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Abstract
Near accurate forecasting of energy demand has be-
come a non-trivial requirement for developing effec-
tive management and planning strategies/policies for
a resilient energy system. This paper is aimed to de-
velop a novel deep learning-based energy demand pre-
diction model by utilising the combination of Convo-
lutional neural networks and Long Short-term Mem-
ory units. The proposed model consists of two one di-
mensional convolutional layer with max pooling, two
bidirectional LSTM layers and finally three fully con-
nected dense layer. The energy consumption data
available for a household based in Findhorn ecovillage
located in the north of Scotland for a six-week period
during the February and March of 2015 was utilised
for training, validating, and testing the models. The
proposed model provides energy demand prediction
for short-term forecasting (5 minutes). The results
obtained from the model are compared against four
of the classical and widely applied algorithms for time
series forecasting: autoregressive integrated moving
average (ARIMA), light gradient boosting machine
(LightGBM), random forest (RF), and deep neural
networks (DNN). The result obtained demonstrated
the efficiency of the proposed architecture in outper-
forming all well-established models.

Introduction
During the past decade, smart meters and grids have
become widespread around the globe; for example,
the numbers of smart meters installed in the UK
reached 14.9 million at the end of June 2019 (Kerai,
2019). Smart meters provide a vast amount of in-
formation/data on energy supply and demand to re-
searchers and industry stakeholders.
Over the years, researchers have used this data to
improve energy efficiency and sustainability in many
frontiers, such as community energy modelling, en-
ergy management and energy forecasting. Possibility
of near accurate forecasting of energy demand could
serve several purposes including optimising the utili-
sation of available resources and identification of any
potential risks, which is essential for developing ef-
fective management and planning strategies/policies
for a robust and resilient energy system. ASHRAE

breaks energy estimation models into two main cate-
gories: physics-based and data-driven models (Owen
et al., 2009). Data-driven models can be divided into
two types of methodologies, a statistical model or a
machine learning algorithm.
In recent years, with the boom of artificial intelligence
in various fields and the widespread use of machine
learning algorithms, many researchers have started
testing the potential application of these techniques
for accurate forecasting of energy demand. For exam-
ple, Robinson et al. (2017) in a comprehensive study
evaluating the performance of linear regressor, RBF
kernel support vector regressor (SVR), AdaBoost re-
gressor, bagging regressor, gradient boosting regres-
sor, random forest, multilayer perceptron regressor
(MLP regressor), and K-nearest neighbour regressor.
Theile et al. (2018) studied the performance of Sup-
port Vector Machine (SVM) and Recurrent Neural
Networks on the day-ahead electricity consumption
prediction of a group of households. The training
of the models was performed using observed weather
data while the forecasting was performed using pre-
dicted weather data. Johannesen et al. (2019) com-
pared three algorithms, namely Random Forest, K-
nearest neighbour and Linear Regressor for forecast-
ing electricity demand profiles of the urban area. Sim-
ilarly, Huang et al. (2019) used XGboost, Extreme
learning machine (ELM) and MLP for energy demand
prediction for residential buildings.
The deep learning has also drawn the attention of
many researchers working in the area of energy de-
mand prediction. Some related examples include the
work of Amarasinghe et al. (2017). They investigated
the effectiveness of Convolutional Neural Network
(CNN) for performing energy load forecasting at the
individual building level. Paterakis et al. (2017) com-
pared the performance of MLPs with SVMs, Gaussian
Processes, Regression Trees, Ensemble Boosting and
Linear Regression. Kim and Cho (2019a) provided a
review of using deep learning with state explainable
autoencoder for prediction of electricity consumption
profiles. An autoencoder is a neural network that is
trained to attempt to copy its input to its output. It
learns efficient data representations (encoding) and
produces an encoded vector representing the input
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sequence. This vector is then provided as an input
to the decoder model that interprets it, and the out-
put sequence is generated (Goodfellow et al., 2016).
Moustris et al. (2020) explored the potential of MLP
for the medium, short and very short-term forecast-
ing of electricity load. This study utilises, Human
thermal comfort-discomfort biometeorological index
as one of the critical features in forecasting. Kim
and Cho (2019b) proposed a CNN-LSTM model us-
ing the combination of CNN and LSTM for predicting
electric energy consumption on IHEPC dataset. Sim-
ilarly, Le et al. (2019) used a CNN and Bi-LSTM net
to predict energy consumption on IHEPC dataset.
Despite this recent development in the previously
studied methods for energy demand prediction, lit-
tle progress has been made in the robustness of these
models. Many accurate machine learning models are
comparable or even superior to traditional methods,
but they have never been deployed as a solution for
the public sector. Often, researchers use datasets that
are expensive and complex to collect, so when stake-
holders want to use these methods for solving their
problem, they face the challenge of running these
models. To bridge the aforementioned gap, this pa-
per aims to develop a prediction model which is easy
to implement and yet is capable of very accurate pre-
diction. The other objectives are to compare the de-
veloped methodology with existing methods.
The proposed model provides energy demand predic-
tion (EDP) for short-term forecasting (5 minutes).
The results obtained from the model are compared
against four of the classical and widely applied al-
gorithms: autoregressive integrated moving average
(ARIMA), random forest, light gradient boosting ma-
chine (LightGBM), and deep neural networks (DNN).
The remaining of the paper is organised as follows:
Study area and data collection section present de-
tails about the dataset; Methodology section intro-
duces the different elements of the methodology and
approach for combining workflow; Result and Dis-
cussion section reports the key findings along with a
critical discussion on overall success and potentials of
proposed methods and ideas for future works.

Study Area and Data Collection
To train and test the developed models, high-
resolution data gathered from the Findhorn Ecovil-
lage site, located in northern Scotland, is used in this
study. The demand data of Findhorn was collected
as part of the Orchestration of renewable integrated
generation in neighbourhoods (ORIGIN) project. For
the case study, high-resolution data (five-minute in-
terval) collected over a continuous period from Febru-
ary 2015 to March 2015 is used.
The selected case-study household for this study is
built on two floors with a total area of approximately
96 m2. The reading collected from the smart meter
is solely related to the overall electricity usage, as

Figure 1: Findhorn Ecovillage Position in Scotland

the house uses a gas boiler for heating purposes. The
dynamics of the electricity demand profile for the case
study dwelling during the stated period is presented
in figure 2.

Figure 2: Demand graph from Feb 2015 to Mar 2015

Methodology
Deep Neural Networks
Perceptrons were developed in the 1950s and 1960s
by Rosenblatt (1962), inspired by earlier work by Mc-
Culloch and Pitts (1943). A perceptron takes in user-
specified number of input units, x1, x2, . . . , xn,
and each of these units is associated with a specific
weight, w1, w2, . . . , wn. These weights are usually
multiplied to input units and then summed together
to produce the logit of the neuron. The logit is then
passed through a linear function to produce the out-
put (Buduma and Locascio, 2017). To learn complex
relationships, we need to use neurons that employ
some nonlinearity. Today, it is more common to use
other types of neurons, namely the sigmoid neuron.
A sigmoid neuron is similar to a perceptron, except
that the output is not 0 or 1. Instead, it’s σ(wx+ b),
where σ is a sigmoid function.
A standard neural network consists of many neurons,
each producing a sequence of real-valued activation.
Many researchers had wanted for decades to train
deep multilayer neural networks, but no successful
attempts were reported before 2006 (Bengio, 2009).
Hinton et al. (2006) at the University of Toronto in-
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troduced Deep Belief Networks (DBNs) with a learn-
ing algorithm that greedily trains one layer at a time.
Deep learning methods aim at learning feature hier-
archies with features from higher levels of the hier-
archy formed by the composition of lower-level fea-
tures (Bengio, 2009). Deep feedforward networks,
also called feedforward neural networks, or multi-
layer perceptrons (MLPs), are the quintessential deep
learning models (Goodfellow et al., 2016).

Convolutional Neural Networks
Convolutional nets were inspired by the visual sys-
tem’s structure. The first computational models
based on these local connectivities between neurons
and hierarchically organised transformations of the
image are found in Fukushima (1980). Later, LeCun
and collaborators designed and trained convolutional
networks using the error gradient, obtaining state-of-
the-art performance (LeCun et al., 1998).
Convolution preserves the relationship between pix-
els by learning image features using small squares of
input data. It is a mathematical operation that takes
two inputs, such as an image matrix and a filter.
The architecture of a CNN is designed to take advan-
tage of the 2D structure of an input image. This is
achieved with local connections and tied weights fol-
lowed by some form of pooling (Average/Maximum)
which results in translation-invariant features. Sim-
ilarly, to computer vision tasks, in time series prob-
lems it is desired to extract a small number of low-
level features with a small receptive field across the
entire input. This method can significantly improve
the accuracy of prediction system while keeping the
computation cost at an acceptable range.

Long Short-term Memory
The most effective sequence models in deep learning
are called gated recurrent neural networks. These
include the long short-term memory (LSTM) and
the gated recurrent units (GRU) (Goodfellow et al.,
2016). To combat the problem of vanishing gradients
(Hochreiter et al., 2001), Hochreiter and Schmidhu-
ber (1997) introduced the LSTM architecture by in-
troducing self-loops to produce paths where the gra-
dient can flow for a long duration. A crucial addition
has been to make the weight on this self-loop condi-
tioned on the context, rather than fixed (Gers et al.,
2000).
LSTMs make small modifications to the information
by multiplications and additions. With LSTMs, the
information flows through a mechanism known as cell
states, and the cell states allow LSTMs to let infor-
mation through selectively. They are composed out
of a sigmoid neuron and a point-wise product. Those
gates act on the signals they receive, and similar to
the neural network’s nodes, they block or pass on in-
formation based on its strength and import, which
they filter with their own sets of weights. Those
weights, like the weights that modulate input and hid-

den states, are adjusted via the learning processes of
recurrent networks. That is, the cells learn when to
allow data to enter, leave or to be deleted through
the iterative process of making guesses, backpropa-
gating error, and adjusting weights via gradient de-
scent (Goodfellow et al., 2016).

Figure 3: LSTM Architecture (Goodfellow et al.,
2016)

Model Architecture
In many recent studies, both CNNs and LSTMs have
shown a significant increase in performance over Deep
Neural Networks (DNNs) across a variety of tasks
(Huang and Kuo, 2018; Ding et al., 2018; Núñez et al.,
2018; Zhao et al., 2019; Bhunia et al., 2019). CNNs,
LSTMs and DNNs are complementary in their mod-
elling capabilities, as CNNs are good at reducing fre-
quency variations, LSTMs are good at sequence mod-
elling, and DNNs are appropriate for mapping fea-
tures to a more separable space (Sainath et al., 2015).
In this paper, a deep neural net is developed, which
will use this complementarity to predict energy de-
mand.
Figure 4 shows the complete architecture of the de-
veloped model. The two convolutional layers will ex-
tract features from the input variables (energy de-
mand with 5 min interval). The convolutional layers
develop a feature map of the input variables which
will improve the accuracy of the model in compari-
son with vanilla LSTM networks. After each convolu-
tional layer, there is a max-pooling layer which acts as
a tool to reduce over-fitting and to minimise the com-
putational cost by reducing the number of parameters
to learn. Max pooling is a sample-based discretisa-
tion process, and the objective is to down-sample an
input representation and reducing its dimensionality
(Kulkarni and Satapathy, 2019). By using a pool-
ing layer in the architecture, only features with the
highest value and importance will be selected.
After flattening, converting a matrix to a single array,
the output of convolutional layers, the information is
passed to the three Bi-LSTM layers to detect patterns
in long periods in both directions. Finally, the output
of the layers will pass onto the four fully connected
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Figure 4: CNN-LSTM Architecture

dense layers with one dropout layer in between for
making a prediction.
The proposed methodology was implemented to per-
form prediction for the next time step of (five-minute)
consumption. In order to do this, 35 previous obser-
vation was fed into the model as lagged features. This
number was selected based on a grid search to obtain
the optimum window size for maximising the perfor-
mance and minimise the computation cost. It worth
mentioning that the predicted value is not used for
forecasting the next time step. For the CNN layers,
the filter size of 128 was selected as the optimum num-
ber with a kernel size of 2. The activation function for
these layers was the linear rectifier unit (ReLU) func-
tion which is the default recommendation in modern
neural networks (Goodfellow et al., 2016). As ex-
plained earlier for pooling phase of the network, the
max-pooling was selected with a pool size of 2. Once
the CNN layers made their feature maps, and it was
flattened, their output was sent to two Bi-LSTM lay-
ers.
Bidirectional RNN is consist of two independent
RNNs together. This structure allows the networks to
have both backward and forward information about
the sequence at each time step. Bidirectional layers
will run the inputs in two ways, one from past to fu-
ture and one from future to past and what makes this
method powerful is that it enables the network in any
point in time to preserve information from both past
and future. Based on our experiments, using this ar-
chitecture help the model to better understand the

patterns in the demand load. Next, for regularising
the network, a dropout layer with a dropout rate of
0.3 was used after the second Bi-LSTM layer.
In the developed model, three fully connected dense
layer with 50, 10 and 1 neurons were used, respec-
tively. These layers used the ReLU function as their
activation function. For compiling the model, Adap-
tive Moment Estimation (Adam) (Kingma and Ba,
2014) algorithm was used as the gradient-based op-
timiser. The value of the learning rate was obtained
by running the model first with a learning rate sched-
uler. Mean square error (MSE) was used as the loss
function for training the model and root mean square
error (RMSE) and mean absolute error (MAE) were
used as the metrics for evaluating the performance of
the model. Furthermore, an early stopping method
was used to prevent the model from overfitting on
the train data. The model was trained in 200 epochs
with a batch size of 256. In total, 1,385,275 pa-
rameters were trained during the model development
phase. The model was developed using the Keras
neural-network library with TensorFlow 2.1.0 back-
end in Python.
Evaluation index of model performances
The predicted values by the proposed model are eval-
uated by three performance metrics for regression
models, MAE, MSE and RMSE. Furthermore, the
residual error was calculated for test data to evaluate
the performance of the model by plotting its distri-
bution. In regression analysis, the difference between
the observed value of the dependent variable (yi) and
the predicted value (xi) is called the residual error
(e).

e = yi − xi

MAE measures the average magnitude of the errors
in predicted values, without considering their direc-
tion. The MAE is a linear score which means that all
the individual differences are weighted equally in the
average. MAE is calculated as follows.

MAE =
1

n

n∑
i=1

abs(yi − xi)

MSE measures the average of the squares of the er-
rors. In other words, it is the average squared dif-
ference between the predicted values and the actual
values. The equation for MSE is as follows.

MSE =
1

n

n∑
i=1

(yi − xi)
2

RMSE is the standard deviation of the residual errors.
It is the square root of the average of squared dif-
ferences between predictions and actual values. The
RMSE is calculated as:

RMSE =

√√√√(
1

n
)

n∑
i=1

(yi − xi)2
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Table 1: Performance of different algorithms on the dataset

Evaluation Results
ARIMA Random Forest LightGBM DNN CNN-LSTM C24

Train Test Train Test Train Test Train Test Train Test Train Test
MAE 0.230 - 0.207 0.205 0.245 0.276 0.202 0.201 0.200 0.192 - 0.180
MSE 0.227 - 0.200 0.298 0.154 0.225 0.211 0.209 0.206 0.214 - 0.151
RMSE 0.477 - 0.459 0.476 0.493 0.475 0.479 0.469 0.454 0.463 - 0.389

Results and Discussion
The performance of the developed network is eval-
uated against one mainstream statistical method
(ARIMA) and three established machine learning al-
gorithms, namely Random Forest, Light Gradient
Boosting Machine (LightGBM) (Ke et al., 2017) and
a DNN. LightGBM is a gradient boosting framework
that uses tree-based learning algorithms. For the
ARIMA model, the values of the hyperparameters (p,
d, q) were chosen by using autocorrelation function
(ACF) and partial autocorrelation function (PACF).
For Random Forest and LightGBM model, the val-
ues of the hyperparameters were tuned by performing
grid search so that the maximum performance of the
individual models were achieved. Moreover, cross-
validation was performed to check the degree of gen-
eralisation of the models. For the DNN, four dense
layers with 15, 10, 5 and 1 neurons were developed,
and similar values for hyperparameters (Activation
function = ReLU, Optimisation algorithm = Adam
with a learning rate of 1e-4) were used. All models
used the same 80/20 ratio for splitting the dataset
into training and testing set; however, the train/val-
idation/test configuration was used in the develop-
ment of the neural networks (20% of train data was
used as validation set). Table 1 summaries the re-
sults (MAE, MSE and RMSE) obtained from all the
algorithms for training and testing sets.
Although the difference in the performance of differ-
ent models is not substantial, it can be seen that the
CNN-LSTM network provides the lowest values in all
three evaluation metrics for an accurate forecast, out-
performing all other models. DNNs require a large
size training data because of the considerable num-
ber of parameters needed to be tuned by a learning
algorithm. The issue in DNN is that the network
starts with a poor initial state and then an optimi-
sation algorithm such as stochastic gradient descent
or Adam is used to converge the network to an opti-
mal position. So, given more data to the CNN-LSTM
network, it is likely it outperform other models sig-
nificantly.
Also, it can be argued that the CNN-LSTM network
can be generalised best to unseen data due to the
low difference between RMSE for train and test data,
which increase the robustness and generality of the

Figure 5: Predicted values and actual values for a day

model. The reason for this could be all the measures
that were implemented to prevent the model from
overfittings, such as the use of max-pooling layers,
dropout layer, and early stopping. Furthermore, it
is worth noting that all machine learning algorithms
outperform the statistical model used in this study,
showing substantial promise for the machine learn-
ing algorithms in time series forecasting of electricity
demand load.
Figure 5 depicts a prediction from all models against
the actual measurement in the testing set. As it can
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be seen, RF and CNN-LSTM can follow the general
trend of data showing capabilities of generalisation.
ARIMA model also predicts accurately, however it
has seen the test data during model development. If
the model sees the test data during the model devel-
opment phase, its accuracy and generalisation cannot
be adequately assessed.
Although the most commonly applied metrics were
used here to assess the accuracy of model predic-
tions, it is particularly difficult to conclude whether
the predictions are consistently accurate or not. For
this reason, the probability density function (PDF) of
residual errors, depicted in Figure 6, was created to
check the distribution of the error. A symmetrically
distributed probability density functions with mean
closer to zero, and small standard deviation produces
more accurate and reliable results. The PDF graph
of CNN-LSTM has the closest mean to zero than any
other method.

Figure 6: Histogram of Residual Error on test data

Furthermore, to evaluate the efficiency of the devel-
oped model in prediction of unseen data, a different
dwelling from Findhorn village was selected to per-
form further testing of the model. It is worth not-
ing that the chosen building has similar construction
and overall design as the building used for training
the model. The result shows (under C24 in Table
1), even better performance of the developed model
on this dataset. The proposed model predicted the
demand for this building by RMSE value of 0.389.
As mentioned earlier, the CNN-LSTM network out-
performs other approaches, however, the method
needs to be tested on several different datasets with
many different architectures (number of neurons, lay-
ers, etc.) to accurately analyse the effectiveness of
this algorithm for generating near accurate energy de-
mand prediction.

Conclusion
This study was conducted to investigate the perfor-
mance of a CNN-LSTM model for generating energy
demand forecasting for residential buildings. The
presented model was trained and tested on demand
load of a building in Findhorn ecovillage in Scotland
and then further validated through an independent
application on another building in the same area.

The novel structure of the proposed model consists of
two one-dimensional convolutional layers with max-
pooling, three bidirectional LSTM layers and three
fully connected dense layer. Furthermore, the per-
formance of the model was tested against ARIMA,
RF, LightGBM and a DNN to see if CNN-LSTM
show any advantage in this problem. The result ob-
tained demonstrated the efficiency of the proposed ar-
chitecture in outperforming all well-established mod-
els. The RMSE value measured on the test data for
CNN-LSTM was significantly lower than the rest of
the other algorithms investigated herein. Thus, it can
be concluded that for the present investigation, CNN-
LSTM architecture shows a good performance in gen-
erating accurate load forecasting. There are needs for
a detailed investigation to explore further potentials
of the proposed model. For the future work, the au-
thors plan to implement a multivariate approach to
improve the load forecasting abilities further and to
use a variety of features such as weather-related data
and building information in parallel. In addition to
this, it would be interesting to see if the addition of
more dataset in training and evaluation steps of the
model development could contribute to achieving an
even better performance. Furthermore, future works
will focus on the real-world problem of multi-step
forecasting for household electricity consumption.
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