14% -0.001 -0.4%   

31 1156 7683 338 0.911 20.4% 0.903 21% 0.007 0.7%   

32 1184 6999 344 0.925 15.6% 0.909 17% 0.016 1.6%   

33 1501 2628 360 0.954 16.4% 0.951 17% 0.003 0.4%   

34 1502 2603 360 0.669 11.6% 0.665 12% 0.004 0.1%   

35 1504 3993 362 0.814 18.1% 0.814 18% 0.000 -0.1%   

36 1513 5895 352 0.912 13.3% 0.903 14% 0.009 0.6%   

37 1537 9984 362 0.962 8.0% 0.957 9% 0.006 0.6%   

38 1611 8467 358 0.962 7.7% 0.961 8% 0.001 0.1%   

39 1800 5472 349 0.858 25.1% 0.849 26% 0.009 0.8%   

40 1904 6366 361 0.938 13.7% 0.937 14% 0.001 0.2%   

41 1911 9133 358 0.907 6.2% 0.908 6% -0.001 0.0%   

Average 0.0060 0.57%  
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Additional Comparative Study Experiment with CPLR (3P) 

Although 4P CPLR is used for the comparative experiment, some of the buildings are more 

clearly explained by 3P CPLR model actually. Those buildings are reexamined with 3P 

model.  

                                           

 

 

 

 

 

 

                                           (a)                                                                             (b)  

            CPLR (3P): CV (%) = 34.8, R2 = 0.894                 CPLR (3P): CV (%) = 32.0, R2 = 0.873 

            SVM         : CV (%) = 33.3, R2 = 0.903                 SVM         : CV (%) = 28.1, R2 = 0.907 

 

 

 

 

 

 

 

                     

                                            (c)                                                                              (d)  

            CPLR (3P): CV (%) = 52.2, R2 = 0.874                  CPLR (3P): CV (%) =31.2, R2 = 0.891  

            SVM         : CV (%) = 46.6, R2 = 0.909                  SVM         : CV (%) = 26.7, R2 = 0.921 

 

Figure 28 - SVM Regression vs CPLR (3P) (HHW-OAT) 
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Results Based on Building Type 

The difference in performance is arranged in terms of building types. 

  

Table 26 - Difference in Performance between SVM and CPLR (4P) for the Training 

Period (Daily) 

  

Performance Difference* 

R2 CV 

CHW 

-OAT 

CHW 

-OAE 

CHW 

-OEE 

HHW 

-OAT 

CHW 

-OAT 

CHW 

-OAE 

CHW 

-OEE 

HHW 

-OAT 

Dorms/Res Hall  0.003 0.002 0.001 0.003 0.30% 0.24% 0.16% 0.28% 

General/Dining/Sport  0.006 0.002 0.002 0.007 0.63% 0.15% 0.11% 0.78% 

Lab/Classroom  0.011 0.001 0.001 0.004 1.31% 0.24% 0.25% 0.44% 

Office/Classroom  0.004 0.002 0.000 0.010 0.35% 0.20% 0.08% 0.86% 

Others 0.008 0.001 0.000 0.004 1.01% 0.20% 0.11% 0.35% 

*SVM showing higher performance is indicated positive. 

 

Table 27 - Difference in Performance between SVM and CPLR (4P) for the Testing Period 

(Daily) 

  

Performance Difference* 

R2 CV 

CHW 

-OAT 

CHW 

-OAE 

CHW 

-OEE 

HHW 

-OAT 

CHW 

-OAT 

CHW 

-OAE 

CHW 

-OEE 

HHW 

-OAT 

Dorms/Res Hall  -0.002 0.001 -0.002 0.007 -0.43% -0.11% 0.25% 1.13% 

General/Dining/Sport  -0.006 0.003 0.002 0.000 -0.50% 0.13% 0.21% 0.65% 

Lab/Classroom  0.000 0.003 0.001 0.001 -0.85% 0.32% 0.00% 0.32% 

Office/Classroom  0.002 0.003 0.003 0.010 0.14% 0.33% 0.18% 1.50% 

Others 0.000 0.001 -0.003 0.015 -0.54% 0.40% 0.11% 1.13% 

*SVM showing higher performance is indicated positive. 
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5.4.2.2 Monthly Data 

The Table 28 through Table 35, and Figure 29 through Figure 36 display the result of 

comparative study for monthly data. Relevant SVM regression and CPLR(4P) are listed in 

the Appendix. D.2. 

Table 28 - Mean Difference in Performance between SVM and CPLR (4P) (CHW-OAT) 

(Monthly) 

  

Training (Baseline) Period Performance Testing Period Performance 

SVM CPLR (4P) 95%  

Confidence? 

SVM CPLR (4P) 95%  

Confidence? 
Energy Regressor CV R2 CV R2 CV R2 CV R2 

CHW OAT 8.02% 0.973 7.63% 0.977 CV 14.2% 0.971 12.4% 0.977 CV 

 

 

Figure 29 - SVM vs CPLR (4P) (CHW-OAT) for Training (Baseline) Period Performance 

(Monthly) 

 

 

Figure 30 - SVM vs CPLR (4P) (CHW-OAT) for Testing Period Performance (Monthly) 
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Table 29 - Difference in Performance between SVM and CPLR (4P) (CHW-OAT) for the 

Training Period (Monthly) 

Sampl. 

No. 

Building  

No. 

Meter  

ID 

No. of 

data 

SVM CPLR (4P) Difference 
Remark (on SVM Model) 

R2 CV R2 CV R2 CV 

1 291 2132 12 0.985 10.3% 0.987 6.2% -0.002 -4.2%   

2 325-385 9123 12 0.986 6.2% 0.988 6.4% -0.002 0.1%   

3 353 2746 11 0.930 10.3% 0.942 9.2% -0.013 -1.1%   

4 358 7699 12 0.985 7.3% 0.986 7.5% -0.001 0.2%   

5 359-432 6419 12 0.983 4.5% 0.979 4.9% 0.004 0.4% wavering SVM regression model 

6 383 2863 12 0.990 4.5% 0.992 4.5% -0.002 0.1%   

7 384 2583 12 0.988 3.1% 0.989 3.4% 0.000 0.2%   

8 386 2250 12 0.971 12.3% 0.980 8.9% -0.009 -3.3%   

9 387 5805 12 0.967 8.5% 0.966 8.9% 0.000 0.4%   

10 394 2117 12 0.937 12.9% 0.953 12.4% -0.016 -0.5%   

11 405 7918 12 0.979 7.7% 0.980 7.8% -0.001 0.1%   

12 
405-407-

1402 
7722 12 0.981 9.2% 0.983 8.5% -0.002 -0.7%   

13 
426-427-

428 
2848 12 0.981 6.2% 0.987 5.5% -0.007 -0.7%   

14 444 2922 12 0.992 2.9% 0.993 2.9% -0.001 0.1%   

15 449 3981 11 0.983 6.3% 0.983 6.4% 0.001 0.1%   

16 454 7584 12 0.925 12.3% 0.927 13.3% -0.002 1.0%   

17 468 3895 12 0.988 5.8% 0.993 4.3% -0.005 -1.5% wavering SVM regression model 

18 468 3903 12 0.952 11.3% 0.958 10.5% -0.006 -0.8%   

19 478 7968 12 0.986 8.0% 0.988 7.1% -0.002 -0.9%   

20 484 7028 12 0.973 11.6% 0.974 12.6% -0.001 1.0%   

21 484 7223 12 0.967 12.7% 0.981 10.1% -0.014 -2.6%   

22 492 5950 12 0.975 8.4% 0.974 9.5% 0.001 1.1%   

23 508-1026 4166 12 0.990 2.9% 0.991 2.9% -0.001 -0.1%   

24 513 2898 12 0.930 9.4% 0.932 9.3% -0.002 -0.1%   

25 517 6563 12 0.986 6.3% 0.988 6.2% -0.003 -0.1%   

26 520 3933 12 0.943 6.6% 0.959 6.0% -0.017 -0.6%   

27 682 3879 12 0.970 9.2% 0.983 7.3% -0.013 -1.9%   

28 1085 3656 12 0.991 4.5% 0.990 5.1% 0.001 0.6%   

29 1146 5887 12 0.995 1.8% 0.995 1.7% 0.000 -0.1%   

30 1501 2624 12 0.960 7.3% 0.973 6.5% -0.013 -0.8%   

31 1503 8001 12 0.950 13.3% 0.951 14.5% -0.001 1.2%   

32 1504 3989 12 0.946 10.5% 0.948 10.6% -0.002 0.2%   

33 1506 3967 12 0.984 8.3% 0.986 8.2% -0.002 -0.1%   

34 1507 3025 12 0.938 15.4% 0.954 14.4% -0.016 -1.0%   

35 1508 6005 12 0.977 9.0% 0.981 8.9% -0.004 -0.1%   

36 1513 5936 12 0.988 10.0% 0.991 5.5% -0.003 -4.5%   

37 1530 6290 12 0.985 7.0% 0.984 8.0% 0.001 1.0%   

38 1537 9983 12 0.985 7.9% 0.986 8.4% 0.000 0.6%   

39 1600 2649 12 0.997 3.2% 0.995 4.2% 0.001 1.0%   

40 1811 6706 12 0.986 8.2% 0.986 9.2% 0.000 0.9%   

41 1911 9129 12 0.982 5.4% 0.986 4.8% -0.005 -0.6%   

Average -0.004 -0.29%  
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Table 30 - Mean Difference in Performance between SVM and CPLR (4P) (CHW-OAE) 

(Monthly) 

  

Training (Baseline) Period Performance Testing Period Performance 

SVM CPLR (4P) 95%  
Confidence? 

SVM CPLR (4P) 95%  
Confidence? 

Energy Regressor CV R2 CV R2 CV R2 CV R2 

CHW OAE 5.38% 0.986 5.34% 0.987 None 12.8% 0.978 12.3% 0.979 None 

 

 

Figure 31 - SVM vs CPLR (4P) (CHW-OAE) for Training (Baseline) Period Performance 

(Monthly) 

 

 

Figure 32 - SVM vs CPLR (4P) (CHW-OAE) for Testing Period Performance (Monthly) 
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Table 31 - Difference in Performance between SVM and CPLR (4P) (CHW-OAE) for the 

Training Period (Monthly) 

Sampl. 

No. 

Building  

No. 

Meter  

ID 

No. of 

data 

SVM CPLR (4P) Difference 
Remark (on SVM Model) 

R2 CV R2 CV R2 CV 

1 291 2132 12 0.975 7.6% 0.978 7.9% -0.003 0.4%   

2 325-385 9123 12 0.989 5.9% 0.988 6.3% 0.001 0.3% wavering SVM regression model 

3 353 2746 12 0.946 8.3% 0.957 7.9% -0.011 -0.5%   

4 358 7699 12 0.996 3.7% 0.996 4.0% 0.000 0.3%   

5 359-432 6419 12 0.986 3.9% 0.990 3.4% -0.004 -0.5%   

6 383 2863 12 0.988 5.1% 0.988 5.3% -0.001 0.2%   

7 384 2583 12 0.980 4.0% 0.981 4.3% -0.001 0.3%   

8 386 2250 12 0.996 4.0% 0.997 3.7% 0.000 -0.3%   

9 387 5805 12 0.990 4.5% 0.991 4.5% -0.002 0.0%   

10 394 2117 12 0.990 6.5% 0.977 8.6% 0.012 2.2% wavering SVM regression model 

11 405 7918 12 0.990 5.0% 0.992 4.7% -0.002 -0.3%   

12 
405-407-

1402 
7722 12 0.996 3.9% 0.995 4.4% 0.000 0.5%   

13 
426-427-

428 
2848 12 0.989 4.8% 0.992 4.5% -0.002 -0.3%   

14 444 2922 12 0.986 3.9% 0.987 4.0% -0.001 0.1%   

15 449 3981 11 0.992 4.1% 0.994 3.8% -0.002 -0.3%   

16 454 7584 12 0.956 11.1% 0.958 10.0% -0.002 -1.1%   

17 468 3895 12 0.984 6.1% 0.986 6.0% -0.003 -0.1%   

18 468 3903 12 0.988 5.4% 0.991 5.0% -0.003 -0.4%   

19 478 7968 12 0.992 5.4% 0.991 6.1% 0.001 0.8%   

20 484 7028 12 0.997 3.9% 0.997 4.0% 0.000 0.1%   

21 484 7223 12 0.995 5.5% 0.995 5.3% 0.000 -0.3%   

22 492 5950 12 0.996 4.2% 0.996 3.5% -0.001 -0.7%   

23 508-1026 4166 12 0.993 2.7% 0.989 3.2% 0.004 0.4%   

24 513 2898 12 0.975 5.9% 0.980 5.1% -0.004 -0.8%   

25 517 6563 12 0.996 3.3% 0.996 3.8% 0.000 0.6%   

26 520 3933 12 0.963 6.2% 0.948 6.8% 0.015 0.6% wavering SVM regression model 

27 682 3879 12 0.978 8.1% 0.977 8.5% 0.001 0.3%   

28 1085 3656 12 0.979 8.1% 0.988 5.5% -0.009 -2.5%   

29 1146 5887 12 0.974 3.7% 0.973 4.0% 0.001 0.3% wavering SVM regression model 

30 1501 2624 12 0.999 1.1% 0.998 1.6% 0.001 0.5%   

31 1503 8001 12 0.984 7.9% 0.978 9.7% 0.006 1.9% wavering SVM regression model 

32 1504 3989 12 0.975 7.4% 0.986 5.4% -0.011 -1.9%   

33 1506 3967 12 0.987 7.3% 0.991 6.7% -0.004 -0.6%   

34 1507 3025 12 0.975 10.9% 0.980 9.6% -0.004 -1.3%   

35 1508 6005 12 0.995 5.1% 0.993 5.2% 0.001 0.1%   

36 1513 5936 12 0.995 3.6% 0.996 3.9% 0.000 0.3%   

37 1530 6290 12 0.996 3.5% 0.997 3.6% 0.000 0.1%   

38 1537 9983 12 0.999 2.4% 0.999 2.5% 0.000 0.1%   

39 1600 2649 12 0.964 10.7% 0.969 11.0% -0.005 0.3%   

40 1811 6706 12 0.998 3.4% 0.999 2.8% -0.001 -0.6%   

41 1911 9129 12 0.995 2.9% 0.995 2.9% 0.000 0.0%   

Average -0.0008 -0.05%  
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Table 32 - Mean Difference in Performance between SVM and CPLR (4P) (CHW-OEE) 

(Monthly) 

  

Training (Baseline) Period Performance Testing Period Performance 

SVM CPLR (4P) 95%  
Confidence? 

SVM CPLR (4P) 95%  
Confidence? 

Energy Regressor CV R2 CV R2 CV R2 CV R2 

CHW OEE 5.44% 0.985 5.27% 0.987 R2 12.4% 0.977 12.2% 0.982 R2 

 

 

Figure 33 - SVM vs CPLR (4P) (CHW-OAE) for Training (Baseline) Period Performance 

(Monthly) 

 

 

Figure 34 - SVM vs CPLR (4P) (CHW-OAE) for Testing Period Performance (Monthly) 
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Table 33 - Difference in Performance between SVM and CPLR (4P) (CHW-OEE) for the 

Training Period (Monthly) 

Sampl. 

No. 

Building  

No. 

Meter  

ID 

No. of 

data 

SVM CPLR (4P) Difference 
Remark (on SVM Model) 

R2 CV R2 CV R2 CV 

1 291 2132 12 0.969 9.6% 0.975 8.5% -0.006 -1.2%   

2 325-385 9123 12 0.992 5.0% 0.986 6.7% 0.005 1.7%   

3 353 2746 11 0.971 6.2% 0.969 6.8% 0.002 0.6%   

4 358 7699 12 0.996 3.6% 0.997 3.3% -0.001 -0.3%   

5 359-432 6419 12 0.998 1.4% 0.991 3.2% 0.007 1.8%   

6 383 2863 12 0.989 5.0% 0.992 4.5% -0.003 -0.5%   

7 384 2583 12 0.978 5.1% 0.980 4.5% -0.002 -0.7%   

8 386 2250 12 0.994 5.0% 0.995 4.5% -0.001 -0.4%   

9 387 5805 12 0.991 4.3% 0.993 4.2% -0.002 -0.2%   

10 394 2117 12 0.969 9.0% 0.976 8.9% -0.006 -0.1%   

11 405 7918 12 0.992 4.7% 0.993 4.5% -0.002 -0.2%   

12 
405-407-

1402 
7722 12 0.993 5.8% 0.994 5.2% -0.001 -0.6%   

13 
426-427-

428 
2848 12 0.988 4.9% 0.991 4.6% -0.003 -0.3%   

14 444 2922 12 0.987 3.9% 0.989 3.8% -0.002 -0.1%   

15 449 3981 11 0.995 3.3% 0.995 3.6% 0.000 0.3%   

16 454 7584 12 0.953 11.2% 0.970 8.4% -0.017 -2.8%   

17 468 3895 12 0.978 7.1% 0.982 6.9% -0.004 -0.2%   

18 468 3903 12 0.988 5.3% 0.993 4.3% -0.005 -0.9%   

19 478 7968 12 0.992 5.3% 0.993 5.4% -0.001 0.1%   

20 484 7028 12 0.997 3.6% 0.998 3.6% 0.000 0.0%   

21 484 7223 12 0.995 5.0% 0.995 5.2% 0.000 0.2%   

22 492 5950 12 0.995 3.7% 0.996 3.8% -0.001 0.1%   

23 508-1026 4166 12 0.991 2.8% 0.991 2.9% 0.000 0.1%   

24 513 2898 12 0.969 5.8% 0.979 5.2% -0.010 -0.6%   

25 517 6563 12 0.995 3.9% 0.996 3.5% -0.002 -0.4%   

26 520 3933 12 0.940 7.3% 0.944 7.0% -0.004 -0.3%   

27 682 3879 12 0.968 9.9% 0.977 8.4% -0.010 -1.5%   

28 1085 3656 12 0.984 6.0% 0.989 5.4% -0.004 -0.6%   

29 1146 5887 12 0.968 4.4% 0.973 3.9% -0.005 -0.5%   

30 1501 2624 12 0.997 2.0% 0.997 2.0% -0.001 0.0%   

31 1503 8001 12 0.982 8.1% 0.978 9.8% 0.004 1.6%   

32 1504 3989 12 0.981 5.8% 0.984 5.8% -0.003 0.0%   

33 1506 3967 12 0.971 11.6% 0.992 6.2% -0.021 -5.4%   

34 1507 3025 12 0.994 5.9% 0.978 10.0% 0.016 4.1%   

35 1508 6005 12 0.994 5.1% 0.993 5.4% 0.001 0.3%   

36 1513 5936 12 0.994 4.1% 0.996 3.8% -0.002 -0.4%   

37 1530 6290 12 0.996 3.8% 0.997 3.3% -0.002 -0.5%   

38 1537 9983 12 0.998 2.6% 0.999 2.6% 0.000 -0.1%   

39 1600 2649 12 0.968 10.1% 0.972 10.4% -0.004 0.3%   

40 1811 6706 12 0.998 3.3% 0.998 3.3% 0.000 0.0%   

41 1911 9129 12 0.996 2.4% 0.995 2.8% 0.001 0.4%   

Average -0.002 -0.15%  
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Table 34 - Mean Difference in Performance between SVM and CPLR (4P) (HHW-OAT) 

(Monthly) 

  

Training (Baseline) Period Performance Testing Period Performance 

SVM CPLR (4P) 95%  

Confidence? 

SVM CPLR (4P) 95%  

Confidence? 
Energy Regressor CV R2 CV R2 CV R2 CV R2 

HHW OAT 8.4% 0.970 8.8% 0.970 None 22.0% 0.918 20.5% 0.935 CV, R2 

 

 

Figure 35 - SVM vs CPLR (4P) (CHW-OAE) for Training (Baseline) Period Performance 

(Monthly) 

 

 

Figure 36 - SVM vs CPLR (4P) (CHW-OAE) for Testing Period Performance (Monthly) 

 

 

  



99 

 

Table 35 - Difference in Performance between SVM and CPLR (4P) (HHW-OAT) for the 

Training Period (Monthly) 

Sampl. 

No. 

Building  

No. 

Meter  

ID 

No. of 

data 

SVM CPLR (4P) Difference 
Remark (on SVM Model) 

R2 CV R2 CV R2 CV 

1 275 7717 12 0.997 4.8% 0.995 6% 0.002 1.6%   

2 325-385 9124 12 0.988 4.5% 0.993 4% -0.005 -0.7%   

3 353 2757 11 0.935 19.5% 0.938 19% -0.004 -0.7%   

4 359-432 6423 12 0.975 8.5% 0.98 8% -0.006 -0.3%   

5 376 7119 12 0.947 13.4% 0.946 13% 0.001 -0.1% wavering SVM regression model 

6 384 2587 12 0.997 1.9% 0.996 2% 0.001 0.5%   

7 386 2254 12 0.959 9.9% 0.954 10% 0.005 0.5% wavering SVM regression model 

8 405 7789 12 0.957 8.7% 0.947 10% 0.010 1.8%   

9 
405-407-

1402 
7723 12 0.982 8.9% 0.946 10% 0.035 1.6%   

10 
405-407-

1402 
7919 12 0.955 10.0% 0.983 9% -0.028 -1.0%   

11 408 10036 12 0.996 3.8% 0.994 5% 0.002 0.9%   

12 420 9146 12 0.997 3.8% 0.98 10% 0.016 6.2% wavering SVM regression model 

13 425 2611 12 0.946 5.7% 0.874 9% 0.072 3.5%   

14 
426-427-

428 
2859 12 0.989 7.0% 0.994 6% -0.005 -1.3%   

15 435 2796 12 0.996 3.1% 0.993 5% 0.003 1.5%   

16 436 2423 12 0.905 12.6% 0.907 12% -0.002 -0.4%   

17 443 6392 12 0.986 9.3% 0.974 14% 0.011 4.4% wavering SVM regression model 

18 444 6435 12 0.994 6.5% 0.995 6% -0.002 -0.4%   

19 445 6415 12 0.963 14.0% 0.979 11% -0.016 -3.3%   

20 449 3985 11 0.999 2.3% 0.999 3% 0.000 0.3%   

21 454 7585 12 0.953 16.2% 0.948 16% 0.005 0.0%   

22 468 3899 12 0.895 13.9% 0.909 14% -0.013 0.0%   

23 473 7947 12 0.983 10.2% 0.973 14% 0.010 4.1% wavering SVM regression model 

24 476 8034 12 0.989 11.9% 0.981 17% 0.008 5.4%   

25 477 3668 12 0.984 8.2% 0.974 10% 0.010 2.2%   

26 478 7969 12 0.975 10.8% 0.985 9% -0.011 -2.2%   

27 483 3891 12 0.988 8.3% 0.985 9% 0.003 0.9%   

28 484 7227 12 0.981 4.7% 0.989 4% -0.007 -0.7%   

29 496 6933 12 0.968 21.5% 0.982 16% -0.013 -5.4%   

30 1085 3660 12 0.980 5.8% 0.98 6% 0.000 0.1%   

31 1156 7683 12 0.944 13.8% 0.961 12% -0.017 -1.9%   

32 1184 6999 12 0.920 12.3% 0.943 11% -0.024 -1.7%   

33 1501 2628 12 0.995 5.1% 0.995 6% 0.000 0.5%   

34 1502 2603 12 0.944 4.1% 0.955 4% -0.012 -0.2%   

35 1504 3993 12 0.962 7.6% 0.951 8% 0.011 0.7% Original data is abnormal 

36 1513 5895 12 0.958 7.5% 0.958 8% 0.000 0.2%   

37 1537 9984 12 0.996 2.1% 0.996 2% 0.000 0.3%   

38 1611 8467 12 0.994 2.5% 0.991 3% 0.003 0.8%   

39 1800 5472 12 0.962 11.6% 0.978 8% -0.016 -3.2%   

40 1904 6366 12 0.991 4.8% 0.991 5% 0.000 0.2% wavering SVM regression model 

41 1911 9133 12 0.961 4.1% 0.957 4% 0.003 0.0%   

Average 0.0008 0.36%  
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Results Based on Building Type 

The difference in performance is arranged in terms of building types. 

  

Table 36 - Difference in Performance between SVM and CPLR (4P) for the Training 

Period (Monthly) 

  

Performance Difference* 

R2 CV 

CHW 

-OAT 

CHW 

-OAE 

CHW 

-OEE 

HHW 

-OAT 

CHW 

-OAT 

CHW 

-OAE 

CHW 

-OEE 

HHW 

-OAT 

Dorms/Res Hall  -0.005 0.001 -0.004 0.003 -1.20% 0.50% -0.48% 0.30% 

General/Dining/Sport  -0.005 0.001 -0.005 -0.008 -0.23% -0.05% -0.87% -0.76% 

Lab/Classroom  -0.004 -0.001 -0.002 0.000 -0.52% -0.12% -0.14% -0.02% 

Office/Classroom  -0.002 -0.004 0.001 0.006 0.14% -0.02% 0.62% 0.64% 

Others -0.002 -0.001 -0.001 -0.003 0.09% -0.28% -0.12% -0.28% 

*SVM showing higher performance is indicated positive. 

 

Table 37 - Difference in Performance between SVM and CPLR (4P) for the Testing Period 

(Monthly) 

  

Performance Difference* 

R2 CV 

CHW 

-OAT 

CHW 

-OAE 

CHW 

-OEE 

HHW 

-OAT 

CHW 

-OAT 

CHW 

-OAE 

CHW 

-OEE 

HHW 

-OAT 

Dorms/Res Hall  0.004 -0.004 -0.010 -0.016 -1.74% -0.51% -1.84% -0.40% 

General/Dining/Sport  -0.006 0.004 0.001 -0.003 -0.42% -0.13% 0.51% -1.06% 

Lab/Classroom  -0.003 0.000 -0.004 -0.024 -2.40% 0.06% 0.13% -1.64% 

Office/Classroom  -0.026 -0.004 -0.013 -0.020 -2.00% -3.26% -0.32% -3.02% 

Others 0.000 -0.004 -0.002 -0.010 -1.13% 0.18% -0.24% -0.65% 

*SVM showing higher performance is indicated positive. 

 

a
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CHAPTER VI SUMMARY AND CONCLUSION 

- When establishing baseline models for building energy use with one parameter, using a 

one-dimensional grid search with recommended variables (ODGS) for each parameter 

can save a significant amount of time with a similar performance. As opposed to the 

general understanding of how SVM performance is sensitive to the choice of 

hyperparameters, it does not appear to be highly sensitive in the case of this study. This 

appears to be caused by a relatively simple setting for SVM regression: less than 365 

number of input and one or two independent variables. 

- RBF Kernel SVM regression is flexible enough to cover linear, piecewise linear, 

curved, or more complex patterns. Even when the data is linear, the performance of RBF 

SVM is similar to linear SVM. SVM usually shows robust performance in various noise 

conditions. However, it is relatively weak to scattering data that it may generate 

unreasonable plot. The performance of monthly data is also not robust compared to that 

of daily data. This happens because the SVM algorithm does not use any explanatory 

theories about the relationship between building energy use and meteorological 

conditions, which offers a clue about what a “normal pattern” should look like. Thus, if 

the percentage of outliers is high, the SVM is not a good option to generate baseline 

models unless the outliers are appropriately handled in the preprocessing stage. 

- Regarding SVM regression on daily data, among independent variables for CHW, 

OAT+DPT shows the best performance, followed by OEE, OAE, and OAT. The means 

of CV throughout the samples is 9.32%, 10.7% 11.2%, and 12.2% respectively. 
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Although OAT+DPT demonstrates better performance than OEE, its feasibility as a 

baseline model might be limited because using two inputs is disadvantageous for 

visualization and there is a risk of collinearity. As the input changed from OAT through 

OAE to OEE, the SVM plots FOR CHW became simpler and more linear. A greater 

number of wavering patterns were found with the CHW-OAT plots than those with OAE 

and OEE. This appears to indicate that SVM has difficulty making sense of the pattern 

due to a lack of needed information, the humidity data. In the case of HHW, since it is 

not affected by latent loads, the shape of the HHW-OAT SVM regression plots appears 

to be more stable. Regarding monthly data, among single-variate independent variables 

for CHW baseline modeling, the performance between operational effective enthalpy 

(OEE) and outdoor air enthalpy (OAE) is not significantly different, and these two 

showed a better performance than outdoor air temperature (OAT). As in the case with 

daily data, OAT+DPT demonstrated the best performance in the training period. 

However, the performance for the testing period is worse than the CHW-OAE and 

CHW-OEE data. Regardless of different independent variables, SVM generated similar 

plots. Compared to the daily application, a large number of wavering patterns were 

found, which indicates insufficient input for SVM to make sense of the pattern.  

- With daily data, the SVM demonstrates a slightly better fitting performance, 0.5% ~ 

3%, than the change point linear regression model, and much better performance, nearly 

10%, than multiple linear regression. SVM tended to show a higher performance when it 

made a pattern that is difficult to be expressed by CPLR. In the case of CHW-OAT, a 

more than 2% higher performance of SVM regression was observed when SVM 
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generated plots that have an abrupt slope change in the high-temperature range. With 

HHW-OAT, a more than 2% higher performance was observed when the relationship 

between the dependent and independent variables took curved forms. For CHW with a 

single independent variable, as the predictor changes from OAT through OAE to OEE, 

the mean difference in CV between SVM and CPLR decreased from 0.9%, 0.2%, to less 

than 0.2%. Visual inspection of the regression plots offers insight into the reason for this. 

The shape of SVM and CPLR plots become more similar as the predictor changes from 

OAT through OAE to OEE. With monthly data, the performance of SVM is 

approximately 2% higher than multiple linear regression and is usually worse than 

change-point linear regression models. This implies that monthly data does not have 

sufficient data points for SVM to elaborately describe the patterns.  

- Compared with MLR, SVM may always show superior results. Compared with CPLR, 

for daily data, the mean performance of SVM over that of CPLR is marginal: less than 

1%. Hence, for a single-variate whole-building energy inverse modeling, it would be 

reasonable to use CPLR as a general-purpose modeler because of the balance between 

the effort and the performance. However, it would be worth considering using SVM if 

the data appears to be highly non-linear or if even a small gain in accuracy can be 

regarded as significant. For monthly data, SVM is not recommended as a whole-building 

energy inverse modeler.  
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APPENDIX A. FUNDAMENTALS OF SUPPORT VECTOR MACHINE 

REGRESSION 

 

A.1 Fundamentals of SVM Regression 

SVM regression originally starts by assuming a line that is expressed as below. 

𝒇(𝒙) = 𝝎 ∙ 𝒙 + 𝒃   (EQ.A 1) 

Where 𝝎 is a coefficient vector, 𝒙 is a vector independent of variables, and b is a bias. If 

the number of independent variables is k, the number of elements of vector 𝝎 is also k so 

that the inner product between 𝝎 and 𝒙 results in a scalar. (Note: ε-SVM regression is a 

basic type of SVM regression, and in this thesis, only ε-SVM regression is used. Thus, 

from now, ε-SVM is denoted as simply SVM for simplicity.) 

 

Figure A 1 - Linear Plot with ε 

The next step is to find a line in the way that the ε deviation from the line contains all the 

data points while keeping the plot as flat as possible. The size of ε is defined by a user. 

(See Figure A2). It is expressed as the following inequality-constrained optimization 

formula. 
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Min 
1

2
‖𝝎‖2  (EQ.A 2) 

Subject to {
 𝑦𝑖 − 𝑓(𝒙𝒊) = 𝑦𝑖 − (𝝎 ∙ 𝒙𝒊 + 𝑏) ≤ 𝜀

𝑓(𝒙𝒊) − 𝑦𝑖 = (𝝎 ∙ 𝒙𝒊 + 𝑏) − 𝑦𝑖 ≤ 𝜀
 

Where the given training dataset is the (𝒙1, 𝑦2), …,  (𝒙𝑖, 𝑦𝑖), …, (𝒙𝑛, 𝑦𝑛), 𝒙𝒊 is a vector 

consisting of independent variables of the ith observation, 𝑦𝑖 is a scalar of dependent 

variable of the ith observation, n is the number of training data points, and 𝑓(𝒙𝒊) is the 

output from SVM model when 𝒙𝒊 is plugged in. ‖𝝎‖2 is the square of the norm of the 

vector 𝝎, and 0.5 is multiplied merely solely for mathematical convenience. (See EQ.A1 

for the explanation of the 𝝎 and b.)  

The following figures will help to understand the optimization formula intuitively. 

Figure A2 is the original data, on which SVM models will be trained with different ε. 

 

 

Figure A 2 - Five Sample points 
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Figure A3 is the SVM regression trained with different values of ε. 

 

 

 

 

                    (a) ε = 2, ||ω||2 = 0.245                                    (b) ε = 3, ||ω||2 = 0.0625 

                                                                      

  

 

 

                (c) ε =4, ||ω||2 = 1.01795 e-5 

Figure A 3 - SVM plots with different ε 

As seen in the Figure A3 (a) through (c), as the size of ε becomes larger, the SVM plot 

becomes flatter while still keeping all data inside of the ε. In other words, What EQ.A2 

does is to make the graph as flat as possible as long as all the data can be located within 

the ε. Another lesson learned here is the importance of selecting a proper ε. If the ε is 
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larger than needed, the SVM plot will be meaninglessly flat. The question to follow is 

what if the ε becomes smaller and smaller beyond the point where all the data cannot be 

located within the ε. The answer is simple. The EQ.A2 becomes unsolvable. In the case 

of the data of Figure A3, it would be okay even if it cannot be solved with a smaller 

value of ε because the plot of Figure A3 (a) looks already good enough. However, what 

if the original data looks like the one in Figure A4? Only one point becomes an outlier, 

but is there any way to make a reasonable plot while keeping all the data inside of the ε? 

The answer is No. In that sense, the EQ.A2 fails only with one outlier.    

 

Figure A 4 - Five Sample points with one outlier 

To generate a reasonable plot with the outlier, slack variables, 𝜉𝑖 and 𝜉𝑖
∗ are needed. Slack 

variables refer to positive variables that are added to inequality constraints of optimization 

problem to change it to equality constraints. In the context of SVM regression, they are 

interpreted as variables that fill the gap between ε and the data whose deviation is large 

than ε. This idea is displayed in the Figure A5.  
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Figure A 5 - Linear Plot with ε, ξi and ξi
* (SVM plot) 

Now, the issue of unsolvable case is resolved due to the use of 𝜉𝑖and 𝜉𝑖
∗. However, 

another crucial agenda comes up. Being flexible and generous to exceptional cases, 

which mean the data whose deviation is larger than ε here, does not mean that they are 

welcomed. Although they are accepted for practical purposes, it is always better to 

minimize those exceptional cases. Otherwise, SVM will always generate a plot similar to 

Figure A6. 

 

Figure A 6 - SVM plot with nearly no penalty on ξi and ξi* 

Such a case as Figure A6 happened because the SVM algorithm was not concerned of the 

size of 𝜉𝑖 and 𝜉𝑖
∗, and focused only on minimizing ||ω||2. The result of Figure A6 is simply 
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the mean of the given data, and SVM users may not run SVM just to find the mean. 

Another task now becomes clear. That is to minimize the size of 𝜉𝑖 and 𝜉𝑖
∗ although they 

are allowed to exist to cover some outrageous data. In this regard, a term, ∑ (𝜉𝑖 + 𝜉𝑖
∗)𝑛

𝑖=1 , 

is inserted into the minimization process of EQ.A2. Now, a new optimization task, EQ.A3, 

comes up.  

Min 
1

2
‖𝝎‖2 + 𝐶 ∑ (ξ𝑖 + ξ𝑖

∗)𝑛
𝑖=1   (EQ.A 3) 

Subject to {

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

 𝑦𝑖 − (𝝎 ∙ 𝒙 + 𝑏) ≤ 𝜀 + 𝜉𝑖
(𝝎 ∙ 𝒙 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

∗
 

In the EQ. A3, a new parameter C shows up and is multiplied by  ∑ (𝜉𝑖 + 𝜉𝑖
∗)𝑛

𝑖=1 . 

Conceptually, 𝑚𝑖𝑛 
1

2
‖𝝎‖2 and 𝑚𝑖𝑛∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1  can be mutually exclusive. The 

former wants to flatten the SVM plot even if the value of ∑ (𝜉𝑖 + 𝜉𝑖
∗)𝑛

𝑖=1  becomes 

extremely large. Inversely, the latter is not interested in flattening the plot, rather, it only 

wants to minimize ∑ (𝜉𝑖 + 𝜉𝑖
∗)𝑛

𝑖=1 . The value of C determines the trade-off between these 

two. As in the case with ε, the value of C is also determined by a user. The impact of C 

will make more sense with the following Figure A7. 
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                            (a) ε= 1, C=0.05                                              (b) ε= 1, C=2 

            ||ω||2 =0.0398, ∑ (𝜉𝑖 + 𝜉𝑖
∗)5

𝑖=1 = 7                  ||ω||2 =0.562, ∑ (𝜉𝑖 + 𝜉𝑖
∗)5

𝑖=1 = 5.5 

Figure A 7 - SVM plots with difference C 

In the Figure A7, (a) has a lower value C than (b). Seeing the Eq.3, that means (a) 

imposes less weight on penalizing the slack variables ξ𝑖 and ξ𝑖
∗. Naturally, more weight 

of minimization is placed upon the term ||ω||2. As a result, (a) has a less value of ||ω||2 

and a more value of  ∑ (ξ𝑖 + ξ𝑖
∗)𝑛

𝑖=1  than (b).  

The meaning or virtue of ‘flatness’ of SVM plots may not feel tangible at this point. The 

significance of the ‘flatness’ is more well appreciated with non-linear SVM plots. For 

instance, in the Figure A8, lower value of C was applied to the (b). In other words, more 

weight was placed on flattening the plot than minimizing the magnitude of slack 

variables. In the (a) plot, the values of slack variables are nearly zero, and most of the 

data are located within the ε. On the contrary, bigger number of data were outside of the 

ε in the (b) plot. Yet the (b) plot is not necessarily worse than (a) plot because it can be 

seen as a result of focusing more on generalization than on reducing the error aimlessly.  
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                      (a) ε= 1.3, C= 8                                              (b) ε = 1.3, C= 4 

Figure A 8 - Non-linear SVM with different flatness 

Eq.A3 can be solved itself, or it can be converted to a dual problem using Lagrange 

multipliers, and solved in that form. The process of conversion to the dual problem is 

described as below:  

EQ.A3 is an optimization problem subject to constraints. Lagrange function combines 

the object function and constraints by using Lagrange multipliers as below: 

 

𝐿(𝝎, 𝑏, ξ, ξ∗, 𝛼, 𝛼∗, β, β∗) 

=
1

2
‖𝑤‖2 + C∑ (ξ𝑖 + ξ𝑖

∗)𝑛
𝑖=1 − ∑ 𝛼𝑖((𝜔 ∙ 𝒙𝒊 + 𝑏) − 𝑦𝑖 + 𝜀 + ξ𝑖)

𝑛
𝑖=1   

   −∑ 𝛼𝑖
∗(−(𝜔 ∙ 𝒙𝒊 + 𝑏) + 𝑦𝑖 + 𝜀 + ξ𝑖

∗)𝑛
𝑖=1 − ∑ (β𝑖ξ𝑖 + β𝑖

∗ξ𝑖
∗)𝑛

𝑖=1   (EQ.A 4) 

Where 𝛼𝑖 , 𝛼𝑖
∗, β𝑖, β𝑖

∗ are Lagrange multipliers and bound by the following condition: 

{

𝛼𝑖 ≥ 0

𝛼𝑖
∗ ≥ 0

𝛽𝑖 ≥ 0

𝛽𝑖
∗ ≥ 0

  (EQ.A 5) 
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For this optimization problem to have a solution, partial derivatives of L with respect to 

primal variables, which are 𝝎, b, 𝜉𝑖, 𝜉𝑖
∗, have to be zero   

𝜕𝐿

𝜕𝝎
= 𝝎− ∑ (𝛼𝑖 − 𝛼𝑖

∗)𝒙𝒊
𝑛
𝑖=1 = 0  (EQ.A 6) 

𝜕𝐿

𝜕𝑏
= −∑ (𝛼𝑖 − 𝛼𝑖

∗) = 0𝑛
𝑖=1   (EQ.A 7) 

𝜕𝐿

𝜕ξ𝑖
= 𝐶 − 𝛼𝑖 − 𝛽𝑖 = 0  (EQ.A 8) 

𝜕𝐿

𝜕ξ𝑖
∗ = 𝐶 − 𝛼𝑖

∗ − β𝑖
∗ = 0  (EQ.A 9) 

 

The equation (EQ.A6) can be rearranged in terms of ω as below: 

𝝎 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝒙𝒊

𝑛
𝑖=1   (EQ.A 10) 

 

Using EQ.A10, the first term on the right side of EQ.A4 can be arranged as below: 

1

2
‖𝝎‖2 =

1

2
∑ ∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝒙𝒊 ∙ 𝒙𝒋 

𝑛
𝑗=1

𝑛
𝑖=1  (EQ.A 11) 

 

Using EQ.A8 and EQ.A9, the second and the fifth term on the right side of EQ.A4 can 

be arranged as below: 

C∑ (ξ𝑖 + ξ𝑖
∗)𝑛

𝑖=1 − ∑ (β𝑖ξ𝑖 + β𝑖
∗ξ𝑖
∗)𝑛

𝑖=1   

   = ∑ ((Cξ𝑖 + 𝐶ξ𝑖
∗) − (β𝑖ξ𝑖 + β𝑖

∗ξ𝑖
∗))𝑛

𝑖=1   

   = ∑ ((𝐶 − β𝑖)ξ𝑖 + (𝐶 − 𝛽𝑖
∗)ξ𝑖

∗)𝑛
𝑖=1    

   = ∑ (α𝑖ξ𝑖 + 𝛼𝑖
∗ξ𝑖
∗)𝑛

𝑖=1   (EQ.A 12) 
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Using EQ.A7 and EQ.A10, the third and the fourth term on the right side of EQ.A4 can 

be arranged as below: 

−∑ 𝛼𝑖((𝝎 ∙ 𝒙𝒊 + 𝑏) − 𝑦𝑖 + 𝜀 + ξ𝑖)
𝑛
𝑖=1 − ∑ 𝛼𝑖

∗(−(𝝎 ∙ 𝒙𝒊 + 𝑏) + 𝑦𝑖 + 𝜀 + ξ𝑖
∗)𝑛

𝑖=1   

    = −∑ (𝛼𝑖 − 𝛼𝑖
∗)𝝎 ∙ 𝒙𝒊

𝑛
𝑖=1 − ∑ (𝛼𝑖 − 𝛼𝑖

∗)𝑏 + ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑦𝑖

𝑛
𝑖=1

𝑛
𝑖=1   

        −∑ (𝛼𝑖 + 𝛼𝑖
∗)𝜀 − ∑ (𝛼𝑖ξ𝑖 + 𝛼𝑖

∗ξ𝑖
∗)𝑛

𝑖=1
𝑛
𝑖=1   

    = −∑ ∑ (𝛼𝑖 − 𝛼𝑖
∗)(𝛼𝑗 − 𝛼𝑗

∗)𝒙𝒊 ∙ 𝒙𝒋 + ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑦𝑖

𝑛
𝑖=1

𝑛
𝑗=1

𝑛
𝑖=1   

        −∑ (𝛼𝑖 + 𝛼𝑖
∗)𝜀 − ∑ (𝛼𝑖ξ𝑖 + 𝛼𝑖

∗ξ𝑖
∗)𝑛

𝑖=1
𝑛
𝑖=1   (EQ.A 13) 

Inserting EQ.A11, EQ.A12, EQ.A13 into EQ.A4, Lagrange dual function is derived in 

terms of Lagrange multipliers 𝛼𝑖 and 𝛼𝑖
∗, and the Lagrange dual problem is defined as 

below: 

𝑀𝑎𝑥 𝐿(𝛼, 𝛼∗) = −
1

2
∑ ∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝒙𝒊 ∙ 𝒙𝒋

𝑛
𝑗=1

𝑛
𝑖=1   

                           +∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑦𝑖

𝑛
𝑖=1 − ∑ (𝛼𝑖 + 𝛼𝑖

∗)𝜀𝑛
𝑖=1   (EQ.A 14) 

Subject to 

{

∑ (𝛼𝑖 − 𝛼𝑖
∗) = 0𝑛

𝑖=1

0 ≤ 𝛼𝑖 ≤ 𝐶

0 ≤ 𝛼𝑖
∗ ≤ 𝐶

  

EQ.A3 is called a primal form and EQ.A14 is called a dual form of SVM optimization 

formula. One cannot simply say one is always better than the other. Yet, the dual form is 

preferred when non-linear SVM is used due to the ease of using kernel function. For 

instance, EQ.A14 changes to non-linear SVM simply by replacing 𝒙𝒊 ∙ 𝒙𝒋 with 𝐾(𝒙𝒊 ∙ 𝒙𝒋) 

(See Eq.A15). K is defined as 𝜑(𝒙𝒊)
𝑇𝜑(𝒙𝒋) where 𝜑 is a mapping function that transfer 
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data to higher dimensions. The data is regressed in the different dimensions. (See Figure 

A9).  

 

Figure A 9 - mapping of non-linear data into a feature space. 

 

The explicit form of 𝜑(𝑥) is not necessary here. Only the inner product between two 

mapped functions, which is K, is needed to turn the linear SVM to non-linear SVM.  

𝑀𝑎𝑥 𝐿(𝛼, 𝛼∗) = −
1

2
∑ ∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝐾(𝒙𝒊 ∙ 𝒙𝒋)

𝑛
𝑗=1

𝑛
𝑖=1   

                            +∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑦𝑖

𝑛
𝑖=1 − ∑ (𝛼𝑖 + 𝛼𝑖

∗)𝜀𝑛
𝑖=1   (EQ.A 15) 

Subject to  

∑ (𝛼𝑖 − 𝛼𝑖
∗) = 0𝑛

𝑖=1 𝑎𝑛𝑑 0 ≤ 𝛼𝑖, 𝛼𝑖
∗ ≤ 𝐶  

Radial Basis Function is the most representative non-linear kernel of SVM. It takes the 

following form: 

𝐾(𝒙𝒊 ∙ 𝒙𝒋) = 𝑒−𝛾‖𝒙𝒊−𝒙𝒋‖
2

 (EQ.A 16) 

EQ.A3, EQ.A14, and EQ.A15 are a quadratic optimization problem with inequality 

constraints. The basic mathematical format of such a task can be expressed as EQ.A17. 
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𝑀𝑖𝑛 𝑏𝑇𝐷𝑏 − 𝑑𝑇𝑏  (EQ.A 17) 

Subject to 

{
𝐴1

𝑇𝑏 = 𝑏1
𝐴2

𝑇𝑏 ≥ 𝑏2
 

The EQ.A3 can be expressed as a matrix form befitting the EQ.A17. In that case, each 

term of the EQ.A17 has components as below:  

(n: the number of observations, k: the number of independent variables) 

𝑏 =

(

 
 
 
 
 
 
 

𝑏
𝜔1
⋮
𝜔𝑘
𝜉1
⋮
𝜉𝑛
𝜉1
∗

⋮
𝜉𝑛
∗)

 
 
 
 
 
 
 

,𝑑 =

(

 
 
 
 

0
𝑎1 = 0
⋮

𝑎𝑘 = 0
𝑏1 = −𝐶

⋮
𝑏2𝑛 = −𝐶)

 
 
 
 

 

𝐴2 =

(

 
 
 
 
 
 
 

𝑎1 = 0 ⋯ 𝑎2𝑛 = 0 𝑏1 = 1 ⋯ 𝑏𝑛 = 1 𝑏𝑛+ 1 = −1 ⋯ 𝑏2𝑛 = −1

𝑐1,1 = 0 ⋯ 0 𝑑1,1 = 𝑥1,1 𝑑1,𝑛 = 𝑥𝑛,1 𝑑1,𝑛+1 = −𝑥1,1 𝑑1,2𝑛 = −𝑥𝑛,1
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 𝑐𝑘,2𝑛 = 0 𝑑𝑘,1 = 𝑥1,𝑘 𝑑𝑘,𝑛 = 𝑥𝑛,𝑘 𝑑𝑘,𝑛+1 = −𝑥1,𝑘 0 𝑑𝑘,2𝑛 = −𝑥𝑛,𝑘

𝑒1,1 = 1 ⋯ 0 𝑓1,1 = 1 0 ⋯ 0

0 1 ⋮ 0 1
⋮ ⋱ ⋱ ⋯

1 0 ⋱ 1 0
0 0 𝑒2𝑛,2𝑛 = 1 0 ⋯ ⋯ 0 𝑓2𝑛,2𝑛 = 1 )

 
 
 
 
 
 
 

 

𝑏2 = (𝑎1 = 0 ⋯ 𝑎2𝑛 = 0 𝑏1 = 𝑦1 − 𝜀 ⋯ 𝑏𝑛 = 𝑦𝑛 − 𝜀 𝑐1 = −𝑦𝑛 − 𝜀 ⋯ 𝑐𝑛 = −𝑦𝑛 − 𝜀) 

𝐷 =

(

 
 
 
 
 

0 0 0 ⋯
0 𝑎1,1 = 1 0

0 0 ⋱
⋮ 𝑎𝑘,𝑘 = 1

𝑏1,1 = 0 0 0

0 ⋱ 0
⋯ 0 0 𝑏2𝑛,2𝑛 = 0)

 
 
 
 
 

 

Once the quadratic optimization problem is solved, the components of the vector b, 

which are b, ω𝑖, …, ω𝑘 , ξ1, …, ξ𝑛 , ξ1
∗ , …, ξ𝑛

∗ , are obtained. 
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The EQ.A14 and EQ.A15 can be expressed as a matrix form befitting the EQ.A17. In 

that case, each term of the EQ.A17 has components is shown as below. (Note that the 

original optimization task is maximization, but here it changes to minimization by 

multiplying -1 by the original formula to fit EQ.A17.) 

(n: the number of observations, k: the number of independent variables) 

𝑏 =

(

 
 
 

𝛼1
⋮
𝛼𝑛
𝛼1
∗

⋮
𝛼𝑛
∗)

 
 
 
, 𝑑 =

(

  
 

𝑦1 − 𝜀
⋮

𝑦𝑛 − 𝜀
−𝑦1 − 𝜀

⋮
−𝑦𝑛 − 𝜀)

  
 

 

𝐴1 =

(

 
 
 

𝑎1 = 1
⋮

𝑎𝑛 = 1
𝑏1 = −1

⋮
𝑏𝑛 = −1)

 
 
 

 

𝐴2 =

(

 
 

𝑎1,1 = 1 0 0 0 0 𝑏1,1 = −1 0 0 0 0

0 1 0 0 0 0 −1 0 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 1 0 0 0 0 −1 0
0 0 0 0 𝑎2𝑛,2𝑛 = 1 0 0 0 0 𝑏2𝑛,2𝑛 = −1)

 
 

 

𝑏1 = (0), 𝑏2 = (𝑎1 = 0 ⋯ 𝑎2𝑛 = 0 𝑎2𝑛+1 = −𝐶 ⋯ 𝑎4𝑛 = −𝐶) 

𝐷 = (
𝐾 −𝐾
−𝐾 𝐾

) 

Where:  

𝐾 =

(

  
 

𝐾(𝒙𝟏 ∙ 𝒙𝟏) 𝐾(𝒙𝟏 ∙ 𝒙𝟐) ⋯

𝐾(𝒙𝟐 ∙ 𝒙𝟏)

⋮ ⋱
𝐾(𝒙𝒏−𝟏 ∙ 𝒙𝒏)

⋯ 𝐾(𝒙𝒏 ∙ 𝒙𝒏−𝟏) 𝐾(𝒙𝒏 ∙ 𝒙𝒏) )

  
 

 

Refer to Appendix B for details of 𝐾(𝒙, 𝒚) 
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Once the quadratic optimization problem is solved, the components of the vector b, 

which are 𝛼1, …, 𝛼𝑛, α1
∗ , …, α𝑛

∗ , are obtained. 

EQ.A3, EQ.A14, and EQ.A15 are inequality constrained optimization problems. The 

local optimum of those problems is supposed to satisfy Karush-Kuhn-Tucker (KKT) 

conditions. The KKT conditions are not sufficient conditions, but necessary conditions 

by themselves. However, if the objective function, which is an object of minimization or 

maximization, is convex or concave, it becomes sufficient conditions conveniently. It is 

because a local minimum is the unique global minimum in the convex.  The objective 

function of EQ.3, EQ.9, and EQ.11 are convex. Hence, the KKT conditions can be used 

to find the optimal solution to SVM optimization problems. The KKT conditions are 

summarized below:  

 

KKT Conditions 

(The asterisk (*) indicates optimal values. 𝑓(𝒙) is an objective function, 𝑔𝑖(𝒙) is 

inequality constraints, and ℎ𝑖(𝒙) is equality constraints.) 

Let’s suppose there is an optimization task as below:  

Min 𝑓(𝒙) 

Subject to  

𝑔𝑖(𝒙
∗) ≥ 0, 𝑖 = 1,… ,𝑚 

ℎ𝑖(𝒙
∗) = 0, 𝑖 = 1,… , 𝑘 

 

If 𝒙∗ is optimum, it must satisfy the following conditions. 
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1. Feasible Constraints 

𝑔𝑖(𝒙
∗) ≥ 0, 𝑖 = 1,… ,𝑚 

ℎ𝑖(𝒙
∗) = 0, 𝑖 = 1,… , 𝑘 

The optimal value of 𝒙∗ must keep the constraint conditions. 

2. Stationary 

∇𝑓(𝒙∗) −∑𝜇𝑖∇𝑔𝑖(𝒙
∗) −

𝑚

𝑖=1

∑𝜆𝑖∇ℎ𝑖(𝒙
∗)

𝑘

𝑖=1

= 0 

There is no feasible direction in which the objective function can be furthered optimized. 

3, Complementary Slackness 

𝜇𝑖𝑔𝑖(𝒙
∗) = 0 

When the constraint is binding (𝑔𝑖(𝒙
∗) = 0) the Lagrange multiplier for inequality 

constraints (𝜇𝑖) is positive. When the constraint is not binding (𝑔𝑖(𝒙
∗) > 0), the 

Lagrange multiplier (𝜇𝑖) for inequality constraints is zero. Note that Lagrange multiplier 

for equality constraints (𝜆𝑖) is free from this constraint. 

4. Positive Lagrange Multipliers (for inequality constraints) 

𝜇𝑖 ≥ 0 

 

By applying KKT conditions to the inequality-constraints optimization task, a set of 

simultaneous equations are established. In general, it starts by assuming that all 

constraints are binding (𝑔𝑖(𝒙
∗) = 0 𝑎𝑛𝑑 𝜇𝑖 > 0). If the solution from this assumption 

violates any of the KKT conditions, the assumption should change and the equation 

should be solved again until no violation of the KKT conditions occurs. For example, if 
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the resultant 𝜇2 is negative, it violates the KKT condition 4, and it should be assumed 

that 𝜇2 = 0 and another attempt should be made to solve those equations. This process is 

repeated until the one that satisfies all KKT conditions is found. In the convex 

optimization problem, the solution of the set of simultaneous equation is the global 

optimum. Unfortunately, in SVM, the number of equations to be solved simultaneously 

is overwhelming. For instance, even if the number of training data is just two, there are 

14 equations to be solved. (An example follows to show this.) Thus, in SVM, this 

equation is solved using numerical methods, such as Interior Point, Active Set, and SMO 

(sequential minimal optimization), and so on. 

 

The resultant plot from EQ.A14 and EQ.A15 are expressed as EQ.A18 and EQ.A19, 

respectively. 

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝒙𝒊 ∙ 𝒙

𝑛
𝑖=1 + 𝑏  (EQ.A 18) 

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑘(𝒙𝒊 ∙ 𝒙)

𝑛
𝑖=1 + 𝑏  (EQ.A 19) 

n is the number of training data, and i refers to an index for each observation. The 

observation where 𝛼𝑖 − 𝛼𝑖
∗ ≠ 0 is called a support vector. Thus, the observation where 

𝛼𝑖 − 𝛼𝑖
∗ = 0 is not a support vector. In other word, the plot of EQ.A18 and EQ.A19 can 

be expressed only by support vectors. For this reason, n sometimes refers to the number 

of support vector, not the number of training data. If that is the case, i refers to an index 

for support vector. In the case of non-linear kernel SVM regression, the resultant plot 

EQ.A19 cannot be reversed to the linear form of EQ.A1. Yet, it is possible for the 

EQ.A18 to be reversed to EQ.A1 by using EQ. A10. 



125 

 

𝝎 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝒙𝒊

𝑁
𝑖=1  (EQ.A 20) 

The bias term b is obtained by applying the KKT condition 3 to the primal form of 

SVM.  

𝛼𝑖(𝒙𝒊 ∙ 𝝎 + 𝑏 + 𝜉𝑖 + 𝜀 − 𝑦𝑖 ) = 0 

𝛼𝑖
∗(−𝒙𝒊 ∙ 𝝎 − 𝑏 + 𝜉𝑖

∗ + 𝜀 + 𝑦𝑖 ) = 0 

The value of b can be known when the Lagrange multiplies 𝛼𝑖 or 𝛼𝑖
∗ are nonzero, and the 

corresponding slack variables 𝜉𝑖 or 𝜉𝑖
∗ are zero. This happens when the support vectors 

that sit exactly along the epsilon line. In this case, 0 < 𝛼𝑖 𝑜𝑟 𝛼𝑖
∗ < 𝐶. The support vector 

of this location is called unbounded (or free) support vector. For non-support vectors, 

both 𝛼𝑖 and 𝛼𝑖
∗ become zero, and the righthand side of the KKT condition 3 becomes an 

unidentified non-zero value. For support vectors that sit away from the epsilon line, 𝛼𝑖 or 

𝛼𝑖
∗ becomes C, but the slack variable becomes non-zero. Since the value of slack 

variable is unknown at this point, the KKT condition 3 cannot be used here. For 

unbounded support vectors, the b can be found as below. 

𝑏 = −𝜀 + 𝑦𝑖 − 𝒙𝒊 ∙ 𝝎 for 0 < 𝛼𝑖 < 𝐶 

𝑏 = 𝜀 + 𝑦𝑖 − 𝒙𝒊 ∙ 𝝎  for < 0 < 𝛼𝑖
∗ < 𝐶 

However, the equation above can be used only to linear SVM regression. For non-linear 

Kernel SVM regression, the following equation can be used instead.  

𝑏 = −𝜀 + 𝑦𝑖 − ∑ (𝛼𝑗 − 𝛼𝑗
∗)𝑛

𝑗=1 𝑘(𝒙𝒋 ∙ 𝒙𝒊) for 0 < 𝛼𝑖 < 𝐶 

𝑏 = 𝜀 + 𝑦𝑖 − ∑ (𝛼𝑗 − 𝛼𝑗
∗)𝑛

𝑗=1 𝑘(𝒙𝒋 ∙ 𝒙𝒊) for < 0 < 𝛼𝑖
∗ < 𝐶 
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The 𝒙𝒊 ∙ 𝝎 term of linear SVM is functionally equivalent to the term ∑ (𝛼𝑗 −
𝑛
𝑗=1

𝛼𝑗
∗) 𝑘(𝒙𝒋 ∙ 𝒙𝒊) of non-linear kernel SVM regression. (See EQ.A1 and EQ.A19). 
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A.2 An Example of Solving the Primal Form of SVM Regression 

A.2.1 Establishment of Simultaneous Equations  

Here is an example to set up a system of equations applying KKT conditions to SVM 

task that has only three points to train. The training data is assumed to be two-

dimensional: (x1,y1), (x2,y2), (x3,y3) 

 

Optimization task: 

Minimize 𝑓(𝑏, 𝜔, ξ1, ξ2, ξ3, ξ1
∗ , ξ2

∗ , ξ3
∗) =

1

2
‖𝝎‖2 + C∑ (ξ𝑖 + ξ𝑖

∗)3
𝑖=1  

subject to 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑔1(𝑏, 𝜔, ξ1, ξ2, ξ3, ξ1
∗ , ξ2

∗ , ξ3
∗) = ξ1 ≥ 0

𝑔2(𝑏, 𝜔, ξ1, ξ2, ξ3, ξ1
∗ , ξ2

∗ , ξ3
∗) = ξ2 ≥ 0

𝑔3(𝑏, 𝜔, ξ1, ξ2, ξ3, ξ1
∗ , ξ2

∗ , ξ3
∗) = ξ3 ≥ 0

𝑔4(𝑏, 𝜔, ξ1, ξ2, ξ3, ξ1
∗ , ξ2

∗ , ξ3
∗) = ξ1

∗ ≥ 0

𝑔5(𝑏, 𝜔, ξ1, ξ2, ξ3, ξ1
∗ , ξ2

∗ , ξ3
∗) = ξ2

∗ ≥ 0

𝑔6(𝑏, 𝜔, ξ1, ξ2, ξ3, ξ1
∗ , ξ2

∗ , ξ3
∗) = ξ3

∗ ≥ 0

𝑔7(𝑏, 𝜔, ξ1, ξ2, ξ3, ξ1
∗ , ξ2

∗ , ξ3
∗) = 𝑥1𝜔 + 𝑏 + ξ1 − 𝑦1 + 𝜀 ≥ 0

𝑔8(𝑏, 𝜔, ξ1, ξ2, ξ3, ξ1
∗ , ξ2

∗ , ξ3
∗) = 𝑥2𝜔 + 𝑏 + ξ2 − 𝑦2 + 𝜀 ≥ 0

𝑔9(𝑏, 𝜔, ξ1, ξ2, ξ3, ξ1
∗ , ξ2

∗ , ξ3
∗) = 𝑥3𝜔 + 𝑏 + ξ3 − 𝑦3 + 𝜀 ≥ 0

𝑔10(𝑏, 𝜔, ξ1, ξ2, ξ3, ξ1
∗ , ξ2

∗ , ξ3
∗) = −𝑥1𝜔 − 𝑏 + ξ1

∗ + 𝑦1 + 𝜀 ≥ 0

𝑔11(𝑏, 𝜔, ξ1, ξ2, ξ3, ξ1
∗ , ξ2

∗ , ξ3
∗) = −𝑥2𝜔 − 𝑏 + ξ2

∗ + 𝑦2 + 𝜀 ≥ 0

𝑔12(𝑏, 𝜔, ξ1, ξ2, ξ3, ξ1
∗ , ξ2

∗ , ξ3
∗) = −𝑥3𝜔 − 𝑏 + ξ3

∗ + 𝑦3 + 𝜀 ≥ 0
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This optimization task is equivalent to the following matrix algebra:  

𝑀𝑖𝑛(𝑏 𝜔 𝜉1 𝜉2 𝜉3 𝜉1
∗ 𝜉2

∗ 𝜉3
∗)

(

 
 
 
 
 

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0)

 
 
 
 
 

(

 
 
 
 
 
 

𝑏
𝜔
𝜉1
𝜉2
𝜉3
𝜉1
∗

𝜉2
∗

𝜉3
∗)

 
 
 
 
 
 

+

(0 0 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶)

(

 
 
 
 
 
 

𝑏
𝜔
𝜉1
𝜉2
𝜉3
𝜉1
∗

𝜉2
∗

𝜉3
∗)

 
 
 
 
 
 

 

Subject to 

(

 
 
 
 
 
 
 
 
 

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 𝑥1 1 0 0 0 0 0
1 𝑥2 0 1 0 0 0 0
1 𝑥3 0 0 1 0 0 0
−1 −𝑥1 0 0 0 1 0 0
−1 −𝑥2 0 0 0 0 1 0
−1 −𝑥3 0 0 0 0 0 1)

 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 

𝑏

𝜔

𝜉
1

𝜉
2

𝜉
3

𝜉
1
∗

𝜉
2
∗

𝜉
3
∗
)

 
 
 
 
 
 

≥ (0 0 0 0 0 0 𝑦1 − 𝜀 𝑦2 − 𝜀 𝑦3 − 𝜀 −𝑦1 − 𝜀 −𝑦2 − 𝜀 −𝑦3 − 𝜀) 

 

A system of equations can be set up using KKT conditions. 

 

KKT condition 2 (Stationary): 

∇𝑓(𝒙∗) −∑𝜇𝑖∇𝑔𝑖(𝒙
∗) −

𝑚

𝑖=1

∑𝜆𝑖∇ℎ𝑖(𝒙
∗)

𝑘

𝑖=1

= 0 

In this example, 

𝒙𝑻 = (𝑏 𝜔 ξ1 ξ2 ξ3 ξ1
∗ ξ2

∗ ξ3
∗), m = 12, k = 0 
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To be consistent with the Lagrange function of Eq.4, the Lagrange multipliers for 

inequality will be denoted as below: 

𝜇𝑖 = 𝛽𝑖  (𝑖 = 1, 2, 3), 𝜇𝑖 = 𝛽𝑖−3
∗   (𝑖 = 4, 5, 6)  

𝜇𝑖−6 = 𝛼𝑖  (𝑖 = 7, 8, 9), 𝜇𝑖 = 𝛼𝑖−9
∗   (𝑖 = 10, 11, 12) 

Each term of the equation can be expressed in the form of vector as below: 

 

∇𝑓(𝒙∗) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑓

𝜕𝑏
𝜕𝑓

𝜕𝜔
𝜕𝑓

𝜕𝜉1
𝜕𝑓

𝜕𝜉2
𝜕𝑓

𝜕𝜉3
𝜕𝑓

𝜕𝜉1
∗

𝜕𝑓

𝜕𝜉2
∗

𝜕𝑓

𝜕𝜉3
∗)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 

0
𝜔
𝐶
𝐶
𝐶
𝐶
𝐶
𝐶)

 
 
 
 
 

, ∇𝑔1(𝒙
∗) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔1
𝜕𝑏
𝜕𝑔1
𝜕𝜔
𝜕𝑔1
𝜕𝜉1
𝜕𝑔1
𝜕𝜉2
𝜕𝑔1
𝜕𝜉3
𝜕𝑔1
𝜕𝜉1

∗

𝜕𝑔1
𝜕𝜉2

∗

𝜕𝑔1
𝜕𝜉3

∗)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 

0
0
1
0
0
0
0
0)

 
 
 
 
 

, ∇𝑔2(𝒙
∗) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔2
𝜕𝑏
𝜕𝑔2
𝜕𝜔
𝜕𝑔2
𝜕𝜉1
𝜕𝑔2
𝜕𝜉2
𝜕𝑔2
𝜕𝜉3
𝜕𝑔2
𝜕𝜉1

∗

𝜕𝑔2
𝜕𝜉2

∗

𝜕𝑔2
𝜕𝜉3

∗)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 

0
0
0
1
0
0
0
0)

 
 
 
 
 

  

∇𝑔3(𝒙
∗) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔3
𝜕𝑏
𝜕𝑔3
𝜕𝜔
𝜕𝑔3
𝜕𝜉1
𝜕𝑔3
𝜕𝜉2
𝜕𝑔3
𝜕𝜉3
𝜕𝑔3
𝜕𝜉1

∗

𝜕𝑔3
𝜕𝜉2

∗

𝜕𝑔3
𝜕𝜉3

∗)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 

0
0
0
0
1
0
0
0)

 
 
 
 
 

, ∇𝑔4(𝒙
∗) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔4
𝜕𝑏
𝜕𝑔4
𝜕𝜔
𝜕𝑔4
𝜕𝜉1
𝜕𝑔4
𝜕𝜉2
𝜕𝑔4
𝜕𝜉3
𝜕𝑔4
𝜕𝜉1

∗

𝜕𝑔4
𝜕𝜉2

∗

𝜕𝑔4
𝜕𝜉3

∗)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 

0
0
0
0
0
1
0
0)

 
 
 
 
 

, ∇𝑔5(𝒙
∗) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔5
𝜕𝑏
𝜕𝑔5
𝜕𝜔
𝜕𝑔5
𝜕𝜉1
𝜕𝑔5
𝜕𝜉2
𝜕𝑔5
𝜕𝜉3
𝜕𝑔5
𝜕𝜉1

∗

𝜕𝑔5
𝜕𝜉2

∗

𝜕𝑔5
𝜕𝜉3

∗)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 

0
0
0
0
0
0
1
0)

 
 
 
 
 

 



130 

 

∇𝑔6(𝒙
∗) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔6
𝜕𝑏
𝜕𝑔6
𝜕𝜔
𝜕𝑔6
𝜕𝜉1
𝜕𝑔6
𝜕𝜉2
𝜕𝑔6
𝜕𝜉3
𝜕𝑔6
𝜕𝜉1

∗

𝜕𝑔6
𝜕𝜉2

∗

𝜕𝑔6
𝜕𝜉3

∗)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 

0
0
0
0
0
0
0
1)

 
 
 
 
 

, ∇𝑔7(𝒙
∗) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔7
𝜕𝑏
𝜕𝑔7
𝜕𝜔
𝜕𝑔7
𝜕𝜉1
𝜕𝑔7
𝜕𝜉2
𝜕𝑔7
𝜕𝜉3
𝜕𝑔7
𝜕𝜉1

∗

𝜕𝑔7
𝜕𝜉2

∗

𝜕𝑔7
𝜕𝜉3

∗)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 

1
𝑥1
1
0
0
0
0
0 )

 
 
 
 
 

, ∇𝑔8(𝒙
∗) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔8
𝜕𝑏
𝜕𝑔8
𝜕𝜔
𝜕𝑔8
𝜕𝜉1
𝜕𝑔8
𝜕𝜉2
𝜕𝑔8
𝜕𝜉3
𝜕𝑔8
𝜕𝜉1

∗

𝜕𝑔8
𝜕𝜉2

∗

𝜕𝑔8
𝜕𝜉3

∗)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 

1
𝑥2
0
0
1
0
0
0 )

 
 
 
 
 

 

∇𝑔9(𝒙
∗) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔9
𝜕𝑏
𝜕𝑔9
𝜕𝜔
𝜕𝑔9
𝜕𝜉1
𝜕𝑔9
𝜕𝜉2
𝜕𝑔9
𝜕𝜉3
𝜕𝑔9
𝜕𝜉1

∗

𝜕𝑔9
𝜕𝜉2

∗

𝜕𝑔9
𝜕𝜉3

∗)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 

1
𝑥3
0
0
1
0
0
0 )

 
 
 
 
 

, ∇𝑔10(𝒙
∗) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔10
𝜕𝑏
𝜕𝑔10
𝜕𝜔
𝜕𝑔10
𝜕𝜉1
𝜕𝑔10
𝜕𝜉2
𝜕𝑔10
𝜕𝜉3
𝜕𝑔10
𝜕𝜉1

∗

𝜕𝑔10
𝜕𝜉2

∗

𝜕𝑔10
𝜕𝜉3

∗ )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 

−1
−𝑥1
0
0
0
1
0
0 )

 
 
 
 
 

, ∇𝑔11(𝒙
∗) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔11
𝜕𝑏
𝜕𝑔11
𝜕𝜔
𝜕𝑔11
𝜕𝜉1
𝜕𝑔11
𝜕𝜉2
𝜕𝑔11
𝜕𝜉3
𝜕𝑔11
𝜕𝜉1

∗

𝜕𝑔11
𝜕𝜉2

∗

𝜕𝑔11
𝜕𝜉3

∗ )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 

−1
−𝑥2
0
0
0
0
1
0 )
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∇𝑔12(𝒙
∗) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔12
𝜕𝑏
𝜕𝑔12
𝜕𝜔
𝜕𝑔12
𝜕𝜉1
𝜕𝑔12
𝜕𝜉2
𝜕𝑔12
𝜕𝜉3
𝜕𝑔12
𝜕𝜉1

∗

𝜕𝑔12
𝜕𝜉2

∗

𝜕𝑔12
𝜕𝜉3

∗ )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 

−1
−𝑥3
0
0
0
0
0
1 )

 
 
 
 
 

 

Plugging in the corresponding vectors to the equation, eight equations are derived from 

the six rows, respectively. 

−𝛼1 − 𝛼2 − 𝛼3 + 𝛼1
∗ + 𝛼2

∗ + 𝛼3
∗ = 0 

𝜔 − 𝑥1𝛼1 − 𝑥2𝛼2 − 𝑥3𝛼3 + 𝑥1𝛼1
∗ + 𝑥2𝛼2

∗ + 𝑥3𝛼3
∗ = 0 

𝐶 − 𝛽1 − 𝛼1 = 0 

𝐶 − 𝛽2 − 𝛼2 = 0 

𝐶 − 𝛽3 − 𝛼3 = 0 

𝐶 − 𝛽1
∗ − 𝛼1

∗ = 0 

𝐶 − 𝛽2
∗ − 𝛼2

∗ = 0 

𝐶 − 𝛽3
∗ − 𝛼3

∗ = 0 

 

KKT condition 3 

𝜇𝑖𝑔𝑖(𝑥
∗) = 0 
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The following twelve equations are set up as a result of applying the KKT condition 3 

𝜇1𝑔1(𝑥
∗) = 𝛽1𝜉1 = 0 

𝜇2𝑔2(𝑥
∗) = 𝛽2𝜉2 = 0 

𝜇3𝑔3(𝑥
∗) = 𝛽3𝜉3 = 0 

𝜇4𝑔4(𝑥
∗) = 𝛽1

∗𝜉1
∗ = 0 

𝜇5𝑔5(𝑥
∗) = 𝛽2

∗𝜉2
∗ = 0 

𝜇6𝑔6(𝑥
∗) = 𝛽3

∗𝜉3
∗ = 0 

𝜇7𝑔7(𝑥
∗) = 𝛼1(𝑥1𝜔 + 𝑏 + 𝜉1 + 𝜀 − 𝑦1 ) = 0 

𝜇8𝑔8(𝑥
∗) = 𝛼2(𝑥2𝜔 + 𝑏 + 𝜉2 + 𝜀 − 𝑦2 ) = 0 

𝜇9𝑔9(𝑥
∗) = 𝛼3(𝑥3𝜔 + 𝑏 + 𝜉3 + 𝜀 − 𝑦3 ) = 0 

𝜇10𝑔10(𝑥
∗) = 𝛼1

∗(−𝑥1𝜔 − 𝑏 + 𝜉1
∗ + 𝜀 + 𝑦1 ) = 0 

𝜇11𝑔11(𝑥
∗) = 𝛼2

∗(−𝑥2𝜔 − 𝑏 + 𝜉2
∗ + 𝜀 + 𝑦2 ) = 0 

𝜇𝑖2𝑔12(𝑥
∗) = 𝛼3

∗(−𝑥3𝜔 − 𝑏 + 𝜉3
∗ + 𝜀 + 𝑦2 ) = 0 

 

Solving the 20 equations simultaneously, the components of 𝒙∗, which are 𝑏, 𝜔, 𝜉1, 𝜉2, 

𝜉3, 𝜉1
∗, 𝜉2

∗, and 𝜉3
∗, are identified. 

 

However, solving the system of 20 equations by hand is extremely difficult and time-

consuming. Thus, the solution to this system of equations is calculated with sample 

training data and predetermined hyperparameters by the quadratic programming solver, 

Quadprog [56]. The solution obtained from the Quadprog is checked with the KKT 
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conditions 2 and 3. Since the simultaneous equations are from the KKT conditions, if the 

solution satisfies all KKT conditions, it will automatically all the simultaneous 

equations. 

 

A.2.2 Solving SVM Optimization Task Using a Quadratic Solver 

The input and output of the Quadprog are as follows: 

(Input)  

Hyperparameters: C = 4, ε = 0.1 

Training Data: (x1,y1) = (1,2), (x2,y2) = (2,4), (x3,y3) = (3,5) 

 

 

Figure A 10 - Three Sample Points 
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(Output from the Quadprog) 

Solution: 𝒙𝑻 = (𝑏 𝜔 𝜉1 𝜉2 𝜉3 𝜉1
∗ 𝜉2

∗ 𝜉3
∗) =

(0.6 1.5 0 0.3 0 0 0 0) 

Lagrange Multipliers:  

𝛼1 = 0, 𝛼2 = 4, 𝛼3 = 0, 𝛼1
∗ = 2.75, 𝛼2

∗ = 0, 𝛼3
∗ = 1.25  

𝛽1 = 4, 𝛽2 = 0, 𝛽3 = 4, 𝛽1
∗ = 1.25, 𝛽2

∗ = 4, 𝛽3
∗ = 2.75  

The resultant plot is:  

𝑓(𝑥) = 𝜔𝑥 + 𝑏 = 1.5𝑥 + 0.6 

 

Figure A 11 - Linear (Primal) SVM from the Three Sample Points 

 

A.2.3 Validation of the Solution in Reference to KKT Conditions 

The output from the Quadprog is validated by checking if the output satisfies all KKT 

conditions. 
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1. Feasible Constraints 

𝑔𝑖(𝒙
∗) ≥ 0, ℎ𝑖(𝒙

∗) = 0 

 

𝑔1 = ξ1 = 0 ≥ , 𝑔2 = ξ2 = 0.3 ≥ 0, 𝑔3 = ξ3 = 0 ≥ 0, 𝑔4 = ξ1
∗ = 0 ≥ 0 

𝑔5 = ξ2
∗ = 0 ≥ 0, 𝑔6 = ξ3

∗ = 0 ≥ 0 

𝑔7 = 𝑥1𝜔 + 𝑏 + ξ1 + 𝜀 − 𝑦1 = 1 × 1.5 + 0.6 + 0 + 0.1 − 2 ≥ 0 

𝑔8 = 𝑥2𝜔 + 𝑏 + ξ2 + 𝜀 − 𝑦2 =  2 × 1.5 + 0.6 + 0.3 + 0.1 − 4 ≥ 0  

𝑔9 = 𝑥3𝜔 + 𝑏 + ξ3 + 𝜀 − 𝑦3 =  3 × 1.5 + 0.6 + 0 + 0.1 − 5 ≥ 0  

𝑔10 = −𝑥1𝜔 − 𝑏 + ξ1
∗ + 𝜀 + 𝑦1 = −1 × 1.5 − 0.6 + 0 + 0.1 + 2 ≥ 0  

𝑔11 = −𝑥2𝜔 − 𝑏 + ξ2
∗ + 𝜀 + 𝑦2 = −2 × 1.5 − 0.6 + 0 + 0.1 + 4 ≥ 0  

𝑔12 = −𝑥3𝜔 − 𝑏 + ξ3
∗ + 𝜀 + 𝑦3 = −3 × 1.5 − 0.6 + 0 + 0.1 + 5 ≥ 0  

 

2. Stationary 

∇𝑓(𝒙∗) −∑𝜇𝑖∇𝑔𝑖(𝒙
∗) −

𝑚

𝑖=1

∑𝜆𝑖∇ℎ𝑖(𝒙
∗)

𝑘

𝑖=1

= 0 

Each row of the vector equation makes one scalar equation. Thus, scalar six equations 

are established as below. Plugging in the Lagrange Multipliers to each of corresponding 

equations, you see that all equations are satisfied.  
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−𝛼1 − 𝛼2 − 𝛼3 + 𝛼1
∗ + 𝛼2

∗ + 𝛼3
∗ = −0 − 4 − 0 + 2.75 + 0 + 1.25 = 0 

𝜔 − 𝑥1𝛼1 − 𝑥2𝛼2 − 𝑥3𝛼3 + 𝑥1𝛼1
∗ + 𝑥2𝛼2

∗ + 𝑥3𝛼3
∗

= 1.5 − 1 × 0 − 2 × 4 − 3 × 0 + 1 × 2.75 + 2 × 0 + 3 × 1.25 = 0 

𝐶 − 𝛽1 − 𝛼1 = 4 − 4 − 0 = 0  

𝐶 − 𝛽2 − 𝛼2 = 4 − 0 − 4 = 0  

𝐶 − 𝛽3 − 𝛼3 = 4 − 4 − 0 = 0  

𝐶 − 𝛽1
∗ − 𝛼1

∗ = 4 − 1.25 − 2.75 = 0  

𝐶 − 𝛽2
∗ − 𝛼2

∗ = 4 − 4 − 0 = 0  

𝐶 − 𝛽3
∗ − 𝛼3

∗ = 4 − 2.75 − 1.25 = 0  

 

 

3 Complementary Slackness 

𝜇𝑖(∇𝑔𝑖(𝒙
∗)) = 0 

 

𝜇1𝑔1(𝑥
∗) = 𝛽1𝜉1 = 4 × 0 = 0, 𝜇2𝑔2(𝑥

∗) = 𝛽2𝜉2 = 0 × 0.3 = 0 

𝜇3𝑔3(𝑥
∗) = 𝛽3𝜉3 = 4 × 0 = 0, 𝜇4𝑔4(𝑥

∗) = 𝛽1
∗𝜉1
∗ = 1.25 × 0 = 0 

𝜇5𝑔5(𝑥
∗) = 𝛽2

∗𝜉2
∗ = 4 × 0 = 0, 𝜇6𝑔6(𝑥

∗) = 𝛽3
∗𝜉3
∗ = 2.75 × 0 = 0 

𝜇7𝑔7(𝑥
∗) = 𝛼1(𝑥1𝜔 + 𝑏 + 𝜉1 + 𝜀 − 𝑦1 ) = 0 × (1 × 1.5 + 0.6 + 0 + 0.1 − 2) = 0 

𝜇8𝑔8(𝑥
∗) = 𝛼2(𝑥2𝜔 + 𝑏 + 𝜉2 + 𝜀 − 𝑦2 ) = 4 × (2 × 1.5 + 0.6 + 0.3 + 0.1 − 4) = 0 

𝜇9𝑔9(𝑥
∗) = 𝛼3(𝑥3𝜔 + 𝑏 + 𝜉3 + 𝜀 − 𝑦3 ) = 0 × (3 × 1.5 + 0.6 + 0 + 0.1 − 5) = 0 

𝜇10𝑔10(𝑥
∗) = 𝛼1

∗(−𝑥1𝜔 − 𝑏 + 𝜉1
∗ + 𝜀 + 𝑦1 ) = 2.75 × (−1 × 1.5 − 0.6 + 0 + 0.1 + 2) = 0 

𝜇11𝑔11(𝑥
∗) = 𝛼2

∗(−𝑥2𝜔 − 𝑏 + 𝜉2
∗ + 𝜀 + 𝑦2 ) = 0 × (−2 × 1.5 − 0.6 + 0 + 0.1 + 4) = 0 

𝜇𝑖2𝑔12(𝑥
∗) = 𝛼3

∗(−𝑥3𝜔 − 𝑏 + 𝜉3
∗ + 𝜀 + 𝑦2 ) = 1.25 × (−3 × 1.5 − 0.6 + 0 + 0.1 + 5) = 0 
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4. Positive Lagrange Multipliers (for inequality constraints) 

𝜇𝑖 ≥ 0 

 

All Lagrange multipliers are not negative as below. 

𝛼1 = 0, 𝛼2 = 4, 𝛼3 = 0, 𝛼1
∗ = 2.75, 𝛼2

∗ = 0, 𝛼3
∗ = 1.25  

𝛽1 = 4, 𝛽2 = 0, 𝛽3 = 4, 𝛽1
∗ = 1.25, 𝛽2

∗ = 4, 𝛽3
∗ = 2.75  

 

The solution and Lagrangian multipliers satisfy all KKT conditions. Hence, they are the 

optimal solution to the given SVM task. 
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A.3 An Example of Solving the Dual Form of SVM Regression 

A.3.1 Establishment of Simultaneous Equations  

Here is an example of setting up a system of equations applying KKT conditions to the 

SVM task that has only three points to train. The training data is assumed to be two-

dimensional: (x1,y1), (x2,y2), (x3,y3) 

 

Optimization task: 

Maximize 𝑓(α1, α2, α3, α1
∗ , α2

∗ , α3
∗) = −

1

2
∑ ∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝐾(𝑥𝑖 ∙ 𝑥𝑗) +

3
𝑗=1

3
𝑖=1

∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑦𝑖

3
𝑖=1 − ∑ (𝛼𝑖 + 𝛼𝑖

∗)𝜀3
𝑖=1       

subject to 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
ℎ1(α1, α2, α3, α1

∗ , α2
∗ , α3

∗) = α1 + α2 + α3 − α1
∗ − α2

∗ − α3
∗ = 0

𝑔1(α1, α2, α3, α1
∗ , α2

∗ , α3
∗) = α1 ≥ 0

𝑔2(α1, α2, α3, α1
∗ , α2

∗ , α3
∗) =  α2 ≥ 0

𝑔3(α1, α2, α3, α1
∗ , α2

∗ , α3
∗) = α3 ≥ 0

𝑔4(α1, α2, α3, α1
∗ , α2

∗ , α3
∗) = 𝛼1

∗ ≥ 0

𝑔5(α1, α2, α3, α1
∗ , α2

∗ , α3
∗) = 𝛼2

∗ ≥ 0

𝑔6(α1, α2, α3, α1
∗ , α2

∗ , α3
∗) = 𝛼3

∗ ≥ 0

𝑔7(α1, α2, α3, α1
∗ , α2

∗ , α3
∗) = −α1 + 𝐶 ≥ 0

𝑔8(α1, α2, α3, α1
∗ , α2

∗ , α3
∗) = −α2 + 𝐶 ≥ 0

𝑔9(α1, α2, α3, α1
∗ , α2

∗ , α3
∗) = −α3 + 𝐶 ≥ 0

𝑔10(α1, α2, α3, α1
∗ , α2

∗ , α3
∗) = −𝛼1

∗ + 𝐶 ≥ 0

𝑔11(α1, α2, α3, α1
∗ , α2

∗ , α3
∗) = −𝛼2

∗ + 𝐶 ≥ 0

𝑔12(α1, α2, α3, α1
∗ , α2

∗ , α3
∗) = −𝛼3

∗ + 𝐶 ≥ 0
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This optimization task is equivalent to the following matrix algebra:  

𝑀𝑎𝑥

−
1

2
(𝛼1 𝛼2 𝛼3 𝛼1

∗ 𝛼2
∗ 𝛼3

∗)

(

 
 
 

𝑘(𝑥1 ∙ 𝑥1) 𝑘(𝑥1 ∙ 𝑥2) 𝑘(𝑥1 ∙ 𝑥3) −𝑘(𝑥1 ∙ 𝑥1) −𝑘(𝑥1 ∙ 𝑥2) −𝑘(𝑥1 ∙ 𝑥3)

𝑘(𝑥2 ∙ 𝑥1) 𝑘(𝑥2 ∙ 𝑥2) 𝑘(𝑥2 ∙ 𝑥3) −𝑘(𝑥2 ∙ 𝑥1) −𝑘(𝑥2 ∙ 𝑥2) −𝑘(𝑥2 ∙ 𝑥3)
𝑘(𝑥3 ∙ 𝑥1) 𝑘(𝑥3 ∙ 𝑥2) 𝑘(𝑥3 ∙ 𝑥3) −𝑘(𝑥3 ∙ 𝑥1) −𝑘(𝑥3 ∙ 𝑥2) −𝑘(𝑥3 ∙ 𝑥3)
−𝑘(𝑥1 ∙ 𝑥1) −𝑘(𝑥1 ∙ 𝑥2) −𝑘(𝑥1 ∙ 𝑥3) 𝑘(𝑥1 ∙ 𝑥1) 𝑘(𝑥1 ∙ 𝑥2) 𝑘(𝑥1 ∙ 𝑥3)

−𝑘(𝑥2 ∙ 𝑥1) −𝑘(𝑥2 ∙ 𝑥2) −𝑘(𝑥2 ∙ 𝑥3) 𝑘(𝑥2 ∙ 𝑥1) 𝑘(𝑥2 ∙ 𝑥2) 𝑘(𝑥2 ∙ 𝑥3)
−𝑘(𝑥3 ∙ 𝑥1) −𝑘(𝑥3 ∙ 𝑥2) −𝑘(𝑥3 ∙ 𝑥3) 𝑘(𝑥3 ∙ 𝑥1) 𝑘(𝑥3 ∙ 𝑥2) 𝑘(𝑥3 ∙ 𝑥3) )

 
 
 

(

 
 
 

𝛼1
𝛼2
𝛼3
𝛼1
∗

𝛼2
∗

𝛼3
∗)

 
 
 

+ (𝑦1 − 𝜀 𝑦2 − 𝜀 𝑦3 − 𝜀 −𝑦1 − 𝜀 −𝑦2 − 𝜀 −𝑦3 − 𝜀)

(

 
 
 

𝛼1
𝛼2
𝛼3
𝛼1
∗

𝛼2
∗

𝛼3
∗)

 
 
 

 

Subject to 

(1 1 1 −1 −1 −1)

(

 
 
 
 

𝛼1
𝛼2
𝛼3
𝛼1
∗

𝛼2
∗

𝛼3
∗
)

 
 
 
 

= (0) 

(

 
 
 
 
 
 
 
 
 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1)

 
 
 
 
 
 
 
 
 

(

 
 
 
 

𝛼1
𝛼2
𝛼3
𝛼1
∗

𝛼2
∗

𝛼3
∗
)

 
 
 
 

≥ (0 0 0 0 0 0 −𝐶 −𝐶 −𝐶 −𝐶 −𝐶 −𝐶) 

 

A system of equations can be set up using KKT conditions. 

1. KKT condition 1 (Feasible Constraints): 

𝑔𝑖(𝒙
∗) ≥ 0, 𝑖 = 1,… ,𝑚, ℎ𝑖(𝒙

∗) = 0, 𝑖 = 1,… , 𝑘 
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in this example, 

𝒙𝑻 = (α1 α2 α3 α1
∗ α2

∗ α3
∗), m = 12, k = 1 

The following one equation is established by the KKT condition 1. 

ℎ1 = α1 + α2 + α3 − α1
∗ − α2

∗ − α3
∗ = 0 

 

KKT condition 2 (Stationary): 

∇𝑓(𝒙∗) +∑𝜇𝑖∇𝑔𝑖(𝒙
∗) −

𝑚

𝑖=1

∑λ𝑖∇ℎ𝑖(𝒙
∗)

𝑘

𝑖=1

= 0 

Each term of the equation can be expressed in the form of vector as below. 

∇𝑓(𝒙∗) =

(

 
 
 
 
 
 
 
 
 
 
 

𝜕𝑓

𝜕𝛼1
𝜕𝑓

𝜕𝛼2
𝜕𝑓

𝜕𝛼3
𝜕𝑓

𝜕𝛼1
∗

𝜕𝑓

𝜕𝛼2
∗

𝜕𝑓

𝜕𝛼3
∗)

 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 

−𝑘(𝑥1, 𝑥1)(𝛼1 − 𝛼1
∗) − 𝑘(𝑥1, 𝑥2)(𝛼2 − 𝛼2

∗) − 𝑘(𝑥1, 𝑥3)(𝛼3 − 𝛼3
∗) + 𝑦1 − 𝜀

−𝑘(𝑥2, 𝑥1)(𝛼1 − 𝛼1
∗) − 𝑘(𝑥2, 𝑥2)(𝛼2 − 𝛼2

∗) − 𝑘(𝑥2, 𝑥3)(𝛼3 − 𝛼3
∗) + 𝑦2 − 𝜀

−𝑘(𝑥3, 𝑥1)(𝛼1 − 𝛼1
∗) − 𝑘(𝑥3, 𝑥2)(𝛼2 − 𝛼2

∗) − 𝑘(𝑥3, 𝑥3)(𝛼3 − 𝛼3
∗) + 𝑦3 − 𝜀

𝑘(𝑥1, 𝑥1)(𝛼1 − 𝛼1
∗) + 𝑘(𝑥1, 𝑥2)(𝛼2 − 𝛼2

∗) + 𝑘(𝑥1, 𝑥3)(𝛼3 − 𝛼3
∗) − 𝑦1 − 𝜀

𝑘(𝑥2, 𝑥1)(𝛼1 − 𝛼1
∗) + 𝑘(𝑥2, 𝑥2)(𝛼2 − 𝛼2

∗) + 𝑘(𝑥2, 𝑥3)(𝛼3 − 𝛼3
∗) − 𝑦2 − 𝜀

𝑘(𝑥3, 𝑥1)(𝛼1 − 𝛼1
∗) + 𝑘(𝑥3, 𝑥2)(𝛼2 − 𝛼2

∗) + 𝑘(𝑥3, 𝑥3)(𝛼3 − 𝛼3
∗) − 𝑦3 − 𝜀 )

 
 
 
 

 

∇𝑔1(𝒙
∗) =

(

 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔1
𝜕𝛼1
𝜕𝑔1
𝜕𝛼2
𝜕𝑔1
𝜕𝛼3
𝜕𝑔1
𝜕𝛼1

∗

𝜕𝑔1
𝜕𝛼2

∗

𝜕𝑔1
𝜕𝛼3

∗)

 
 
 
 
 
 
 
 
 
 
 

=

(

  
 

1
0
0
0
0
0)

  
 
, ∇𝑔2(𝒙

∗) =

(

 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔2
𝜕𝛼1
𝜕𝑔2
𝜕𝛼2
𝜕𝑔2
𝜕𝛼3
𝜕𝑔2
𝜕𝛼1

∗

𝜕𝑔2
𝜕𝛼2

∗

𝜕𝑔2
𝜕𝛼3

∗)

 
 
 
 
 
 
 
 
 
 
 

=

(

  
 

0
1
0
0
0
0)

  
 
,∇𝑔3(𝒙

∗) =

(

 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔3
𝜕𝛼1
𝜕𝑔3
𝜕𝛼2
𝜕𝑔3
𝜕𝛼3
𝜕𝑔3
𝜕𝛼1

∗

𝜕𝑔3
𝜕𝛼2

∗

𝜕𝑔3
𝜕𝛼3

∗)

 
 
 
 
 
 
 
 
 
 
 

=

(

  
 

0
0
1
0
0
0)

  
 
,∇𝑔4(𝒙

∗) =

(

 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔4
𝜕𝛼1
𝜕𝑔4
𝜕𝛼2
𝜕𝑔4
𝜕𝛼3
𝜕𝑔4
𝜕𝛼1

∗

𝜕𝑔4
𝜕𝛼2

∗

𝜕𝑔4
𝜕𝛼3

∗)

 
 
 
 
 
 
 
 
 
 
 

=

(

  
 

0
0
0
1
0
0)
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∇𝑔5(𝒙
∗) =

(

 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔5
𝜕𝛼1
𝜕𝑔5
𝜕𝛼2
𝜕𝑔5
𝜕𝛼3
𝜕𝑔5
𝜕𝛼1

∗

𝜕𝑔5
𝜕𝛼2

∗

𝜕𝑔5
𝜕𝛼3

∗)

 
 
 
 
 
 
 
 
 
 
 

=

(

  
 

0
0
0
0
1
0)

  
 
, ∇𝑔6(𝒙

∗) =

(

 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔6
𝜕𝛼1
𝜕𝑔6
𝜕𝛼2
𝜕𝑔6
𝜕𝛼3
𝜕𝑔6
𝜕𝛼1

∗

𝜕𝑔6
𝜕𝛼2

∗

𝜕𝑔6
𝜕𝛼3

∗)

 
 
 
 
 
 
 
 
 
 
 

=

(

  
 

0
0
0
0
0
1)

  
 
, ∇𝑔7(𝒙

∗) =

(

 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔7
𝜕𝛼1
𝜕𝑔7
𝜕𝛼2
𝜕𝑔7
𝜕𝛼3
𝜕𝑔7
𝜕𝛼1

∗

𝜕𝑔7
𝜕𝛼2

∗

𝜕𝑔7
𝜕𝛼3

∗)

 
 
 
 
 
 
 
 
 
 
 

=

(

  
 

−1
0
0
0
0
0 )

  
 
, ∇𝑔8(𝒙

∗) =

(

 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔8
𝜕𝛼1
𝜕𝑔8
𝜕𝛼2
𝜕𝑔8
𝜕𝛼3
𝜕𝑔8
𝜕𝛼1

∗

𝜕𝑔8
𝜕𝛼2

∗

𝜕𝑔8
𝜕𝛼3

∗)

 
 
 
 
 
 
 
 
 
 
 

=

(

  
 

0
−1
0
0
0
0 )

  
 

 

∇𝑔9(𝒙
∗) =

(

 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔9
𝜕𝛼1
𝜕𝑔9
𝜕𝛼2
𝜕𝑔9
𝜕𝛼3
𝜕𝑔9
𝜕𝛼1

∗

𝜕𝑔9
𝜕𝛼2

∗

𝜕𝑔9
𝜕𝛼3

∗)

 
 
 
 
 
 
 
 
 
 
 

=

(

  
 

0
0
−1
0
0
0 )

  
 
, ∇𝑔10(𝒙

∗) =

(

 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔10
𝜕𝛼1
𝜕𝑔10
𝜕𝛼2
𝜕𝑔10
𝜕𝛼3
𝜕𝑔10
𝜕𝛼1

∗

𝜕𝑔10
𝜕𝛼2

∗

𝜕𝑔10
𝜕𝛼3

∗ )

 
 
 
 
 
 
 
 
 
 
 

=

(

  
 

0
0
0
−1
0
0 )

  
 
, ∇𝑔11(𝒙

∗) =

(

 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔11
𝜕𝛼1
𝜕𝑔11
𝜕𝛼2
𝜕𝑔11
𝜕𝛼3
𝜕𝑔11
𝜕𝛼1

∗

𝜕𝑔11
𝜕𝛼2

∗

𝜕𝑔11
𝜕𝛼3

∗ )

 
 
 
 
 
 
 
 
 
 
 

=

(

  
 

0
0
0
0
−1
0 )

  
 

 

 

∇𝑔12(𝒙
∗) =

(

 
 
 
 
 
 
 
 
 
 
 

𝜕𝑔12
𝜕𝛼1
𝜕𝑔12
𝜕𝛼2
𝜕𝑔12
𝜕𝛼3
𝜕𝑔12
𝜕𝛼1

∗

𝜕𝑔12
𝜕𝛼2

∗

𝜕𝑔12
𝜕𝛼3

∗ )

 
 
 
 
 
 
 
 
 
 
 

=

(

  
 

0
0
0
0
0
−1)

  
 
, ∇ℎ1(𝒙

∗) =

(

 
 
 
 
 
 
 
 
 
 
 

𝜕ℎ1
𝜕𝛼1
𝜕ℎ1
𝜕𝛼2
𝜕ℎ1
𝜕𝛼3
𝜕ℎ1
𝜕𝛼1

∗

𝜕ℎ1
𝜕𝛼2

∗

𝜕ℎ1
𝜕𝛼3

∗)

 
 
 
 
 
 
 
 
 
 
 

=

(

  
 

1
1
1
−1
−1
−1)
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Plugging in the corresponding vectors to the equation, six equations are derived from the 

six rows, respectively. 

−𝑘(𝑥1, 𝑥1)(𝛼1 − 𝛼1
∗) − 𝑘(𝑥1, 𝑥2)(𝛼2 − 𝛼2

∗) − 𝑘(𝑥1, 𝑥3)(𝛼3 − 𝛼3
∗) + 𝑦1 − 𝜀 + 𝜇1 − 𝜇7 − 𝜆1 = 0 

−𝑘(𝑥2, 𝑥1)(𝛼1 − 𝛼1
∗) − 𝑘(𝑥2, 𝑥2)(𝛼2 − 𝛼2

∗) − 𝑘(𝑥2, 𝑥3)(𝛼3 − 𝛼3
∗) + 𝑦2 − 𝜀 + 𝜇2 − 𝜇8 − 𝜆1 = 0 

−𝑘(𝑥3, 𝑥1)(𝛼1 − 𝛼1
∗) − 𝑘(𝑥3, 𝑥2)(𝛼2 − 𝛼2

∗) − 𝑘(𝑥3, 𝑥3)(𝛼3 − 𝛼3
∗) + 𝑦3 − 𝜀 + 𝜇3 − 𝜇9 − 𝜆1 = 0 

𝑘(𝑥1, 𝑥1)(𝛼1 − 𝛼1
∗) + 𝑘(𝑥1, 𝑥2)(𝛼2 − 𝛼2

∗) + 𝑘(𝑥1, 𝑥3)(𝛼3 − 𝛼3
∗) − 𝑦1 − 𝜀 + 𝜇4 − 𝜇10 + 𝜆1 = 0 

𝑘(𝑥2, 𝑥1)(𝛼1 − 𝛼1
∗) + 𝑘(𝑥2, 𝑥2)(𝛼2 − 𝛼2

∗) + 𝑘(𝑥2, 𝑥3)(𝛼3 − 𝛼3
∗) − 𝑦2 − 𝜀 + 𝜇5 − 𝜇11 + 𝜆1 = 0 

𝑘(𝑥3, 𝑥1)(𝛼1 − 𝛼1
∗) + 𝑘(𝑥3, 𝑥2)(𝛼2 − 𝛼2

∗) + 𝑘(𝑥3, 𝑥3)(𝛼3 − 𝛼3
∗) − 𝑦3 − 𝜀 + 𝜇6 − 𝜇12 + 𝜆1 = 0 

 

KKT condition 3 (Complementary Slackness): 

𝜇𝑖𝑔𝑖(𝑥
∗) = 0 

 

The following twelve equations are set up by the KKT condition 3. 

𝜇1𝑔1(𝑥
∗) = 𝜇1𝛼1 = 0 

𝜇2𝑔2(𝑥
∗) = 𝜇2𝛼2 = 0 

𝜇3𝑔3(𝑥
∗) = 𝜇3𝛼3 = 0 

𝜇4𝑔4(𝑥
∗) = 𝜇4𝛼1

∗ = 0 

𝜇5𝑔5(𝑥
∗) = 𝜇5𝛼2

∗ = 0 

𝜇6𝑔6(𝑥
∗) = 𝜇6𝛼3

∗ = 0 

𝜇7𝑔7(𝑥
∗) = 𝜇7(−𝛼1 + 𝐶) = 0 

𝜇8𝑔8(𝑥
∗) = 𝜇8(−𝛼2 + 𝐶) = 0 

𝜇9𝑔9(𝑥
∗) = 𝜇9(−𝛼3 + 𝐶) = 0 

𝜇10𝑔10(𝑥
∗) = 𝜇10(−𝛼1

∗ + 𝐶) = 0 

𝜇11𝑔11(𝑥
∗) = 𝜇11(−𝛼2

∗ + 𝐶) = 0 

𝜇12𝑔12(𝑥
∗) = 𝜇12(−𝛼3

∗ + 𝐶) = 0 
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Solving the 19 equations simultaneously, the components of 𝒙∗, which are α1, α 2, α 3, α 

1*, α 2* and α 3*, are identified.  

 

As is done to solve the primal form of SVM regression, Quadprog is used to solve the 

simultaneous problem. The solution obtained from the Quadprog is to be checked with 

the KKT conditions. Once the solution to the system of equations are confirmed, it will 

be double checked with the result from the SVM package ‘e1071’ to validate the whole 

hand calculation approach to the SVM regression. This process will be carried out on 

both linear and RBF kernel SVM.  
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A.3.2 Solving SVM Optimization Task Using a Quadratic Solver 

The input and output of the Quadprog are as follows: 

(Input) 

Hyperparameters: C = 4, ε = 0.1, γ = 1 (only for RBF Kernel) 

Training Data: (x1,y1) = (1,2), (x2,y2) = (2,4), (x3,y3) = (3,5) 

 

Figure A 12 - Three Sample Points 

 

(Output from the Quadprog) 

Case A. Linear SVM regression 

Solution: 𝒙𝑻 = (α1 α2 α3 α1
∗ α2

∗ α3
∗) = (0 4 0 2.75 0 1.25)   

Lagrange Multipliers:  

𝜆𝑖 = 0.6 (𝑖 = 1) 

𝜇𝑖 = 0.2, 0, 0.2, 0, 0.5, 0, 0, 0.3, 0, 0, 0, 0  (𝑖 = 1, . . . , 12) 
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ω is found by using Eq. 5.1 

𝜔 =∑(𝛼𝑖 − 𝛼𝑖
∗)𝑥𝑖

3

𝑖=1

= (0 − 2.75) × 1 + (4 − 0) × 2 + (0 − 1.25) × 3 = 1.5  

There are two unbound support vectors, α1
∗ , α3

∗ . The value of b can be found by applying 

any of them to the KKT condition 3. 

𝑏 = 𝜀 + 𝑦1 − 𝑥1 ∙ 𝜔 = 0.1 + 2 − 1 × 1.5 = 0.6   

The resultant plot is:  

𝑓(𝑥) = 𝜔𝑥 + 𝑏 = 1.5𝑥 + 0.6 

 

Figure A 13 - Linear (Dual) SVM from the Three Sample Points 

 

Note that the result is the same as the case where the primal form of SVM is solved.  
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Case B. RBF Kernel SVM regression 

Solution: 𝒙𝑻 = (α1 α2 α3 α1
∗ α2

∗ α3
∗) = (0 0.52 1.17 1.69 0 0)   

Lagrange Multipliers:  

𝜆𝑖 = 3.57 (𝑖 = 1) 

𝜇𝑖 = 0.2, 0, 0, 0, 0.2, 0.2, 0, 0, 0, 0, 0, 0  (𝑖 = 1, . . . , 12) 

 

There are three unbound support vectors, α1
∗ , α2

∗ , α3
∗ . The value of b can be found by 

applying any of them to the KKT condition 3. 

𝑏 = −𝜀 + 𝑦2 − ∑ (𝛼𝑗 − 𝛼𝑗
∗)3

𝑗=1 𝑒−(𝑥𝑗−𝑥2)
2

= 3.57  

The resultant plot is:  

𝑓(𝑥) =∑(𝛼𝑖 − 𝛼𝑖
∗)𝑘(𝑥𝑖 ∙ 𝑥)

𝑁

𝑖=1

+ 𝑏 = −1.69𝑒−(𝑥−1)
2
+ 0.52𝑒−(𝑥−2)

2
+ 1.17𝑒−(𝑥−3)

2
+ 3.57 

 

Figure A 14 - RBF Kernel (Dual) SVM from the Three Sample Points 
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A.3.3 Validation of the Solution in Reference to KKT Conditions 

The output from the Quadprog is validated by checking if the output satisfies all KKT 

conditions. 

 

 

Case A. Linear SVM regression 

1. Feasible Constraints 

𝑔𝑖(𝒙
∗) ≥ 0,  ℎ𝑖(𝒙

∗) = 0 

 

ℎ1 = α1 + α2 + α3 − α1
∗ − α2

∗ − α3
∗ = 0 + 4 + 0 − 2.75 − 0 − 1.25 = 0 

𝑔1 = α1 = 0 ≥ 0, 𝑔2 = α2 = 4 ≥ 0, 𝑔3 = α3 = 0 ≥ 0, 𝑔4 = 𝛼1
∗ = 2.75 ≥ 0,  

𝑔5 = 𝛼2
∗ = 0 ≥ 0, 𝑔6 = 𝛼3

∗ = 1.25 ≥ 0, 𝑔7 = −α1 + 𝐶 = 4 ≥ 0, 𝑔8 = −α2 + 𝐶 = 0 ≥

0, 𝑔9 = −α3 + 𝐶 = 4 ≥ 0, 𝑔10 = −𝛼1
∗ + 𝐶 = 1.25 ≥ 0, 𝑔11 = −𝛼2

∗ + 𝐶 = 4 ≥ 0,  

𝑔12 = −𝛼3
∗ + 𝐶 = 2.75 ≥ 0 

 

 

 

2. Stationary 

∇𝑓(𝒙∗) −∑𝜇𝑖∇𝑔𝑖(𝒙
∗) −

𝑚

𝑖=1

∑𝜆𝑖∇ℎ𝑖(𝒙
∗)

𝑘

𝑖=1

= 0 

 

−𝑥1, 𝑥1(𝛼1 − 𝛼1
∗) − 𝑥1, 𝑥2(𝛼2 − 𝛼2

∗) − 𝑥1, 𝑥3(𝛼3 − 𝛼3
∗) + 𝑦1 − 𝜀 + 𝜇1 − 𝜇7 − 𝜆1 
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= −1 × (0 − 2.75) − 2 × (4 − 0) − 3 × (0 − 1.25) + 2 − 0.1 + 0.2 − 0 − 0.6 = 0 

−𝑥2, 𝑥1(𝛼1 − 𝛼1
∗) − 𝑥2, 𝑥2(𝛼2 − 𝛼2

∗) − 𝑥2, 𝑥3(𝛼3 − 𝛼3
∗) + 𝑦2 − 𝜀 + 𝜇2 − 𝜇8 − 𝜆1 = 0 

= −2 × (0 − 2.75) − 4 × (4 − 0) − 6 × (0 − 1.25) + 4 − 0.1 + 0 − 0.3 − 0.6 = 0 

−𝑥3, 𝑥1(𝛼1 − 𝛼1
∗) − 𝑥3, 𝑥2(𝛼2 − 𝛼2

∗) − 𝑥3, 𝑥3(𝛼3 − 𝛼3
∗) + 𝑦3 − 𝜀 + 𝜇3 − 𝜇9 − 𝜆1 = 0 

= −3 × (0 − 2.75) − 6 × (4 − 0) − 9 × (0 − 1.25) + 5 − 0.1 + 0.2 − 0 − 0.6 = 0 

𝑥1, 𝑥1(𝛼1 − 𝛼1
∗) + 𝑥1, 𝑥2(𝛼2 − 𝛼2

∗) + 𝑥1, 𝑥3(𝛼3 − 𝛼3
∗) − 𝑦1 − 𝜀 + 𝜇4 − 𝜇10 + 𝜆1 = 0 

= 1 × (0 − 2.75) + 2 × (4 − 0) + 3 × (0 − 1.25) − 2 − 0.1 + 0 − 0 − 0.6 = 0 

𝑥2, 𝑥1(𝛼1 − 𝛼1
∗) + 𝑥2, 𝑥2(𝛼2 − 𝛼2

∗) + 𝑥2, 𝑥3(𝛼3 − 𝛼3
∗) − 𝑦2 − 𝜀 + 𝜇5 − 𝜇11 + 𝜆1 = 0 

= 2 × (0 − 2.75) + 4 × (4 − 0) + 6 × (0 − 1.25) − 4 − 0.1 + 0.5 − 0 − 0.6 = 0 

𝑥3, 𝑥1(𝛼1 − 𝛼1
∗) + 𝑥3, 𝑥2(𝛼2 − 𝛼2

∗) + 𝑥3, 𝑥3(𝛼3 − 𝛼3
∗) − 𝑦3 − 𝜀 + 𝜇6 − 𝜇12 + 𝜆1 = 0 

= 3 × (0 − 2.75) + 6 × (4 − 0) + 9 × (0 − 1.25) − 5 − 0.1 + 0 − 0 − 0.6 = 0 

 

3 Complementary Slackness 

𝜇𝑖(∇𝑔𝑖(𝒙
∗)) = 0 

 

𝜇1𝑔1(𝑥
∗) = 𝜇1𝛼1 = 0.2 × 0 = 0, 𝜇2𝑔2(𝑥

∗) = 𝜇2𝛼2 = 0 × 4 = 0 

𝜇3𝑔3(𝑥
∗) = 𝜇3𝛼3 = 0.2 × 0 = 0, 𝜇4𝑔4(𝑥

∗) = 𝜇4𝛼1
∗ = 0 × 2.75 = 0 

𝜇5𝑔5(𝑥
∗) = 𝜇5𝛼2

∗ = 0.5 × 0 = 0, 𝜇6𝑔6(𝑥
∗) = 𝜇6𝛼3

∗ = 0 × 1.25 = 0 

𝜇7𝑔7(𝑥
∗) = 𝜇7(−𝛼1 + 𝐶) = 0 × (−0 + 4) = 0 

𝜇8𝑔8(𝑥
∗) = 𝜇8(−𝛼2 + 𝐶) = 0.3 × (−4 + 4) = 0 

𝜇9𝑔9(𝑥
∗) = 𝜇9(−𝛼3 + 𝐶) = 0 × (−0 + 4) = 0 

𝜇10𝑔10(𝑥
∗) = 𝜇10(−𝛼1

∗ + 𝐶) = 0 × (−2.75 + 4) = 0 

𝜇11𝑔11(𝑥
∗) = 𝜇11(−𝛼2

∗ + 𝐶) = 0 × (−0 + 4) = 0 

𝜇12𝑔12(𝑥
∗) = 𝜇12(−𝛼3

∗ + 𝐶) = 0 × (−1.25 + 4) = 0 
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4. Positive Lagrange Multipliers (for inequality constraints) 

𝜇𝑖 ≥ 0 

 

All Lagrange multiplies calculated from Quadprog are not negative as below. 

𝜇𝑖 = 0.2, 0, 0.2, 0, 0.5, 0, 0, 0.3, 0, 0, 0, 0  (𝑖 = 1, . . . , 12) 

 

The solution and Lagrangian multipliers satisfy all KKT conditions. Hence, they are the 

optimal solution to the given SVM task. 

 

 

Case B. RBF Kernel SVM regression 

1. Feasible Constraints 

𝑔𝑖(𝒙
∗) ≥ 0,  ℎ𝑖(𝒙

∗) = 0 

 

ℎ1 = α1 + α2 + α3 − α1
∗ − α2

∗ − α3
∗ = 0 + 0.52 + 1.17 − 1.69 − 0 − 0 = 0 

𝑔1 = α1 = 0 ≥ 0, 𝑔2 = α2 = 0.52 ≥ 0, 𝑔3 = α3 = 1.17 ≥ 0, 𝑔4 = 𝛼1
∗ = 1.69 ≥ 0 

𝑔5 = 𝛼2
∗ = 0 ≥ 0, 𝑔6 = 𝛼3

∗ = 0 ≥ 0, 𝑔7 = −α1 + 𝐶 = 4 ≥ 0, 𝑔8 = −α2 + 𝐶 = 3.48 ≥ 0  

𝑔9 = −α3 + 𝐶 = 2.83 ≥ 0, 𝑔10 = −𝛼1
∗ + 𝐶 = 2.31 ≥ 0, 𝑔11 = −𝛼2

∗ + 𝐶 = 4 ≥ 0 

𝑔12 = −𝛼3
∗ + 𝐶 = 4 ≥ 0 

 

 

2. Stationary 



150 

 

∇𝑓(𝑥∗) −∑𝜇𝑖∇𝑔𝑖(𝑥
∗) −

𝑚

𝑖=1

∑𝜆𝑖∇ℎ𝑖(𝑥
∗)

𝑘

𝑖=1

= 0 

 

 

−𝑘(𝑥1, 𝑥1)(𝛼1 − 𝛼1
∗) − 𝑘(𝑥1, 𝑥2)(𝛼2 − 𝛼2

∗) − 𝑘(𝑥1, 𝑥3)(𝛼3 − 𝛼3
∗) + 𝑦1 − 𝜀 + 𝜇1 − 𝜇7 − 𝜆1 

= −𝑒−(1−1)
2
× (0 − 1.69) − 𝑒−(1−2)

2
× (0.52 − 0) − 𝑒−(1−3)

2
× (1.17 − 0) + 2 − 0.1 + 0.2 − 0 − 3.57 ≅ 0 

−𝑘(𝑥2, 𝑥1)(𝛼1 − 𝛼1
∗) − 𝑘(𝑥2, 𝑥2)(𝛼2 − 𝛼2

∗) − 𝑘(𝑥2, 𝑥3)(𝛼3 − 𝛼3
∗) + 𝑦2 − 𝜀 + 𝜇2 − 𝜇8 − 𝜆1 = 0 

= −𝑒−(2−1)
2
× (0 − 1.69) − 𝑒−(2−2)

2
× (0.52 − 0) − 𝑒−(2−3)

2
× (1.17 − 0) + 4 − 0.1 + 0 − 0 − 3.57 ≅ 0 

−𝑘(𝑥3, 𝑥1)(𝛼1 − 𝛼1
∗) − 𝑘(𝑥3, 𝑥2)(𝛼2 − 𝛼2

∗) − 𝑘(𝑥3, 𝑥3)(𝛼3 − 𝛼3
∗) + 𝑦3 − 𝜀 + 𝜇3 − 𝜇9 − 𝜆1 = 0 

= −𝑒−(3−1)
2
× (0 − 1.69) − 𝑒−(3−2)

2
× (0.52 − 0) − 𝑒−(3−3)

2
× (1.17 − 0) + 5 − 0.1 + 0 − 0 − 3.57 ≅ 0 

𝑘(𝑥1, 𝑥1)(𝛼1 − 𝛼1
∗) + 𝑘(𝑥1, 𝑥2)(𝛼2 − 𝛼2

∗) + 𝑘(𝑥1, 𝑥3)(𝛼3 − 𝛼3
∗) − 𝑦1 − 𝜀 + 𝜇4 − 𝜇10 + 𝜆1 = 0 

= 𝑒−(1−1)
2
× (0 − 1.69) + 𝑒−(1−2)

2
× (0.52 − 0) + 𝑒−(1−3)

2
× (1.17 − 0) − 2 − 0.1 + 0 − 0 + 3.57 ≅ 0 

𝑘(𝑥2, 𝑥1)(𝛼1 − 𝛼1
∗) + 𝑘(𝑥2, 𝑥2)(𝛼2 − 𝛼2

∗) + 𝑘(𝑥2, 𝑥3)(𝛼3 − 𝛼3
∗) − 𝑦2 − 𝜀 + 𝜇5 − 𝜇11 + 𝜆1 = 0 

= 𝑒−(2−1)
2
× (0 − 1.69) + 𝑒−(2−2)

2
× (0.52 − 0) + 𝑒−(2−3)

2
× (1.17 − 0) − 4 − 0.1 + 0.2 − 0 + 3.57 ≅ 0 

𝑘(𝑥3, 𝑥1)(𝛼1 − 𝛼1
∗) + 𝑘(𝑥3, 𝑥2)(𝛼2 − 𝛼2

∗) + 𝑘(𝑥3, 𝑥3)(𝛼3 − 𝛼3
∗) − 𝑦3 − 𝜀 + 𝜇6 − 𝜇12 + 𝜆1 = 0 

= 𝑒−(3−1)
2
× (0 − 1.69) + 𝑒−(3−2)

2
× (0.52 − 0) + 𝑒−(3−3)

2
× (1.17 − 0) − 5 − 0.1 + 0.2 − 0 − 3.57 ≅ 0 

 

The left-hand side of the equation above is not exactly zero because rounded numbers 

are inserted. 

 

3 Complementary Slackness 

𝜇𝑖(∇𝑔𝑖(𝑥
∗)) = 0 

 

𝜇1𝑔1(𝑥
∗) = 𝜇1𝛼1 = 0.2 × 0 = 0, 𝜇2𝑔2(𝑥

∗) = 𝜇2𝛼2 = 0 × 0.52 = 0 

𝜇3𝑔3(𝑥
∗) = 𝜇3𝛼3 = 0 × 1.17 = 0, 𝜇4𝑔4(𝑥

∗) = 𝜇4𝛼1
∗ = 0 × 1.69 = 0 

𝜇5𝑔5(𝑥
∗) = 𝜇5𝛼2

∗ = 0.2 × 0 = 0, 𝜇6𝑔6(𝑥
∗) = 𝜇6𝛼3

∗ = 0.2 × 0 = 0 

𝜇7𝑔7(𝑥
∗) = 𝜇7(−𝛼1 + 𝐶) = 0 × (−0 + 4) = 0 
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𝜇8𝑔8(𝑥
∗) = 𝜇8(−𝛼2 + 𝐶) = 0 × (−0.52 + 4) = 0 

𝜇9𝑔9(𝑥
∗) = 𝜇9(−𝛼3 + 𝐶) = 0 × (−1.17 + 4) = 0 

𝜇10𝑔10(𝑥
∗) = 𝜇10(−𝛼1

∗ + 𝐶) = 0 × (−1.69 + 4) = 0 

𝜇11𝑔11(𝑥
∗) = 𝜇11(−𝛼2

∗ + 𝐶) = 0 × (−0 + 4) = 0 

𝜇12𝑔12(𝑥
∗) = 𝜇12(−𝛼3

∗ + 𝐶) = 0 × (−0 + 4) = 0 

 

4. Positive Lagrange Multipliers (for inequality constraints) 

𝜇𝑖 ≥ 0 

 

All Lagrange multiplies calculated from Quadprog are not negative as below. 

𝜇𝑖 = 0.2, 0, 0, 0, 0.2, 0.2, 0, 0, 0, 0, 0, 0  (𝑖 = 1, . . . , 12) 

. 

The solution and Lagrangian multipliers satisfy all KKT conditions. Hence, they are the 

optimal solution to the given SVM task. 

 

A.3.4 Validation of the Described Hand Calculation Approach in Reference to the 

SVM Package ‘e1071’ 

The whole hand calculation approached described above is validated by comparing the 

result with the output from SVM package e1071. 

 

‘ 
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Case A. Linear SVM regression 

The result of training linear a SVM model on the same training data with the same 

hyperparameters using the SVM package ‘e1071’: 

α𝑖 − α𝑖
∗ = −2.75, 4, −1.25  (𝑖 = 1, 2, 3) 

𝑏 = −0.6 (the opposite sign convention is used for the bias term in ‘e1071’)  

This result agrees with the earlier one, which was obtained without using the SVM 

package. 

 

 

 

Figure A 15 - The result of linear SVM trained from the Three Sample Points with 

‘e1071’ 

 

Case B. RBF Kernel SVM regression 

The result of training linear a SVM model on the same training data with the same 

hyperparameters using the SVM package ‘e1071’: 

α𝑖 − α𝑖
∗ = −1.684, 0.517, 1.167  (𝑖 = 1, 2, 3) 

𝑏 = −3.573 (the opposite sign convention is used for the bias term in ‘e1071’)   

This result agrees with the earlier one, which was obtained without using the SVM 

package. 
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Figure A 16 - The result of RBF kernel SVM trained from the Three Sample Points with 

‘e1071’ 
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APPENDIX B. CONSIDERATION OF SVM IMPLEMENTATION 

B.1 Scaling 

Scaling is a statistical and mathematical process to fit given numerical values of data in a 

desired format. Hsu et al. [57] emphasized the importance of scaling in applying SVR. It 

prevents attributes with bigger numeric ranges from overshadowing those with smaller 

numeric ranges. It also helps to reduce numerical complexities in the calculation process. 

There are two ways of scaling. Min-max scaling and standard scaling. Min-max scaling 

is to adjust the range of each attribute to the other typical ranges, for example, between -

1 and 1, or 0 and 1. It should be noted that the same scaling method and rate have to be 

applied to both training and testing data. Standard scaling is to rearrange data in such a 

way that their mean is zero and standard variation is 1. The following is the 

mathematical expression of the two scaling methods. 

 

1) Min-Max Scaling 

𝑳𝑩 +
𝑿−𝑿𝒎𝒊𝒏

𝑿𝒎𝒂𝒙−𝑿𝒎𝒊𝒏
(𝑼𝑩 − 𝑳𝑩)  (EQ.B 1) 

2) Standard Scaling  

𝑿−𝑿𝒎𝒆𝒂𝒏

𝝈𝑿
  (EQ.B 2) 

Crone et al. [58] tested SVM models with different Min-Max scaling and standard 

scaling. There was not a single model which always showed the best result, the resultant 
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difference between methods were not significantly large. Thus, the defaultt scaling 

option of e1071[46] library, which standard scaling, is used for this research.  

B.2 Kernel Selection  

Kernel functions map data into a higher dimensional feature space so that the 

transformed data can be linearly separated or regressed 

𝜑:𝑅𝑛 → 𝑅𝑚 (n < m) 

𝑲(𝒙, 𝒚) = 𝝋(𝒙)𝑻𝝋(𝒚)  (EQ.B 3) 

 

Figure B 1 - Mapping a Non-linear SVR into a Feature Space 

 

As seen in EQ.B1, a kernel function corresponds to an inner product after each data is 

transferred to another dimension. Thus, the description of the mapping function 𝜑 itself 

is not necessarily required. (The only thing needed is replace (𝑥𝑖 ∙ 𝑥𝑗) with (𝜑(𝑥𝑖) ∙

𝜑(𝑥𝑗)) in a dual equation.  
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Table B 1 - Summary of Kernel Function Characteristics  

  
Kernel Function Type 

No. of 

hyperparameters 
Description 

1 Linear 

𝐾(𝒙𝑖 , 𝒙𝑗) = 𝒙𝑖
𝑇𝒙𝑗 

2 (ε, C) Actually, this does not involve mapping process. 

This is used when original data follows linear 

patterns well. It has the smallest number of 

hyperparameters to tune.  

2 Polynomial 

𝐾(𝒙𝑖 , 𝒙𝑗) = (𝛾𝒙𝑖
𝑇𝒙𝑗

+ 𝑟)𝑑 

4 (ε, C, γ, d) This can capture non-linear patterns. Usually, r is 

set to zero, and d is set between 1 and 10. Due to 

relatively larger numbers of hyperparameters to 

tune, it is not as popular as RBF. 

3 Radial Based Function 

𝐾(𝒙𝑖 , 𝒙𝑗) 

= exp (−𝛾‖𝒙𝑗 − 𝒙𝑗‖
2
) 

3 (ε, C, γ) This is the most generally used option due to its 

good performance of catching non-linear patterns 

and relatively smaller number of hyperparameters 

to tune. According a practical guide, it is 

recommend to search C in the range [2−5 : 215] and 

γ in the range [2-15 : 23]. 

 

Among these, RBF is most widely used due to its capacity to catch non-linear patterns. 

Compared to polynomial functions, it has less numbers of hyperparameters to tune, thus 

has less numerical difficulty and complexity [31]. When it comes to the sigmoid kernel, 

it does not work with certain parameters, not making the inner product of two vectors in 

feature space [59]. Hence, RBF is to be used as a default kernel function.  
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B.3 Training and Hyperparameter Optimization 

A SVM model is created by using a set of input data including independent variables and 

a dependent variable in such way that the model fits the input data. The data assigned for 

generating the model is called training data. In many cases, there would be a big 

difference between the output values from the first model and the values of dependent 

variables of the training data set. This difference can be reduced by adjusting 

hyperparameters of the SVM model such as  𝜀, C, and γ. This adjusting process is called 

tuning. However, even if the difference is reduced to be small by tuning, it does not 

necessarily lead to a good prediction when new input data is used. This discrepancy 

happens when the focus of tuning is only on a decrease in error and not on capturing 

general patterns of the training data. This is called overfitting. To prevent this, the 

updated model needs to be validated with other types of data, namely validation data. 

Once the tuning process is finished with training and validation data, the final step is to 

test with the data that is never used during the tuning process. It is important to 

understand the difference between validation data and testing data. Validation data is 

used for tuning hyperparameters of machine learning models, preventing the risk of 

overfitting, which may happen when tuning is done only with training data. Testing data 

is used only for final testing, therefore, should not be used as feedback for tuning process 

in order to maintain the reliability of the test result.  
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                    (a)  Properly established model             (b) Overfitted model 

Figure B 2 - Examples of a Properly Established Model and Overfitted Model 

 

B.3.1 Validation Methods  

Hold-out method 

A portion of data is held out only for validation. In general, the amount of data assigned 

for validation is smaller than that for training. There is no strict rule for partitioning. 

Typically, 20% or 30% of data is held out for validation. Quick computational speed is 

its most noticeable merit. On the contrary, since only a part of data is used for validation, 

the metrics from the validation data has limited reliability. However, if the quantity of 

data set is large enough, thus more data can be held out for validation, this drawback can 

be counteracted.   
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Figure B 3 - Hold-out Method 

 

(Repeated) K-fold cross validation  

Except for data for testing, the remaining data is divided into k-folds. For a predefined 

hyper parameters condition, each fold serves as a validation set one after the other while 

the remaining k-1 folds data sets are used for training a model. The average of validation 

metrics from all turns is used to evaluate the validity of the model generated by the 

predefined hyperparameters. Compared to the hold-out method, which validates its 

model only with a portion of the data, this validation metrics is more reliable since it 

validates model with all data set. (except for testing data). Another advantage is that it 

trains a model with all data set (except for testing data) while the hold-out method 

cannot use the hold-out portion for training purpose. This merit is manifested when the 

number of data set if limited. The drawback is that it is computationally more expensive 

than the hold-out method. There no strict rule defining the optimal number of folds, but 

5-fold or 10-fold cross validation is typically used.  
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Figure B 4 - k-fold Validation 

 

Although the cross validation by itself is a good and robust method for validation, it has 

a source of uncertainty in its procedure. It is the moment of partitioning the data into k 

folds that induces inconsistent performance. For the same size of data set, the way it is 

split into k fold can be numerous. This partition is usually carried out by a random 

algorithm of computer. In the case where the data for training is clean without serious 

noise, it does not matter how the data is divided into k folds. Regardless of the partition, 

SVM will shows consistent result. However, if this is not the case, the results may vary. 

To minimize such an inconsistency caused by partition, k-fold cross validation is often 

carried out repeatedly so that the SVM algorithm can multiple cases of partition.  
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Leave-one out cross validation 

This is a special case of k-fold validation where the number of folds is equal to the 

number of data point available for training and validation. Although it brings more stable 

validation metrics, the computational cost is extremely expensive.  

 

Figure B 5 - Leave-one Out Cross Validation 

 

In this research 5 Fold Cross Validation is used by default and 10 Repeated 5 Fold Cross 

Validation is used for comparative study. 

 

B.3.2 Influence of Hyperparameters 

Hyperparameters are a set of parameters defined by users before machine learning 

models are trained with training data set. RBF SVM has three hyperparameters: ε, C, and 
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γ. The parameters that are calculated as a result of training are not called 

hyperparameters. For example, in SVM regression function f(x) =  𝝎 ∙ 𝒙 + 𝑏, the 

coefficient 𝝎 and b are specified after the model is trained with input data, thus they are 

not called hyperparameters. In other words, they are given as a result of SVM algorithm 

training with predetermined hyperparameters. 

 

Epsilon (ε) 

A certain amount of distance from a SVM model. SVM algorithm generates a regression 

plot to put as many data within this range as possible. (See Appendix A for the details of 

its influence.) 

Cost (C) 

It determines how much penalty is imposed on the data outside of ε. (See Appendix A 

for the details of its influence.) 

Gamma(γ) (for RBF)  

The inverse of the radius of influence of support vectors. It defines how far a support 

vector have its influences on other data set.  

- Small γ means a large influence a support vector can have on nearby data. It makes a 

regression plot flat. 
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- Lage γ, means a small influence a support vector can have on nearby data. It makes a 

graph spiky. Although it increases the accuracy, it increases the risk of overfitting as 

well.  

The impact of gamma would be understood more intuitively by watching an extremely 

simple case where only one support vector constitutes a SVM model. (See EQ.B4 and 

Figure B6.) 

𝑓(𝑥) = 𝑒−𝛾(𝑥−1)
2
 (EQ.B 4)  

 

Figure B 6 - Impact of gamma 

Figure B6 indicates plot of EQ.B4 with different value of γ. As stated above, smaller 

gamma makes the influence of support vector wider and vice versa. Figure B7 shows an 

impact of gamma with more support vectors. 
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ɛ = 0.0625, C = 1024 

Figure B 7 - The Impact of Gamma 

 

B.3.3 Optimization (Tuning) Methods 

Many methods have been being developed in an attempt to efficiently search for the best 

hyperparameters. Yet there is no ‘best’ way to make others obsolete. Among them, grid 

search (GS) is arguably the most conservative, yet most widely used method in the 

selection of the SVR hyperparameters due to its straightforwardness. The following is 

the examples of hyperparameter tuning methods.  

 

Exhaustive grid search 

Exhaustive grid search is the most simple and accurate technique available [60]. Hence, 

as stated above, this is arguably the most generally method. Once the range of 

hyperparameters, in which the best ones are expected to exist, are set up, it calculates the 
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validity of every possible combination of hyperparameters and shows the best one. The 

downside is its high computational cost.  

 

Random search  

 As the name suggests, it searches the best hyperparameter sets by randomly chosen 

combination of hyperparameters. Bergstra and Bengio [61] empirically and theoretically 

showed that the random search outperforms grid search methods in many cases.    

 

Figure B 8 - Grid search and random search (Adapted from Bergstra and Bengio, 2012 

[61]) 

 

In general. not all hyperparameters are equally important. Contrary to this phenomenon, 

the grid search method searches every grid on the premise that all hyperparameters are 

equally important. This causes the grid search method to waste its computational power 
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searching for relatively less important hyper parameters. As a result, as seen in Figure 

B8, for the same number of search, random search method can carry out more detailed 

test on the important hyperparameters.   

  

Analytical selection technique 

Cherkassky et al. [49] proposed an analytical approach to quickly find the parameters 𝐶 

and 𝜀. According to Mattera and Haykin [62] , a good value for C can be considered as 

equal to the range of output. However, this is vulnerable to outlier. Thus, the EQ.B5 is 

proposed to tackle the problem. Eq.B6 is developed from an intuitive idea that 𝜀 should 

be proportional to the input noise level and inversely proportional to the number of 

samples. The coefficient 3 and √ln𝑛 is empirically derived.   

𝐶 = max(𝑦̅ + 3𝜎𝑦 , 𝑦̅ − 3𝜎𝑦)  (EQ.B 5) 

𝜀 = 3𝜎√
ln 𝑛

𝑛
  (EQ.B 6) 

Where 𝑦̅ is the mean of training data, 𝜎𝑦 is the standard deviation of training data, and 𝜎 

is the standard deviation of input noise. In addition to the equations above, Louw and 

Steel [51] used empirical equation γ = 1/p for the hyper parameter γ. Tang et al. [48] 

proposed a way to derive an initial γ using a golden section search method. Although 

these analytical formulas return a quick estimation, their accuracy is not high. Thus, they 



167 

 

are usually used for first estimate and additional estimation needs to be followed. More 

detained explanation of these combined approaches is to be followed in the next section.   

4) Combination of analytical selection techniques and other methodologies.  

Tang et al. [48] not only proposed the analytical approach to find an initial γ, but also 

combined it with one dimensional grid search to find appropriate values of other 

hyperparameters and to update the value of γ.  

Kaneko and Funatsu [50] used Eq. 16 to set an initial C, and used the golden selection 

search algorithm proposed by Tang et al. [48] to set an initial γ. Optimal 𝜀 was found by 

an one dimensional grid search method while the C and γ kept as the initial values. 

Optimal C and γ were found consecutively by the same principle. This method shows the 

same level of accuracy as exhaustive grid search while achieving significant savings in 

computational time. Tsirikoglou et al. [60] used a combination of analytical approach of 

Cherkassky et al. [49] and genetic algorithm to show statistically better results compared 

to the cases where only the genetic algorithm were used.  

  

In this research, two exhaustive grid search and a newly suggested methods are tested to 

find a more appropriate option for building baseline modeling purpose. The performance 

is checked in different with daily frequency data considering not only accuracy, but also 

computational time, The scope of grid search is determined in accordance with the 

practical SVM guide [57].  
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Table B 2 - Summary of SVM Implementation Plans 

  Consideration  Option Use 

1 Scaling - Min-Max Scaling 

- Standard Scaling (Normalization) 

Standard Scaling (Normalization) 

(mean 0, standard deviation 1) 

2 Validation 

strategy 

(Options) 

- Hold-out 

- (Repeated) K-fold cross validation 

- Leave one out cross validation 

- Others 

N repeated K-fold cross validation 

(K = 5,  

  N = 1 by default, 10 for comparative study) 

3 Kernel function 

selection 

(Options) 

- Linear 

- Polynomial 

- RBF 

- Others 

RBF  

4 Tuning method 

selection 

(Options) 

- Exhaustive grid search 

- Random search 

- Analytic approach 

- Genetic algorithm 

- Analytic approach plus other 

methods 

- Others  

- Grid Search 

- Newly suggested method (one dimensional grid 

search with recommended initial values) 
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Figure B 9- SVM Implementation (ODGS) Schematic   
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APPENDIX C. SVM REGRESSION PATTER OBSERVATION  

C.1 Linear Input Data 

C.1.1 Daily Data  

C.1.1.1 Ideal Input 

 

 

 

 

 

 

 

 

        (a) original data and SVM regression points                   (b) SVM model continuous plot 

CV (%) = 0.0086, R2 = 0.9999, number of support vector = 350 

Figure C 1 - SVM Regression Observation (Ideal Linear Daily Data) 

 

C.1.1.2 10% Noisy Input 

                 1) homoscedastic Noise 

 

 

   

 

 

        (a) original data and SVM regression points                        (b) SVM model continuous plot 

CV (%) = 5.67, R2 = 0.9703 

Figure C 2  - SVM Regression Observation (10% Noisy Linear Daily Data 1) 
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                 2) heteroscedastic noise 

 

 

   

 

 

 

  

       (a) original data and SVM regression points                     (b) SVM model continuous plot 

CV (%) = 3.36, R2 = 0.9893 

Figure C 3 - SVM Regression Observation (10% Noisy Linear Daily Data 2) 

 

C.1.1.3 30% Noisy Input  

                 1) homoscedastic Noise 

 

         (a) original data and SVM regression points                 (b) SVM model continuous plot 

CV (%) = 17.42, R2 = 0.7776 

Figure C 4 - SVM Regression Observation (30% Noise Linear Daily Data 1) 
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                 2) heteroscedastic Noise 

                (a) original data and SVM regression points              (b) SVM model continuous plot 

CV (%) = 10.37, R2 = 0.9058 

Figure C 5 - SVM Regression Observation (30% Noise Linear Daily Data 2) 

 

C.1.1.4 50% Noisy Input   

                 1) homoscedastic Noise 

                (a) original data and SVM regression points              (b) SVM model continuous plot 

CV (%) = 29.72, R2 = 0.5461 

Figure C 6 - SVM Regression Observation (50% Noisy Linear Daily Data 1) 
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                 2) heteroscedastic Noise 

                (a) original data and SVM regression points              (b) SVM model continuous plot 

CV (%) = 16.64, R2 = 0.7824 

Figure C 7 - SVM Regression Observation (50% Noisy Linear Daily Data 2) 

 

C.1.1.5 100% Noisy Input  

                1) homoscedastic Noise  

               (a) original data and SVM regression point                 (b) SVM model continuous plot 

CV (%) = 57.90, R2 = 0.2140 

Figure C 8 - SVM Regression Observation (100% Noisy Linear Daily Data 1) 
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                 2) heteroscedastic Noise 

                (a) original data and SVM regression points              (b) SVM model continuous plot 

CV (%) = 33.88, R2 = 0.4695 

Figure C 9 - SVM Regression Observation (100% Noisy Linear Daily Data 2) 

 

C.1.2 Monthly Data 

C.1.2.1 Ideal Input 

            (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 1.11, R2 = 0.9991 

Figure C 10 - SVM Regression Observation (Ideal Linear Monthly Data) 
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C.1.2.2 10% Noisy Input 

            (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 5.91, R2 = 0.9781 

Figure C 11 - SVM Regression Observation (10% Noisy Linear Monthly Data) 

 

 

C.1.2.3 30% Noisy Input  

            (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 18.71, R2 = 0.7708 

Figure C 12 - SVM Regression Observation (30% Noisy Linear Monthly Data) 
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C.1.2.4 50% Noisy Input  

            (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 38.5, R2 = 0.6609 

Figure C 13 - SVM Regression Observation (50% Noisy Linear Monthly Data) 

 

C.1.2.5 100% Noisy Input  

            (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 52.72, R2 = 0.4710 

Figure C 14 - SVM Regression Observation (100% Noisy Linear Monthly Data) 
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C.1.3 Daily Data (with linear SVM) 

C.1.3.1 Ideal Input 

            (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 1.11, R2 = 0.9991, number of support vector = 2 

Figure C 15 - Linear SVM Regression Observation (Ideal Linear Daily Data) 

 

C.1.3.2 10% Noisy Input 

           (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 5.91, R2 = 0.9781 

Figure C 16 - Linear SVM Regression Observation (10% Noisy Linear Daily Data) 
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C.1.3.3 30% Noisy Input  

           (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 18.71, R2 = 0.7708 

Figure C 17 - Linear SVM Regression Observation (30% Noisy Linear Daily Data) 

 

C.1.3.4 50% Noisy Input  

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 38.50, R2 = 0.6609 

Figure C 18 - Linear SVM Regression Observation (50% Noisy Linear Daily Data) 
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C.1.3.4 100% Noisy Input  

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 52.72, R2 = 0.4710 

Figure C 19 - Linear SVM Regression Observation (100% Noisy Linear Daily Data) 

 

C.1.4 Monthly Data (with linear SVM) 

C.1.4.1 Ideal Input 

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 1.13, R2 = 0.9991 

Figure C 20 - Linear SVM Regression Observation (Ideal Linear Monthly Data) 
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C.1.4.2 10% Noisy Input 

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 5.95, R2 = 0.9764 

Figure C 21 - Linear SVM Regression Observation (10% Noise Linear Monthly Data) 

 

 

C.1.4.3 30% Noisy Input  

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 18.39, R2 = 0.7709 

Figure C 22 - Linear SVM Regression Observation (30% Noise Linear Monthly Data) 
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C.1.4.4 50% Noisy Input   

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 30.95, R2 = 0.6634 

Figure C 23 - Linear SVM Regression Observation (50% Noise Linear Monthly Data) 

 

C.1.4.5 100% Noisy Input  

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 54.73, R2 = 0.4226 

Figure C 24 - Linear SVM Regression Observation (100% Noise Linear Monthly Data) 
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C.2 Piecewise Linear Input Data (Two pieces) 

C.2.1 Daily Data (Type 1) 

C.2.1.1 Ideal Input 

 

 

 

 

 

 

 

              (a) original data and SVM regression                              (b) SVM model continuous plot 

CV (%) = 0.63, R2 = 0.9995 

Figure C 25 - SVM Regression Observation (Ideal Piecewise (3P) Linear Daily Data) 

 

C.2.1.2 10% Noisy Input 

                 1) homoscedastic noise 

            

 

 

 

 

 

 

             (a) original data and SVM regression points             (b) SVM model continuous plot 

CV (%) = 6.02, R2 = 0.9568 

Figure C 26 - SVM Regression Observation (10% Noise Piecewise (3P) Linear Daily Data 1) 
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                 2) heteroscedastic noise 

            

 

 

 

 

 

 

              (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 3.66, R2 = 0.9841 

Figure C 27 - SVM Regression Observation (10% Noise Piecewise (3P) Linear Daily Data 2) 

 

C.2.1.3 30% Noisy Input  

                1) homoscedastic noise 

       (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 16.27, R2 = 0.7513 

Figure C 28 - SVM Regression Observation (30% Noise Piecewise (3P) Linear Daily Data 1) 
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                2) heteroscedastic noise 

       

 

 

 

 

 

 

              (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 9.89, R2 = 0.8884 

Figure C 29 - SVM Regression Observation (30% Noise Piecewise (3P) Linear Daily Data 2) 

 

C.2.1.4 50% Noisy Input  

                 1) homoscedastic noise 

              (a) original data and SVM regression points             (b) SVM model continuous plot 

CV (%) = 28.67, R2 = 0.4735 

Figure C 30 - SVM Regression Observation (50% Noise Piecewise (3P) Linear Daily Data 1) 
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                 2) heteroscedastic noise 

              (a) original data and SVM regression points             (b) SVM model continuous plot 

CV (%) = 15.95, R2 = 0.7437 

Figure C 31 - SVM Regression Observation (50% Noise Piecewise (3P) Linear Daily Data 2) 

 

C.2.1.5 100% Noisy Input  

                 1) homoscedastic noise 

              (a) original data and SVM regression points              (b) SVM model continuous plot 

CV (%) = 89.81, R2 = 0.2314 

Figure C 32 - SVM Regression Observation (100% Noise Piecewise (3P) Linear Daily Data 1) 
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                2) heteroscedastic noise 

             (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 35.63, R2 = 0.3648 

Figure C 33 - SVM Regression Observation (100% Noise Piecewise (3P) Linear Daily Data 2) 

 

C.2.2 Monthly Data (Type 1) 
 

C.2.2.1 Ideal Input 

             (a) original data and SVM regression points              (b) SVM model continuous plot 

CV (%) = 1.48, R2 = 0.9980 

Figure C 34 - SVM Regression Observation (Ideal Piecewise (3P) Linear Monthly Data) 
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C.2.2.2 10% Noisy Input 

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 5.72, R2 = 0.9703 

Figure C 35 - SVM Regression Observation (10% Noise Piecewise (3P) Linear Monthly Data) 

 

C.2.2.3 30% Noisy Input 

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 16.04, R2 = 0.8352 

Figure C 36 - SVM Regression Observation (30% Noise Piecewise (3P) Linear Monthly Data) 
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C.2.2.4 50% Noisy Input  

          (a) original data and SVM regression points                (b) SVM model continuous plot 

CV (%) = 30.70, R2 = 0.7455 

Figure C 37 - SVM Regression Observation (50% Noise Piecewise (3P) Linear Monthly Data) 

 

C.2.2.5 100% Noisy Input  

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 44.00, R2 = 0.5358 

Figure C 38 - SVM Regression Observation (100% Noise Piecewise (3P) Linear Monthly Data) 
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C.2.3 Daily Data (Type 2) 
 

C.2.3.1 Ideal Input 

           

 

 

 

 

 

 

 

              (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 0.28, R2 = 0.9999 

Figure C 39 - SVM Regression Observation (Ideal Piecewise (4P) Linear Daily Data) 

 

C.2.3.2 10% Noisy Input 

                 1) homoscedastic noise  

              (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 5.48, R2 = 0.9886 

Figure C 40 - SVM Regression Observation (10% Noise Piecewise (4P) Linear Daily Data 1) 
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                2) heteroscedastic noise  

              (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 4.63, R2 = 0.9960 

Figure C 41 - SVM Regression Observation (10% Noise Piecewise (4P) Linear Daily Data 2) 

 

C.2.3.3  30% Noisy Input 

                 1) homoscedastic noise 

               (a) original data and SVM regression points              (b) SVM model continuous plot 

CV (%) = 16.80, R2 = 0.8971 

Figure C 42 - SVM Regression Observation (30% Noise Piecewise (4P) Linear Daily Data 1) 
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                 2) heteroscedastic noise 

               (a) original data and SVM regression points              (b) SVM model continuous plot 

CV (%) = 11.44, R2 = 0.9763 

Figure C 43 - SVM Regression Observation (30% Noise Piecewise (4P) Linear Daily Data 2) 

 

C.2.3.4 50% Noisy Input 

                 1) homoscedastic noise 

               (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 28.84, R2 = 0.7743 

Figure C 44 - SVM Regression Observation (50% Noise Piecewise (4P) Linear Daily Data 1) 
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                 2) heteroscedastic noise 

               (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 18.64, R2 = 0.9388 

Figure C 45 - SVM Regression Observation (50% Noise Piecewise (4P) Linear Daily Data 2) 

 

C.2.3.5 100% Input 

                1) homoscedastic noise 

       (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 58.53, R2 = 0.4911 

Figure C 46 - SVM Regression Observation (100% Noise Piecewise (4P) Linear Daily Data 1) 
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                2) heteroscedastic noise 

       (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 39.40, R2 = 0.7768 

Figure C 47 - SVM Regression Observation (10% Noise Piecewise (4P) Linear Daily Data 2) 

 

C.2.4 Monthly Data (Type 2) 

C.2.4.1 Ideal Input 

 

 

 

 

 

 

 

 

         (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 3.12, R2 = 0.9972 

Figure C 48 - SVM Regression Observation (Ideal Piecewise (4P) Linear Monthly Data) 
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C.2.4.2 10% Noisy Input  

         (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 5.45, R2 = 0.9908 

Figure C 49 - SVM Regression Observation (10% Noise Piecewise (4P) Linear Monthly Data) 

 

C.2.4.3 30% Input 

        (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 13.69, R2 = 0.9588 

Figure C 50 - SVM Regression Observation (30% Noise Piecewise (4P) Linear Monthly Data) 
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C.2.4.4 50% Input 

        (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 37.30, R2 = 0.6813 

Figure C 51 - SVM Regression Observation (50% Noise Piecewise (4P) Linear Monthly Data) 

 

C.2.4.5  100% Input 

       (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 26.16, R2 = 0.8915 

Figure C 52 - SVM Regression Observation (100% Noise Piecewise (4P) Linear Monthly Data) 
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C.3 Special Case Input Data 
 

C.3.1 Piecewise Linear Input Data (Three pieces) 

C.3.1.1 Daily Data 

C.3.1.1.1 Ideal Input 

 

 

 

 

 

 

 

         (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 0.61, R2 = 0.9995 

Figure C 53 - SVM Regression Observation (Ideal Piecewise (5P) Linear Daily Data) 

 

C.3.1.1.2 10% Noisy Input  

 

 

 

 

 

 

 

 

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 6.60, R2 = 0.9454 

Figure C 54 - SVM Regression Observation (10% Noise Piecewise (5P) Linear Daily Data) 
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C.3.1.1.3 30% Noisy Input  

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 17.60, R2 = 0.7088 

Figure C 55 - SVM Regression Observation (30% Noise Piecewise (5P) Linear Daily Data) 

 

 

C.3.1.1.4 50% Noisy Input  

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 29.43, R2 = 0.4839 

Figure C 56 - SVM Regression Observation (50% Noise Piecewise (5P) Linear Daily Data) 
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C.3.1.1.5 100% Noisy Input  

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 59.04, R2 = 0.2359 

Figure C 57 - SVM Regression Observation (100% Noise Piecewise (5P) Linear Daily Data) 

 

C.3.1.2 Monthly Data 

C.3.1.2.1 Ideal Input 

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 2.79, R2 = 0.9928 

Figure C 58 - SVM Regression Observation (Ideal Piecewise (5P) Linear Monthly Data) 
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C.3.1.2.2 10% Noisy Input 

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 8.07, R2 = 0.9542 

Figure C 59 - SVM Regression Observation (10% Noise Piecewise (5P) Linear Monthly Data) 

 

C.3.1.2.3 30% Noisy Input  

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 29.21, R2 = 0.6131 

Figure C 60 - SVM Regression Observation (30% Noise Piecewise (5P) Linear Monthly Data) 
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C.3.1.2.4 50% Noisy Input  

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 28.94, R2 = 0.6573 

Figure C 61 - SVM Regression Observation (50% Noise Piecewise (5P) Linear Monthly Data) 

 

C.3.1.2.5 100% Noisy Input   

          (a) original data and SVM regression points               (b) SVM model continuous plot 

CV (%) = 77.48, R2 = 0.5259 

Figure C 62 - SVM Regression Observation (100% Noise Piecewise (5P) Linear Monthly Data) 
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C.3.2 Scheduled Input Data   
 

C.3.2.1 Weekday/Weekend Schedule 

                 (a) data Input: OAT                                                    (b) data input: OAT + schedule  

                    CV (%) = 27.79, R2 = 0.7602                                      CV (%) = 12.36, R2 = 0.9483 

Figure C 63 - SVM Regression Observation (Weekday/Weekend Schedule) 

 

C.3.2.2 Semester/Summer Breaks/Winter Break/Holiday Schedule  

              (a) data Input: OAT                                                     (b) data input: OAT + schedule 

                   CV (%) = 14.82, R2 = 0.2444                                      CV (%) = 6.44, R2 = 0.8592 

Figure C 64 - SVM Regression Observation (Semester/Break/Holiday Schedule) 
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C.3.3 Scattering Input Data 

                                          (a)                                                                           (b)  

                  CV (%) = 47.48, R2 = 0.4597                                     CV (%) = 40.77, R2 = 0.4570 

 

                                             (c)                                                                        (d)  

                 CV (%) = 76.58, R2 = 0.6464                                     CV (%) = 55.12, R2 = 0.4526 

Figure C 65 - SVM Regression Observation (Scattering Data) 
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C.3.4 Hourly Input Data 

                (a) CHW hourly data with OAT                                   (b) HHW hourly data with OAT 

                     CV (%) = 25.42, R2 = 0.8392                                   CV (%) = 14.15, R2 = 0.9292 

 

                (c) CHW hourly data with OAE                                 (d) CHW hourly data with OEE 

                     CV (%) = 31.85, R2 = 0.7461                                      CV (%) = 30.97, R2 = 0.7585 

Figure C 66 - SVM Regression Observation (Hourly Data) 
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C.3.5 Extraordinary Input Data 
 

                (a) chilled water hourly data                                      (b) heating hot water hourly data  

                     CV (%) = 33.61, R2 = 0.4816                                   CV (%) = 14.09, R2 = 0.6238 

                (a) chilled water hourly data                                        (b) heating hot water hourly data  

                     CV (%) = 12.78, R2 = 0.6605                                      CV (%) = 18.38, R2 = 0.4573 

Figure C 67 - SVM Regression Observation (Data with Break Points) 
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APPENDIX D. SVM, CPLR REGRESSION PLOTS  

D.1 Daily 

D.1.1 CHW - OAT  

 

Figure D 1 - SVM and CPLR (4P) Regression Plots (CHW-OAT) Sample No. 1 – No. 12 (Daily) 
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Figure D 2 - SVM and CPLR (4P) Regression Plots (CHW-OAT) Sample No. 13 – No. 24 (Daily) 
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Figure D 3 - SVM and CPLR (4P) Regression Plots (CHW-OAT) Sample No. 25 – No. 36 (Daily) 

 



208 

 

 

Figure D 4 - SVM and CPLR (4P) Regression Plots (CHW-OAT) Sample No. 37 – No. 41 (Daily) 
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D.1.2 CHW - OAE  
 

 

Figure D 5 - SVM and CPLR (4P) Regression Plots (CHW-OAE) Sample No. 1 – No. 12 (Daily) 
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Figure D 6 - SVM and CPLR (4P) Regression Plots (CHW-OAE) Sample No. 13 – No. 24 (Daily) 
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Figure D 7 - SVM and CPLR (4P) Regression Plots (CHW-OAE) Sample No. 25 – No. 36 (Daily) 
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Figure D 8 - SVM and CPLR (4P) Regression Plots (CHW-OAE) Sample No. 37 – No. 41 (Daily) 

  



213 

 

D.1.3 CHW - OEE  
 

 

 Figure D 9 - SVM and CPLR (4P) Regression Plots (CHW-OEE) Sample No. 1 – No. 12 (Daily) 
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Figure D 10 - SVM and CPLR (4P) Regression Plots (CHW-OEE) Sample No. 13 – No. 24 (Daily) 
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Figure D 11 - SVM and CPLR (4P) Regression Plots (CHW-OEE) Sample No. 25 – No. 36 (Daily) 
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Figure D 12 - SVM and CPLR (4P) Regression Plots (CHW-OEE) Sample No. 37 – No. 41 (Daily) 
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D.1.4 HHW - OAT  
 

 

Figure D 13 - SVM and CPLR (4P) Regression Plots (HHW-OAT) Sample No. 1 – No. 12 (Daily) 
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Figure D 14 - SVM and CPLR (4P) Regression Plots (HHW-OAT) Sample No. 13 – No. 24 (Daily) 
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Figure D 15 - SVM and CPLR (4P) Regression Plots (HHW-OAT) Sample No. 25 – No. 36 (Daily) 
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Figure D 16 - SVM and CPLR (4P) Regression Plots (HHW-OAT) Sample No. 37 – No. 41 (Daily) 
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D.2 Monthly 

D.2.1 CHW - OAT  
 

 

Figure D 17 - SVM and CPLR (4P) Regression Plots (CHW-OAT) Sample No. 37 – No. 41 (Monthly) 
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Figure D 18 - SVM and CPLR (4P) Regression Plots (CHW-OAT) Sample No. 13 – No. 24 (Monthly) 
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Figure D 19 - SVM and CPLR (4P) Regression Plots (CHW-OAT) Sample No. 25– No. 36 (Monthly) 
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Figure D 20 - SVM and CPLR (4P) Regression Plots (CHW-OAT) Sample No. 37– No. 41 (Monthly) 
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D.2.2 CHW - OAE  

 

 

Figure D 21 - SVM and CPLR (4P) Regression Plots (CHW-OAE) Sample No. 1– No. 12 (Monthly) 
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Figure D 22 - SVM and CPLR (4P) Regression Plots (CHW-OAE) Sample No. 13– No. 24 (Monthly) 
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Figure D 23 - SVM and CPLR (4P) Regression Plots (CHW-OAE) Sample No. 25– No. 36 (Monthly) 
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Figure D 24 - SVM and CPLR (4P) Regression Plots (CHW-OAE) Sample No. 37– No. 41 (Monthly) 
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D.2.3 CHW - OEE  
 

 

Figure D 25 - SVM and CPLR (4P) Regression Plots (CHW-OEE) Sample No. 1– No. 12 (Monthly) 
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Figure D 26 - SVM and CPLR (4P) Regression Plots (CHW-OEE) Sample No. 13– No. 24 (Monthly) 
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Figure D 27 - SVM and CPLR (4P) Regression Plots (CHW-OEE) Sample No. 25– No. 36 (Monthly) 
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Figure D 28 - SVM and CPLR (4P) Regression Plots (CHW-OEE) Sample No. 37– No. 41 (Monthly) 
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D.2.4 HHW - OAT  
 

 

Figure D 29 - SVM and CPLR (4P) Regression Plots (HHW-OAT) Sample No. 1– No. 12 (Monthly) 
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Figure D 30 - SVM and CPLR (4P) Regression Plots (HHW-OAT) Sample No. 13 – No. 24 (Monthly) 
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Figure D 31 - SVM and CPLR (4P) Regression Plots (HHW-OAT) Sample No. 25 – No. 36 (Monthly) 
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Figure D 32 - SVM and CPLR (4P) Regression Plots (HHW-OAT) Sample No. 37 – No. 41 (Monthly) 
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APPENDIX E. EXAMPLE OF ENERGY SAVINGS CALCULATION  

USING SVM REGRESSION 

 

One of the main applications of building energy baseline model is to calculate savings 

between different periods. According to International Performance Measurement & 

Verification Protocol (IPMVP)[63], there are four options to determine savings as 

below: 

1) Option A: Partially Measured Retrofit Isolation 

2) Option B: Retrofit Isolation 

3) Option C: Whole Building 

4) Option D: Calibrated Simulation  

What is dealt with about SVM regression model in this thesis is in line with the Option 

C. Thus, calculation process below is laid out according to the option C.   

 

Sample Data 

Wisenbaker Engineering Research Center, Texas A&M University campus, College 

Station, Texas. 

Baseline Period: Jan 1, 2014 – Dec 31, 2014 

Post Period: Jan 1, 2017 – Dec 31, 2017  

Energy Type: Heating Hot Water 
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SVM Input 

SVM input attributes 

 - dependent variable: Daily HHW Use in 2014 [MMBtu/day] 

 - independent variable: Daily Average Outdoor Air Temperature in 2014 [°F] 

 

SVM Output (Baseline Model Equation) 

RBF kernel SVM regression takes the following form. 

𝒇(𝒙) = ∑ (𝜶𝒊 − 𝜶𝒊
∗)𝒆−𝜸‖𝒙−𝒙𝒊‖

𝟐𝑵
𝒊=𝟏 + 𝒃  (EQ.F 1) 

where b = - 0.9237, γ = 0.25, N = 101 (Number of Support Vector).  

 

In this example, the EQ. F1 is established with normalized data as below.  

𝒙𝒔𝒄𝒂𝒍𝒆𝒅 =
𝒙𝒐𝒓𝒈𝒊𝒏𝒂𝒍−𝒙𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍,𝒎𝒆𝒂𝒏

𝝈𝒙,𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍
  (EQ.F 2) 

where xoriginal,mean = 67.4, σoriginal,mean = 14.5.  

 

Thus, scaled data should be inserted instead of the original one. Likewise, the f(x) of the 

Eq. F2 is scaled value. Thus, it should be inverse-scaled so that it has physical meaning. 
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𝒇(𝒙) = 𝒇(𝒙)𝒔𝒄𝒂𝒍𝒆𝒅 × 𝝈𝒚,𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 + 𝒚𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍,𝒎𝒆𝒂𝒏  (EQ.F 3) 

where yoriginal,mean = 23.1, yoriginal,mean = 11.9 

 

The values of coefficient (αi - αi
*) and support vectors (xi) are listed in the Table F1. 

 

Table F 1 - Independent Variables (OAT) Corresponding to Support Vectors and 

Coefficients 

i xi αi - αi* i xi αi - αi* i xi αi - αi* i xi αi - αi* 

1 -1.14 -4.00 27 -1.49 4.00 53 0.93 -4.00 79 -0.27 -4.00 

2 -1.90 -4.00 28 -1.88 4.00 54 0.97 -4.00 80 -0.68 4.00 

3 -1.89 -4.00 29 -0.91 4.00 55 0.94 -4.00 81 -2.07 4.00 

4 -0.77 -4.00 30 -1.51 -4.00 56 1.16 -4.00 82 -1.57 4.00 

5 -1.51 -4.00 31 0.12 -4.00 57 1.16 -4.00 83 -2.02 4.00 

6 -2.78 -4.00 32 -0.88 -4.00 58 0.77 -4.00 84 -0.32 4.00 

7 -2.31 -4.00 33 -0.57 -4.00 59 0.82 -0.92 85 -0.77 4.00 

8 -1.35 -4.00 34 -0.07 -4.00 60 0.58 -4.00 86 -1.13 -4.00 

9 -0.60 -4.00 35 -0.45 -4.00 61 0.54 -4.00 87 -1.43 -4.00 

10 -0.31 -4.00 36 -0.41 -4.00 62 1.21 -4.00 88 0.16 4.00 

11 -0.72 -4.00 37 -1.76 -4.00 63 0.60 -4.00 89 -0.44 4.00 

12 -0.75 -4.00 38 -1.33 4.00 64 0.87 -4.00 90 -0.88 4.00 

13 -0.59 -4.00 39 -2.76 2.66 65 0.98 -4.00 91 -1.18 4.00 

14 -1.06 -4.00 40 -0.93 4.00 66 0.96 -4.00 92 -0.84 2.89 

15 -1.42 -4.00 41 -0.60 4.00 67 1.31 -4.00 93 -1.18 4.00 

16 -1.09 -4.00 42 -0.14 4.00 68 0.99 4.00 94 -1.02 4.00 

17 -1.20 -4.00 43 -0.84 4.00 69 1.20 4.00 95 -0.43 4.00 

18 -1.18 -4.00 44 -0.36 4.00 70 1.24 4.00 96 -1.04 4.00 

19 -1.03 -4.00 45 -0.73 -4.00 71 1.11 4.00 97 -1.53 4.00 

20 -0.54 -4.00 46 -0.79 4.00 72 1.16 4.00 98 -1.21 4.00 

21 -1.18 -4.00 47 0.76 4.00 73 1.26 1.60 99 -0.32 4.00 

22 -1.25 -4.00 48 0.81 4.00 74 0.85 4.00 100 -1.03 4.00 

23 -2.65 4.00 49 -0.38 4.00 75 0.91 4.00 101 -2.04 4.00 

24 -1.75 1.77 50 0.55 4.00 76 0.59 4.00 

r 

25 -0.71 4.00 51 0.72 4.00 77 0.72 4.00 

26 -1.45 4.00 52 0.38 4.00 78 -0.08 -4.00 

 

The reported performance is as below. 

CV = 18.16 %, R2 = 0.8758 
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Savings Calculation 

 

Figure F 33 - HHW versus Outdoor Air Temperature during the Baseline and Savings 

Period 

 

The baseline model is generated based on the daily data. Hence, if daily consumption 

data is available for the savings period, savings can be calculated just by subtracting that 

daily values from the corresponding SVM regression model values. If only monthly 

values are available, such as monthly bill, those values need to be converted to monthly 

average daily values by dividing by the number of days of the month. In the Figure F1 

and Table F2, monthly average daily HHW is used for the savings period.  
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Table F 2 - Monthly Average Daily HHW Savings in 2017  

Year Month 
OAT Measured Baseline Savings 

°F MMBtu/day MMBtu/day MMBtu/day % 

2017 1 56.46 12.15 28.56 16.42 57.48 

2017 2 63.71 7.95 22.86 14.91 65.23 

2017 3 66.62 9.78 21.06 11.28 53.56 

2017 4 70.13 8.62 19.12 10.50 54.91 

2017 5 74.68 5.45 16.86 11.41 67.67 

2017 6 80.15 4.89 14.51 9.62 66.32 

2017 7 86.24 4.68 12.75 8.08 63.33 

2017 8 83.20 5.17 13.48 8.31 61.66 

2017 9 79.23 6.69 14.87 8.18 55.00 

2017 10 70.43 10.61 18.97 8.36 44.05 

2017 11 65.09 12.17 21.98 9.81 44.61 

2017 12 51.31 20.04 34.06 14.03 41.18 

Total 108.19 239.09 130.90 54.75 

 

  


