
https://www.overleaf.com/project/5f68dc0f92bed70001d535cc

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/363958323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The True Online Continuous Learning Automation
(TOCLA) in a continuous control benchmarking of

actor-critic algorithms
Gordon Frost

The School of Engineering and Physical Sciences
Heriot-Watt University

Edinburgh, UK
https://orcid.org/0000-0001-6908-3738

Marta Vallejo
The School of Engineering and Physical Sciences

Heriot-Watt University
Edinburgh, UK

m.vallejo@hw.ac.uk

Abstract—Reinforcement learning problems are often discre-
tised, use linear function approximation, or perform batch
updates. However, many applications that can benefit from
reinforcement learning contain continuous variables and are in-
herently non-linear, for example, the control of aerospace or mar-
itime robotic vehicles. Recent work has brought focus onto online
temporal difference methods, specifically for using non-linear
function approximation. In this paper, we evaluate the Forward
Actor-Critic against the regular Actor-Critic, and Continuous
Actor-Critic Learning Automation. We also propose and eval-
uate a new algorithm called True Online Continuous Learning
Automation (TOCLA) which combines these two approaches. The
chosen benchmark problem was the MountainCarContinuous-v0
environment from OpenAI Gym, which represents a further step
in complexity over the benchmark used to test the Forward Actor
Critic in previous works. Our results demonstrate the superiority
of TOCLA in terms of its sensitivity to hyper-parameter selection
compared with the Forward Actor Critic, Continuous Actor-
Critic Learning Automation, and Actor Critic algorithms.

Index Terms—Reinforcement Learning, Actor-Critic, TOCLA,
CACLA, Forward Actor-Critic, Nonlinear Function Approxima-
tion.

I. INTRODUCTION

Real-world problems such as modelling the dynamics of an
aircraft or underwater vehicle are non-linear and inherently
complex [1]. In many cases, these problems use a simplified
model representing the system dynamics, since a complete
model is simply not known or is too computationally expensive
[2]. For these applications, a model-free control strategy is
desirable, as it removes the need for a complex or potentially
inaccurate model. Whilst being model-free, a solution must
also be capable of handling the continuous variables observed
in real-world systems. One way of achieving this is to learn the
control strategy directly from interacting with the continuous
environment, as it is defined in a Markov Decision Process
(MDP). The Reinforcement Learning (RL) paradigm does
exactly this – from interacting with the real control process,
the agent learns the optimal sequence of actions to execute that
will maximise an objective (accumulated reward). RL contains
two fields that are of particular interest for such real-world

Fig. 1: The Actor-Critic model.

problems: Actor-Critic (AC) models, and Temporal Difference
(TD) learning [3].

AC models combine the convergence guarantees of policy-
gradient strategies with the interaction sample efficiency of
value-function approaches. As it can be seen in Fig.1, at
each timestep of the MDP, an AC model interacts with its
environment, first, by taking an action sampled from the actor’s
approximator, which moves the learning agent from the current
state to a new state, where it receives a reward. The actor
represents the policy, which is a function that maps a given
state to the action that maximises the future reward. The critic
contains a value-function, mapping the state to the expected
future reward from that state. The reward is used to update
the critic value-function, which generates state estimates. The
actor is, then, updated based on the state-estimate of the
current and previous state. By storing these functions in
separate parameterised approximators, continuous state and
action spaces can easily be supported and the variance of the
policy-gradient actor can also be reduced by the bias of the
critic.

TD learning aims to improve a state value estimate, by also
considering the value of temporally nearby states. To achieve
this, a one or multi-step update target is used to update the
function approximator. One of the most popular and well-
known TD algorithms is TD(λ) [4], used as the critic in the

standard AC algorithm. However, van Seijen et al. [5] showed
that TD(λ) only approximates the update targets defined by the
λ-return algorithm when updating the value estimates online.
The Forward TD(λ) algorithm, proposed by van Seijen [6],
was designed to overcome this problem by using multi-step
update targets and non-linear function approximation methods
such as Artificial Neural Networks (ANNs). Veeriah et al. [7]
then incorporated Forward TD(λ) into an AC model called
Forward AC (FAC).

The Continuous Actor-Critic Learning Automation (CA-
CLA) algorithm [8] is based on the original AC algorithm, but
with a modified actor update rule. This modification addresses
some issues of the AC algorithm policy update and makes
the algorithm more suited to continuous control applications
[9]. One such benefit of the CACLA actor update is that it is
invariant to the scale of the reward function.

TOCLA is a new approach that uses the Forward TD(λ)
algorithm as the critic, and the actor update rule from CACLA.
Evaluating these four algorithms on the same benchmark (a
more representative benchmark problem closer to typical real-
world applications) provides a quantitative assessment of the
benefit of the Forward TD(λ) and CACLA actor updates, and
hence, TOCLA, which combines these.

In this paper, to the best of the authors’ knowledge, we
present a novel quantitative comparison of these four TD AC
algorithms: AC, CACLA, Forward AC, and TOCLA.

The benchmark selected is the OpenAI Gym
MountainCarContinuous-v0 environment [10], which
represents a further step in complexity from the discrete-action
mountain car environment used in Veeriah et al. [7]. This
problem is harder to solve for two reasons: firstly, the action
is a single-dimension continuous value, which represents
the force excerpted on the car; secondly, the objective for
this environment is for the car to reach the goal state,
whilst minimising the excerpted force. Hence, the reward
function is designed to penalise large action magnitudes.
This objective formulation effectively penalises “bang-bang”
control strategies (which can perform well on the discrete
action mountain car environment) and represents a more
desirable optimal control strategy for real-world applications
such as robotics.

We also address the challenge of selecting optimal algorithm
hyperparameters through the use and development of a Genetic
Algorithm (GA) library. GA is a population-based optimisation
algorithm that has been used extensively for hyperparameter
optimisation [11]. In this case, GA is designed to optimise the
actor and critic learning rates and the λ parameter, as these
are critical to the algorithm’s performance [12]. The proposed
GA library is called GEneralised Genetic Algorithm (GEGA)
and we make it openly available in GitHub [13]. GEGA aims
to be a flexible general-purpose implementation to suit many
optimisation problems.

Five contributions are presented in this paper, where we:
A) propose a new AC algorithm called TOCLA, that uses

the Forward TD(λ) algorithm as the critic to estimate state val-
ues. To update the actor, the typical update rule is exchanged

for the CACLA update rule due to its invariance to the reward
scaling.

B) provide the wider research community with a repeatable
python implementation of the AC, CACLA, FAC, and TOCLA
algorithms, implemented as an extension to the comprehensive
framework called the Autonomous Learning Library (ALL)
[14], available in GitHub repository [15].

C) go one step further with Forward AC than Veeriah et al.
[7] and observe its performance in comparison to similar TD
AC algorithms, when applied to a control environment that
has a continuous action space. Results are presented for the
MountainCarContinuous-v0 OpenAI Gym environment.

D) publish a flexible GA implementation called the GEn-
eralised Genetic Algorithm (GEGA) that can be used for
optimisation of a RL agent’s hyperparameters, available in
GitHub repository [13].

E) publish the optimal hyper-parameter values ob-
tained for the compared algorithms on the OpenAI Gym
MountainCarContinuous-v0 benchmark.

The rest of this paper is structured as follows: Section II in-
troduces the related work and concepts useful in understanding
the algorithms of this paper. Section III describes the studied
algorithms and their major differences. A generalised view
of the components and tools used in this work is presented in
Section IV, and exact details of how these were used are shown
in Section V. Section VI describes the results we obtained,
before discussing their meaning in Section VII. Finally, we
make concluding statements and highlight potential future
work in Section VIII.

II. RELATED WORK

A “forward view” exists for the TD(λ) algorithm, which
provides an intuitive way to understand how TD methods learn
[3]. The “forward view” aims to move a state estimate towards
the λ-return update target. Shown in Equ.1, Gλt (θ) is defined
as an infinite weighted sum over n-step returns, where the n-
step return is defined in Equ.2 as an update target based on
the rewards gained over n time steps into the future.

Gλt = (1− λ)

∞∑
i=0

λi−1G
(i)
t (1)

G
(n)
t =

n∑
j=1

γj−1rt+j + γnV̂ (xt+n) (2)

where Gλt is the λ-return, G(n)
t is the n-step return, γ is the

discount factor, rt is the reward received at timestep t, λ is
the trace weight for multi-step estimates, xt is the MDP state
at time t, and V̂ (xt+n) is the expected return for being in the
state n steps in the future.

A trade-off between bias (one-step) and variance (multi-
step) of the update target can be managed using the λ
parameter. However, Seijen and Sutton demonstrated in [5]
and [6] that the TD(λ) algorithm only approximates the λ-
return when state estimates are updated online. To achieve
exact equivalence to the “forward view” of TD learning, they

proposed the ‘Online λ-return’ algorithm, where True Online
TD(λ) exactly matches this new “forward view” when state
estimates are updated online.

The True Online TD(λ) algorithm was shown to empirically
out-perform TD(λ) and some control variants on a random
Markov process, a real-world myoelectric prothestic arm, a
random walk task, and a mountaincar benchmark problem.
However, all these algorithms and results thus far have only
considered the use of linear function approximation, since non-
linearity can easily lead to divergence [16], [17]. In [6], the
True Online TD(λ) algorithm and its “forward view” was
extended to create the Forward TD(λ) and K-bounded λ-return
algorithms - a backward and “forward view”, specifically
designed to exactly match when using non-linear function
approximators. K truncates the infinite sum to the first K
n-step returns, allowing it to be computed online with a small
delay. The algorithm was validated on the mountaincar and
cartpole benchmark problems, with the action space discretised
using a separate ANN for each of the two actions’ value
functions. Veeriah et al. [7] furthered the work on Forward
TD(λ), by incorporating it into an AC model, creating the
Forward Actor Critic (FAC) algorithm. Its performance was,
again, presented on the mountaincar and cartpole benchmark
environments, where the actor output was an array of the
probability for each discrete action.

III. ACTOR CRITIC ALGORITHMS

The AC algorithm forms the basis for the three AC variants
compared in this paper, namely FAC, CACLA, and TOCLA.
Table I summarises the differences between the evaluated ACs,
showing their actor update and critic algorithm. In the AC
algorithm, the critic using TD(λ) moves the state estimates
towards the λ-return update target (Equ.1), which is then used
to compute the Temporal Difference Error (TDE) (Equ.3). The
TDE represents whether the action chosen at the previous
timestep led to a better or worse state than expected.

δk = Gλt − Vθk(xk) (3)

where δk is the TDE, Gλt is the λ-return update target, and
Vθk(xk) is the state estimate (given by the critic) for state, xk,
parameterised by the vector θ ε Rm.

Then, the critic is updated by Equ.4, as follows:

θk+1 = θk + αc,kδk∇θVθk(xk) (4)

where ∇θVθk(xk) is the gradient of the state value function,
and αc is the critic’s learning rate.

The actor’s approximator is parameterised by the vector
ψ ε Rn and is updated using Equ.5.

ψk+1 = ψk + απδk
∇ψπ(ut|xt, ψt)
π(ut|xt, ψt)

(5)

where απ is the policy’s learning rate, and ∇ψπ(ut|xt,ψt)π(ut|xt,ψt) is
the policy gradient [18].

Core differences among AC algorithms

Algorithm Actor Critic Reference

AC TDE TD(λ) [3]

FAC TDE Forward TD(λ) [7]

CACLA Exploration TD(λ) [8]

TOCLA Exploration Forward TD(λ) Approach proposed

TABLE I: Actor (column 2) shows the value by which the policy
gradient is scaled. Critic (column 3) lists the algorithm used to
compute the state estimates. Reference (column 4) includes the
original source where the algorithm was proposed.

A. CACLA

The CACLA algorithm updates the critic using the same
update target, Gλt , as the AC. However, the actor is only
updated if the TDE is positive, i.e. the executed action resulted
in a state estimate better than expected. The update equation
is also modified to replace the TDE with the amount of
exploration that was taken in the executed action:

ψt+1 = ψt + αa(at − πt(xt))
∇ψπ(ut|xt, ψt)
π(ut|xt, ψt)

: δk > 0 (6)

where at is the action executed, having been sampled from
the exploration strategy distribution.

B. Forward AC

In contrast to CACLA, the Forward AC [7] keeps the same
actor update equation (see Equ.5), changing the critic’s algo-
rithm instead. Forward AC uses Forward TD(λ) to compute
the state estimates that are exactly equal to its “forward view”
algorithm, the K-bounded λ-return [7]. Equ. 7 - 11 provide
the recursive update equations required to implement the K-
bounded λ-return, where the full Forward AC algorithm can
be seen in [7].

G
λ|K
t = G

λ|K−1
t + (γλ)K−1δ

′

t+K−1 (7)

G
λ|K
t = rt+1 + γ(1− λ)V̂t+1 + γλG

λ|K−1
t+1 (8)

G
λ|K−1
t+1 =

(G
λ|K
t − ρt)
γλ

(9)

δ
′

t = rt+1 + γV̂ (xt+1|θt)− V̂ (xt|θt−1) (10)

ρt = rt+1 + γ(1− λ)V̂ (xt+1) (11)

where K is the bounded limit for the n-step return.

Fig. 2: The MountainCarContinuous-v0 environment. The goal of
the environment is for the car to reach the goal position on top of
the right mountain. The action, ut represents a force that is applied
to the car. xt is the state of the car, containing the position on the
track and the cars velocity.

C. TOCLA

TOCLA is a novel AC algorithm, that combines Forward
AC and CACLA. It uses the K-bounded λ-return as update
targets, and hence, implements the Forward TD(λ) as its critic.
Updates to the actor, however, use the CACLA update equation
(refer to Equ. 6). The combination of these actor and critic
updates provide an algorithm ideally suited to continuous-
valued real-world applications.

IV. EXPERIMENT SETUP

There are four software components required to run the RL
agents, which obtained the data presented in this paper:
• RL environment framework OpenAI Gym [10]
• Autonomous-Learning-Library (ALL) framework [14]
• ALLAgents GitHub repository [15]
• GEneralised Genetic Algorithm (GEGA) repository [13]

A. OpenAI Gym and Mountain car benchmark

The OpenAI Gym provides a consistent set of bench-
mark environments that researchers can use to make fairer
comparisons to other algorithms [10]. From them, the
MountainCarContinuous-v0 environment was selected for our
experiments, specifically for its reward function (Equ.12), that
can be defined as follows:

rt =

{
100−

∑i=t
i=0 u

2
i , if p > 0.5

0 otherwise
(12)

where rt is the reward received at timestep, t, ui is the
action that was taken at timestep i, and p is the position on
the track. To solve this environment, an average reward of over
90 must be obtained for 100 consecutive episodes.

This environment is designed not only to reward the agent
for reaching the goal state, but also for minimising the force
used to reach the goal. Hence, it purposely discourages the
learning of bang-bang control responses.

MountainCarContinuous-v0 is a continuous valued variant
of the traditional mountain car problem [3]. Fig.2 shows a
visual representation of the problem. A car is on a one-
dimensional track, positioned between two ”mountains”, with
a state space of xt ε [p, ∆p], where p is the position on
the track, and ∆p is the car velocity. The action space is a

Parameters passed to GEGA

Description Parameter Type

Population size P R

Number of generations Tmax R

Minimise fitness minimise True | False

Number of genes gn R

Gene bounds gb [[R,R]]gn

Gene mutation probability gmut prob [R]gn

Gene mutation type gmut type [linear | log | gaussian]gn

Gene absolute tolerance gtol [R]gn

Termination fitness
threshold

Tthreshold R

Termination number of
generations

Tgen R

TABLE II: Parameter (column 2) shows the list of variables used
by GEGA, along with their description (column 1), and type (column
3). [R,R] is a two element vector containing a lower and upper real
value, respectively.

one-dimensional continuous variable, ut ε R, that represents
the driving force the car should apply. A positive force moves
the car to the right, whilst a negative force moves the car to
the left. The goal is to drive up the mountain on the right.
However, the car engine is not strong enough to scale the
mountain in a single pass. Therefore, the only way to succeed
is to drive back and forth to build up momentum.

B. Learning agent framework

The ALL software framework [14] is an extendable frame-
work used to build and evaluate RL agents which can be run
on the integrated OpenAI Gym framework. It also contains a
wrapper around the PyTorch torch.nn library [19], enabling the
actor and critic approximators to be GPU accelerated. Another
benefit of using the PyTorch library is the automatic network
gradient calculation that is part of the autograd library.

C. ALLAgents

ALLAgents is a repository that we have developed to extend
the ALL framework with the implementations of the AC,
CACLA, Forward AC, and TOCLA algorithms that we use
in this paper. We have made it freely available in GitHub
repository [15].

D. GEneralised Genetic Algorithm

A GA implementation, called GEneralised Genetic Al-
gorithm (GEGA), was developed to optimise the learning
hyperparameters of the RL agents in the ALLAgents library.
However, GEGAs interface has been kept as generic as pos-
sible to allow it to be used for other optimisation problems.

The primary development goal of GEGA was the level of
configuration available at the individual parameter (gene) level.
Table II lists all of the parameters given to GEGA. These must
be defined, and are required in order to enable the algorithm

Algorithm 1: GEGA Evolution Pseudocode

1 initialise population of solutions;
2 initialise solutions history;
3 if load past result then
4 load population, fitness, solutions history, and

generation number from file
5 else
6 calculate fitness for all solutions in population;
7 add to solutions history(population);
8 end
9 while not stop criteria do

10 Perform tournament selection of two parents from
the population (with tour = 4);

11 Stochastically perform a cross-over operation to
generate a child solution;

12 Stochastically apply a mutation to the
child solution;

13 if child solution not in solutions history then
14 calculate fitness of child solution;
15 add to solutions history(child solution);
16 if child fitness better than any parent then
17 replace the worst parent solution in

population with the child;
18 else
19 discard child solution;
20 end
21 end
22 end

to find a viable optimal solution in the continuous-valued
search-space. The included properties that can be grouped in
evolution, gene, and termination. Evolution contains properties
such as the population size, number of generations, number of
genes in an individual, and whether the goal is to minimise
or maximise the fitness. A Gene is defined by the following
properties:
• lower and upper bounds for each parameter
• an absolute tolerance that is used to check for similar past

solutions
• mutation type and its associated properties (e.g. Gaussian

distribution and its standard deviation)
Termination properties indicate to GEGA when the op-

timisation is completed. This condition is described using
three properties. Firstly, a fitness threshold value that the best
solution in the population must reach before termination is
considered. Secondly, the number of generations that must
have passed without any improvement in the best fitness value.
If neither of these two termination conditions get satisfied,
then GEGA will run until the specified maximum generation
is reached.

A generalised description of GEGA’s behaviour is as fol-
lows. A population, P , of m solutions, S, to be optimised is
kept, where each parameter in an individual solution s ∈ S is
referred to as a gene. A solution si, is defined as:

si = 〈gene1, gene2, . . . , geneg〉 (13)

where g is the number of genes in the solution, and each gene
genei, is a real-valued parameter to be optimised. GEGA was
designed to work with continuous-valued solutions.

Each solution in the population has an associated fitness
value, which represents a numerical measure of how good a
solution is. A selection process is then executed which selects
two solutions to be evolved from the population as parents.
A tournament selection process was chosen as the selection
strategy. This selection process selects individuals from the
population by randomly selecting individuals from the popu-
lation to create a ‘tournament’, of size ‘tour’. The individual
with the best fitness from the tournament is then chosen, and
a new tournament is created. This process is repeated until the
desired number of individuals have been chosen. To create an
offspring solution, cross-over and mutation genetic operations
are applied to the selected parents. After the offspring has its
fitness calculated, an elitism replacement strategy is used.

The replacement process inserts the offspring solution into
the population in the place of the parent solution with the worst
fitness, providing that the offspring fitness is better. As a result,
over generations the solutions in the population improve. The
optimisation loop, which GEGA executes, is briefly described
in Alg.1

GEGA includes a memory-based supporting tool, where
before calculating a new offspring’s fitness, it checks whether
a ‘similar’ individual has been run in the past. The user
of the library defines the conditions for what constitutes
‘similar’ individuals through an absolute tolerance for each
chromosome. The benefits of this mechanism are two-fold.
Firstly, executing the fitness function can be very costly in
terms of execution time. Hence, if a solution has already been
tested, it does not need run again. Secondly, it encourages
diversification of solutions, since duplicates can be avoided.

V. METHODOLOGY

The comparison of the RL algorithms are presented in two
steps:

1) a parameter optimisation procedure. Its goal is to find
the optimal hyper-parameter values for each algorithm
to ensure fair comparisons among them. Insights into the
sensitivity and importance of each parameter’s selection
will also be gathered from this part.

2) a set of experiments conducted (using the selected hyper-
parameter values), which repeats each algorithms’ RL
process 20 times to obtain statistics of the averaged
reward per episode. The goal is to evaluate the per-
formance of each algorithm in terms of the learning
capability, speed that the benchmark problem is solved
and its consistency.

The remainder of this section describes common aspects
to both the optimisation procedure and repeated learning
processes. On the selected MountainCarContinuous-v0 envi-
ronment, a ‘learning run’ comprises of running the learning

agent on that environment for 150 episodes, each with 1000
timesteps. The result of which is the return vector, R:

R = 〈raccum1 , raccum2 , . . . raccum150 〉 (14)

where raccumn is the accumulated return of the 1000
timesteps for the nth episode. A value of 0.99 was selected
for the learning discount factor, γ, for all experiments. A
static γ value was chosen to keep the dimensionality of the
optimisation space as low as possible. This value is also close
to the discount factor used by Veeriah et al. in [7], without
being a completely undiscounted task (i.e. γ = 1).

Both of the ANNs in the actor and the critic, respectively,
had the following architecture: two input nodes; two hidden
layers with 400 and 300 units, respectively, using the rectified
linear unit activation function. A Xavier uniform distribution
was used for the ANN weight initialisation [20]. From the ini-
tial learning rate value, which is tuned in the following section,
the ADAM adaptive learning rate optimisation algorithm was
used [21].

Both components, the position and velocity of the car, of
the state space were normalised by scaling them to between
[−1, 1] before being passed to the ANN as input. The output of
the critic ANN was the state estimate, and the output of the
actor was the deterministic action to take given the current
state. The action executed in the environment was sampled
from a Normal distribution centred on the deterministic action,
to introduce exploration in the environment. The Normal
distribution started with a standard deviation of 1.0, which was
decayed at a rate of 0.9995e, where e is the episode number,
until a minimum value of 0.1 was reached.

A. Parameter optimisation procedure

The chromosomes in the pool of solutions had the following
structure and range of possible values, where applicable, for
all of the experiments.
• actor and critic learning rates, απ and αc, had initialisa-

tion and mutation bounds set to the range [1e−6, 1e−1]
• λ had its initialisation and mutation bounds set to [0, 1]
• λ used a linear mutation function
For the AC and CACLA algorithms, only the actor and critic

learning rates were optimised. For FAC and TOCLA, the λ
parameter was also optimised since this plays an important
role of varying the number of steps that state estimates are
estimated over, and also varying the delay before the initial
learning update [6], [7].

The goal of the hyper-parameter optimisation procedure was
to find the values of αc, απ , and λ that would maximise the
return vector R:

〈 αc, απ, λ〉 = argmax(R) (15)

To achieve this, a fitness function had to be designed to
quantitatively measure a learning run based on R. Equ.16 was
chosen as the fitness function. From this equation, it can be
seen that the fitness value is calculated from two learning runs.

The reason for this is to average out some of the stochasticity
of the learning process, whilst minimising execution time. This
mechanism is called fitness by approximation [22]. During
each learning run, the RL agent is following a stochastic
policy to enable it to explore its search space. As a result,
the accumulated reward per episode and, hence, R are also
stochastic.

fitness =

i=150∑
i=1

(|B −
∑i=2
i=1Ri
2

|) (16)

where i is the episode number, and B is a vector of return
values that represent the best possible reward per episode.
Therefore, given Equ.12, a vector of size R150 with values
of 100 was chosen as this makes the fitness Equ. 16 calculate
the area between the learning run’s vector of rewards and
the maximum reward possible. Hence, minimising this value
should be equal to a greater reward, and a better learnt policy.
The tournament selection returned two individuals and used a
tour value of four.

The optimisation was repeated ten times for each algorithm,
where each execution is referred to, henceforth, as an ‘opti-
misation run’, and each optimisation run lasts for 400 gen-
erations. The optimum hyper-parameter values were selected
by taking the average of the parameters which achieved the
lowest fitness score from each of the ten optimisation runs.

B. Performance experiment
To compare the AC, CACLA, FAC, and TOCLA algorithms,

we assess their resulting averaged reward and standard devia-
tion per episode and time. These metrics demonstrates several
properties of the algorithms:

1) the number of episodes taken before solving the envi-
ronment indicates the rate of learning

2) the steady-state reward after the environment is solved
indicates the performance of the learnt policy

3) the standard deviation of the averaged reward indicates
the stability of the learnt policy

To obtain the averaged reward per episode, 20 learning runs
were executed for each algorithm using the hyper-parameter
values identified from the optimisation experiments. Hence,
given that the setup is exactly the same for all of the learning
runs, any difference between them is either a result of the
algorithm or the stochasticity of the policy (the amount of
which was consistent across all of the algorithms).

VI. RESULTS

In the proceeding subsections, we present the performance
achieved by AC, CACLA, FAC, and TOCLA on the moun-
taincar benchmark environment. The first results correspond to
the optimal hyper-parameter values selected according to their
corresponding fitness scores, having been optimised according
to Sect.V-A. The distribution, across the ten optimisation runs,
of the hyper-parameters and fitness values are also presented.

The second results shows the performance of each algo-
rithm, averaged over 20 learning runs, using the optimal
hyper-parameter values from the first experiment.

Optimal hyper-parameter values

Algorithm απ αc λ

AC 0.0005309958359 ± 0.0005181446729 0.0008687286902 ± 0.0003795707839

CACLA 0.004333557417 ± 0.003041052691 0.0007373596187 ± 0.0004422380522

FAC 0.001369217032 ± 0.0008807837024 0.001266006463 ± 0.0003773732798 0.0413122279 ± 0.03605573309

TOCLA 0.00259986294 ± 0.001863315567 0.001125209337 ± 0.001352974874 0.5306405172 ± 0.2657877008

TABLE III: απ is the actor learning rate, αc is the critic learning rate, and λ is the multi-step weighting parameter. The mean
values were selected as the final hyper-parameters to run the experiments.

A. Parameter optimisation
The optimal values for each algorithms αc, απ , and λ

(where applicable) are shown in Table III, and their distribu-
tions in Fig. 3–5. A violin plot is used to show the probability
density function of the distribution, whilst a box plot is also
included to show the upper and lower bounds, the upper and
lower quantiles, the median, and the mean. By observing the
shape of the distributions, it will allow us to further extract
knowledge of each algorithm’s behaviour.

Fig.3 shows the distribution of the actor learning rate (απ)
for AC, CACLA, FAC, and TOCLA, where the spread in the
y-axis represents the standard deviation of the distribution. It
can, therefore, be seen that CACLA has, by far, the largest
standard deviation, followed by TOCLA.

Fig. 3: Distribution of the optimal actor learning rate, calculated
over ten optimisation runs.

The distribution of αc is shown in Fig.4. They exhibit sig-
nificantly less standard deviation across all algorithms than the
actor’s learning rate. FAC shows the largest standard deviation,
with optimal values being spread quite evenly throughout the
upper and lower value range. Meanwhile, despite AC and
CACLA having a low standard deviation, they both exhibit
asymmetrical probability densities.

For the FAC and TOCLA algorithms, the distribution of
the optimal λ parameters is shown in Fig.5. This figure
highlights a major difference between the algorithms, with
the λ parameter for TOCLA ranging between zero and one.
Meanwhile, the optimal λ values for FAC are tightly spread
around 0.045.

Another important aspect is how the fitness minimisation
behaves and the way it reaches convergence, In this regard,

Fig. 4: Distribution of the optimal critic learning rate, calculated
over ten optimisation runs.

Fig. 5: Distribution of the optimal λ values for the FAC and TOCLA
algorithms, calculated over ten optimisation runs.

Fig.6 shows the minimisation of the population fitness over
400 generations for AC, CACLA, FAC, and TOCLA. The bars
indicate the standard deviation of the fitness, per generation,
observed over ten optimisation runs. Fig.7 presents the statis-
tics of the achieved fitness, showing that TOCLA obtains the
lowest mean value.

Table IV provides more concise numerical values for the
mean and standard deviation of the fitness, at the generation
intervals [0, 24, 49, 99, 149, 199, 249, 299, 349, 399].
The last row in this table is the minimum fitness value that
each algorithm achieved. The interval size is decreased below
one hundred generations as this region contains the greatest
change in fitness.

The algorithms in ascending order of the best fitness values

Sampled average fitness and standard deviation

Generation AC CACLA FAC TOCLA
0 20542 ± 3832 16728 ± 6929 21030 ± 4412 12083 ± 7514

24 11609 ± 6856 3837 ± 401 5278 ± 3052 3503 ± 673

49 7384 ± 4873 3260 ± 532 3556 ± 1122 2758 ± 321

99 3961 ± 682 2824 ± 189 2731 ± 179 2368 ± 151

149 3755 ± 648 2674 ± 185 2579 ± 163 2333 ± 190

199 3570 ± 371 2649 ± 181 2549 ± 163 2315 ± 192

249 3491 ± 416 2616 ± 202 2507 ± 203 2218 ± 185

299 3405 ± 329 2616 ± 202 2424 ± 140 2217 ± 185

349 3372 ± 330 2602 ± 201 2419 ± 139 2217 ± 185

399 3341 ± 315 2564 ± 229 2419 ± 139 2187 ± 191

TABLE IV: The mean values and standard deviation for the fitness achieved by AC, CACLA, FAC, and TOCLA. Rows are at intervals of
50 generations throughout the maximum number of generations run, except for the second row which is at an interval of 25 generations

Fig. 6: Fitness minimised over generations for AC, CACLA, FAC,
and TOCLA. Calculated over ten optimisation runs.

were AC, CACLA, FAC, and TOCLA. AC unquestionably per-
formed worst, whilst there is less difference in the final fitness
value between CACLA, FAC, and TOCLA. However, a no-
table observation throughout the generations is the decreased
standard deviation for FAC and TOCLA, which indicates a
reduction in the diversity of the population, likely due to their
proximity to the global optima. Another interesting aspect is
that FAC reached its best fitness value from generation 300,
meanwhile the rest of the algorithms continue improving at
a slow pace. TOCLA is, in this regard, significantly better,
reaching the minimum mean fitness value that FAC achieved
in generation 100.

B. Algorithm performance

Using the selected optimal learning parameters from Table
III, the accumulated reward per episode over 20 learning runs
was gathered and the mean and standard deviation calculated.
The result of which is shown in Fig.8 and Table V. Fig.8 shows
the average, over 20 learning runs, accumulated reward and
standard deviation per episode for AC, CACLA, FAC, and
TOCLA. Table V again shows the accumulated reward and

Fig. 7: Distribution of the optimal fitness values for AC, CACLA,
FAC, and TOCLA. Calculated over ten optimisation runs.

standard deviation per episode for AC, CACLA, FAC, and
TOCLA, but it shows quantitative values 10 episode intervals.

The AC algorithm did not perform well with the selected
parameters. In Fig.9, the 20 learning runs of the AC are
shown, having been split into two groups: a successful group,
where a learnt policy was able to solve the environment, and
a failed group, where the policy saw little improvement or
diverged from the optimal. The data shown is the average
accumulated reward and standard deviation, per group. Fig.9
aids in demonstrating why the average accumulated reward per
episode of AC in Fig.8 is so low, and with such a high standard
deviation. From the 20 learning runs, the AC only learnt to
solve the environment 8 times, where 60% of learning runs
failed to improve the policy from its initial state. All of the
remaining algorithms consistently solved the environment. A
noteworthy improvement over AC is achieved by CACLA, as
simply by changing the actor update equation, it substantially
improved its stability. Compared with FAC and TOCLA, how-
ever, CACLA was slower to solve the environment, requiring
approximately double the number of episodes that FAC and
TOCLA needed.

From Fig.8 it can be observed that there is little difference

Fig. 8: Accumulated reward per episode, calculated over 20 learning
runs, whilst using the selected learning parameters from Table III

between FAC and TOCLA, with FAC solving the environ-
ment marginally before TOCLA. However, having solved the
environment (i.e. after episode 40), it is clearly visible from
Table.V that TOCLA and CACLA have a reduced standard
deviation over FAC, which means that learning has effectively
stopped. In Fig.8, an observation is made that despite TOCLA
achieving a lower fitness (on average) than FAC, it appears to
learn slightly slower than FAC. This is counter-intuitive and
shall be discussed in the following section.

VII. DISCUSSION

In Section VI, we presented the results of comparing
the AC, CACLA, FAC, and TOCLA algorithms on the
MountainCarContinuous-v0 benchmark. Observed from these
results was that TOCLA, on average, achieved a more optimal
policy during the optimisation procedure than the rest of
the AC algorithms. However, in the performance experiment,
TOCLA did not have the best policy, which belonged to FAC.
This, as well as other interesting observations from our results
are now discussed.

The poor performance of AC is understandable, given
its one-step update target and the benchmark environment’s
reward function. The reward function only returns a non-
zero value if the goal has been reached, effectively rewarding
algorithms that can propagate experienced reward backward
through time.

In contrast, despite CACLA using the same one-step TD
algorithm for its critic as the AC algorithm, it achieved a
significantly more stable performance, solving the environment
every time. This improvement should originate from the actor
update equation, given that it is the only difference between
AC and CACLA. This replaces the TDE with the amount of
stochastic exploration that was taken. We hypothesise that this
result is due to one of CACLA’s main update ideologies, which
states that moving the actor’s output in the opposite direction
from the last action when experiencing a negative TDE is
not necessarily correct, and may, in fact, be detrimental. This
hypothesis is influenced by the significantly larger standard
deviation of απ , observed in Fig.3, compared with AC, FAC,
and TOCLA. Given that CACLA’s optimal fitness standard
deviation in Fig.7 is similar to AC, with such a large standard

Fig. 9: Accumulated reward per episode of the AC, grouped into suc-
cessful and failed groups (with respect to solving the environment),
whilst using the selected learning parameters from Table V.

deviation in CACLA’s απ , this suggests that απ for CACLA is
significantly less sensitive than the AC’s. It, therefore, makes
CACLA more robust, all from removing the TDE from the
actor update equation.

FAC also achieved a large improvement over the standard
AC, by using multi-step update targets, specifically designed
for applying an ANN to approximate the critic. Given that the
optimal λ for FAC was found to be 0.045, it would appear that
the Forward TD(λ) may converge to realistic state estimates,
significantly faster than the standard TD algorithm. In effect, as
FAC shares the same actor update as AC, it must be obtaining
realistic state estimates faster, which reduces the time at the
start of learning, where the TDE is wrong and is adversely
affecting the actor as a result.

TOCLA was founded on the ideal that utilising the state-of-
the-art actor and critic technologies from the CACLA update
and Forward TD(λ), respectively, it would result in a bleeding
edge algorithm. During the optimisation experiment, from
Table IV, it can be seen that this ideal looked promising,
with TOCLA demonstrating a more optimal policy with a
more even distribution. However, in Fig.8, it was surprising
to see that FAC actually reached the optimal policy sooner
than TOCLA. Once converged to the optimal policy, looking
at Table V, it can be seen that the standard deviation of
TOCLA is less than FAC, indicating stability. The reason for
this is two-fold: firstly, the exploration is decayed with the
number of episodes, and secondly, the CACLA actor update
does not update the policy for δt <= 0. We hypothesise
that the explanation for the slower rate of convergence of
TOCLA lies in the decaying of exploration, as this is directly
reducing the step size of the policy update. Also, however,
the very large standard deviation of the λ parameter for
TOCLA (Fig.5), the method in which the optimal values were
selected, and our optimisation run sample size could also be
contributing factors. We speculate that, with more optimisation
runs and clustering of the resulting λ values, and decreasing
the exploration decay rate, that the TOCLA algorithm may
achieve the optimal policy.

Our results show a valuable insight into the interaction be-
tween actor and critic modules and the effect that substituting

Sampled accumulated reward and standard deviation

Generation AC CACLA FAC TOCLA
0 -53 ± 1 -46 ± 23 -30 ± 44 -41 ± 32

9 -43 ± 32 -12 ± 55 37 ± 54 17 ± 61

19 -21 ± 58 17 ± 63 88 ± 7 83 ± 6

29 2 ± 66 75 ± 31 90 ± 2 89 ± 2

39 5 ± 70 86 ± 7 89 ± 5 90 ± 3

49 6 ± 69 90 ± 2 91 ± 3 91 ± 1

59 6 ± 70 91 ± 1 90 ± 3 91 ± 1

69 5 ± 70 91 ± 1 91 ± 2 90 ± 1

79 4 ± 71 91 ± 1 91 ± 2 91 ± 1

89 4 ± 71 91 ± 1 91 ± 2 91 ± 1

99 3 ± 72 91 ± 1 91 ± 2 91 ± 1

TABLE V: The averaged accumulated reward and standard deviation
for AC, CACLA, FAC, and TOCLA across 20 learning runs. Rows
are sampled every 10 episodes throughout the first 100 episodes

just the actor or critic from one algorithm to another can
have. This kind of research is invaluable when the resulting
algorithms and their behaviours even in benchmark problems
are non-trivial, with non-intuitive outcomes possible.

VIII. CONCLUSION

Reinforcement learning provides a general framework for
solving problems modelled as a MDP. This makes rein-
forcement learning immensely applicable to many real-world
problems. However, these problems often occur in continuous-
valued domains.

We proposed a new algorithm called TOCLA after recent
work brought focus onto incremental online temporal differ-
ence learning methods for non-linear function approximation.
TOCLA was compared against the original AC, CACLA, and
FAC on the MountainCarContinuous-v0 benchmark of Ope-
nAI Gym. A GA implementation called GEGA was developed
to tune the learning rate and lambda hyper-parameter values
for the comparison. The hyper-parameter value optimisation
procedure using GEGA resulted in TOCLA performing best
of the four actor critic algorithms. Using the selected optimal
hyper-parameter values and repeating the learning process,
however, resulted in the FAC performing best. This unforeseen
result lead to some insights into the effects of the different
components, such as the temporal difference error, exploration,
and multi-step update targets. All of the source code used to
gather the experiment data in this paper is freely available on
GitHub, including GEGA, and implementations of all four of
the AC algorithms.

For future work, multiple tracts can be taken. Firstly, the
GEGA library can be improved to include alternative selection,
cross-over, and mutation strategies. Secondly, different fitness
by approximation approaches can also be investigated to see
their effect. Finally, the performance of TOCLA will be
evaluated on other control applications, including the control
of an autonomous underwater vehicle.

REFERENCES

[1] Thor I Fossen. Guidance and control of ocean vehicles. John Wiley &
Sons Inc, 1994.

[2] J. Katz and A. Plotkin. Low-speed aerodynamics, volume 13. Cambridge
university press, 2001.

[3] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[4] Richard S Sutton. Learning to predict by the methods of temporal
differences. Machine learning, 3(1):9–44, 1988.

[5] H.V Seijen and R. Sutton. True online td (lambda). In Proceedings of
the 31st International Conference on Machine Learning, pages 692–700,
2014.

[6] Harm van Seijen. Effective multi-step temporal-difference learning for
non-linear function approximation. arXiv preprint arXiv:1608.05151,
2016.

[7] V. Veeriah, H. van Seijen, and R.S Sutton. Forward actor-critic for non-
linear function approximation in reinforcement learning. In Proceedings
of the 16th Conference on Autonomous Agents and MultiAgent Systems,
pages 556–564, 2017.

[8] Hado Van Hasselt and Marco A Wiering. Reinforcement learning
in continuous action spaces. In Approximate Dynamic Programming
and Reinforcement Learning, 2007. ADPRL 2007. IEEE International
Symposium on, pages 272–279. IEEE, 2007.

[9] S.A. Fjerdingen, E. Kyrkjeboe, and A.A. Transeth. Auv pipeline
following using reinforcement learning. In 41st International Symposium
on Robotics (ISR) and 6th German Conference on Robotics (ROBOTIK),
pages 1–8, June 2010.

[10] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[11] Zbigniew Michalewicz. Genetic algorithms+ data structures= evolution
programs. Springer Science & Business Media, 2013.

[12] Pawel Cichosz. Truncating temporal differences: On the efficient
implementation of TD (lambda) for reinforcement learning. Journal
of Artificial Intelligence Research, 2:287–318, 1994.

[13] Generalised genetic algorithm (gega) github repository.
https://github.com/gordon-frost-hwu/gega. Accessed: 2020-07-05.

[14] Autonomous learning library (all) reinforcement learning framework.
https://github.com/cpnota/autonomous-learning-library. Accessed: 2020-
03-10.

[15] Allagents - an extension to the autonomous learning library with
forward td(λ) actor-critic agents. https://github.com/gordon-frost-
hwu/ALLAgents. Accessed: 2020-06-08.

[16] Justin Boyan and Andrew W Moore. Generalization in reinforcement
learning: Safely approximating the value function. Advances in neural
information processing systems, pages 369–376, 1995.

[17] S.P Singh and R.S Sutton. Reinforcement learning with replacing
eligibility traces. Recent Advances in Reinforcement Learning, pages
123–158, 1996.

[18] Richard S. Sutton, David Mcallester, Satinder Singh, and Yishay Man-
sour. Policy gradient methods for reinforcement learning with function
approximation. In In Advances in Neural Information Processing
Systems 12, pages 1057–1063. MIT Press, 2000.

[19] A. Paszke, S. Gross, F. Massa, A. Lerer, and M. et al. Bradbury.
Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019.

[20] X. Glorot and Y. Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the 13th international
conference on artificial intelligence and statistics, pages 249–256, 2010.

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[22] M. Vallejo and D.W Corne. Evolutionary algorithms under noise and
uncertainty: a location-allocation case study. In IEEE Symposium Series
on Computational Intelligence (SSCI), pages 1–10. IEEE, 2016.

